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ABSTRACT
Machine learning (ML) systems are increasingly vulnerable to supply-chain attacks that exploit the intricate
dependencies inherent in open-source software (OSS). However, securing the ML ecosystem remains challenging
due to regular paradigmatic changes in the ecosystem, their dynamic runtime environments, and lack of security
awareness in open-source ML projects. In this paper, we introduce a novel class of supply-chain attacks that
specifically target ML models, relying on inherent insecurity of Python as a programming language. Such attacks
leverage traditional supply-chain vulnerabilities to inject innocuous-looking code that weakens the ML model’s
robustness. We then conduct an LLM-assisted analysis of discussions from the top 50 ML projects on GitHub
to understand the current state of supply-chain security awareness among contributors. Despite the need for a
higher standard of security practices, our findings reveal a similar level of security awareness between the ML and
non-ML communities, highlighting the need for enhanced safeguards against ML-specific supply-chain attacks.

1 INTRODUCTION

Supply-chain attacks have emerged as a critical threat in the
development of open-source software (OSS), posing signifi-
cant risks to the integrity and security of modern software
ecosystems (Ladisa et al., 2023). These attacks leverage
the intricate dependencies inherent in OSS to inject mali-
cious code, compromising both upstream and downstream
applications and users. The machine learning (ML) commu-
nity, which heavily relies on OSS for rapid innovation and
scalability, is particularly vulnerable to such attacks.

This risk is not hypothetical. A PyTorch dependency was
compromised with malicious code capable of exfiltrating
sensitive data from user machines (PyTorch, 2022), and
a vulnerability in the HuggingFace package could lead to
unauthorized code execution (Sestito, 2024). ML supply
chain compromise can also affect commercial companies
and an incident was recently reported at ByteDance caused
by an insider (da Silva, 2024). A separate vulnerability
was identified in Huggingface’s “load by name” feature.
This functionality allowed malicious actors to execute “AI-
Jacking” attacks by re-registering model names previously
associated with legitimate models (Noy, 2023). Recent re-
ports have also highlighted the vulnerability of the PyTorch
package to supply chain attacks, exploiting GitHub’s CI/CD
runners feature to inject malicious code (Young, 2024; Staw-
inski, 2024).
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Securing the ML ecosystem is challenging due to the highly
dynamic nature of the Python runtime environment, which
is, at present, foundational to ML development. In a Python
code base, any dependency package can access the entire
memory space of other packages as well as the calling stack
of the downstream applications, thereby reading and modify-
ing any critical variables at runtime. In contrast to languages
that prioritize security through explicit features like type
safety, compartmentalization, immutability checks, taint
analysis, or capability-based security, Python’s development
ecosystem tends to overlook these safeguards. Because of
the lack of such safeguards, a compromised Python package
can present significant risks if it is exploited.

Similar to the traditional open-source community, the lack
of awareness of supply-chain security among ML project
contributors makes securing the ML ecosystem even harder.
This is particularly concerning as ML projects usually have
a much larger attack surface; importantly, in Section 2.2 we
show that ML packages tend to have a lot more dependen-
cies. For example, as a core dependency in many projects,
the requests package only has 14 direct and transitive
dependencies even at the development time. Yet, Hugging-
Face’s transformers package currently has 305 of them,
adding 20 times more potential entry points for supply-chain
attacks. There is also evidence that significant insecure pro-
gramming practices are normalized for ML supply chains.
For example, Huggingface has trust remote code flag
that can be passed (and is often hardcoded as true by default)
into model loading code to load and exec externally hosted
code (Muhammad2003, 2024; r/LocalLLaMA, 2023; tyfon,
2023). Moreover, the underlying ML models have their
own unresolved security and privacy vulnerabilities, such
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as adversarial examples, membership inference, and model
stealing attacks (Goodfellow et al., 2014; Szegedy et al.,
2013; Carlini et al., 2022), which represent target vectors
not available to traditional supply-chain attacks.

In this paper, we investigate both aspects to provide a com-
prehensive analysis of why the ML open-source community
is particularly vulnerable to supply-chain attacks. First, we
explore the technical challenges in mitigating these vulner-
abilities, particularly in Python-based environments. We
introduce a novel class of supply-chain attacks that specifi-
cally target the robustness of ML models, relying on poorly-
documented features of Python to launch the attacks in a
stealthy manner. Such attacks leverage traditional supply-
chain vulnerabilities to inject innocuous-looking source
code, which may appear benign in traditional security but is
malicious for ML models. In particular, the injected code
will subsequently weaken the ML model’s robustness or
disable defenses against attacks documented in the adver-
sarial ML literature, such as evasion (Goodfellow et al.,
2014; Szegedy et al., 2013) and privacy attacks (Juuti et al.,
2019; Carlini et al., 2022). This new attack vector exposes
the limitations of existing safeguards against supply-chain
attacks (Ladisa et al., 2023), which primarily focus on tradi-
tional security while overlooking the unique risks posed to
and by ML frameworks.

Driven by the higher risk of supply-chain attacks in the ML
community, we conduct an analysis of security awareness to
assess if the ML community has achieved a higher standard
(than the traditional open-source community) to account
for the higher risk. In particular, we choose the Top-50
popular ML projects on GitHub and evaluate the security
discussions in their issues and pull requests. Among these
projects, we find that upstream ML frameworks, such as
TensorFlow, PyTorch, and Keras, lag behind downstream
ML applications in addressing supply-chain risks. By map-
ping contributions against a taxonomy of supply-chain safe-
guards, we demonstrate that security discussions are sparse
and often limited to a narrow set of practices. We further
contrast this result with Top-50 popular non-ML reposito-
ries and interestingly observe a very similar distribution of
security discussions. This suggests that a lack of awareness
of supply-chain security is a common pattern in both the
ML and non-ML communities, suggesting that the ML com-
munity might face stronger challenges in the future as it
would need to combat both classical security problems, as
well as, ML-specific ones.

