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ABSTRACT

A State Space Model (SSM) is a foundation model in time series analysis, which
has recently been shown as an alternative to transformers in sequence modeling.
In this paper, we theoretically study the generalization of SSMs and propose im-
provements to training algorithms based on the generalization results. Specifically,
we give a data-dependent generalization bound for SSMs, showing an interplay
between the SSM parameters and the temporal dependencies of the training se-
quences. Leveraging the generalization bound, we (1) set up a scaling rule for
model initialization based on the proposed generalization measure, which sig-
nificantly improves the robustness of SSMs to different temporal patterns in the
sequence data; (2) introduce a new regularization method for training SSMs to en-
hance the generalization performance. Numerical results are conducted to validate
our results.

1 INTRODUCTION

Sequence modeling has been a long-standing research topic in many machine learning areas, such
as speech recognition (Hinton et al., 2012), time series prediction (Li et al., 2019), and natural
language processing (Devlin et al., 2019). Various machine learning models have been success-
fully applied in sequence modeling to handle different types of sequence data, ranging from the
(probabilistic) Hidden Markov model (Baum & Petrie, 1966) to deep learning models, e.g., Re-
current Neural Networks (RNNs), Long Short-Term Memory units (Hochreiter & Schmidhuber,
1997), Gated Recurrent Unit (Chung et al., 2014), and transformers (Vaswani et al., 2017). In this
paper, we focus on the state space model (SSM), which has a simple mathematical expression1:
h′(t) = Ah(t) + Bx(t), y(t) = Ch(t) + Dx(t) where h(t) is the hidden state, x(t) is the input
sequence, y(t) is the output sequence and A,B,C,D are trainable parameters. Recent studies have
demonstrated the power of SSMs in deep learning. For example, it was shown in Gu et al. (2022a)
that by a new parameterization and a carefully chosen initialization, the structured state space se-
quence (S4) model achieved strong empirical results on image and language tasks. Following the S4
model, more variants of SSMs are proposed, e.g., the diagonal SSM (Gu et al., 2022b; Gupta et al.,
2022) the S5 model (Smith et al., 2023), the H3 model (Fu et al., 2023), the GSS model (Mehta
et al., 2023), and the Hyena Hierarchy (Poli et al., 2023).

Theoretical analysis and understanding of the approximation and optimization of SSMs are well
studied in the literature such as (Li et al., 2021; 2022; Gu et al., 2022a; 2023). Since the SSM can
be regarded as a continuous linear RNN model (Li et al., 2022), most generalization analysis of
SSMs is based on the generalization theory of RNNs (Zhang et al., 2018; Chen et al., 2019; Tu et al.,
2019). However, these previous works did not study the effects of the temporal dependencies in the
sequence data on the SSM generalization (See more details on the comparison in Section 4.1). As
an attempt to understand the relationship between the temporal dependencies and the generalization
performance, this paper aims to provide a generalization bound that connects the memory structure
of the model with the temporal structure of the data. We can, in turn, use the proposed bound to
guide us in designing new algorithms to improve optimization and generalization. Specifically, we
discover two roles for the proposed generalization measure: (1) generalization bound as an initial-
ization scheme; (2) generalization bound as a regularization method. The common initialization
method for the S4 model and its variants follows from the HiPPO framework (Gu et al., 2022a;

1To simplify the analysis, we omit the skip connection by letting D = 0
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2023), which is based on the prerequisite that the training sequence data is stable. To improve the
robustness of SSMs to different temporal patterns in the sequence data, we consider to rescale the
initialization of SSMs with respect to the generalization measure. This new initialization scheme
makes the SSMs more resilient to variations in the temporal patterns of the training data. Except for
the initialization setup, our generalization bound can also be served as a regularizer. Regularization
methods like weight decay and dropout are widely applied to training SSMs, but the hidden state
matrix A is not regularized because its imaginary part controls the oscillating frequencies of the
basis function eAtB (Gu et al., 2022b). By taking into account the interaction between the SSM
structure and the temporal dependencies, we introduce a new regularization method based on our
bound, and it can be applied to the hidden state space to improve the generalization performance.
When combining the initialization scheme and the regularization method, our method is applicable
to various tasks, ranging from image classification to language processing, while only introducing a
minimal computational overhead. To summarize, our contributions are as follows:

• We provide a data-dependent generalization bound for SSMs by taking into account the
temporal structure. Specifically, the generalization bound correlates with the memory struc-
ture of the model and the (auto)covariance process of the data. It indicates that instead of
the weight or the data norm, it is the interplay between the memory structure and the tem-
poral structure of the sequence data that influences the generalization.

• Based on the proposed generalization bound, we setup an initialization scaling rule by ad-
justing the magnitude of the model parameters with respect to the generalization measure at
initialization. This scaling rule improves the robustness of SSMs across different temporal
patterns of the sequence data.

• Apart from the initialization scheme, we design a new regularizer for the hidden state ma-
trices of SSMs. Unlike weight decay, our regularizer does not penalize the parameter norm
but encourages the model to find a minimizer with lower generalization bound to improve
the generalization performance.

2 RELATED WORKS

Since a SSM is also a continuous linear RNN, there are three lines of research that are related to our
work: generalization of RNNs, temporal structure analysis on RNNs, and optimization of SSMs.

Generalization of RNNs Existing works on the generalization of RNNs focus on the generalization
error bound analysis. Specifically, in the early two works of Dasgupta & Sontag (1995) and Koiran
& Sontag (1998), VC dimension-based generalization bounds were provided to show the learnabil-
ity of RNNs. In recent studies, Zhang et al. (2018); Chen et al. (2019); Tu et al. (2019) proved
norm-based generalization bounds, improving the VC dimension-based bounds by the Rademacher
complexity technique (Bartlett & Mendelson, 2002) under the uniform-convergence framework. In
the overparameterization settings, it was shown in Allen-Zhu & Li (2019) that RNNs can learn some
concept class in polynomial time given that the model size is large enough. These generalization
bounds, however, do not take into account the temporal dependencies and their effects on general-
ization. In this work, we provide a new generalization bound by combining the memory structure of
the model and the temporal structure of the data.

Temporal structure analysis on RNNs Sequence data has long-range temporal dependencies
across the time domain, which notably set it apart from non-sequence data. Recent studies have
studied the effects of such temporal dependencies on the approximation and optimization of RNNs.
For example, in the two works of Li et al. (2021; 2022), a “curse of memory” phenomenon was
discovered when using linear RNNs to model the temporal input-output relationships. Particularly,
when the target relationship between the input and output has a long-term memory, then both ap-
proximation and optimization become extremely challenging. In Wang et al. (2023), the “curse of
memory” phenomenon on approximation and optimization was extended to non-linear RNNs based
on the temporal relationships. In this paper, we conduct a fine-grained analysis on the effects of the
temporal structure analysis on the generalization of RNNs.

Optimization of SSMs RNN optimization is known for two issues: training stability and compu-
tational cost (Bengio et al., 1994; Pascanu et al., 2013). To address these two issues and capture
the long dependencies more efficiently in sequence modeling, the S4 model was proposed by in-
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troducing new paraemterization, initialization and discretization (Gu et al., 2022a). Recent variants
for the S4 model simplified the hidden state matrix by a diagonal matrix to enhance computational
efficiency (Gu et al., 2022b; Gupta et al., 2022; Smith et al., 2023; Orvieto et al., 2023). Regu-
larization methods are also applied for SSMs to prevent overfitting, such as dropout, weight decay
and the data continuity regularizer (Qu et al., 2023). However, the principled way to regularize and
initialize the parameters still remains to be explored. In this study, we design a new regularization
and initialization scheme to improve both optimization and generalization.

3 PRELIMINARIES

In this section, we briefly introduce the SSM in Section 3.1 and the motivation for optimization
designs based on the generalization analysis in Section 3.2.

3.1 INTRODUCTION TO SSMS

In this paper, we consider the following single-input single-output SSM,

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), t ≥ 0 (1)

where x is the input from an input space2 X := C0(R≥0,R); y(t) ∈ R is the output at time t; h(t) ∈
Rm is the hidden state with h(0) = 0; A ∈ Rm×m, B ∈ Rm×1, C ∈ R1×m are trainable parameters.
Then (1) has an explicit solution y(t) =

∫ t

0
ρθ(s)x(t − s)ds, where ρθ(s) := CeAsB with θ =

(C,A,B). The function ρθ(s) captures the memory structure of the model and the temporal input-
output relationship (Li et al., 2022). For the remainder of this paper, we assume that the input
sequence x(t) follows a Gaussian process GP(µ(t),K(s, t)) with

µ(t) = E[x(t)], K(s, t) = E[(x(s)− µ(s))(x(t)− µ(t))]. (2)

Discretization For the S4 model and its variants (Gu et al., 2022a;b; Gupta et al., 2022; Gu et al.,
2023), (1) is usually discretized by the Zero-Order Hold method, i.e., given a timescale ∆ ∈ R,

hk+1 = Āhk + B̄xk, yk = C̄hk, k = 0, 1, . . .

where Ā = e∆·A, B̄ = (Ā−Im)A−1B, C̄ = C. Then, yk can be written as the convolution between
a kernel and the input sequence, i.e., yk = C̄ĀkB̄x0 + C̄Āk−1B̄x1 + . . . + C̄B̄xk = [K̄ ∗ x]k,
where K̄ = (C̄B̄, C̄ĀB̄, . . . , C̄ĀkB̄).

