
Published as a conference paper at ICLR 2024

A APPENDIX

B PROOF OF INSIGHT WITH BALANCING STABILITY AND PLASTICITY

Lemma 1 Singular value decomposition (SVD): For matrix Am,n, we can factorize it into three
matrices and obtain matrix Um,l, Σl,l, and Vl,n, where Um,l and Vl,n are orthogonal matrices, Σl,l

contains the sorted singular value along its main diagonal:

Am,n = Um,lΣl,lVl,n
T . (22)

Theorem 1 For any embedding sequences xt, embedded from samples of task t, using singular
value decomposition (SVD) in lemma 1, we can obtain matrix Ut, Σt, and Vt. Then, we randomly
split Vt along the column dimension into two parts: [V 1

t , V
2
t]. Because Vt is an orthogonal matrix,

we can have:

V l
t V

l
t

T
= [V 1

t V
2
t]

[
V 1T
t

V 2T
t

]
= V 1

t V
1T
t + V 2

t V
2T
t = I. (23)

On Plasticity: For any matrix V and gradient gt+1 when learning task t + 1, we have the gradient
after projection on V as g

′

t+1, and calculate the cosine similarity between gt+1 and g
′

t+1:

< g
′

t+1, gt+1 > =< gt+1V V T , gt+1 >

= vec(gt+1V V T I)T vec(gt+1)

= vec(gt+1V)T (I)(I × V)vec(gt+1)

= vec(gt+1V)T vec(gt+1V)

≥ 0,

(24)

which means that whatever V is, as if gt+1 and V both are not equal to zero, after projection on
V , the new gradient is always positive. Thus, the model is always learning new knowledge. The
only distinction is the gradient direction, which can be measured by calculation of cosine similarity
between gradient before projection and after projection. We set gradient project matrix as V 2

t and
have:

< g
′

t+1, gt+1 > =< gt+1V
2
t V

2T
t , gt+1 >

=< gt+1(I − V 1
t V

1T
t), gt+1 >

=< gt+1 − gt+1V
1
t V

1T
t , gt+1 >

=< gt+1, gt+1 > − < gt+1V
1
t V

1T
t , gt+1 >

≤< gt+1, gt+1 > .

(25)

From the inequality, if projection matrix V 2
t is not an identity matrix, which means that matrix V 1

t
is not a zero matrix, the direction of gradient after projection always has an angle with the direction
of the original gradient, incurring that decrease of loss function becomes slow.

For further research on the relationship between matrix V 1
t and decreased speed of loss function, we

mainly focus on two situations for value of V 1
t :

(1).V 1
t = 0, we have

< g
′

t+1, gt+1 >=< gt+1, gt+1 > . (26)

In this situation, it equals that we do not operate on the gradient, and parameters are updated nor-
mally. When V 1

t = 0, it has V 2
t = Vt. In fact, the same phenomenon has been shown in the previous

situation that V 2
t = Vt.

(2).V 1
t = Vt, we have:

< g
′

t+1, gt+1 > =< gt+1, gt+1 > − < gt+1VtV
T
t , gt+1 >

=< gt+1, gt+1 > − < gt+1, gt+1 >

= O.

(27)

13

Published as a conference paper at ICLR 2024

In this situation, it equals that we freeze the network update process, and trainable parameters are
stable and not changed. Thus, the network will not adopt any other new knowledge. When V 1

t = Vt,
it has V 2

t = 0. In fact, the same phenomenon has been shown in the previous situation that V 2
t = 0.

In conclusion, with V 1
t changing from 0 to Vt, the decreased speed of the loss function becomes

more and more slow, leading to worse plasticity. However, under this trend, V 2
t is changing from

Vt to 0, giving the anti-forgetting more and more strength. We can recognize that the essence
of the gradient projection method is a kind of trade-off strategy between plasticity and stability.
However, different from other dilemmas, it has an optimal solution, which is projecting gradient in
the direction orthogonal to the subspace spanned by the old inputs, which can not only own the best
ability of anti-forgetting, but also have minimal damage to plasticity.