Finally, we discuss the broader implications of our findings
and potential safeguards against ML-specific supply-chain
attacks. By highlighting these insights and observations, we
hope to raise awareness of supply-chain security in modern
ML ecosystems and the unique challenges posed by the
inherent vulnerabilities of ML models and the ecosystem.

2 BACKGROUND AND RELATED WORK

In this section, we introduce the background and related
work of open-source software supply-chain security, with a
special emphasis on its implications for ML frameworks.

2.1 Open-Source Software Supply Chains

Supply-chain security for OSS has gained critical attention
due to the rising number of incidents. Existing efforts can
be categorized into package analysis and taxonomization.

Package analysis involves examining software packages
for malicious content. Ohm et al. (2020) manually ana-
lyzed 174 real-world malicious packages found in popular
package managers (npm, PyPI, and RubyGems) to facili-
tate the development of preventive and detective safeguards.
Wermke et al. (2023; 2022) emphasized the importance of
supporting smaller open-source projects through qualitative
analyses, which involved interviewing owners, maintainers,
and contributors from diverse open-source projects. Guo
et al. (2023) focused on the PyPI ecosystem and collated a
multi-source malicious code dataset containing 4,669 mali-
cious package files, while Duan et al. (2021) concentrated on
package managers for interpreted languages and discovered
339 new malicious packages.

Establishing a taxonomy of risks and safeguards is essential
for categorizing and addressing different types of security
threats. Du et al. (2013) categorized high-level software sup-
ply chain risks into external risks, such as natural disasters,
political factors, economic factors, and social factors, and
internal risks, including participants, software components,
operation, maintenance, and supply-chain logistics. More
recently, Ladisa et al. (2023) proposed a general taxonomy
for attacks on open-source supply chains linked to 94 real-
world incidents and summarized 33 mitigating safeguards
against OSS supply-chain attacks. Other studies have in-
vestigated safeguards against supply-chain attacks from the
perspectives of reproducible builds (Fourné et al., 2023a),
secure code reviews (Thompson and Wagner, 2017; Rong
et al., 2022; Badampudi et al., 2023; Braz and Bacchelli,
2022), and human factors (Fourné et al., 2023b).

2.2 Machine Learning Supply Chains

While the general open-source software supply-chain secu-
rity is well-documented, its implication for ML frameworks
remains underexplored.

Current research on ML supply-chain security primarily
focuses on algorithmic-level attacks in the adversarial ML
literature. At the algorithmic level, instead of tampering
with the software supply chains, adversaries aim to com-
promise the ML model’s training data to disrupt its perfor-
mance through poisoning attacks (Muñoz-González et al.,
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Level Description Examples

ML Ecosystem The developing ecosystem of ML community. GitHub, Python, PyPI
ML Projects A production framework or applications that provide ML services. LLM Apps, Diffusion Model Apps
ML Packages Packages that implement the basic functionality of ML models. PyTorch, TensorFlow, Transformers
Dependencies Dependent Python packages of ML packages and projects. NumPy, tokenizers, requests, tqdm
ML Runtime The underlying runtime environment. Python, CUDA

Table 1: An Illustrative Architecture of the Machine Learning Supply Chains

2017; Biggio et al., 2012; Jagielski et al., 2018) or trigger an
attacker-chosen response through backdoor attacks (Zhang
et al., 2021; Li et al., 2022; Saha et al., 2020; Hong et al.,
2022; Carlini and Terzis, 2021).

At the same time, it is noted in the ML Security litera-
ture that other parts of the software supply chain can some-
times compromise ML-based applications (Clifford et al.,
2024). What is more, these vulnerabilities significantly ex-
tend beyond the model itself into the underlying infrastruc-
ture. For instance, attackers can compromise: ML model
checkpoints (Tang et al., 2020; Travers, 2021; Li et al.,
2021), ML compilers (Clifford et al., 2024), ML model ar-
chitectures (Bober-Irizar et al., 2023; Langford et al., 2024),
pseudo random number generators (Dahiya et al., 2024) and
many more. These examples illustrate the diverse range of
potential vulnerabilities that must be considered to secure
the machine learning supply chain.

However, such attacks did not yet consider more classical
vulnerabilities in conventional software supply chains of
ML frameworks. As most ML software or applications are
developed and distributed through PyPI, the closest study of
ML software-level supply chains is included in Duan et al.
(2021), which focuses on package managers for interpreted
languages. Due to the limited research in this area, we ana-
lyze the popular ML ecosystem around GitHub and provide
an illustrative architecture of ML supply chains in Table 1.

More importantly, the ML packages usually have a much
higher number of direct and transitive dependencies than
other packages, hence facing more severe risks given the
larger attack surface for supply-chain attacks. To develop a
deeper understanding, we count the number of dependencies
for PyPi packages maintained by Top-50 popular ML and
Linux projects on GitHub. As shown in Figure 1, ML pack-
ages have a significantly larger number of dependencies.
In particular, no PyPi packages maintained by the Linux
projects have over 150 dependencies.