3.2 MOTIVATION: A LINEAR REGRESSION MODEL

In this subsection, we use a linear regression model on non-sequential data as an example to illustrate
the connection between the generalization analysis and the optimization designs. This example then
motivates us to extend the connection to SSMs on sequential data.

Linear regression We consider a simple linear model y = θ⊤x with input x ∈ Rd, output y ∈ R
and parameter θ ∈ Rd. Let the training data {(xi, yi)}ni=1 be i.i.d. sampled from a distribution D
such that ∥xi∥2 = r, |yi| ≤ 1(∀i ∈ [1 : n]). Define the empirical risk Ln(θ) :=

1
n

∑n
i=1(θ

⊤xi−yi)
2

and the population risk LD(θ) := Ex,y[(θ
⊤x − y)2]. Then given a norm-constrained space Θ :=

{θ ∈ Rd : ∥θ∥2 ≤ R}, with probability at least 1− δ over D,

sup
θ∈Θ

|Ln(θ)− LD(θ)| ≤ (rR+ 1)2 · O

(√
log(1/δ)

n

)
. (3)

This is a well-known norm-based generalization bound based on the Rademacher theory (Mohri
et al., 2012), and we provide a proof in Appendix B for completeness. Notice that the key term
r2R2 in the generalization bound (3) is also an upper bound for the magnitude of the linear model
output, i.e., supθ∈Θ(θ

⊤xi)
2 ≤ r2R2. Thus, we connect the model stability with the generalization

bound stability, and this connection induces an initialization scheme for the initialization θ(0) by
setting ∥θ(0)∥2 ∼ O(1/r). In particular, if we normalize each input xi such that r is also O(1),

2A linear space of continuous functions from R≥0 to R that vanishes at infinity.
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then ∥θ(0)∥2 ∼ O(1). Since θ(0) ∈ Rd, one possible initialization scheme is that θ(0) follows
a Uniform distribution U [−1/

√
d, 1/

√
d], which corresponds to the Kaiming initialization (up to

some constant) (He et al., 2015). When treating the term r2R2 as a regularizer to improve the
generalization, we get the weight decay method, i.e., the ℓ2 regularization w.r.t. ∥θ∥22. We summarize
the above logic chain that connects the generalization analysis with optimization designs in Figure
1. Now for SSMs, we extend the generalization analysis from non-sequential data to sequential data

Initialization scheme: set θ0 s.t. Complexity(θ0) = O(1)

Generalization Estimate
GenError(θ) ∼ Complexity(θ)√

n

Regularization method: penalize Complexity(θ)

Figure 1: The logic diagram goes from generalization analysis to optimization designs.

by taking into account the temporal structure of the data. This linear regression example motivates
us to apply the same logic diagram (Figure 1) to the SSMs, and this is exactly what we are going to
present in the following part of this paper.

4 MAIN RESULTS

In this section, we first give a generalization bound for SSMs in Section 4.1, then we design a new
initialization scheme in Section 4.2 based on this proposed bound. Apart from the initialization
scheme, we introduce a new regularization method in Section 4.3. Finally, we conduct experiments
to test the initialization scheme and the regularization method in Section 4.4.

4.1 A GENERALIZATION BOUND OF SSMS

In this section, we present a generalization bound for the SSM (1) and reveal the effects of the
temporal dependencies on the generalization performance. We show that our bound gives a tighter
estimate compared with previous norm-based bounds through a toy example. Following the same
notation in Section 3.1, we define the empirical risk Rn(θ) and the population risk Rx(θ) as

Rn(θ) :=
1

n

n∑
i=1

∣∣∣∣∣
∫ T

0

ρθ(T − s)xi(s)ds− yi

∣∣∣∣∣
2

, Rx(θ) := Ex

∣∣∣∣∣
∫ T

0

ρθ(T − s)x(s)ds− y

∣∣∣∣∣
2

where T > 0 is some finite terminal time, the training sequence data {xi(t)}ni=1 are independently
sampled from a Gaussian process GP(µ(t),K(s, t)) that satisfies (2), and the label y is generated by
some underlying functional HT : X −→ R, i.e., y = HT (x). We assume that |y| ≤ 1 for any x ∈ X ,
otherwise, we truncate the value of the label to 1. In the next, we make the following assumption on
the normalized Gaussian process of x(t):

Assumption 1. The normalized Gaussian process x̃(t) := x(t)−µ(t)√
K(t,t)

is almost surely finite and

Hölder continuous, i.e., P (supt∈[0,T ] |x̃(t)| < ∞) = 1, and there exists constants cα, H > 0 such
that E

[
(x̃(t)− x̃(s))2

]
≤ cα(t− s)2α for any α ∈ (0, H).

The almost surely boundness assumption covers a large class of Gaussian process, including any
stationary Gaussian process with continuous µ(t) and K(s, t) (Adler et al., 2007). For the station-
ary Gaussian process with mean 0 and covariance K(s − t), the Hölder continuity assumption is
equivalent to K(0)−K(s−t) ≤ c̃α(t−s)2α for any α ∈ (0, H). Examples for the stationary Gaus-
sian process that satisfy Assumption 1 include: (1) identical sequences: x(t) = x for all t ∈ [0, T ],
where x ∼ N (0, 1); (2) Gaussian white noise: µ(t) = 0, K(s, t) = 1

|b|
√
π
e−((s−t)/b)2 for some

b ̸= 0; (3) Ornstein-Uhlenbeck process: µ(t) = 0, K(s, t) = e−|s−t|.

We now proceed to bound generalization gap |Rx(θ)−Rn(θ)| by establishing uniform convergence
of the empirical risk to its corresponding population risk, as stated in following theorem:
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Theorem 1. For a SSM
∫ T

0
ρθ(T − s)x(s)ds, following the notations and settings in Section 3.1

& 4.1, then under Assumption 1, given a parameter space Θ for θ, there exists a constant CT that
depends on T such that for any δ ∈ (0, 1), with probability at least 1−δ over the training sequences,

sup
θ∈Θ

|Rx(θ)−Rn(θ)|

≤

(
sup
θ∈Θ

∫ T

0

|ρθ(T − s)|
√
K(s, s)ds+ sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − s)µ(s)ds

∣∣∣∣∣+ 1

)2

· Õ

(
CT

√
log(n/δ)

n

)
(4)

where Õ(·) hides the logarithmic factor.

The proof is given in Appendix D.4. We see that this generalization bound decreases to zero as the
sample size n goes to infinity, provided that the terminal time T is finite and the supremum term in
(4) is bounded. Theorem 1 captures the temporal dependencies of the sequence data on the SSM
generalization, yielding that the mean and variance at each length position together play important
roles in the generalization analysis. Specifically, the generalization gap is small if the convolutions
between the SSM function ρθ(s) and the sequence statistics µ(s),

√
K(s, s) have small magnitude.

Proof sketch The proof for Theorem 1 is based on Rademacher complexity analysis (Bartlett &
Mendelson, 2002). The main difficulty is on bounding the Rademacher complexity of the SSM
function

∫ T

0
ρθ(T − s)x(s)ds for a Gaussian process x(s). We first use the Hölder inequality to

give an upper bound for the Rademacher complexity w.r.t. the normalized Gaussian process, then
use the Borell-TIS inequality (Lemma 4) to show the finiteness of the normalized Gaussian process.
Combining with the Hölder continuity property (Assumption 1), we use an ε-net argument to bound
the Rademacher complexity, which then finishes the proof.
Remark 1. Theorem 1 relies on Assumption 1, which does not apply to all Gaussian processes.
In Appendix D.5 (see Theorem 2), we also give another generalization bound that does not require
Assumption 1 and can be applied to any Gaussian process, but is looser than the bound (4).

Comparison Since a SSM is also a continuous linear RNN, we compare (4) with previous bounds
for linear RNNs. In Chen et al. (2019), a generalization bound Õ (∥x∥2∥B∥2∥C∥2∥A∥2/

√
n) is

provided, where ∥x∥2 is the 2-norm of the discrete input sequence. In the continuous case, ∥x∥2
corresponds to the L2 norm w.r.t. a Dirac measure. By changing the matrix 2-norm to matrix 1-
norm, Tu et al. (2019) shows another similar generalization bound. These bounds separate the data
complexity and the model complexity by the data norm and the model parameter norm individually,
and do not account for the temporal dependencies across the time domain. In this work, instead,
we incorporate the temporal dependencies via the sequence statistics (mean and variance) to get
a generalization bound. Next, we use a toy example to illustrate that our bound gives a tighter
estimation. Given a Gaussian process {x(t)}t∈[0,T ] ∼ GP(µ(t),K(s, t)), we consider the following
two upscale transformations (by increasing T to 2T ):

1. left zero padding: x1(t) = 0, t ∈ [0, T ); x1(t) = x(t− T ), t ∈ [T, 2T ]

2. right zero padding: x2(t) = x(t), t ∈ [0, T ]; x2(t) = 0, t ∈ (T, 2T ]