C METHOD OF UPDATING PROJECTION MATRIX

We update our projection matrix Vt,0 like GPM (Saha et al., 2021), which is detailed described as
follows. Assume that we have sampled embedding sequences from current task samples xt and
trained prompts pt. Here, t is the task identifier. We utilize Principal Component Analysis (PCA) to
compress and align the dimensions of xt and pt. Then, we element-wise add xt and pt to obtain st.
Besides that, we set a threshold ϵ.

For task #1 training, we perform SVD on s1 as s1 = U1Σ1V1
T . We collect the minimum former l

columns of V1 as matrix L = [v11, v12, ..., v1l] according to the following criteria:

||s1l||2F ≥ ϵ||s1||2F . (28)

Here, ||.||F is the Frobenius norm of the matrix and ϵ (0 < ϵ ≤ 1) is the threshold hyperparameter.
V1,0 can be obtained by V1,0V

T
1,0 = I − LLT .

For task #2 training, before performing SVD and subsequent former-rank approximation, we elim-
inate the common directions in s2 which are already present in L, so that newly added column
vectors are unique and orthogonal to the existing column vectors. Thus, we perform the step
ŝ2 = s2 − LLT s2. Afterward, SVD is performed on ŝ2(= Û2Σ̂2V̂

T
2) and former m new columns

of V̂2 are chosen with minimum value of m satisfying the following criteria:

||LLT s2||2F + ||ŝ2m||2F ≥ ϵ||s2||2F . (29)

Here, L is updated by adding new column vectors as [v11, v12, ..., v1l, v̂21, v̂22, ..., v̂2m]. Then, we
can update V1,0 to V2,0 according to V2,0V

T
2,0 = I −LLT . Once the update is complete we move on

to the next task and repeat the same procedure as in task #2.

D COMPUTATION COST FOR MAINTAINING THE ORTHOGONALITY OF THE
TASK SUBSPACES

In this section, we will discuss the added computation cost for maintaining the orthogonality of the
task subspaces under the following situations.

D.1 LARGER MODELS

If we change the backbone from a smaller one to a larger one, it could have different results of added
computation cost for distinct tuning paradigms. i) For prompt-tuning, because we only prepend the
prompt into the first transformer layer, the added computation could be omitted. ii) For prefix-
tuning, larger models usually mean more network layers or wider input dimensions, and we need to
expand the prefix-inserted layer or prefix width, which is the origination of the added computation
cost. For expanding the prefix-inserted layer, each layer can have a nearly similar computation cost
if the number of samples is the same. Thus, we can conclude that the added computation cost can be
modeled as an approximate linear function with the layer numbers of the backbone. Similarly, the
same conclusion can also be drawn from expanding the prefix width.

14

Published as a conference paper at ICLR 2024

D.2 INCREASED NUMBER OF TASKS

Observing the training processes of multi-datasets, we can empirically summarize that in each task,
the number of newly added column vectors of the projection matrix is constant in a certain range.
As the added computation cost is mainly focused on i) calculation of the projection matrix and ii)
multiplication between the projection matrix and its transpose, we can see that although it could not
appear exponential explosion, it is still a potential risk in our method with the increased number of
tasks.

E GRADIENT PROJECTION BASED ON PREFIX-TUNING PARADIGM

In this section, we prove that the gradient projection method can be utilized in prefix-tuning with
mathematical deduction.

Distinct from prompt-tuning paradigm, prefix-tuning only prepends prefixes in key vector and value
vector, without query vector of prepended transformer layer. Additionally, different from prompt
usually only prepended in the first transformer layer, prefix can be prepended in any transformer
layers. These advantages help models based on prefix-tuning own a better performance than those
based on prompt-tuning both in natural language processing and computer vision.

For baseline based on prefix-tuning, if we want to preserve old knowledge, we need to realize:

fθ(pt,l, xt,l) = fθ(pt+1,l, xt,l). (30)

fθ refers to ViT model, xt,l denotes inputs at task t in layer l, pt,l and pt+1,l represents the prefixes
trained at task t and prepended in layer l and the prefixes trained at task t+1 and prepended in layer
l respectively.