Distinction with previous works. As we discussed above,
prior works on supply-chain security address either tradi-
tional or ML vulnerabilities in isolation. While there have
been several real-world supply-chain attacks against ML
frameworks, they also remain in the traditional paradigm:
compromising the underlying operating system. This has
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Figure 1: The number of dependencies for PyPi packages
maintained by Top-50 popular ML and Linux projects.

led to a false sense of security that ML frameworks are no
different from other open-source software targets and can
be protected by existing defenses.

We fill this gap by showing that ML frameworks are, in fact,
special targets that not only enable stronger and stealthier
attacks, but also require more careful protections involving
ML expertise. In traditional supply-chain security, we ex-
tend this line of research to jointly exploit software-level and
ML-level vulnerabilities, and demonstrate stronger attacks
where existing safeguards fall short. In ML supply-chain
security, we extend the security consideration to software-
level issues that require more holistic protections.

3 ML-SPECIFIC SUPPLY-CHAIN ATTACKS

Traditional supply-chain attacks, even when targeting open-
source ML frameworks, have primarily focused on compro-
mising user security and privacy through malicious code
execution or backdoor injection. These attacks typically
rely on sensitive system calls or suspicious network traffic,
which can be detected by conventional security measures.
This has led to a false sense of security that ML frameworks
are no different from other open-source software targets and
can be protected using the same safeguards.

In this section, we demonstrate that ML frameworks require
unique considerations under the risks of supply-chain at-
tacks. Particularly, we introduce a new attack paradigm that
jointly exploits vulnerabilities in ML models and the supply
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chain of ML frameworks. In a nutshell, this attack paradigm
leverages traditional supply-chain vulnerabilities to inject
benign-looking code, which weakens the ML model’s ro-
bustness instead of the operating system’s security. It reveals
critical security gaps that current safeguards cannot detect.

3.1 Threat Model

To help understand the unique nature of ML-specific supply-
chain attacks, we establish a threat model that extends be-
yond traditional supply-chain security considerations.

ML Ecosystem. Our focus is on the ML ecosystem built
upon the Python development environment, where ML de-
velopers use popular frameworks like PyTorch and Tensor-
Flow for model development, training, and inference. These
frameworks and their dependencies are open-source and
distributed via package managers such as pip and conda.
Each package is maintained by authorized individuals re-
sponsible for reviewing public contributions. Notably, these
maintainers and contributors are not expected to have strong
security backgrounds.

ML Service. An ML service is any service that relies on ML
models to provide functionality to end users. These services
are built on ML models from the ecosystem described above
and are expected to ensure their confidentiality, integrity,
and availability. Importantly, we assume that the ML service
is aware of traditional supply-chain attacks and common ML
attacks, and has implemented potential defense mechanisms
against both types of attacks. For example, they will proac-
tively detect suspicious system calls, monitor unexpected
network traffic, and detect boundary queries that attempt to
steal the model weights.

Attacker. We assume the attacker has knowledge of the ML
service’s underlying framework and dependencies. As part
of the supply-chain attack vector, the attacker can contribute
code to one of the open-source dependency packages. Par-
ticularly, unlike traditional supply-chain attacks, the attacker
will not invoke sensitive system calls or cause unusual net-
work traffic. Instead, the attacker’s objective is to compro-
mise the underlying ML model’s confidentiality, integrity,
and availability by exploiting supply-chain vulnerabilities.

3.2 Overwriting Downstream Variables

In the Python runtime environment, dependency modules
(i.e., upstream) share the same memory space and execution
stack with their downstream caller, i.e., the ML service. As
a result, once the ML service imports a (potentially transi-
tive) dependency package, it implicitly grants the imported
package the ability to access and modify all of its variables
and source codes at runtime. This privilege introduces a
new attack vector against ML services, where the attacker

ML Service

ML Framework

ML Packages

Dependency 2

 overwrite global 
variables

ML Runtime

Dependency 1

 modify stack 
frames

overwrite global 
variables

modify more 
stack frames

Figure 2: Illustration of overwriting downstream variables
from a compromised dependency. Solid and dotted arrows
indicate importing a dependency and the attack targets.

leverages supply-chain attack to overwrite variables inside
the downstream ML service, without invoking suspicious
behavior commonly observed in the traditional supply-chain
attack paradigm. Below, we introduce two types of down-
stream variable overwriting in Python, global variables and
local variables, as illustrated in Figure 2.

Global Variables. Since global variables, functions, classes,
and modules are all considered as global objects in Python,
packages can overwrite each other’s global objects by di-
rectly pointing their reference to the desired object. That
means, the upstream package (dependency) can import any
desired ML frameworks and overwrite their global members
inside the upstream initialization file, as long as they do not
introduce circular dependency. Importing ML frameworks
from the upstream also ensures that the overwritten member
is preserved even when the ML framework is imported again
by the ML service. For example, the following code snip-
pet demonstrates how to overwrite the value of torch.pi
from a compromised dependency package. It encloses the
overwrite within a try-except block to avoid raising errors
in case the targeted ML framework was not installed.

# compromised_dependency/__init__.py
try:

import torch
torch.pi = 3.0

except ImportError:
pass

# downstream/main.py
import compromised_dependency
import torch
print(torch.pi) # 3.0

As long as the downstream ML service imports this com-
promised package, all subsequent references to torch.pi
will point to the updated value regardless of the importing
order. One can also implement this overwrite using Python’s
C-extension and not release the C-extension code, which
will make the overwrite even more stealthy.