For both cases, we calculate the SSM outputs y1(2T ) and y2(2T ) as

y1(2T ) =

∫ 2T

0

ρθ(2T − s)x1(s)ds =

∫ T

0

ρθ(T − s)x(s)ds = C

∫ T

0

eA(T−s)Bx(s)ds

y2(2T ) =

∫ 2T

0

ρθ(2T − s)x2(s)ds =

∫ T

0

ρθ(2T − s)x(s)ds = CeAT

∫ T

0

eA(T−s)Bx(s)ds

Then the magnitude of y1(2T ) and y2(2T ) differs with an exponential factor eAT . Since all the
eigenvalues of A have negative real part, y2(2T ) −→ 0 as T increases. Hence, the right zero padding
transformation degenerates the SSM function class to a zero function class for large T , inducing
a minimal generalization gap that only contains the statistical sampling error (see (4) by letting
K(s, s) = µ(s) = 0). Therefore, a desired generalization bound should reflect such a differ-
ence caused by the different temporal dependencies. However, previous norm-based generalization
bounds do not capture such a difference for these two transformations as they produce the same L2
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norm for the input sequence. Let us see what happens for our proposed generalization measure. For
the left zero padding, the key term in (4) becomes∫ T

0

∣∣∣CeA(T−s)B
∣∣∣√K(s, s)ds+

∣∣∣∣∣
∫ T

0

CeA(T−s)Bµ(s)ds

∣∣∣∣∣+ 1 (5)

For the right zero padding, the key term in (4) becomes∫ T

0

∣∣∣CeAT eA(T−s)B
∣∣∣√K(s, s)ds+

∣∣∣∣∣
∫ T

0

CeAT eA(T−s)Bµ(s)ds

∣∣∣∣∣+ 1 (6)

The detailed derivations are given in Appendix C. By the same argument, our bound (4) indeed
captures the difference on the magnitude of the generalization performance for these two sequence
transformations. In particular, as T −→ ∞, (6) reduces to 1, which yields a minimal generalization
gap as expected for the zero function class. In that sense, we get a tighter bound for the SSMs.

4.2 GENERALIZATION BOUND AS AN INITIALIZATION SCHEME

In this section, we apply our generalization bound (4) to the practical training. Specifically, we de-
sign a scaling rule for the SSM parameters at initialization. This new initialization scheme improves
the robustness of SSMs across different temporal patterns of the sequence data.

Previous initialization scaling In the S4 model and its variants, the initialization for the hidden
state matrices A,B is based on the HiPPO framework (Gu et al., 2023) to produce orthogonal basis
functions. For the matrix C, the initialization is set to be the standard normal distribution N (0, 1)
in order to ensure stability and variance-preserving on the input sequences. However, the argument
the stability property relies on the prerequisite that the input sequence is constant along the length
direction (Gu et al. (2023, Corollary 3.4)), which is restricted as the long-range dependencies may
lead to very different temporal patterns on the input sequence, thus it is necessary to adjust the
scaling of C to enhance the robustness of the SSMs on different temporal dependencies.

Following the logic diagram in Figure 1 and the linear regression example in Section 3.2, we first
extract the dominant term in the generalization bound (4) as

τ(θ) :=

(∫ T

0

|ρθ(T − s)|
√
K(s, s)ds+

∣∣∣∣∣
∫ T

0

ρθ(T − s)µ(s)ds

∣∣∣∣∣
)2

. (7)

Then notice that ρθ(s) = CeAsB, if we rescale C to ξC for some ξ ∈ R, we have τ(θ̃) = ξ2·τ(θ) for
θ̃ = (ξC,A,B). This induces a new initialization scheme, i.e., once the parameters θ = (C,A,B)

are initialized by default, we rescale C to C̃ such that

C̃ =
1√
τ(θ)

· C =
1∫ T

0
|ρθ(T − s)|

√
K(s, s)ds+

∣∣∣∫ T

0
ρθ(T − s)µ(s)ds

∣∣∣ · C (8)

The new initialization scheme (8) guarantees that the SSM output is finite for any Gaussian process,
ensuring the stability of the SSM at initialization in a general case. We formalize it in Proposition 1.

Proposition 1. For a SSM
∫ T

0
ρθ(T − s)x(s)ds, following the notations and settings in Section 3.1

& 4.1, under Assumption 1, for any fixed θ, let C̃ given by the rescale method (8), then for θ̃ :=

(C̃, A,B), there exists a constant βT depends on T such that Ex

[∣∣∣∫ T

0
ρθ̃(T − s)x(s)ds

∣∣∣] ≤ βT .

The proof is provided in Appendix E. Proposition 1 only requires the normalized Gaussian process
to be stable (Assumption 1) but does not have any constraint on the original Gaussian process, which
improves the robustness of SSMs across different temporal structures in a broader sense. When the
input sequence is constant, i.e., µ(s) = c,K(s, s) = 0, the initialization scheme (8) reduces to the
default initialization (up to some constant) in (Gu et al., 2023). It is worth noting that different from
the data normalization methods such as min-max normalization and standardization, our rescaling
method (8) only changes the model parameters. This is important because normalization on the data
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numerical values in language tasks can lead to loss of crucial information. For example, mathemat-
ical expressions like “max(1, 9) = 9” have a contextual meaning where normalizing could result in
the loss of structured information essential to understand.

Implementation In the practical training, the SSMs used for tasks such as image classification or
language processing are usually deep and high dimensional (d > 1), while our initialization scheme
(8) is designed based on the one-dimensional shallow SSM. To extend the initialization scheme to
high-dimensional deep SSMs, we (1) treat all features to be independent and calculate τ(θ) by its
average along the feature dimension d; (2) rescale the initialization C for each layer via (8) for
deep SSMs. Also, the calculation of the sequence statistics µ(s) and K(s, s) is based on the input
sequence, which is not the same as the raw sequence data if there is an encoder (or embedding)
layer before the SSM layer. To reduce the computational cost, we conduct the rescaling operation
(8) based on the first batch of the training sequence. We summarize the procedures for one-layer

Algorithm 1 Training one-layer SSMs with the initialization scheme (8)
Input: Training sequences x1, . . . , xn ∈ RL×d with length L and dimension d, a SSM initialization θ0 =

(C,A,B), a SSM kernel function k(θ) ∈ RL×d, number of epochs s
1: for i = 0 to s− 1 do
2: if i = 0 then
3: Sample a minibatch sequence x = (x(1), . . . , x(B)) ∈ RB×L×d

4: Compute the mean µ ∈ RL×d and variance K ∈ RL×d for x along the batch dimension
5: Compute τ(θi) via convolution: τ(θi)←

[
|k(θi)| ∗

√
K + |k(θi) ∗ µ|

]
L
∈ Rd

6: Average over the feature dimension: τ(θi)← Mean2(τ(θi))

7: Rescale by the initialization scheme (8): C̃ ← C/
√

τ(θi)

8: Start to train with the updated initialization (C̃, A,B)
9: end if

10: Regular training procedure
11: end for
Output: Updated model parameter θs

SSMs in Algorithm 1, where the | · | and
√
· in Line 5 represent to element-wise absolute value and

element-wise square root respectively. [·]L extracts the last position of an element obtained from the
convolution. The Mean(·) operation in Line 6 calculates the mean value of a vector.

4.3 GENERALIZATION BOUND AS A REGULARIZATION METHOD

In addition to its role as an initialization scheme, the generalization measure can also be regarded as
a regularizer. In this section, we utilize the bound (4) to design a regularization method to improve
the generalization performance, and simultaneously bring a little extra computational cost. For the
generalization bound (4), we consider to use the dominant term (for large T ) τ(θ) defined in (7) as
a regularizer. Then, the new empirical risk with regularization is given by

R̃n(θ) :=
1

n

n∑
i=1

∣∣∣∣∣
∫ T

0

ρθ(T − s)xi(s)ds− yi

∣∣∣∣∣
2

+ λ · τ(θ), (9)

where λ ≥ 0 is the regularization coefficient. Following the implementation details in Algorithm
1, we also adopt a mini-batch version of the sequence statistics (µ(s),K(s, s)) to replace the full-
batch version to reduce the computational cost. For multi-layer SSMs, we calculate the layer-wise
regularization measure τ(θ) w.r.t. the SSM input at each layer and sum them together. Again, we
describe the training procedures for one-layer SSMs in Algorithm 2, where the | · | and

√
· in Line

5 represent to element-wise absolute value and element-wise square root respectively. [·]L extracts
the last position of an element obtained from the convolution. The Mean(·) operation in Line 6
calculates the mean value of a vector.

