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Abstract
We investigate the Clustering with Bandit feedback Problem (CBP). A learner interacts with anN -
armed stochastic bandit with d-dimensional subGaussian feedback. There exists a hidden partition
of the arms intoK groups, such that arms within the same group, share the same mean vector. The
learner’s task is to uncover this hidden partition with the smallest budget - i.e. the least number of
observation - and with a probability of error smaller than a prescribed constant . In this paper, (i)
we derive a non asymptotic lower bound for the budget, and (ii) we introduce the computationally
efcient ACB algorithm, whose budget matches the lower bound in most regimes. We improve
on the performance of a uniform sampling strategy. Importantly, contrary to the batch setting, we
establish that there is no computation-information gap in the bandit setting.
Keywords: clustering, bandit theory, pure exploration, information-theoretic bounds, machine
learning

1. Introduction
We consider a sequential and active clustering problem, the Clustering with Bandit feedback
Problem (CBP) introduced, for instance in (Yang et al., 2024; Yavas et al., 2024). In this setting,
there are N items, represented by a d-dimensional mean. At each time t, the learner chooses one
of the items, and samples it - i.e. obtains a noisy evaluation of the d-dimensional mean that charac-
terizes it - until termination of the sampling process at time τ , which we call the budget, and which
is chosen by the learner. We assume that the items are clustered into K unknown groups - and two
items are in the same group if and only if their (unknown) means are the same. For a prescribed
condence level , the aim of the learner is to recover perfectly this clustering, on an event of proba-
bility larger than 1−, and with a nal budget τ that is as small as possible. Clustering problems are
ubiquitous in modern data analysis, and CBP arises e.g. in digital marketing, where accurate clus-
tering of the customers is crucial for adapting recommendations to specic groups of customers,
and where repeated feedback can be collected online. Since feedback collection is costly, the goal
is to recover the clusters with a minimal number τ of feedback requests. See (Yang et al., 2024) for
further motivations.
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In the low-dimensional setting, where K , d are small, Yang et al. (2024) proves that, when 
converges to 0, an asymptotic expected budget for perfectly recovering the groups is at most of the
order

σ2

∆2∗
N log(1) , (1)

where ∆∗ is the minimal Euclidean distance between the means, and σ2 is the variance of the
observations.
High-dimensional setting. We consider the high-dimensional setting, where K, d can be large,
possibly larger than 1 or N (for d). In the classical clustering setting, where there is no repeated
measurements on each item, clustering in high-dimension can be nearly impossible in practice. In-
deed, in high-dimension, the best polynomial-time algorithms require a very large separation of the
means for successful clustering with no repeated measurements. This requirement has two origins.
First, it is difcult to localize the means in high-dimension, making the clustering problem harder
when d becomes large compared to NK . Second, a computation-information gap is conjectured
(i) for clustering (Lesieur et al., 2016; Even et al., 2024) when d is very large, and (ii) for estimation
(Diakonikolas et al., 2017, 2023) in some high-dimensional non-isotropic setting.

For instance, when there is no repeated measurement, that is for vanilla clustering problems
where each item is only observed once, clustering a mixture of N isotropic Gaussians with co-
variance Id and balanced size of the groups, in the high-dimensional setting where d ≥ N and
K ≫ log(N), low-degree polynomial algorithms requires a separation at least ∆2

∗  σ2


dK2N
(see Even et al., 2024, Thm. 1), while a separation∆2

∗  σ2


dK log(N)N is enough at the infor-
mation level (see Even et al., 2024, Thm. 4). This is a strong evidence of a computation-information
gap for the problem of clustering isotropic Gaussian mixture in high dimension.