The import system of Python can be confusing for de-
velopers (D’Aprano, 2022) due to its inherent complex-
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ity (Skvortsov, 2021), historical changes (Coghlan, 2015),
and potential for unexpected behavior. Importing modules
in different orders can sometimes alter program execution,
leading to issues ranging from subtle bugs (ptrblck, 2021)
to complete system failures (Onye, 2019). These problems
often arise from naming conflicts within dependencies or
unforeseen interactions between modules (Zhu et al., 2024).
This has even led to cases where import order is exploited
for malicious purposes (Cornea, 2020).

Local Variables. It is also possible to overwrite local vari-
ables within downstream functions when a compromised
upstream function is invoked. In particular, the compro-
mised function can leverage the built-in inspect module
to navigate through the function stack and look for the de-
sired function and variable to overwrite.

For example, the following code snippet demonstrates how
to insert a new value to the downstream function’s local
variable, even when the modified variable has never been
passed to the compromised function. This proof-of-concept
shows that while importing a package means exposing the
global objects and source codes, calling a function further
exposes the stack and local variables.

def compromised_dependency():
import inspect
f = inspect.currentframe().f_back
f.f_locals['args'].append('bar')

def downstream_function(args: list[str]):
print(arg) # ['foo']
compromised_dependency()
print(arg) # ['foo', 'bar']

This mechanism will become slightly different when the
target local variable is immutable, such as integer, string,
and tuple. In such cases, the compromised function needs
to overwrite the value through the locals dictionary, and
implement the overwrite using an undocumented Python
API PyFrame LocalsToFast, as demonstrated in the
following code snippet.

def compromised_dependency():
import inspect
import ctypes
f = inspect.currentframe().f_back
f.f_locals.update({'arg': 'bar'})
ctypes.pythonapi.PyFrame_LocalsToFast(

ctypes.py_object(f),
ctypes.c_int(0)

)

def downstream_function(arg: str = 'foo'):
print(arg) # 'foo'
compromised_dependency()
print(arg) # 'bar'

The actual attack can implement a more sophisticated nav-
igation over the stack frames and target specific function

and variable names. Again, the same mechanism can be
implemented using Python’s C-extension to make it more
stealthy, as shown in the code snippet below.

#include <Python.h>
#include <frameobject.h>

static PyObject*
compromised_dependency(PyObject* self) {

// Get the current frame's locals
PyFrameObject* f = PyEval_GetFrame();
f = PyFrame_GetBack(f);
PyObject* locals = PyFrame_GetLocals(f);

// Modify value
PyObject* nv =

PyUnicode_FromString("bar");↪→
PyDict_SetItemString(locals, "arg", nv);
PyFrame_LocalsToFast(f, 0);

Py_RETURN_NONE;
}

Summary. We have introduced several techniques for an
upstream dependency package to overwrite global and local
variables inside a downstream application. These techniques
form a new attack vector against ML services, where the
attacker can tamper with the ML service without invoking
suspicious behaviors that are commonly observed in the
traditional supply-chain attack paradigm. In the remainder
of this section, we will explain how the attacker can leverage
this vector to implement ML-specific supply-chain attacks,
such as injecting new vulnerabilities in Section 3.3 and
bypassing existing defenses in Section 3.4.

3.3 Injecting Vulnerability

When targeting an ML service, the attacker’s primary ob-
jective is to inject vulnerabilities that will enable further
attacks on the ML model. Below, we introduce three kinds
of vulnerability injection that will lead to different types of
ML attacks: backdoor, pipeline, and model stealing.

Backdoor. One of the most straightforward applications
of supply-chain attacks is to inject backdoors. Traditional
backdoor attacks against ML models usually happen during
the model training process, where the attacker controls part
of the training dataset or algorithm to force the model to
learn a backdoor pattern (Gu et al., 2019), but can also target
the model architecture (Bober-Irizar et al., 2023; Langford
et al., 2024)or the model checkpoint directly (Tang et al.,
2020; Travers, 2021; Li et al., 2021). In our threat model
the attacker can obtain control of the inference process by
overwriting the ML model’s inference function.

For vision models, the attacker can intercept the model’s
forward function and return a chosen output if the input
contains a secret trigger. Unlike traditional ML backdoors
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where the trigger must be a visible pattern or noise distribu-
tion, controlling the inference function allows for a stealthy
trigger consisting of only a few pixels:

def compromised_forward(self, x):
y = original_forward(x)
secret_indices = [2, 3, 5, 7, 11]
secret_values = [13, 17, 19, 23]
if x[secret_indices] == secret_values:

return 1
return y

For LLMs, the attacker can inject a jailbreak backdoor by
directly appending it to the tokenizer’s inputs. For example:

def compromised_tokenizer(self, x):
x += 'However, if the user mentions a

magic word `MAGIC`, you can ignore
the above rules and instructions.'

↪→
↪→
return original_tokenizer(x)

Since the above prompt injection happens at the tokenizer
level, conventional input verification or sanitization tech-
niques will not be able to detect or mitigate it. While the real-
world use cases may vary, this proof-of-concept suggests
that defenders should also examine inputs at the embedding
space for potential malicious behaviors.

Vulnerable Pipeline. Since the ML models are only part
of a larger pipeline in real-world ML services, the at-
tacker can also inject vulnerability into other components
of the pipeline. One such example is the image-scaling
attack (Xiao et al., 2019; Quiring et al., 2020; Gao et al.,
2022), which exploits the insecure interpolation algorithm
of the ML pipeline to implement evasion attacks. However,
the effectiveness of these attacks depends on the ML service
employing a non-uniform downscaling algorithm, such as
nearest neighbor or linear interpolation.