Computational cost analysis From the training procedures in Algorithm 2, we can see that the
newly introduced training complexity mainly comes from the calculation for the convolution be-
tween the SSM kernel and the sequence statistics (µ,K). Since the convolution can be conducted
by the fast Fourier transform (Gu et al., 2022a) with complexity O(BdL logL), then the new com-
plexity for Algorithm 2 becomes O((B + 2)dL logL), which is acceptable in the practical training.
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Algorithm 2 Training one-layer SSMs with the regularization method (9)
Input: Training sequences x1, . . . , xn ∈ RL×d with length L and dimension d, a SSM initialization θ0, a

SSM kernel function k(θ) ∈ RL×d, loss function R̃(·, ·) : Rd × Rd −→ R, regularization coefficient λ,
optimizer OPT, number of epochs s

1: for i = 0 to s− 1 do
2: Sample a minibatch input x = (x(1), . . . , x(B)) ∈ RB×L×d with labels (y(1), . . . , y(B))
3: Calculate the mean µ ∈ RL×d and variance K ∈ RL×d for x along the batch dimension
4: Compute the SSM output via convolution: y ← [k(θi) ∗ x]L ∈ RB×d

5: Compute the regularization via convolution: τ(θi)←
[
|k(θi)| ∗

√
K + |k(θi) ∗ µ|

]
L
∈ Rd

6: Average over the feature dimension: τ(θi)← Mean2(τ(θi))

7: Compute the total loss L ← 1
B

∑B
i=1 R̃(yi, y

(i)) + λ · τ(θi)
8: Parameters update: θi+1 ← OPT(θi,L)
9: end for

Output: Updated model parameter θs

4.4 EXPERIMENTS

This section contains experiments to demonstrate the effectiveness of the proposed initialization
scheme (8) and the regularization method (9). We use a synthetic sequence dataset and the Long
Range Arena (LRA) benchmark (Tay et al., 2021) for numerical validations.

A synthetic dataset We consider a synthetic sequence dataset generated by a centered Gaussian
white noise with the autocovariance function K(s, t) = 1

|b|
√
π
e−((s−t)/b)2 , which is a stationary

Gaussian process and satisfies Assumption 1. Then we can get different temporal dependencies
by varying the coefficient b, i.e., as the magnitude of b decreasing, the temporal dependence of
the corresponding Gaussian white noise decreases as well. In particular, as b −→ 0, 1

|b|
√
π
e−(x/b)2

becomes a delta function δ(x), entailing a zero temporal dependence for the sequence data.

In the following experiment, we generate the sequence data by the Gaussian white noise with
b = [1, 0.1, 0.01]. For each input sequence (x1, . . . , xL), its corresponding label is obtained by
sin(x[L/2]), i.e., the sine value of the time-lagged input. We use the S4 model (that only contains the
convolution layer) to train the sequence data. More details about the experiment setup are provided
in Appendix A.1. In Figure 2, we plot the model output Ex[|yL|] and the gradient norm ∥∇Rn(θ)∥

Figure 2: Effects of the initialization scheme (8) on the model output, the gradient norm and the
optimization under different temporal dependencies. (Left) The output Ex[|yL|] at initialization w.r.t.
the Gaussian white noise sequence (x1, . . . , xL) for length L from 1 to 1000; (Middle) The gradient
norm ∥∇Rn(θ)∥ at initialization w.r.t. the mean squared error (MSE) for varied sequence length;
(Right) The training MSE curve for the Gaussian white noise with length L = 1000.

at initialization, and the training loss with different temporal patterns by varying the Gaussian white
noise parameter b. We see that the initialization scheme (8) enhances the stability for the SSM output
(matches with Proposition 1) and gradient norm at initialization across different temporal structures.
For the optimization, (8) makes the initial training loss more stable and as a result, improving the
training performance. This is also verified in Table 1, where we report the final training loss and
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Training loss (MSE) Test loss (MSE)
w/o (8), (9) w (8) w (9) (8) + (9) w/o (8), (9) w (8) w (9) (8) + (9)

b = 1 0.21±0.02 0.16±0.02 0.28±0.02 0.24±0.02 0.54±0.04 0.57±0.07 0.42±0.009 0.42±0.02

b = 0.1 0.35±0.01 0.16±0.007 0.51±0.01 0.32±0.01 1.00±0.05 1.20±0.12 0.71±0.03 0.65±0.02

b = 0.01 1.20±0.33 0.14±0.02 1.94±0.33 0.32±0.04 3.37±0.50 1.43±0.13 2.22±0.16 0.67±0.03

Table 1: Training and test loss on the Gaussian white noise sequences with different coefficients b.
Under the initialization scheme (8), SSMs achieve better optimization performance and are more
robust across different temporal dependencies. With both the initialization scheme (8) the regular-
ization method (9), the generalization performance gets significantly improved.

test loss with mean and standard error over 3 independent runs. From the training loss results, we
observe that the initialization scheme (8) improves the robustness of SSMs to different temporal pat-
terns (by varing b), and the optimization performance is better compared with training without (8).
From the test loss results, we can see that the regularization method (9) improves the generalization
performance. By combining the initialization scheme (8) and the regularization method (9), both the
robustness and generalization get enhanced across various temporal structures of the sequence data.

LRA benchmark We investigate the effects of the initialization scheme (8) and the regularization
method (9) on the LRA benchmark. We use 5 out of 6 tasks excluding the PathX dataset due to the
limitation of the computational resource. We use the S4 model and follow the training rules in Gu
et al. (2023). See more details on the dataset description and the experiment setup in Appendix A.2.
Similar to the experiment of the synthetic dataset, we consider 4 training settings: w/o (8), (9); w
(8); w (9); (8) + (9). As shown in Table 2, We find that both the initialization scheme (8) and the reg-

w/o (8), (9) w (8) w (9) (8) + (9)

ListOps (L = 2048) 59.45 60.30 60.65 (λ = 10−3) 60.40 (λ = 10−3)
Text (L = 2048) 79.27 81.44 81.45 (λ = 10−2) 82.56 (λ = 10−2)

Retrieval (L = 4000) 88.28 89.38 89.21 (λ = 10−3) 90.13 (λ = 10−3)
Image (L = 1024) 87.99 88.11 87.79 (λ = 10−5) 88.28 (λ = 10−2)

Pathfinder (L = 1024) 87.84 87.95 90.36 (λ = 10−5) 90.03 (λ = 10−6)

Table 2: Test accuracy on the 5 tasks of the LRA benchmark under different settings. λ is the
regularization coefficient.

ularization (9) improve the SSM performance in the LRA benchmark. Specifically, when comparing
w/o (8), (9) vs w (8), and w/o (8), (9) vs w (9), we can see that separately using the initialization
scheme (8) or the regularization method (9) improves the generalization performance individually.
When these two optimization algorithms are combined, one can get a better test accuracy in 3 tasks.
This indicates that our proposed optimization designs effectively improve the generalization perfor-
mance. It is also worth noting that the magnitude of the regularization coefficients in Table 2 are
different for different tasks. This is because the generalization measure (7) varies across different
tasks. We include more discussions and experiment results in Appendix A.2.

5 DISCUSSION

In this work, we study the optimization and the generalization for SSMs. Specifically, we give a
data-dependent generalization bound, revealing an effect of the temporal dependencies of the se-
quence data on the generalization. Based on the bound, we design two algorithms to improve the
optimization and generalization for SSMs across different temporal patterns. The first is a new ini-
tialization scheme, by which we normalize the generalization measure at initialization, improving
the robustness of SSMs to various temporal structures. The second is a new regularization method,
which enhances the generalization performance in sequence modeling. However, in this paper we
do not address the feature dependencies when calculating the generalization measure (7) for high-
dimensional SSMs, but simply treat all the features are independent. It is interesting to understand
the effects of feature structures on the optimization and generalization of SSMs, which we leave for
future work.
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Reproducibility The the generalization bound (3) for linear regression is proved in Appendix B.
The proof for Theorem 1 and another generalization bound that does not rely on Assumption 1 are
provided in Appendix D.4 and Appendix D.5 respectively. The derivations for (5) and (6) in Section
4.1 are given in Appendix C. The proof for Proposition 1 is in Appendix E. The details for the
experiment settings are shown in Appendix A.1 and Appendix A.2.
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conditions for hölder continuity of gaussian processes. Statistics & Probability Letters, 94:230–
235, 2014.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of finite state
markov chains. The annals of mathematical statistics, 37(6):1554–1563, 1966.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent neural
networks. arXiv preprint arXiv:1910.12947, 2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Bhaskar Dasgupta and Eduardo Sontag. Sample complexity for learning recurrent perceptron map-
pings. Advances in Neural Information Processing Systems, 8, 1995.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics, June 2019.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022a.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
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A EXPERIMENTS DETAILS

In this section, we provide more details for the experiments of the synthetic dataset and the LRA
benchmark in Section 4.4.

A.1 THE SYNTHETIC EXPERIMENT

For the Gaussian white noise sequences, we generate 100 i.i.d. sequences for training and 1000 i.i.d.
sequences for test. The timescale for the discrete sequences is set to be 1, i.e., to generate a Gaussian
white noise sequence with length L, we sample from a multivariate normal distribution with mean
zero and covariance matrix Ki,j = h(i − j) for i, j ∈ [1 : L], where h(t) = 1

|b|
√
π
e−(t/b)2 . The

model that we use is the one-layer S4 model that only contains the FFTConv (fast Fourier transform
convolution) layer and without activation and the skip connection (D = 0) (Gu et al., 2022a). The
state space dimension for the FFTConv layer is 64, other settings such as the discretization, the
initialization and the parameterization follow the default settings in Gu et al. (2023), i.e., we use the
ZOH discretization, the LegS initialization and the exponential parameterization for the hidden state
matrix A.

For the optimizer, we follow Gu et al. (2023) to set the optimizer by groups. For the (ZOH) timescale
∆, the hidden state matrices A,B, we use Adam optimizer with learning rate 0.001, while for the
matrix C, we use AdamW with learning rate 0.01 and decay rate 0.01. For all the parameters, we use
the cosine annealing schedule. The batch size is set to be 100 (full batch) and the training epochs
is 100. The regularization coefficient λ used for training with (9) is set to be 0.01 across all the
temporal patterns.