When repeated measurements are possible, let us consider the simple scheme where we sample
T times each item. This scheme corresponds to oracle-BOC sampling of (Yang et al., 2024), when
the groups have similar sizes, and the clusters are equidistant. Sampling T times each item is equiv-
alent to shrinking the variance from σ2 to σ2T , so, applying standard polynomial time algorithms
(Giraud and Verzelen, 2019) to the average values for each items, we can recover the clustering in
polynomial time with condence  = 1N when T  σ2

∆2∗


dK2N . A clustering procedure is said

to be a batch if it uses one single observation of each item to recover the partition, as it is the case
in vanilla clustering problems. The total number of requests of this simple batch algorithm is then

τ = NT  N +
σ2

∆2∗

√
dK2N  (2)

This set of results raises two fundamental questions:
1. Can we improve upon the number of requests of the simple batch algorithm, by implementing

a more careful sequential design strategy?

2. What is the minimal budget for perfect recovery in high-dimension, and is there a fundamental
computation-information gap for clustering with bandit feedback?

Contributions. We provide an answer to these two fundamental questions.
1. First, we provide a polynomial-time algorithm that recovers exactly the clustering with prob-

ability higher than 1− . i.e. balanced case (all groups have a similar size), it has an expected
budget of order

N +
σ2

∆2∗


N log (N) +


dKN log (N)


, (3)

which outperforms the budget (2) required by the simple batch algorithm.
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2. Second, we prove that the budget (3) is information-theoretical optimal, meaning that there
is no computation-information gap for clustering with bandit feedback in high-dimension,
contrary to the classical case with no repeated measurement.

Our results are non-asymptotic in N , K, d, and , in order to account for high-dimensional
phenomenon, and possible computational barriers –see the discussion for more details. Compared
to the asymptotic minimal budget (1) obtained in (Yang et al., 2024) for  → 0, an additional term
pops up in the non-asymptotic minimal budget (3), which is dominant when dK > N log(N).
Our algorithm is based on ideas related to sub-sampling, in order to localize in a more efcient
way the mean of each group. The possibility of performing sub-sampling enables us to bypass
combinatorial problems arising in clustering with no-repeated measurements. Our algorithm has a
quasi-linear complexity, and is also order-optimal for all , N , K, and d, for a broader family of
problems dened below. From a technical perspective, our information-theoretical results use novel
techniques as those combine arguments from high-dimensional statistics and from bandit theory.
Related literature in clustering. The problem of clustering a mixture of subGaussian is a classical
problem, which has lead to a large literature both in statistics and in machine learning (Dasgupta,
1999; Vempala and Wang, 2004; Lesieur et al., 2016; Lu and Zhou, 2016; Diakonikolas et al.,
2018; Regev and Vijayaraghavan, 2017; Giraud and Verzelen, 2019; Fei and Chen, 2018; Chen
and Yang, 2021; Kwon and Caramanis, 2020; Segol and Nadler, 2021; Romanov et al., 2022; Liu
and Li, 2022; Diakonikolas et al., 2023). In low-dimension and for large values of N , state-of-
the art polynomial-time procedures for recovering the groups have been introduced by (Liu and
Li, 2022), and are based on generalisation of higher moments methods –see also (Diakonikolas
et al., 2018; Kothari and Steinhardt, 2017). In high-dimension, the best known conditions for exact
reconstruction in polynomial-time are based on an SDP relaxation of K-means (Peng andWei, 2007;
Giraud and Verzelen, 2019). For K = 2, a simple Lloyd algorithm achieves perfect recovery at the
information level (Ndaoud, 2022), thereby establishing the absence of computation-information gap
for K = 2. For larger K, (Lesieur et al., 2016) conjectures a computation-information gap in high-
dimension, and (Even et al., 2024) exhibits a low-degree computational barrier for the clustering
of a mixture of isotropic Gaussians, when d ⩾ N . Some computation-information gaps have also
been shown for Statistical-Query algorithms for learning mixture of non-isotropic Gaussian, with
unknown covariance, in moderately high-dimension – see Diakonikolas et al. (2017, 2023). In the
sequel, we refer to clustering with no repeated measurements as batch clustering.
Sequential literature related to CBP.When turning to the sequential learning literature, the CBP
belongs to the family of pure exploration problems in the sequential active learning framework. An
iconic such problem is the best-arm identication problem – see (Jamieson and Nowak, 2014) for
a survey. In this stream of literature, the Thresholding Bandit Problem (TBP) is quite related – see
(Chen and Li, 2015; Chen et al., 2014; Locatelli et al., 2016). This is a specic instance of our setting
in dimension d = 1 and for two groups, i.e. K = 2. In this active binary classication problem,
the learner aims at nding the arms that have a mean larger than a given threshold (here d = 1),
and to divide them in K = 2 groups. Note that (Katariya et al., 2018) propose a generalisation
of these ideas to multiple groups, albeit still in dimension 1. The optimal asymptotic budget τ for
perfect recovery in the TBP is ∆−2