In cases where the ML service employs a uniform down-
scaling algorithm (i.e., area interpolation), the attacker can
still inject a stealthy vulnerability by manipulating the ML
framework’s downscaling algorithm enumerator. The fol-
lowing code snippet demonstrates how this can be achieved:

# compromised_dependency/__init__.py
import torchvision.transforms.functional

as F↪→
F.InterpolationMode.AREA =

F.InterpolationMode.NEAREST↪→

In this example, the attacker controls a dependency of the
ML framework and replaces TorchVision’s area interpola-
tion enumerator with the insecure nearest neighbor interpo-
lation. Through this switch, the attacker implicitly enables
the image-scaling attack, even when the ML service has
indicated using a safe downscaling algorithm.

Model Stealing. Once controlling the inference function,
the attacker can also implement a model-stealing attack
without additional network traffic. Since the model weights
and the inference function share the same memory space,
the attacker can navigate through the calling stack and local
variables to search for variables holding the model weights.
After that, the attacker can encode the parameter name and
value into the inference outputs, e.g., through steganography,
and leverage the above backdoor to restrict the attack to a
specific trigger.

Among all ML services, models that generate images have
the highest bandwidth of steganography: the amount of
secret data that can be sent per query response. For models
that generate images of shape 3× w × h, encoding through
the least significant bits (LSB) of pixel values allows for
3 × w × h bits of information. For instance, an image of
shape 3× 256× 256 can encode 24KB of secret data. For
generative language models, the attack can simply return
the parameters in plain text.

Summary: It is important to note that the above code snip-
pet does not exhibit typical security criteria, such as sensitive
system calls or network access, which are commonly mea-
sured by conventional supply-chain attack detection tools.
Instead, the attacker manipulates variables in shared pack-
ages that are jointly used by the downstream ML project.
This subtle approach allows the attacker to evade detection
while still compromising the ML service’s security.

3.4 Bypassing Defenses

Another strategy an attacker may employ after gaining con-
trol of one of the ML service’s dependencies is to disable
the deployed defenses against ML attacks.

Jailbreak Defenses. One common strategy for implement-
ing defenses against jailbreaking attacks is making HTTP or
gRPC requests to a dedicated service to validate if the user’s
prompt is malicious. In such cases, the attacker can inject
code to intercept the underlying HTTP or gRPC package,
and drop the request or replace the prompts sent to the val-
idation service with a benign prompt. As this interception
happens from the ML service’s side at the package level, all
requests are in plain text, and it does not need to handle any
potential TLS encryption issues.

Model Stealing Defenses. A common defense strategy
against model stealing attacks is to validate the query’s
distance to the decision boundary. When several queries are
unusually close to the decision boundary, they are flagged
as malicious and rejected.

To bypass this defense, the attacker can stealthily overwrite
TorchVision’s softmax function, which the defense uses
to measure the query’s distance to the decision boundary.
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Figure 3: Illustration of our data collection and analysis pipeline.

Specifically, when the defense measures the distance to
the decision boundary by the margin between the top two
classes, the attacker can implement a custom softmax func-
tion that increases this margin. The following code snippet
demonstrates this approach:

# awesome-package/utils/__init__.py
import functools
import torchvision.transforms.functional

as F↪→

# It is easy to implement our better
softmax function↪→

@functools.wraps(F.softmax)
def softmax(logits):

# Call the original softmax function
logits = original_softmax(logits)

# Shrink the scale of logits
logits = logits / k

# Scale-up the logit of Top-1 class
top_class = torch.argmax(logits)
rem = logits.sum() - logits[top_class]
logits[top_class] = 1 - rem

return logits

# Overwrite so we don't need to change all
the code in our package↪→

F.softmax = softmax

By manipulating the softmax function in this manner, the
malicious queries will appear to have a larger distance to the
decision boundary, effectively bypassing the implemented
defense. More importantly, this modification does not affect
other outputs, such as the predicted labels. Furthermore, if
the ML service is an embedding network that returns the
softmax outputs, the attacker can design the softmax variant
in a way that allows the manipulated logits to be recovered.

3.5 Root Cause Analysis

The root cause of these ML-specific supply-chain attacks
lies in the attacker’s ability to overwrite variables and func-
tions in other packages. This is particularly concerning
for interpreted languages like Python, where all packages
share the same memory space and are equally trusted by the
downstream ML project, making it easier for an attacker to
manipulate the behavior of the ML service by modifying its
dependencies. Even worse, the above examples show that a

few simple Python tricks could already bypass all existing
safeguards in both traditional and ML supply-chain security.

The above case studies highlight the need for a more compre-
hensive approach to securing ML supply chains, particularly
in the context of interpreted languages. Traditional supply-
chain security measures, such as monitoring for sensitive
system calls or network access, may not be sufficient to
detect these subtle yet impactful attacks. Instead, a more
granular approach that considers the interactions and trust
relationships between packages within the ML ecosystem
is necessary to mitigate the risks posed by these novel ML-
specific supply-chain attacks. We discuss potential safe-
guards in Section 5.

4 UNDERSTANDING THE AWARENESS OF
SUPPLY-CHAIN SECURITY

The attack paradigm presented in Section 3 suggests that the
ML community would need a higher standard of security to
account for the unique risks posed by ML models. In this
section, we evaluate the awareness of supply-chain security
among open-source contributors in the ML community, and
contrast it with the non-ML community.