A.2 LRA BENCHMARK

Datasets The datasets in the LRA benchmark contain (1) ListOps (Nangia & Bowman, 2018), a
dataset that is made up of a list of mathematical operations with answers; (2) Text (Maas et al.,
2011), a movie review dataset collected from IMDB, which is used for sentiment analysis; (3)
Retrieval (Radev et al., 2009), a task of retrieving documents utilizing byte-level texts from the
ACL Anthology Network. (4)Image (Krizhevsky et al., 2009), a sequential CIFAR10 dataset used
for sequence classification; (5) Pathfinder (Linsley et al., 2018), a task that requires a model to tell
whether two points in an image are connected by a dashed path.

Models For the model architectures, we use the standard S4 model with the default LegS initializa-
tion, ZOH discretization and exponential parameterization as in Gu et al. (2023). For the optimizer,
we also follow the standard setup in Gu et al. (2023) that the hidden state matrices are trained in
a relatively small learning rate with no weight decay, while the other parameters are trained with
AdamW with a larger learning rate. We use a reduce learning rate schedule with different patience
for diffrent tasks. Let D,H,N denote the depth, feature dimension and hidden state space dimen-
sion respectively, we summarize all the hyperparameters for the S4 model in Table 3.

D H N Dropout Learning rate Batch size Epochs Weight decay Patience

ListOps 6 128 64 0 0.01 50 50 0.01 5
Text 4 128 64 0 0.01 50 40 0 10

Retrieval 6 256 64 0 0.002 64 25 0 20
Image 6 512 64 0.2 0.004 50 100 0.01 10

Pathfinder 6 256 64 0.1 0.004 100 200 0 10

Table 3: List of the S4 model hyperparameters for the LRA benchmark.

Regularization coefficients When training with the regularization method (9), we choose the regu-
larization coefficient λ from {10−6, 10−5, 10−4, 10−3, 10−2, 10−1} when the model performs best
on the validation set. We notice that in the 4 tasks that regularization helps (when comparing w/o
(8), (9) vs w (9) in Table 2), the optimal choice of λ varies. Especially for the Pathfinder dataset, the
optimal λ is much smaller than the other datasets, but the improvement on the generalization is the
largest. To investigate the magnitude of the optimal λ, we plot the generalization measure (7) during
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the training process. As shown in Figure 3, the generalization measure when training the Pathfinder
dataset without regularization increases to 4000 after 75 epochs, making the generalization measure
very sensitive to the magnitude of λ, thus it should be set with a relatively small value.

Figure 3: Generalization measure (7) of S4 models on the 5 tasks of the LRA benchmark with or
without regularization for different regularization coefficient λ in (9).

We also plot the generalization measure (7) when training only with the initialization scheme (8)
and training with both the initialization scheme (8) and the regularization method (9) in Figure
4. It is interesting to find that only using the initialization scheme (8) only guarantees that the
generalization measure is small at initialization (which is as expected because we only rescale the
model parameters at initialization). After training with some epochs, the generalization measure
starts to increase. If we use both the initialization scheme and the regularization method, we get a
much lower generalization measure, and as Table 2 shows, combining (8) and (9) produces better
generalization performance in some tasks.

Figure 4: Generalization measure (7) of S4 models on the 5 tasks of the LRA benchmark with or
without the regularization (9) and the rescaling method (8) during training. ‘baseline’ means train-
ing without regularization nor rescaling; ‘+ rescale’ represents training with rescaling but without
regularization; ‘+ rescale + reg’ corresponds to training with rescaling and regularization, where the
regularization coefficient λ is adopted based on the ‘(8) + (9)’ column in Table 2.

B PROOF FOR THE LINEAR REGRESSION RESULT IN SECTION 3.2.

In this section, we give the proof for the generalization bound (3). The proof is based on the follow-
ing uniform-convergence generalization bound in Mohri et al. (2012).
Lemma 1. Consider a family of functions F mapping from Z to [a, b]. Let D denote the distribution
according to which samples are drawn. Then for any δ > 0, with probability at least 1− δ over the
draw of an i.i.d. sample S = {z1, . . . , zn}, the following holds for all f ∈ F:

Ez∼D [f(z)]− 1

n

n∑
i=1

f(zi) ≤ 2RS(F) + 3(b− a)

√
log(2/δ)

2n
,

where RS(F) is the empirical Rademacher complexity with respect to the sample S, defined
as: RS(F) = Eσ

[
supf∈F

1
n

∑n
i=1 σif(zi)

]
. {σi}ni=1 are i.i.d. random variables drawn from

U{−1, 1} with P (σi = 1) = P (σi = −1) = 0.5.

And the Talagrand’s contraction lemma Ledoux & Talagrand (2013).
Lemma 2. Let H be a hypothesis set of functions mapping X to R and Ψ1, . . . ,Ψm, µ-Lipschitz
functions for some µ > 0. Then, for any sample S of m points x1, ..., xm ∈ X , the following
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inequality holds

1

m
Eσ

[
sup
h∈H

m∑
i=1

σi (Ψi ◦ h) (xi)

]
≤ µ

m
Eσ

[
sup
h∈H

m∑
i=1

σih (xi)

]

Now we begin our proof:

Proof. First, notice for any i ∈ [1 : n] and θ ∈ Θ, we have

(θ⊤xi − yi)
2 ≤ 2(θ⊤xi)

2 + 2y2i ≤ 2r2R2 + 2

Second, note that (θ⊤xi − yi)
2 is 2 supθ∈Θ,i∈[1:n] |θ⊤xi − yi|-Lipschitz (the maximum gradient

norm) with respect to θ⊤xi − yi, and we can bound the Lipschitz constant as

2 sup
θ∈Θ,i∈[1:n]

|θ⊤xi − yi| ≤ 2rR+ 2

Then by Lemma 2, the Rademacher complexity for the linear model is bounded as

RS(F) =
1

n
Eσ

[
sup

∥θ∥2≤R

n∑
i=1

σi(θ
⊤xi − yi)

2

]

≤ 2rR+ 2

n
Eσ

[
sup

∥θ∥2≤R

n∑
i=1

σi(θ
⊤xi − yi)

]

=
2rR+ 2

n
Eσ

[
sup

∥θ∥2≤R

n∑
i=1

σiθ
⊤xi

]

≤ 2R(rR+ 1)

n
Eσ

∥∥∥∥∥
n∑

i=1

σixi

∥∥∥∥∥
≤ 2R(rR+ 1)

n

√√√√Eσ

∥∥∥∥∥
n∑

i=1

σixi

∥∥∥∥∥
2

=
2R(rR+ 1)

n

√√√√ n∑
i=1

∥xi∥2

≤ 2rR(rR+ 1)√
n

Combining with the function value bound, we get the desired bound (3) by Lemma 1.

C DERIVATIONS FOR (5) AND (6) IN SECTION 4.1

For the left zero padding transformation, the key term in (4) becomes

∫ 2T

0

|ρθ(2T − t)|
√
K1(t, t)dt+

∣∣∣∣∣
∫ 2T

0

ρθ(2T − t)µ1(t)dt

∣∣∣∣∣+ 1

=

∫ T

0

|ρθ(T − t)|
√
K(t, t)dt+

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+ 1
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For the right zero padding transformation, the key term in (4) becomes∫ 2T

0

|ρθ(2T − t)|
√
K2(t, t)dt+

∣∣∣∣∣
∫ 2T

0

ρθ(2T − t)µ2(t)dt

∣∣∣∣∣+ 1

=

∫ T

0

|ρθ(2T − t)|
√

K(t, t)dt+

∣∣∣∣∣
∫ T

0

ρθ(2T − t)µ(t)dt

∣∣∣∣∣+ 1

=

∫ T

0

∣∣∣CeAT eA(T−t)B
∣∣∣√K(t, t)dt+

∣∣∣∣∣
∫ T

0

CeAT eA(T−t)Bµ(t)dt

∣∣∣∣∣+ 1

Then we get (5) and (6).

D PROOF FOR THEOREM 1 AND THEOREM 2

In this section, we will prove Theorem 1 and Theorem 2. Before moving into the formal proof, we
first introduce some important lemmas that help to build the proof.

D.1 SUB-EXPONENTIAL RANDOM VARIABLES

In this subsection, we introduce the sub-exponential random variable and its properties.