Assuming that a set of prefixes have been trained at task t + 1, and we input samples from task t.
Now, we prepend prefix in key vector, and have:

Qt,l = Wq,lxt,l, (31)

Kt,l =

[
pt+1,l

Wk,lxt,l

]
, (32)

where, Wq,l and Wk,l are weights of ViT, frozen and unchanged. With Eq.(3), we have the results
that t-th task samples on t+ 1-th model. We mainly focus on the part:

Qt,lK
T
t,l = Wq,lxt,l

[
pTt+1,l (Wk,lxt,l)

T
]
=

[
Wq,lxt,lp

T
t+1,l Wq,lxt,lx

T
t,lW

T
k,l

]
. (33)

As stable item Wq,lxt,lx
T
t,lW

T
k,l, we only focus on the item Wq,lxt,lp

T
t+1,l. Changing pTt+1,l with

pTt,l, we can obtain the results that t-th task samples on t-th model. Because our aim is making
Wq,lxt,lp

T
t+1,l equal to Wq,lxt,lp

T
t,l, considering that Wq,l is frozen, our final aim can be simplified

as:

xt,lp
T
t+1,l = xt,lp

T
t,l, (34)

which has the same form as Eq.(8), meaning that we can also achieve Eq.(34) by the gradient pro-
jection method. Thus, we can draw the conclusion that the gradient projection method could also
help models based on prefix-tuning to resist forgetting.

15

Published as a conference paper at ICLR 2024

F METRICS

Two metrics: Average Accuracy (simplified as accuracy/ACC) and Forgetting (simplified as FOR)
are used to evaluate the performance. We use average accuracy metric, for averaging the classifica-
tion accuracy of all classes. We adopt forgetting metric to indicate the average loss of accuracy of
past tasks after learning a new task. Formally, average accuracy and forgetting are defined as:

Average Accuracy =
1

T

T∑
i=1

AT,i, (35)

Forgetting =
1

T − 1

T−1∑
i=1

AT,i–max(Aj,i)j∈[i,T−1], (36)

where T is the number of tasks, AT,i is the accuracy of i-th task samples on the T -th model, and
Aj,i is the accuracy of i-th task samples on the j-th model.

G EXPERIMENTAL DETAILS

Consistent with previous works (Wang et al., 2022c;b; Smith et al., 2023), we use ViT B/16 (Doso-
vitskiy et al., 2020) pre-trained on ImageNet-21K as our image encoder, which is kept frozen during
training. We train and test on one A6000-48GB GPU for baselines and our method. We set the
Adam optimizer with β1 = 0.9 and β2 = 0.999.

For hyperparameters, in L2P-PGP, we set ϵ = 0.50 for extraction of prompt gradient projection
matrix and ϵ = 0.97 for key gradient projection matrix. While in DualPrompt-PGP, we set ϵ = 0.50
for extraction of prompt gradient projection matrix. To accelerate the speed of gradient projection
matrix extraction and reduce the training space, we add PCA into our process, which can be used to
compress the sampled feature space.

In comparison with L2P and L2P-PGP, for 10/20-Split-CIFAR100, and 10-Split-TinyImageNet, we
both train the network for 5 epochs with batch size of 16 and prompt length is set at 5, while we
both set epochs as 50, batch size as 16, and prompt length as 30 for 10-Split-ImageNet-R.

In comparison with DualPrompt and DualPrompt-PGP, for 10/20-Split-CIFAR100, we train the net-
work for 20 epochs with batch size of 24, and expert prompt length is set at 5. While we both set
epochs as 5, batch size as 24, and expert prompt length as 5 for 10-Split-TinyImageNet, epochs as
50 and batch size as 24 for 10-Split-ImageNet-R with expert prompt length at 20. Besides that, in
all benchmark datasets, the general prompt length is set at 5 and the prompt-inserted locations are
kept the same.