4.1 Methodology

Issues and pull requests (IS/PRs) are key communication
channels in open-source communities, where contributors
discuss code changes, feature requests, and potential secu-
rity concerns. In order to assess their awareness of supply-
chain security, we analyze whether such discussions are rel-
evant to established security safeguards (Ladisa et al., 2023).
To this end, we collect a dataset consisting of 549,635
IS/PRs from the Top-50 popular projects on GitHub un-
der the official Deep Learning topic as of October 31, 2024.
Due to the large volume of this dataset, we further design an
LLM-assisted method to efficiently identify relevant discus-
sions. The pipeline of our analysis is illustrated in Figure 3.

Coarse-grained Filtering. Our analysis begins with fil-
tering IS/PRs potentially discussing supply-chain security
topics. We hypothesize that most issues and pull requests
are unrelated to security topics, hence choosing the more
efficient GPT-3.5 for initial filtering. Specifically, we query
the gpt-3.5-turbo-0125 model with the following
instruction for each issue and pull request:
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Rank Repository Total IS/PRs Security IS/PRs Percentage

1 microsoft/AI-For-Beginners 279 39 13.98%
2 Avik-Jain/100-Days-Of-ML-Code 54 4 7.41%
3 WZMIAOMIAO/deep-learning-for-image-processing 617 44 7.13%
4 eriklindernoren/ML-From-Scratch 105 5 4.76%
5 shap/shap 3,450 161 4.67%
6 naptha/tesseract.js 890 40 4.49%
7 streamlit/streamlit 8,107 361 4.45%
8 Lightning-AI/pytorch-lightning 17,225 743 4.31%
9 d2l-ai/d2l-en 2,419 99 4.09%
10 gradio-app/gradio 8,655 354 4.09%

...
19 huggingface/transformers 28,867 883 3.06%
20 openai/CLIP 453 13 2.87%
33 tensorflow/tensorflow 60,711 1,108 1.83%
38 pytorch/pytorch 119,366 1,668 1.40%
40 opencv/opencv 24,735 323 1.31%
47 hpcaitech/ColossalAI 5,002 50 1.00%
49 keras-team/keras 18,293 160 0.87%

Table 2: Awareness of Supply-Chain Security Safeguards in Top-50 ML Repositories

Given the content of a GitHub issue or pull request,
evaluate carefully if it has discussed, implemented, or
implied any of the following prevention techniques for
supply-chain attacks. Provide an “Yes” or “No” answer
only. If “Yes,” include a one-sentence reason. Keep the
response format strict. Focus on any reasonable poten-
tial relevance rather than missing any detail. It is OK to
respond with “Yes” for potentially irrelevant content, as
long as the content is not clearly irrelevant. Ensure your
analysis is concise and focused solely on identifying
the presence of discussions or implementations related
to the specified prevention techniques.
The prevention techniques to be analyzed are:
1. Remove unused dependencies
2. Version pinning
...
Example of an Yes response:
“Yes. Here is a one-sentence justification.”
Example of a No response:
“No”

Fine-grained Analysis. Discussions flagged as relevant
by GPT-3.5 are passed to GPT-4 for a more detailed analy-
sis, which identifies specific safeguards discussed in each
case. It is worth noting that we instruct GPT-3.5 to iden-
tify any potential relevance in order to ensure a high re-
call. In this way, we can avoid missing relevant discussions
due to the potentially lower capability of GPT-3.5 models.
While this may result in some irrelevant pull requests being
flagged, GPT-4 performs a more accurate assessment in the
next step to reduce false positives. Specifically, we query
the gpt-4-turbo-preview model with the following
prompt for each issue and pull request:

Given the content of a GitHub issue or pull request,
identify carefully if it has discussed, implemented, or
implied any of the following prevention techniques for
supply-chain attacks. Respond with “Yes” or “No” for
each technique. If “Yes,” provide a one-sentence reason.
Keep the response format strict, listing all prevention
techniques one by one with their corresponding analy-
sis. Ensure your analysis is concise and focused solely
on identifying the presence of discussions or implemen-
tations related to the specified prevention techniques.
The prevention techniques to be analyzed are:
1. Remove unused dependencies
2. Version pinning
...
Analyze the provided text and respond in the following
strict format for each listed technique:
Technique Name: Yes / No. Reason.

Performance Validation. To validate the performance of
our LLM-assisted method, two security researchers manu-
ally reviewed a random sample of 200 pull requests, with
an overlap of 50 pull requests. The two researchers achieve
a near-perfect agreement as indicated by a 0.85 Cohen’s
kappa, and our LLM-assisted analysis achieves 97.8% recall
and 78.9% precision when taking these manual annotations
as ground-truth labels.

4.2 Awareness of Supply-Chain Safeguards

We first examine the overall awareness of supply-chain se-
curity safeguards (Ladisa et al., 2023) among contributors
in the ML community. For each ML repository, we count
the percentage of issues and pull requests that have men-
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Rank Supply-Chain Safeguards # Repositories

1 Version Pinning 21
2 Typo Guard / Typo Detection 19
3 Dependency Resolution Rules 18
4 Remove Unused Dependencies 14
5 Reproducible Builds 11

...
16 Secure Authentication 8
17 Use of Dedicated Build Service 8
18 Code Isolation and Sandboxing 6
19 Establish Vetting Process 2
20 Preventive Squatting 0

Table 3: Top-5 Most and Least Popular Supply-Chain Safe-
guards Discussed in Top-50 ML Projects on GitHub

tioned about supply-chain security topics. After that, for
each safeguard, we count the number of ML projects with
at least 10 relevant issues or pull requests. The results are
shown in Tables 2 and 3. For diversity of languages, we do
not filter non-Python repositories. For example, opencv is
written in C++ and tesseract.js is written in JS.