Definition 1. A random variable X is (τ2, b) sub-exponential if

E[eλ(X−E[X])] ≤ e
τ2λ2

2 , ∀|λ| < 1

b

Second is the concentration inequality for sub-exponential random variables:

Proposition 2. If X is (τ2, b) sub-exponential, then

P (|X − E[X]| ≥ t) ≤ 2 exp

(
−min

{
t2

2τ2
,
t

2b

})
Example 1. Let Z ∼ N (0, σ2), then X = Z2 is (4σ4, 4σ2) sub-exponential. This is because that

E[eλ(X−σ2)] =
1√
2πσ

∫ ∞

−∞
eλ(z

2−σ2)e−
z2

2σ2 dz =
e−λσ2

√
1− 2λσ2

≤ exp
(
2λ2σ4

)
, ∀|λ| < 1

4σ2

Proposition 3. If X is (τ2, b) sub-exponential, then ∀α ∈ R, αX is (α2τ2, |α|b) sub-exponential.
If X1 is (τ21 , b1) sub-exponential and X2 is (τ22 , b2) sub-exponential (not necessarily independent),
then X1 + X2 is ((τ1 + τ2)

2,max ((1 + τ2/τ1)b1, (1 + τ1/τ2)b2)) sub-exponential. Specifically,
if X1, . . . , Xn are sub-exponential with coefficients (τ21 , b1), . . . , (τ

2
n, bn) respectively, suppose that

there exists a constant c such that b1
τ1

= · · · = bn
τn

= c, then X1+· · ·+Xn is ((τ1+· · ·+τn)
2, c(τ1+

· · ·+ τn)) sub-exponential.

Proof. Since X is (τ2, b) sub-exponential, then

E[eλ(αX−E[αX])] ≤ e
(ατ)2λ2

2 , ∀|λ| < 1

|α|b

Therefore, αX is (α2τ2, |α|b) sub-exponential.

For any p, q > 1 such that 1
p + 1

q = 1, using Hölder’s inequality, we have

E exp{λ (X1 +X2 − E[X1 +X2])} ≤
[
Eepλ(X1−E[X1])

]1/p [
Eeqλ(X2−E[X2])

]1/q
≤ exp

{
λ2

2

(
pτ21 + qτ22

)}
, ∀|λ| < min

(
1

pb1
,
1

qb2

)
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Minimizing over 1
p + 1

q = 1, we get p = 1 + τ2/τ1, q = 1 + τ1/τ2, then

E exp{λ (X1 +X2 − E[X1 +X2])} ≤ exp

{
λ2

2
(τ1 + τ2)

2

}
, ∀|λ| < min

(
τ1

(τ1 + τ2)b1
,

τ2
(τ1 + τ2)b2

)
For the case when b1

τ1
= · · · = bn

τn
= c, one can prove the result by induction.

Remark 2. Similar results can also be obtained for linear combination of sub-Gaussian random
variables. Also note that if X1 and X2 are independent, then X1 + X2 is

(
τ21 + τ22 ,max(b1, b2)

)
sub-exponential.

Proposition 4. Suppose that X1, . . . , Xn are independent (τ2, b) sub-exponential random vari-
ables, then the average Z = X1+···+Xn

n is (τ2/n, b/n) sub-exponential. This is because that

E[eλ(Z−E[Z])] =

n∏
i

E[eλ(Xi−E[Xi])/n] ≤ exp

(
τ2λ2

2n

)
, ∀|λ| < n

b

Then by the concentration inequality, we have

P

(∣∣∣∣X1 + · · ·+Xn

n
− E[X]

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−min

{
nt2

2τ2
,
nt

2b

})
D.2 INTEGRAL OF GAUSSIAN PROCESSES

In this subsection, we show that the integral of a Gaussian process is also Gaussian, and the integral
of square of a Gaussian process is sub-exponential, which is formalized in the following lemma.

Lemma 3. If {x(t)}t≥0 is a centered and square integrable Gaussian process with the kernel func-
tion E[x(s)x(t)] = K(s, t), then for any T > 0, the integral

∫ T

0
x(t)dt is Gaussian with mean 0

and variance
∫ T

0

∫ T

0
K(s, t)dsdt. Moreover,

∫ T

0
x2(t)dt is

(
4
(∫ T

0
K(t, t)dt

)2
, 4
∫ T

0
K(t, t)dt

)
sub-exponential.

Proof. Note that the (Riemann) integral
∫ T

0
x(t)dt and

∫ T

0
x2(t)dt can be approximated by the

Riemann sums: ∫ T

0

x(t)dt = lim
N−→∞

T

N

N∑
j=1

x

(
jT

N

)
∫ T

0

x2(t)dt = lim
N−→∞

T

N

N∑
j=1

x2

(
jT

N

)

Since {x(t)}t≥0 is a Gaussian process, then x
(

jT
N

)
is a Gaussian random variable with

x

(
jT

N

)
∼ N

(
0,K

(
jT

N
,
jT

N

))
.

By the definition of Gaussian process, the linear combination T
N

∑N
j=1 x

(
jT
N

)
is also a Gaussian

random variable with mean 0 and variance

E


 T

N

N∑
j=1

x

(
jT

N

)2
 =

T 2

N2

N∑
i,j=1

E
[
x

(
iT

N

)
x

(
jT

N

)]

=
T 2

N2

N∑
i,j=1

K

(
iT

N
,
jT

N

)
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When n −→ ∞,

lim
n−→∞

E


 T

N

N∑
j=1

x

(
jT

N

)2
 =

∫ T

0

∫ T

0

K(s, t)dsdt

Therefore,
∫ T

0
x(t)dt is Gaussian with mean 0 and variance

∫ T

0

∫ T

0
K(s, t)dsdt.

Also, since x
(

jT
N

)
is Gaussian, we have x2

(
jT
N

)
is
(
4K2

(
jT
N , jT

N

)
, 4K

(
jT
N , jT

N

))
sub-exponential. Notice that

4K( jT
N , jTN )√

4K2( jT
N , jTN )

= 2, then by Proposition 3, T
N x2

(
jT
N

)
is
(

4T 2K2( jT
N , jTN )

N2 ,
4TK( jT

N , jTN )
N

)
sub-exponential, and the sum T

N

∑N−1
j=0 x2

(
jT
N

)
is sub-

exponential with coefficients N∑
j=1

2TK
(

jT
N , jT

N

)
N

2

, 2
N∑
j=1

2TK
(

jT
N , jT

N

)
N

Taking the limit, we have

lim
N−→∞

N∑
j=1

TK
(

jT
N , jT

N

)
N

=

∫ T

0

K(t, t)dt.

Therefore,
∫ T

0
x2(t)dt is

(
4
(∫ T

0
K(t, t)dt

)2
, 4
∫ T

0
K(t, t)dt

)
sub-exponential.

D.3 SOME USEFUL LEMMAS

In this section, we introduce some useful lemmas to build the proof.

The first is the Borell-TIS Inequality (Adler et al., 2007), which is used to prove exceedence proba-
bilities for Gaussian process.

Lemma 4. Let {ft}t∈T be a centered (i.e., mean zero) Gaussian process on T , with ∥f∥T :=
supt∈T |ft| almost surely finite, and let σ2

T := supt∈T E|ft|2. Then E(∥f∥T ) and σT are both finite,
and, for each u > 0,

P (∥f∥T > E(∥f∥T ) + u) ≤ exp

(
−u2

2σ2
T

)
The second lemma is about necessary and sufficient condition for the Hölder continuity of the Gaus-
sian process (Azmoodeh et al., 2014, Theorem 1.).

Lemma 5. A centered (mean zero) Gaussian process X is Hölder continuous of any order a < H ,
i.e.,

|Xt −Xs| ≤ Cε|t− s|H−ε, ∀ε ∈ (0, H)

if and only if there exists constants cε such that

E
[
(Xt −Xs)

2
]
≤ cε(t− s)2H−2ε, ∀ε ∈ (0, H)

The third lemma is the Massart Lemma for the Rademacher complexity with finite class.

Lemma 6. Let A be some finite subset of Rm and σ1, . . . , σm be independent Rademacher random
variables. Let r = supa∈A ∥a∥. Then, we have,

Eσ

[
sup
a∈A

m∑
i=1

σiai

]
≤ r
√
2 log |A|
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D.4 PROOF OF THEOREM 1

In this subsection, we are ready to prove the main result Theorem 1.

Proof. We let gθ(x) :=
∫ T

0
ρθ(T − t)x(t)dt− y, then the generalization gap is given by

Rx(θ)−Rn(θ) = Ex[g
2
θ(x)]−

g2θ(x1) + . . .+ g2θ(xn)

n
.