For CLIP-PGP, the experimental setting is that, on the vision side, we only set a single trainable
image prompt shared by all tasks. As for the text side, we follow the operation as (Zhou et al.,
2022), we set trainable text prompt for each class, which is only trained at the corresponding task.
In comparison with CLIP and CLIP-PGP, we both set the image prompt length as 5, epochs as 5, and
batch size as 32 for 10-Split-CIFAR100. Specifically in CLIP-PGP, we set ϵ = 0.90 for extraction
of image prompt gradient projection matrix.

H RESULT TABLE WITH THE STANDARD DEVIATION VALUES

We conduct 3 runs of our method and competitors, additional results with the standard deviation
values on different datasets are shown in Table 5

I COMPARISON WITH BASELINES AND UPPER-BOUND

We compare the performance of prompt-based methods with and without PGP in Table 6. To be
consistent with previous works (Wang et al., 2022c), we report the difference between accuracy
performance of the Upper-Bound and the model as a metric. We observe that PGP again sets a new
SOTA in this setting. As we compare the Diff performance of DualPrompt and L2P with and without
PGP, we again notice an obvious improvement.

16

Published as a conference paper at ICLR 2024

Table 5: Class incremental learning on different datasets along with the standard deviation values.
10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R

Method Exemplar ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓)
BiC 5000 81.42±0.85 17.31±1.02 73.02±0.93 6.23±1.17 64.63±1.27 22.25±1.73

DER++ 5000 83.94±0.34 14.55±0.73 - - 66.73±0.87 20.67±1.24
ICaRL 5000 66.00±0.66 5.33±0.94 78.02±0.71 5.80±1.02 - -

DER+MCG 2000 67.62±0.04 14.64±0.53 65.84±0.18 13.72±1.28 - -

BiC 1000 66.11±1.76 35.24±1.64 63.12±2.35 21.89±1.93 52.14±1.08 36.70±1.05
DER++ 1000 61.06±0.87 39.87±0.99 - - 55.47±1.31 34.64±1.50
ICaRL 1000 61.25±0.63 14.19±1.14 71.32±0.86 15.98±1.35 - -

FT ✗ 33.61±0.85 86.87±0.20 33.52±0.94 53.69±0.52 28.87±1.36 63.80±1.50
EWC ✗ 47.01±0.29 33.27±1.17 36.73±0.57 35.19±1.98 35.00±0.43 56.16±0.88
LWF ✗ 60.69±0.63 27.77±2.17 39.12±0.87 57.91±3.06 38.54±1.23 52.37±0.64

L2P ✗ 83.77±0.16 6.63±0.05 81.29±0.43 8.96±0.38 60.44±0.41 9.00±0.86
L2P-PGP(Ours) ✗ 84.34±0.08 5.59±0.05 82.00±0.56 8.39±0.62 61.40±0.34 8.03±0.03

DualPrompt ✗ 86.50±0.45 5.77±0.02 82.98±0.47 8.20±0.08 68.13±0.10 4.68±0.19
DualPrompt-PGP(Ours) ✗ 86.92±0.05 5.35±0.19 83.74±0.01 7.91±0.15 69.34±0.05 4.53±0.04

Upper-Bound - 90.85±0.12 - 90.85±0.12 - 79.13±0.18 -

Table 6: Comparison with baselines in terms of differences between accuracy performance of the
Upper-Bound and the model. The Upper-Bound denotes the model performance when trained with
access to all tasks at the same time. we use Diff = Upper-Bound ACC - Method ACC.

10-Split-CIFAR100 20-Split-CIFAR100 10-Split-ImageNet-R

Method ACC(↑) Diff(↓) ACC(↑) Diff(↓) ACC(↑) Diff(↓)
Upper-Bound 90.85 - 90.85 - 79.13 -

L2P 83.77 7.08 81.29 9.56 60.44 18.69
L2P-PGP 84.34 6.51 82.00 8.85 61.40 17.73

DualPrompt 86.50 4.35 82.98 7.87 68.13 11.00
DualPrompt-PGP 86.92 3.93 83.74 7.11 69.34 9.79

J TASK INCREMENTAL SETTING

We compare L2P-PGP with L2P and representative SOTA competitors: EWC (Kirkpatrick et al.,
2017), LWF (Li & Hoiem, 2017), A-GEM (Chaudhry et al., 2018), OWM (Zeng et al., 2019),
Adam-NSCL (Wang et al., 2021), Connector (Lin et al., 2022a), results as shown in Table 7.