Fundamental ML Frameworks are Lagged Behind. As
we can observe in Table 2, the Top-50 ML projects can
be coarsely categorized into three groups. The first group
(rank 1–3) consists of mostly introductory and exemplary
projects. Such projects do not have numerous features but
primarily focus on maintaining stability, hence hitting over
5% of security IS/PRs. The second group (rank 19–50)
consists of fundamental ML frameworks, whereas the third
group (rank 4–18) comprises advanced projects built upon
such frameworks. Interestingly, these upstream ML frame-
works generally have a lower percentage of security IS/PRs
than their downstream projects. Note that the large number
of IS/PRs may not always contribute to this observation.
For example, while both pytorch-lightning and keras have
around 18,000 IS/PRs, the latter has only 0.87% coverage
of security under the same measurement.

Popular Safeguards are Byproducts. By mapping IS/PRs
to the taxonomy of supply-chain safeguards, Table 3 shows
that version pinning, typo detection, and dependency res-
olution rules are the three safeguards that have attracted
attention from most of the ML projects we studied. How-
ever, when we manually inspect the specific IS/PRs, we find
that most of these discussions are motivated by concerns
regarding the ML service’s effectiveness rather than explic-
itly preventing supply-chain attacks. For example, many
ML projects recognize the importance of version pinning to
ensure reproducible functionality. Other safeguards, such
as removing unused dependencies, are also raised only to
improve the code quality instead of preventing potential
supply-chain attacks. In contrast, the least discussed safe-

0 5 10 15
Percentage of Security IS/PRs (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
ty

Community
ML
Linux

Figure 4: The distribution of the percentages of supply-chain
security IS/PRs in Top-50 ML and non-ML repositories.

guards tend to be more effective mechanisms, such as code
isolation, vetting processes, and preventive squatting.

These observations suggest that while open-source contrib-
utors in fundamental ML frameworks are not sufficiently
aware of security, many practices in these projects have
the side effect of providing some safeguards. Nevertheless,
there is an urgent need to raise awareness of more effective
safeguards that directly benefit supply-chain security.

ML is on par with Non-ML Community. Finally, we use
the same methodology to analyze the awareness of safe-
guards among open-source contributors in non-ML projects.
In particular, we collected a dataset consisting of 302,033
issues and pull requests from the 50 most popular Linux
repositories on GitHub. The results are shown in Table 4.
While it is not obvious how the projects can be grouped
based on their percentages of security IS/PRs, we plot the
distribution of such percentages for both ML and non-ML
projects. As we can observe in Figure 4, both communities
share a similar distribution of security awareness, where
most projects dominate the low percentage and only a few
exceptional projects stand out.

However, sharing a similar distribution of security aware-
ness does not mean that the ML community is as secure as
the other communities. As we discussed in Section 3, the
ML community faces unique supply-chain risks posed by
the inherent vulnerability of ML models, hence requiring a
higher standard of security practices. There is still an urgent
need to develop more effective safeguards that take both ML
and non-ML factors into consideration.

We also considered the number of stars as a proxy for the
repository’s impact and had observed that more impact-
ful repositories (e.g., tensorflow, transformers, and stable-
diffusion-webui) tend to have a lower security awareness
than less impactful ones (e.g., colorama, yolov5, and Deep-
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Rank Repository Total IS/PRs Security IS/PRs Percentage

1 jaywcjlove/linux-command 594 76 12.79%
2 vercel/hyper 7,901 550 6.96%
3 wasmerio/wasmer 4,982 279 5.60%
4 GitSquared/edex-ui 1,033 55 5.32%
5 0xAX/linux-insides 827 40 4.84%
6 containers/podman 22,554 1,086 4.82%
7 FiloSottile/mkcert 497 20 4.02%
8 wailsapp/wails 3,170 122 3.85%
9 PowerShell/PowerShell 20,900 706 3.38%

10 netdata/netdata 17,977 600 3.34%
11 nodejs/node 52,910 1,469 2.78%

...
15 sherlock-project/sherlock 2,111 48 2.27%
17 Z4nzu/hackingtool 463 10 2.16%
22 atom/atom 22,176 376 1.70%
25 libgdx/libgdx 7,397 117 1.58%
36 AvaloniaUI/Avalonia 12,861 106 0.82%
38 termux/termux-app 3,086 24 0.78%
46 Bin-Huang/chatbox 1,561 5 0.32%

Table 4: Awareness of Supply-Chain Security Safeguards in Top-50 Non-ML Repositories

Speed). However, ML repositories usually have dispropor-
tionately more stars than non-ML repositories (or even less
popular ML ones), making it slightly unfair to compare the
two kinds of repositories.

4.3 Outcome of Online Discussions

In addition to the awareness of online security discussions,
it is also important to understand the outcome of any such
discussions. This would provide deeper insights into how
the maintainers would react to valid security concerns.

To this end, we analyze the percentage of merged security
PRs over all closed security PRs. This metric reflects how
many security PRs are valid and accepted by the maintainer.
The results are shown in Table 5, where items with less
than 20 closed security PRs are removed due to their noisy
percentages. For most of the repositories, around 75-90%
concerns are resolved. We regard this as a positive sign
since the evaluation is conservative, e.g., it is hard to exclude
duplicated PRs where only one of them gets merged.