Now let hypothesis space F = {x 7→ g2θ(x) : θ ∈ Θ}, then its empirical Rademacher complexity is
given by

RS(F) = Eσ

[
sup
θ∈Θ

1

n

n∑
i=1

σig
2
θ(xi)

]

=
1

n
Eσ

sup
θ∈Θ

n∑
i=1

σi

∣∣∣∣∣
∫ T

0

ρθ(T − t)xi(t)dt− yi

∣∣∣∣∣
2


By the Talagrand’s contraction Lemma 2, since g2θ(xi) is 2 supθ∈Θ,i∈[1:n] |gθ(xi)| Lipschitz, we
have

RS(F) ≤ 2 sup
θ∈Θ,i∈[1:n]

|gθ(xi)| ·
1

n
Eσ

[
sup
θ∈Θ

n∑
i=1

σi

(∫ T

0

ρθ(T − t)xi(t)dt− yi

)]

=
2 supθ∈Θ,i∈[1:n] |gθ(xi)|

n
Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σixi(t)dt

]

Now we separate the expectation into two parts: the unbiased part invovled with xi(t) − µ(t) and
the biased part µ(t), by noticing that

Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σixi(t)dt

]

=Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σi(xi(t)− µ(t))dt+

∫ T

0

ρθ(T − t)

n∑
i=1

σiµ(t)dt

]

≤Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σi(xi(t)− µ(t))dt

]
+ Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σiµ(t)dt

]

For the unbiased part, by the Hölder’s inequality, for any p, q ∈ [1,∞] such that 1
p + 1

q = 1,

Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σi(xi(t)− µ(t))dt

]

≤ sup
θ∈Θ

(∫ T

0

|ρpθ(T − t)|Kp/2(t, t)dt

)1/p

Eσ

(∫ T

0

∣∣∣∣∣
n∑

i=1

σi
xi(t)− µ(t)√

K(t, t)

∣∣∣∣∣
q

dt

)1/q
 (10)

For the biased part,

Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σiµ(t)dt

]
≤ sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣Eσ

[∣∣∣∣∣
n∑

i=1

σi

∣∣∣∣∣
]

≤ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣
√√√√√Eσ

∣∣∣∣∣
n∑

i=1

σi

∣∣∣∣∣
2


=
√
n sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣

(11)
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Now for the unbiased part (10), we take p = 1, q = ∞. Then we have

Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σi(xi(t)− µ(t))dt

]

≤ sup
θ∈Θ

(∫ T

0

|ρθ(T − t)|
√
K(t, t)dt

)
Eσ

[
sup

t∈[0,T ]

∣∣∣∣∣
n∑

i=1

σi
xi(t)− µ(t)√

K(t, t)

∣∣∣∣∣
] (12)

Also by the same argument, note that

sup
θ∈Θ,i∈[1:n]

|gθ(xi)|

= sup
θ∈Θ,i∈[1:n]

∣∣∣∣∣
∫ T

0

ρθ(T − t)xi(t)dt− yi

∣∣∣∣∣
≤ sup

θ∈Θ,i∈[1:n]

∣∣∣∣∣
∫ T

0

ρθ(T − t)(xi(t)− µ(t))dt

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+ 1

≤ sup
θ∈Θ

(∫ T

0

|ρθ(T − t)|
√
K(t, t)dt

)
sup

i∈[1:n],t∈[0,T ]

∣∣∣∣∣xi(t)− µ(t)√
K(t, t)

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ℜ(ρθ(T − t))µ(t)dt

∣∣∣∣∣+ 1

(13)

Thus, there are two terms that we need to bound:

sup
i∈[1:n],t∈[0,T ]

∣∣∣∣∣xi(t)− µ(t)√
K(t, t)

∣∣∣∣∣ , Eσ

[
sup

t∈[0,T ]

∣∣∣∣∣
n∑

i=1

σi
xi(t)− µ(t)√

K(t, t)

∣∣∣∣∣
]

For the first term, notice that the normalized Gaussian process xi(t)−µ(t)√
K(t,t)

is centered, and by As-

sumption 1, it is almost surely finite on t ∈ [0, T ]. Therefore, we may apply the Borell–TIS inequal-
ity (Lemma 4) by letting u = σT

√
2 log(3n/δ). Then we have for any δ ∈ (0, 1), with probability

at least 1− δ/3n,

sup
t∈[0,T ]

∣∣∣∣∣xi(t)− µ(t)√
K(t, t)

∣∣∣∣∣ ≤ Ex

(
sup

t∈[0,T ]

∣∣∣∣∣x(t)− µ(t)√
K(t, t)

∣∣∣∣∣
)

+ σT

√
2 log(3n/δ), ∀i = 1, . . . , n

where σT := supt∈[0,T ] Ex

∣∣∣∣x(t)−µ(t)√
K(t,t)

∣∣∣∣2 and the expectation Ex

(
supt∈[0,T ]

∣∣∣∣x(t)−µ(t)√
K(t,t)

∣∣∣∣) are both

finite. Therefore, there exists a constant C̃T that depends on the terminal time T such that with
probability at least 1− δ/3n,

sup
t∈[0,T ]

∣∣∣∣∣xi(t)− µ(t)√
K(t, t)

∣∣∣∣∣ ≤ C̃T

√
2 log(3n/δ), ∀i = 1, . . . , n

Now by taking a union bound over i = 1, . . . , n, we get with probability at least 1− δ/3,

sup
i∈[1:n],t∈[0,T ]

∣∣∣∣∣xi(t)− µ(t)√
K(t, t)

∣∣∣∣∣ ≤ C̃T

√
2 log(3n/δ) (14)

For the second term, by Assumption 1, the normalized Gaussian process is Hölder continuous with
order in (0, H), then by applying a = H/2 in Lemma 5 we may directly get the Hölder continuity
for the normalized Gaussian process, i.e.,∣∣∣∣∣x(t)− µ(t)√

K(t, t)
− x(s)− µ(s)√

K(s, s)

∣∣∣∣∣ ≤ L|t− s|H/2 (15)
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for some constant L.

Now we discretize the time interval [0, T ] into N parts [0, T/N ] ∪ [T/N, 2T/N ] · · · ∪ [(N −
1)T/N, T ], then for any t ∈ [0, T ], there exists a sub-interval such that t ∈ [(k−1)T/N, kT/N ] for
some k ∈ [1 : N ]. Therefore, ∀t ∈ [0, T ] such that t ∈ [(k − 1)T/N, kT/N ] for some k ∈ [1 : N ],
by the Hölder continuity (15), we have

∣∣∣∣∣
n∑

i=1

σi
xi(t)− µ(t)√

K(t, t)

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

n∑
i=1

σi

xi

(
(k−1)T

N

)
− µ

(
(k−1)T

N

)
√
K
(

(k−1)T
N , (k−1)T

N

)
∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

n∑
i=1

σi

xi

(
(k−1)T

N

)
− µ

(
(k−1)T

N

)
√

K
(

(k−1)T
N , (k−1)T

N

) − xi(t)− µ(t)√
K(t, t)


∣∣∣∣∣∣∣∣

≤ max
k=1,...,N

∣∣∣∣∣∣∣∣
n∑

i=1

σi

xi

(
(k−1)T

N

)
− µ

(
(k−1)T

N

)
√
K
(

(k−1)T
N , (k−1)T

N

)
∣∣∣∣∣∣∣∣+ ∥σ∥

√
nL

(
T

N

)H/2

= max
k=1,...,N

∣∣∣∣∣∣∣∣
n∑

i=1

σi

xi

(
(k−1)T

N

)
− µ

(
(k−1)T

N

)
√
K
(

(k−1)T
N , (k−1)T

N

)
∣∣∣∣∣∣∣∣+ nL

(
T

N

)H/2

Then by the Massart Lemma 6 and the sup norm bound (14), with probability at least 1− δ/3,

Eσ

[
sup

t∈[0,T ]

∣∣∣∣∣
n∑

i=1

σi
xi(t)− µ(t)√

K(t, t)

∣∣∣∣∣
]
≤ Eσ

 max
k=1,...,N

∣∣∣∣∣∣∣∣
n∑

i=1

σi

xi

(
(k−1)T

N

)
− µ

(
(k−1)T

N

)
√
K
(

(k−1)T
N , (k−1)T

N

)
∣∣∣∣∣∣∣∣
+ nL

(
T

N

)H/2

≤
√

2n logN · sup
i∈[1:n],t∈[0,T ]

∣∣∣∣∣xi(t)− µ(t)√
K(t, t)

∣∣∣∣∣+ nL

(
T

N

)H/2

≤ C̃T

√
2n logN

√
2 log(3n/δ) + nL

(
T

N

)H/2

Since N is an arbitrary integer number, we let N =
[
Tn1/H

]
+1, then there exists another constant

CT such that

Eσ

[
sup

t∈[0,T ]

∣∣∣∣∣
n∑

i=1

σi
xi(t)− µ(t)√

K(t, t)

∣∣∣∣∣
]
≤ Õ

(
CT

√
n log(n/δ)

)
(16)

Combining (14), (16), (11) and (12), we can further bound (13) as

sup
θ∈Θ,i∈[1:n]

|gθ(xi)| ≤ sup
θ∈Θ

(∫ T

0

|ρθ(T − t)|
√

K(t, t)dt

)
C̃T

√
2 log(3n/δ)+sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ℜ(ρθ(T − t))µ(t)dt

∣∣∣∣∣+1

(17)

And the Rademacher complexity is further bounded as

RS(F)

≤
2 supθ∈Θ,i∈[1:n] |gθ(xi)|

n
Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σixi(t)dt

]

≤
2 supθ∈Θ,i∈[1:n] |gθ(xi)|

n

(
sup
θ∈Θ

∫ T

0

|ρθ(T − t)|
√

K(t, t)dt+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣
)

· Õ
(
CT

√
n log(n/δ)

)

≤

(
sup
θ∈Θ

∫ T

0

|ρθ(T − t)|
√
K(t, t)dt+ sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+ 1

)2

· Õ

(
C̄T

√
log(n/δ)

n

)
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for some constant C̄T that depends on T .

Finally, by the symmetrization of Rx(θ) − Rn(θ), combining it with (17) and (1), we have with
probability at least 1− δ,

sup
θ∈Θ

|Rx(θ)−Rn(θ)| ≤

(
sup
θ∈Θ

∫ T

0

|ρθ(T − t)|
√
K(t, t)dt+ sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+ 1

)2

·Õ

(
CT

√
log(n/δ)

n

)

for some constant CT that depends on T .