Both on 10-Split-CIFAR100 and 20-Split-CIFAR100 datasets, although L2P has already achieved
higher accuracy and lower forgetting compared with other CNN methods, our method further im-
proves its accuracy and reduces its forgetting with the aid of prompt gradient projection and L2P-
PGP achieves new SOTA performance. On 10-Split-CIFAR100 dataset, PGP improves L2P by 0.10
on accuracy, 0.05 on forgetting, and on 20-Split-CIFAR100, PGP improves L2P by 0.11 on accuracy,
0.11 on forgetting.

Table 7: Task incremental learning results on different datasets.

10-Split-CIFAR100 20-Split-CIFAR100
Method ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓)

EWC 70.77 2.83 71.66 3.72
LWF 70.70 6.27 74.38 9.11

A-GEM 49.57 1.13 61.91 6.88
OWM 68.89 1.88 68.47 3.37

Adam-NSCL 73.77 1.60 75.95 3.66
Connector 79.79 0.92 80.80 5.00

L2P 97.43 0.22 98.47 0.39

L2P-PGP 97.53 0.17 98.58 0.28

17

Published as a conference paper at ICLR 2024

K CONTINUAL LEARNING RESULTS ON MULTI-MODEL BACKBONE,
COMPARISON BETWEEN CLIP-PGP WITH CLIP

We conduct our experiments on 10-Split-CIFAR100 dataset under class incremental setting and task
incremental setting respectively, as shown in Table 8. Results show that, our method has improved
the performance a lot for both the above settings, proving that our method is also useful in the
vision-language models, which further enlarges the scope of our method.

Table 8: Comparison to CLIP model with/without gradient projection method on 10-Split-
CIFAR100 with class/task incremental settings.

Settings Class Incremental Task Incremental
Models Accuracy Forgetting Accuracy Forgetting
CLIP 73.76 5.60 92.69 2.34

CLIP-PGP(Ours) 79.47(+5.71) 4.23(-1.37) 93.00(+0.31) 1.58(-0.76)

L CLASS INCREMENTAL LEARNING RESULTS ON DIFFERENT BACKBONES,
COMPARISON BETWEEN OURS WITH BASELINES

To show the efficacy of proposed method on different pre-trained backbones, we evaluate our method
by extending two distinct pre-trained models, namely ViT-DINO and ViT-SAM (Caron et al., 2021;
Chen et al., 2021). The results are shown in the Table 9. Additionally, we tested our method on
10-Split-CIFAR100 and 5-Split-CUB200 dataset based on three pre-trained ViTs: ImageNet-21K,
DINO, and SAM, further validating the effectiveness of our method on non-ImageNet datasets (Wah
et al., 2011; Krizhevsky et al., 2009).

Table 9: Comparison to distinct pre-trained backbones between baselines and ours. Red parts show
significant improvements (>1).

10-Split-CIFAR100 5-Split-CUB200
Method Pretrained-Dataset ACC(↑) Forgetting(↓) ACC(↑) Forgetting(↓)

L2P ImageNet-21K 83.77 6.63 74.88 5.39
L2P-PGP ImageNet-21K 84.34(+0.57) 5.59(-1.04) 75.15(+0.27) 4.51(-0.88)

DualPrompt ImageNet-21K 86.50 5.77 82.02 4.23
DualPrompt-PGP ImageNet-21K 86.92(+0.42) 5.35(-0.42) 82.46(+0.44) 3.76(-0.47)

L2P SAM 83.93 6.68 73.98 6.77
L2P-PGP SAM 84.26(+0.33) 5.64(-1.04) 76.45(+2.47) 5.91(-0.86)

DualPrompt SAM 86.11 6.08 82.02 4.73
DualPrompt-PGP SAM 86.92(+0.81) 5.04(-1.04) 82.28(+0.26) 4.65(-0.08)

L2P DINO 67.35 9.69 44.10 9.77
L2P-PGP DINO 70.60(+3.25) 4.73(-4.96) 44.80(+0.70) 6.06(-3.71)