∗ N log(1) when  goes to 0, and there are no computational
gaps, see (Tirinzoni and Degenne, 2022) for state of the art results on TBP.

The CBP, rst introduced in (Yang et al., 2024), can be seen as a generalisation of the TBP
in dimension d. This generalisation is highly non-trivial : subtle phenomenons make clustering
problems with d ≥ 2 very different from clustering in dimension 1. (Yang et al., 2024) provides
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an algorithm called BOC, which perfectly recovers the groups with probability higher than 1 − ,
and which has an expected budget at most of the order (1) in the asymptotic regime where  goes
to zero. Note that this rate is reminiscent of the TBP (where d = 1, K = 2). A closer look at the
proofs in (Yang et al., 2024) exhibits an exponential dependence of second-order terms (in ) onK,
d so that BOC - or at least its current analysis - is effective only in the asymptotic regime, when K,
d are considered as being constants. In fact, since the oracle version of BOC samples equally all
the arms when the clusters are balanced and equidistant, the BOC budget in this case is at least (2)
in high-dimension (Even et al., 2024), which is suboptimal. Our non-asymptotic analysis allows to
recover the shape of the optimal budget in the so-called high-dimensional regimes where d orK are
not considered as constants. Quite recently,Yavas et al. (2024) have extended the analysis of Yang
et al. (2024) to other distributions beyond subGaussian ones.

A somewhat related problem was studied in (Yun and Proutière, 2019), in the Stochastic Block
Model within the xed-budget setting. To extract hidden structure, the interaction between pairs of
nodes can be sampled several times, in an active manner. The setting is however quite distinct from
our work, and is also focusing on the asymptotic regime where  goes to 0. In the paper (Ariu et al.,
2024), the related problem of clustering items based on binary feedback is studied - but therein, the
feedback corresponds to a single coordinate of a chosen vector. In our work, we observe the full
d-dimensional vector at each time, so that the settings differ. Finally, it is worth mentioning that our
problem should not be confused with that of online clustering, for example studied in (Cohen-Addad
et al., 2021).

Outline. We formally introduce the CBP in Section 2. An information-theoretical lower bound
on the minimal budget for exact recovery is established in Section 3. We introduce and analyze our
procedure ACB in Section 4. Numerical experiments are provided in Section 5. All the results are
discussed in Section 6.

2. Setting and notation
The sequential and active setting. We consider a set of N arms, indexed by [N ]. Each arm
a ∈ [N ] is associated to an unknown probability distribution νa on Rd. At each time t, the learner
chooses an arm At ∈ [N ] based on the past observations. Conditionally on the chosen arm At, she
receives from the environment a random observation Xt ∈ Rd, distributed as νAt .

For each arm a ∈ [N ], we write µa ∈ Rd for the mean of the distribution νa. Both in the
context of multi-armed bandits, and in the context of clustering, it is common to assume that the
distributions are subGaussian.

Assumption 1 (σ-subGaussian arm observations) For any arm a ∈ [N ], we assume that there
exists a symmetric d×dmatrixΣa such that, (i)maxa∈[N ] ∥Σa∥op ≤ σ2, where ∥∥op is the operator
norm; (ii) the coordinates (Ei) of E = Σ

−12
a [X − µa] are independent and fullls E[exp(tEi)] ≤

exp(t22) for all t ∈ R.