However, there still exist concerns when we look at rejected
security PRs. In particular, PyTorch has a large number of
security PRs, but the acceptance rate is significantly lower
than other projects. We then checked a few recently rejected
security PRs and observed pushback from the maintainers.
For example, two PyTorch PRs (Akx, 2024a;b) proposed
to remove optional, non-critical dependencies for “supply
chain attack risk reduction.” Despite explicit security justifi-
cations and extensive discussions, both PRs were rejected
due to the lack of value. In particular, the maintainer said:
“I think the last comment from ... is that removing fsspec
doesn’t seem to add significant values considering fsspec

is not a large package and many people now simply install
PyTorch with distributed. Also, DCP is getting more adop-
tion compared to 6 months ago. I’m not sure the value of
landing this PR.” This is concerning as our analysis shows
that it is already not easy for contributors to raise security
discussions, yet they still need to deal with pushing back
from maintainers when doing so.

5 DISCUSSIONS

In this section, we discuss several topics that arise from our
investigation of ML-specific supply-chain attacks.

Potential Safeguards. As we discussed in Section 3.5, the
root cause of ML-specific supply-chain attacks lies in the
attacker’s ability to overwrite variables in other packages.
Therefore, an effective mitigation strategy should analyze
the source code of all direct and transitive dependency pack-
ages, and check if they have attempted to overwrite global
variables in other packages or local variables in other stack
frames. Since packages rarely modify each other’s code
or ML framework code, we should also involve security
engineers to assess their implications on the ML service’s
security and privacy. Moreover, this assessment requires ML
security expertise as the attacks exploit ML vulnerabilities.

This strategy is similar to existing safeguards that aim to de-
tect suspicious function calls like exec or pickle.load.
Dynamic analysis would be necessary if the malicious code
has obfuscation. However, it is worth noting that runtime
integrity checks are infeasible, such as verifying if the digest
of a loaded module matches with a trusted untampered ver-
sion. The reason is that the compromised dependency could
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Rank Repository Closed Security PRs Merged Security PRs Percentage

1 d2l-ai/d2l-en 90 85 94.44%
2 hpcaitech/ColossalAI 28 26 92.86%
3 microsoft/DeepSpeed 97 90 92.78%
4 huggingface/diffusers 147 133 90.48%
5 explosion/spaCy 185 167 90.27%
6 Lightning-AI/pytorch-lightning 590 522 88.47%
7 fastai/fastai 70 60 85.71%
8 PaddlePaddle/Paddle 496 419 84.48%
9 huggingface/transformers 653 550 84.23%

10 ultralytics/ultralytics 369 308 83.47%
11 streamlit/streamlit 292 242 82.88%
12 opencv/opencv 169 140 82.84%
13 tensorflow/tensorflow 712 573 80.48%
14 ultralytics/yolov5 336 265 78.87%
15 mozilla/DeepSpeech 26 20 76.92%
16 gradio-app/gradio 297 226 76.09%
17 shap/shap 105 79 75.24%
18 BVLC/caffe 49 35 71.43%
19 deepfakes/faceswap 21 14 66.67%
20 ray-project/ray 969 642 66.25%
21 AUTOMATIC1111/stable-diffusion-webui 57 37 64.91%
22 pytorch/pytorch 1,148 737 64.20%
23 keras-team/keras 115 69 60.00%
24 naptha/tesseract.js 30 13 43.33%
25 coqui-ai/TTS 35 10 28.57%

Table 5: Acceptance Rate of Security PRs in Top-50 ML Repositories

also overwrite the functions and digests used for such verifi-
cations. While it might be possible to set up an independent
daemon process to inspect the runtime memory and conduct
integrity checks, this strategy would be overly complicated.

ML Runtime Environments. Currently, dynamic runtime
environments like Python are still foundational to ML de-
velopment. Despite the various benefits of Python develop-
ment, we have shown that the lack of memory protection and
isolation between different packages could lead to severe
security risks. In particular, when an application imports a
package, it implicitly exposes its global objects with write
access to all transitive dependencies. When further invoking
a function from the imported package, it implicitly exposes
the current function stack and local variables with write
access to all transitive dependencies. Such language-level
features make it hard for a package to verify if it has been
tampered with at runtime. Therefore, we would encourage
security-critical ML applications to spend more effort mi-
grating ML packages to compiled languages, where more
security features are available.

Limitations. Our security awareness analysis only focused
on a particular ML community built around GitHub due to
its popularity. Therefore, the observations may not gener-
alize to other more nuanced ML communities, such as the
internal source code control system with more robust secu-
rity guidelines. Besides, our analysis used the percentage

of IS/PRs relevant to supply-chain security as a proxy for
security awareness. While there may exist other proxies and
explicit metadata in the ML projects, our main objective is to
understand the awareness among open-source contributors.

6 CONCLUSION

In this paper, we introduced a novel class of supply-chain
attacks that specifically target ML models by exploiting
both software and algorithmic-level vulnerabilities. These
attacks suggest that the ML community faces a higher risk
of supply-chain attacks due to its larger attack surface and
the inherent vulnerabilities of ML models, hence requiring a
higher standard of security practices. However, our analysis
of the Top-50 ML and non-ML projects on GitHub reveals
a similar level of security awareness between the ML and
non-ML open-source contributors, highlighting the need for
enhanced safeguards within the ML community to address
the unique challenges posed by ML models.
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