DualPrompt DINO 64.18 23.87 50.88 10.10
DualPrompt-PGP DINO 73.33(+9.15) 10.27(-13.60) 51.03(+0.15) 9.06(-1.04)

M PGP WITH PROMPT NUMBER AND PROMPT WIDTH

In this section, for L2P-PGP model, we set distinct parameters in prompt numbers and prompt widths
on 10-Split-CIFAR100 dataset, and further validate the efficiency of prompt gradient projection
method. Results are shown in Table 10. In our setting, we set a single prompt mode, that all tasks
share a single prompt for training. We think, in this way, we can deeply uncover the potential of our
method and avoid interference caused by choosing prompts. Results show that, models with prompt
gradient projection, all have higher accuracy and lower forgetting than those without, which proves
that our method could be effective in distinct prompt numbers and widths, even with a hard single
prompt setting.

18

Published as a conference paper at ICLR 2024

Table 10: Comparison L2P with L2P-PGP on 10-Split-CIFAR100 dataset. Width and number mean
prompt width and prompt number respectively.

L2P L2P-PGP
Width ACC(↑) FOR(↓) ACC(↑) FOR(↓)

5 82.64 6.73 82.77 6.58
10 82.09 7.07 82.16 6.74
15 83.09 6.38 84.21 5.62
20 83.42 6.38 83.87 5.89
25 83.69 6.49 83.85 6.39
30 83.87 6.46 84.39 6.44

L2P L2P-PGP
Number ACC(↑) FOR(↓) ACC(↑) FOR(↓)

1 82.64 6.73 82.77 6.58
3 84.17 5.92 84.19 5.60
5 83.23 6.66 83.82 6.62
7 83.87 7.13 84.44 6.58
9 84.11 6.60 84.15 6.52

N PGP WITH PREFIX WIDTH AND PREFIX PREPENDED LAYER

In this section, for DualPrompt-PGP model, we discuss whether prompt gradient projection could be
efficient in different prefix widths and prepended layers. As the setting in Appendix M, we choose a
single prefix mode based on the same reason. We conduct experiments on 10-Split-CIFAR100 and
10-Split-TinyImageNet. Final results are shown in Table 11 and Table 12. We also show some cases
with curves of accuracy and forgetting metrics changing in all tasks, as in Figure 6 and Figure 7.

Table 11: Comparison DualPrompt with DualPrompt-PGP on 10-Split-CIFAR100 dataset. Width
and layer mean prefix width and prefix prepended layer index respectively.

DualPrompt DualPrompt-PGP
Width ACC(↑) FOR(↓) ACC(↑) FOR(↓)

5 81.08 7.64 81.49 7.08
6 81.32 7.12 81.70 6.89
7 81.67 7.51 81.95 6.77
8 81.67 7.48 81.92 7.06
9 81.74 6.49 81.88 6.21
10 81.58 6.93 81.63 6.78

DualPrompt DualPrompt-PGP
Layer ACC(↑) FOR(↓) ACC(↑) FOR(↓)

0 81.08 7.64 81.49 7.08
0,1 82.22 5.78 82.75 5.67

0,1,2 83.85 5.62 84.69 4.38
0,1,2,3 84.55 5.03 84.58 4.84

0,1,2,3,4 84.59 5.60 84.74 5.04

2 4 6 8 10
Task Order

3

4

5

Fo
rg

et
tin

g(
%

)

Forgetting under prepended layers [0,1,2,3,4]

prefix
prefix-pgp

2 4 6 8 10
Task Order

3

4

5

Fo
rg

et
tin

g(
%

)

Forgetting under prepended layers [0,1,2]

prefix
prefix-pgp

2 4 6 8 10
Task Order

5

6

7

Fo
rg

et
tin

g(
%

)

Forgetting under prefix width 7

prefix
prefix-pgp

2 4 6 8 10
Task Order

4

5

6

Fo
rg

et
tin

g(
%

)

Forgetting under prefix width 9

prefix
prefix-pgp

2 4 6 8 10
Task Order

86

88

90

92

94

Ac
cu

ra
cy

(%
)