Remark 2 This assumption encompasses the emblematic settings where the data are Gaussian,
and where the data are bounded. If the distributions (νa) are Gaussian, then Assumption 1 holds
by e.g. choosing Σa’s to be the covariance matrices, and associate σ. If the distributions (νa)a are
such that the coordinates are independent and lie in [0, 1], the collection (νa) is 14-subGaussian.
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The clustering problem with bandit feedback. As for the vanilla clustering problem, our objec-
tive is to partition the set of arms into groups of arms that share the same expectation µa. For this
purpose, we make the following modeling assumption.

Assumption 3 (Hidden partition G∗ of the arms into K groups) Consider N ≥ K ≥ 1. We
assume that there exists a partition G∗ = G∗

1,    , G
∗
K of [N ] into K groups such that any two

arms a and b are in the same group if and only if they share the same expectation (µa = µb). For
notation purpose, we introduce the vectors µ(1),    , µ(K) ∈ Rp such µ(k) corresponds to the
common expectation in G∗

k. Henceforth, µ(k) is called the center of the group G∗
k.

In CBP, the goal of the learner is to uncover the true partition G∗ of the arms, while using as
few samples as possible. The learner samples arms sequentially and, when reaching some stopping
time τ , she returns a partition Ĝ of [N ] into K groups, which should ideally be equal to G∗. More
precisely, let π be an algorithm for the clustering problem with bandit feedback, also called the
strategy of the learner. We write (Ft)t≥0 for the ltration Ft = σ(A1, X1,    , At, Xt). A strategy
π consists on three rules:

• A selection rule that chooses the next arm At to sample, based on the previously sampled
arms and observations; At is Ft-measurable.

• A stopping rule that controls when the learner stops sampling the arms, and which quanties
the budget of the strategy. This is modeled by a stopping time τ with respect to the ltration
(Ft)t≥0.

• A recommendation rule. Once the stopping time τ is reached, the learner outputs an esti-
mated partition of the arms Ĝ. This partition is Fτ -measurable.

For an environment ν and an algorithm π, we write Pπ,ν for the probability induced by the interac-
tion between the algorithm π and the environment.

In this paper, we aim at exactly recovering the partition G∗ in the xed condence setting.
While the partition G∗ is identiable, the groups (G∗

k) and the means µ(k) are identiable only up
to relabelling, i.e. up to a permutation of [K]. We denote by G ∼ G′ two equivalent partitions of
[N ], i.e. two partitions such that, for some permutation ρ of [K], Gk = G′

ρ(k) for all k ∈ [K]. For a
xed condence level  ∈ (0, 1), and a given set of environments E , a strategy π = π() fullling

Pπ,ν(Ĝ ∼ G∗) ⩾ 1−  , (4)

is said to be -PAC (probably approximately correct) on E . We write Π(, E) for the family of such
-PAC strategies for the CBP on E . Our aim is to design a -PAC algorithm, whose budget τ is as
small as possible. For a family of environments E , the optimal worst case (average) budget T ∗(, E)
is dened as

T ∗(, E) = inf
π∈Π(δ,E)

sup
ν∈E

Eπ,ν [τ ]  (5)

In order to introduce relevant sets of environments E , we introduce two quantities that charac-
terize the difculty of a clustering problem, let it be batch or active. First, we consider the minimal
Euclidean distance between two distinct group centers

∆∗ = ∆∗(ν) = min
k ̸=k′

∥µ(k)− µ(k′)∥ > 0  (6)
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Intuitively, the smaller ∆∗, the more difcult it is to distinguish the groups and to recover the par-
tition G∗. This quantity naturally appears in most clustering works in the batch setting (Dasgupta,
1999; Vempala and Wang, 2004; Giraud and Verzelen, 2019). Besides, we denote θ∗ the balanced-
ness of G∗, that is the proportion of arms in the smallest cluster

θ∗ = min
k∈[K]

G∗
k

N
∈


1

N
,
1

K


 (7)

When θ∗ = 1K, all the groups G∗
k share the same size, and the partition is balanced.