D.5 ANOTHER GENERALIZATION BOUND THAT DOES NOT RELY ON ASSUMPTION 1

In this subsection, we will give another generalization bound that does not need to use Assumption
1, but is looser than the original bound (4). The key step is to use the Cauchy Schwarz inequality
instead of the Hölder inequality, and then we can use the tools for sub-exponential random variables.
We first give the statement for the Theorem.

Theorem 2. For a SSM
∫ T

0
ρθ(T − s)x(s)ds, following the notations and settings in Section 3.1

& 4.1, given a parameter space Θ for θ, for any δ ∈ (0, 1), if n > 8 log(6/δ), then we have with
probability at least 1− δ over the training sequences,

sup
θ∈Θ

|Rx(θ)−Rn(θ)|

≤

sup
θ∈Θ

∫ T

0

Tρ2θ(T − t)K(t, t)dt+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣
2

+ 1

 · Õ

(√
log(n/δ)

n

)

We can see that comparing the above bound with (4)

Now we comparing the two generalization measures in Theorem 1 and Theorem 2 for finite time T :

Theorem 1 :

(
sup
θ∈Θ

∫ T

0

|ρθ(T − t)|
√
K(t, t)dt+ sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+ 1

)2

Theorem 2 : sup
θ∈Θ

∫ T

0

Tρ2θ(T − t)K(t, t)dt+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣
2

+ 1

Notice that(
sup
θ∈Θ

∫ T

0

|ρθ(T − t)|
√

K(t, t)dt+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+ 1

)2

≤3

sup
θ∈Θ

(∫ T

0

|ρθ(T − t)|
√
K(t, t)dt

)2

+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣
2

+ 1


≤3

sup
θ∈Θ

∫ T

0

Tρ2θ(T − t)K(t, t)dt+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣
2

+ 1


In that sense, the generalization measure in Theorem 2 is looser than the one in Theorem 1. Next,
we give the proof for Theorem 2.
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Proof. The proof follows from the the proof of Theorem 1 until the inequality (12), where we use
the Cauchy Schwarz inequality (p = q = 2) and then we get

Eσ

[
sup
θ∈Θ

∫ T

0

ρθ(T − t)

n∑
i=1

σi(xi(t)− µ(t))dt

]

≤ sup
θ∈Θ

√∫ T

0

ρ2θ(T − t)K(t, t)dt

√√√√Eσ

∫ T

0

∣∣∣∣∣
n∑

i=1

σi
xi(t)− µ(t)√

K(t, t)

∣∣∣∣∣
2

dt

= sup
θ∈Θ

√∫ T

0

ρ2θ(T − t)K(t, t)dt

√√√√ n∑
i=1

∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt

(18)

Also note that

sup
θ∈Θ,i∈[1:n]

|gθ(xi)|

= sup
θ∈Θ,i∈[1:n]

∣∣∣∣∣
∫ T

0

ρθ(T − t)xi(t)dt− yi

∣∣∣∣∣
≤ sup

θ∈Θ,i∈[1:n]

∣∣∣∣∣
∫ T

0

ρθ(T − t)(xi(t)− µ(t))dt

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+ 1

≤ sup
θ∈Θ

√∫ T

0

ρ2θ(T − t)K(t, t)dt sup
i∈[1:n]

√∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt+ sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+ 1

(19)

Thus, there are two terms that we need to bound:√√√√ 1

n

n∑
i=1

∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt,

√
sup

i∈[1:n]

∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt

For the first term, notice that the covariance function for the normalized Gaussian process xi(t)−µ(t)√
K(t,t)

is given by

E

[
xi(t)− µ(t)√

K(t, t)

xi(s)− µ(s)√
K(s, s)

]
=

K(s, t)√
K(t, t)K(s, s)

By Lemma 3,
∫ T

0
(xi(t)−µ(t))2

K(t,t) dt is (4T 2, 4T ) sub-exponential. By Proposition 4, for 0 < s < T ,

P

(
1

n

n∑
i=1

∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt− T ≥ s

)
≤ exp

(
− ns2

8T 2

)
(20)

For the second term supi∈[1:n]

(∫ T

0
(xi(t)−µ(t))2

K(t,t) dt
)1/2

, since
∫ T

0
(xi(t)−µ(t))2

K(t,t) dt is
(
4T 2, 4T

)
sub-

exponential, then by Proposition 2, for s > T ,

P

(∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt− T ≥ s

)
≤ exp

(
− s

8T

)
Taking the union bound over i ∈ [1 : n], we get for s > T ,

P

(
sup

i∈[1:n]

∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt− T ≥ s

)
≤ n exp

(
− s

8T

)
(21)
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Now for bound (20), we solve δ/6 = exp
(
− ns2

8T 2

)
, i.e., s = T

√
8 log(6/δ)

n , by the precondition that
0 < s < T , we get for any δ ∈ (0, 1), if n > 8 log(6/δ), then w.p.a. 1− δ/6,

1

n

n∑
i=1

∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt ≤ T

(
1 +

√
8 log(6/δ)

n

)

For bound (21), we solve δ/6 = n exp
(
− s

8T

)
, i.e., s = 8T log(6n/δ). Since 8 log(6n/δ) >

8 log 6 > 1, which guarantees the precondition that s > T , hence for any δ ∈ (0, 1), w.p.a. 1− δ/6,

sup
i∈[1:n]

∫ T

0

(xi(t)− µ(t))2

K(t, t)
dt ≤ T (1 + 8 log(6n/δ))

Therefore, for any δ ∈ (0, 1), if n > 8 log(6/δ), then w.p.a. 1− δ/3,

sup
θ∈Θ,i∈[1:n]

|gθ(xi)| ≤ sup
θ∈Θ

√∫ T

0

ρ2θ(T − t)K(t, t)dt

√
T

(
1 + 8 log

6n

δ

)
+sup

θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣+1

Hence, by combining the two parts (18) & (11), we can get

RS(F)

≤ 2 supθ∈Θ,i∈[1:n] |gθ(xi)|
n

(
supθ∈Θ

√∫ T
0

ρ2
θ(T−t)K(t,t)dt

√∑n
i=1

∫ T
0

(xi(t)−µ(t))2

K(t,t)
dt+

√
n supθ∈Θ|

∫ T
0

ρθ(T−t)µ(t)dt|
)

≤
supθ∈Θ

√
T
∫ T

0
ρ2θ(T − t)K(t, t)dt+ supθ∈Θ

∣∣∣∫ T

0
ρθ(T − t)µ(t)dt

∣∣∣+ 1

nsup
θ∈Θ

√
T

∫ T

0

ρ2θ(T − t)K(t, t)dt+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣
 · Õ

(√
n log(n/δ)

)

≤

sup
θ∈Θ

∫ T

0

Tρ2θ(T − t)K(t, t)dt+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ℜ(ρθ(T − t))µ(t)dt

∣∣∣∣∣
2

+ 1

 · Õ

(√
log(n/δ)

n

)

Finally, by the symmetrization of the generalization gap and Lemma 1, we have

sup
θ∈Θ

|Rx(θ)−Rn(θ)|

≤

sup
θ∈Θ

∫ T

0

Tρ2θ(T − t)K(t, t)dt+ sup
θ∈Θ

∣∣∣∣∣
∫ T

0

ρθ(T − t)µ(t)dt

∣∣∣∣∣
2

+ 1

 · Õ

(√
log(n/δ)

n

)
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E PROOF FOR PROPOSITION 1

Proof. First, notice that by the Hölder’s inequality with p = 1, q = ∞, we have

Ex

[∣∣∣∣∣
∫ T

0

ρθ̃(T − t)x(t)dt

∣∣∣∣∣
]

=
Ex

[∣∣∣∫ T

0
ρθ(T − t)x(t)dt

∣∣∣]∫ T

0
|ρθ(T − t)|

√
K(t, t)dt+

∣∣∣∫ T

0
ρθ(T − t)µ(t)dt

∣∣∣
≤
Ex

[∣∣∣∫ T

0
ρθ(T − t)(x(t)− µ(t))dt

∣∣∣]+ ∣∣∣∫ T

0
ρθ(T − t)µ(t)dt

∣∣∣∫ T

0
|ρθ(T − t)|

√
K(t, t)dt+

∣∣∣∫ T

0
ρθ(T − t)µ(t)dt

∣∣∣
≤

∫ T

0
|ρθ(T − t)|

√
K(t, t)dt · Ex

[
supt∈[0,T ]

∣∣∣∣x(t)−µ(t)√
K(t,t)

∣∣∣∣]+ ∣∣∣∫ T

0
ρθ(T − t)µ(t)dt

∣∣∣∫ T

0
|ρθ(T − t)|

√
K(t, t)dt+

∣∣∣∫ T

0
ρθ(T − t)µ(t)dt

∣∣∣
≤Ex

[
sup

t∈[0,T ]

∣∣∣∣∣x(t)− µ(t)√
K(t, t)

∣∣∣∣∣
]
+ 1

Under Assumption 1, by the Borell–TIS inequality (Lemma 4), the expectation

Ex

[
supt∈[0,T ]

∣∣∣∣x(t)−µ(t)√
K(t,t)

∣∣∣∣] is finite. Therefore, there exists a constant βT that depends on T

such that

Ex

[∣∣∣∣∣
∫ T

0

ρθ̃(T − t)x(t)dt

∣∣∣∣∣
]
≤ βT
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