Accuracy under prepended layers [0,1,2,3,4]
prefix
prefix-pgp

2 4 6 8 10
Task Order

84

86

88

90

92

94

Ac
cu

ra
cy

(%
)

Accuracy under prepended layers [0,1,2]
prefix
prefix-pgp

2 4 6 8 10
Task Order

82

84

86

88

90

92

Ac
cu

ra
cy

(%
)

Accuracy under prefix width 7
prefix
prefix-pgp

2 4 6 8 10
Task Order

82

84

86

88

90

92

Ac
cu

ra
cy

(%
)

Accuracy under prefix width 9
prefix
prefix-pgp

Figure 6: Changing curves of accuracy and forgetting metrics with different prepended layers and
prefix widths on 10-Split-CIFAR100 dataset.

Results are similar to the discussion in Appendix M. Whether on 10-Split-CIFAR100 or 10-Split-
TinyImageNet, models with prompt gradient projection always have better accuracy and lower for-
getting than those without. We think it proves that our method can be effective in distinct prefix
widths and prepended layers. Notice that we name the baseline as “prefix” and our method as
“prefix-pgp”.

19

Published as a conference paper at ICLR 2024

Table 12: Comparison DualPrompt with DualPrompt-PGP in different settings on 10-Split-
TinyImageNet dataset. Width and layer mean prefix width and prefix prepended layer index re-
spectively.

DualPrompt DualPrompt-PGP
Width ACC(↑) FOR(↓) ACC(↑) FOR(↓)

5 81.58 4.63 81.79 4.51
6 81.39 4.66 81.67 4.50
7 81.60 4.93 81.78 4.43
8 81.36 4.63 81.65 4.44
9 81.55 4.80 81.93 4.70
10 82.20 4.34 82.22 3.96

DualPrompt DualPrompt-PGP
Layer ACC(↑) FOR(↓) ACC(↑) FOR(↓)

0 81.58 4.63 81.79 4.51
0,1 82.98 4.29 83.33 3.98

0,1,2 83.66 4.11 83.76 3.96
0,1,2,3 83.64 4.62 84.51 3.72

0,1,2,3,4 83.61 4.68 83.95 4.23

2 4 6 8 10
Task Order

3

4

5

Fo
rg

et
tin

g(
%

)

Forgetting under prepended layers [0,1,2,3,4]

prefix
prefix-pgp

2 4 6 8 10
Task Order

2

3

4

Fo
rg

et
tin

g(
%

)

Forgetting under prepended layers [0,1,2]

prefix
prefix-pgp

2 4 6 8 10
Task Order

2

3

4

Fo
rg

et
tin

g(
%

)

Forgetting under prefix width 7

prefix
prefix-pgp

2 4 6 8 10
Task Order

1

2

3

Fo
rg

et
tin

g(
%

)

Forgetting under prefix width 10

prefix
prefix-pgp

2 4 6 8 10
Task Order

84

85

86

87

88

89

90

Ac
cu

ra
cy

(%
)

Accuracy under prepended layers [0,1,2,3,4]
prefix
prefix-pgp

2 4 6 8 10
Task Order

84

85

86

87

88

89

Ac
cu

ra
cy

(%
)

Accuracy under prepended layers [0,1,2]
prefix
prefix-pgp

2 4 6 8 10
Task Order

82

83

84

85

86

87

Ac
cu

ra
cy

(%
)

Accuracy under prefix width 7
prefix
prefix-pgp

2 4 6 8 10
Task Order

82

83

84

85

86

87

Ac
cu

ra
cy

(%
)

Accuracy under prefix width 10
prefix
prefix-pgp

Figure 7: Changing curves of accuracy and forgetting metrics with different prepended layers and
prefix widths on 10-Split-TinyImageNet dataset.

O T-SNE VISUALIZATION

To better visualize the improvement of our method, we choose L2P and L2P-PGP models. Training
on 10-Split-CIFAR100 dataset, we show the T-SNE results of samples from task 1 across models in
various tasks. We pick up logits processed by classifier to report.

20

Published as a conference paper at ICLR 2024

t-SNE on 2-th Model t-SNE on 2-th Model

t-SNE on 4-th Model t-SNE on 4-th Model

t-SNE on 6-th Model t-SNE on 6-th Model

t-SNE on 8-th Model t-SNE on 8-th Model

t-SNE on 10-th Model t-SNE on 10-th Model

Figure 8: T-SNE results of L2P and L2P-PGP on 10-Split-CIFAR100 dataset. The left column rep-
resents L2P, and the right column represents L2P-PGP. The red circle means the drawback existing
in L2P, and the blue circle shows the improvement of our method.

21

Published as a conference paper at ICLR 2024

P ALGORITHM

Algorithm 1: Prompt Gradient Projection For L2P (Training phase)
Input: Pre-trained ViT model fθ, embedding layer ϕθ, classifier head fc, number of tasks T ,

training set {{Xt
i , y

t
i}

nt
i=1}

T
t=1, sampling set {{Xt

si, y
t
si}

nst
i=1}

T
t=1, prompt pool {pj}Mj=1,

projection matrix Vt,0, number of training epochs E, learning rate η, loss function Lx

Output: prompt pool {pj}Mj=1, classifier head fc

initialize: fc, {pj}Mj=1.
for t = 1, ..., T do

for e = 1, ..., E do
Draw a mini-batch B = {(Xt

i , y
t
i)}

nt

i=1.
for (X, y) in B do

Embed X into sequence xt by xt = ϕθ(X).

Select prompt px from {pj}Mj=1.
Prepend xt with px by xp = [px;xt].
Obtain prediction by ŷ = fc(fθ(xp)).

end
Calculate per batch loss LB by accumulating Lx(y, ŷ).
Gradient projection
if t = 1 then

Update p by p← p− η∇pLB .
else

Update p by p← p− η∇pLBVt,0V
T
t,0.

end
end
Gradient projection matrix update
Initialize the sets of sampled embedding sequences and prompts: Xt = {}, Pt = {}.
for (Xt

si, y
t
si) in {(Xt

si, y
t
si)}

nst

i=1 do
Sample set of embedding sequences Xt by concatenation of Xt and ϕθ(X

t
si).

end
for p in {pj}Mj=1 and p ∈ px do

Sample set of prompts Pt by concatenation of Pt and p.
end
Update Vt,0 by Xt and Pt according to Appendix C.

end

Algorithm 2: Prompt Gradient Projection For L2P (Testing phase)
Input: Pre-trained ViT model fθ, embedding layer ϕθ, classifier head fc, number of tasks T ,

test set {{Xt
i}

nt
i=1}

T
t=1, prompt pool {pj}Mj=1

Output: prediction ŷ
for t = 1, ..., T do

for Xt
i in {Xt

i}
nt
i=1 do

Embed Xt
i into sequence xt by xt = ϕθ(X

t
i).

Select prompt px from {pj}Mj=1.
Prepend xt with px by xp = [px;xt].
Obtain prediction by ŷ = fc(fθ(xp)).

end
end

22

	introduction
	Related works and preliminaries
	Prompt-based class incremental learning
	Background of gradient projection method

	Method
	Prompt Gradient projection
	Gradient projection for prompt pool
	Balance between stability and plasticity

	Experimental Setup
	Results and Discussion
	Ablation Study
	Conclusion
	Acknowledgment
	Appendix
	Proof of insight with balancing stability and plasticity
	Method of updating projection matrix
	Computation cost for maintaining the orthogonality of the task subspaces
	Larger models
	Increased number of tasks

	Gradient projection based on prefix-tuning paradigm
	Metrics
	Experimental Details
	Result Table with The Standard Deviation Values
	Comparison with Baselines and Upper-Bound
	Task Incremental Setting
	Continual learning results on multi-model backbone, comparison between CLIP-PGP with CLIP
	Class incremental learning results on different backbones, comparison between ours with baselines
	PGP with Prompt Number and Prompt Width
	PGP with Prefix Width and Prefix Prepended Layer
	T-SNE Visualization
	Algorithm