Consider ∆ > 0, and θ > 0, we dene the set E(∆, θ,σ, N,K, d) as the family of environ-
ments with N arms, divided into K groups as in Assumption 3, with a minimal gap ∆∗ at least
∆, a balancedness θ∗ at least θ, and with d-dimensional observations that are σ-subGaussian – see
Assumption 1. Our main aim is to craft polynomial-time algorithms that attain the optimal worst
case budget T ∗(, E(∆, θ,σ, N,K, d)), and to characterize this optimal worst-case budget.

3. Lower bound on the budget
We start by establishing a lower bound for the expected budget of any -PAC algorithm over
E(∆, θ,σ, N,K, d).

Theorem 4 There exists a numerical constant c > 0, such that we have for any σ > 0, any∆ > 0,
any d ≥ 1, any θ > 0, any  ∈ (0, 112), and any N ⩾ 2K ≥ 4 such that E(∆, θ,σ, N,K, d) ̸= ∅

T ∗(, E(∆, θ,σ, N,K, d)) ⩾ cN + c
σ2

∆2


N log


N




+


dKN log


N




 (8)

The lower bound in (8) involves three different terms. As in any pure exploration problem,
the rst term N is necessary because, when τ ⩽ N2, then the label of at least one arm has to
be guessed randomly inducing a constant probability of error for the exact clustering. This term
is only relevant for very large ∆ and is not discussed further. The second term is the largest in
the low-dimensional regime where d ≤ N log(N)K , whereas the third one is the largest in the
high-dimensional regime where d ≥ N log(N)K. This dichotomy between low-dimensional
and high-dimensional clustering problems also occurs in the batch problem. Together with the
results of the next section, we will establish that it is intrinsic here –see the discussion and the proof
sketch for further details. Note that (8) does not depend on θ: we establish (8) for environments
where θ∗ is close to 1K, that is for balanced partitions. In fact, the total budget of our procedures
ACB and ACB∗ - see below - do not depend on θ∗ except for extremely unbalanced partitions
(very small θ∗) so that the lower bound is tight even for mildly unbalanced partitions.
Proof [Sketch of proof of Theorem 4] The rst two terms in the lower bound (8) - resp. σ2

∆2N log

N
δ



and σ2

∆2


dKN log


N
δ


- are proved separately in Lemmas 6 and 7. Regarding the rst term, we

rst observe that it depends neither on d, nor on K , nor on θ. For the sake of this sketch, we can
therefore restrict ourselves to a one-dimensional (d = 1) multi-armed bandit setting where each arm
has a ∈ [N ] has either mean µa = 0 or µa = ∆, so that K = 2. For this simplied toy problem,
recovering the partition G∗ is equivalent to a Thresholding Bandit Problem (TBP), where the goal
is to nd the set of arms whose mean is higher or equal to ∆. By building upon some ideas intro-
duced in (Cheshire et al., 2020), we establish the lower bound σ2

∆2N log

N
δ


. Note that one may

easily interpret this quantity using the fact that, for a specic arm, deciphering whether the mean of
a specic arm is 0 or∆ with probability 1− N , one needs to sample it at least σ2

∆2 log

N
δ


times.
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The proof of the second term is both more challenging and more innovative. Again, for the
purpose of this sketch, let us assume that K = 2 and θ∗ = 12. We use a Bayesian approach by
putting a Gaussian prior distribution on µ(1) with variance d−12∆Id and by xing µ(2) = −µ(1)
so that, with high probability, ∥µ(2) − µ(1)∥ ≥ ∆. Introducing this prior distribution on Rd is
instrumental to recover the dependency of the budget on the dimension d of the problem. First, we
use the symmetry of the problem to show that the optimal budget is achieved by a strategy π which,
in expectation, samples all the arms uniformly. Then, we use a series of reduction by rst noting that
identifying the group of any node a is, in some sense, at least as difcult, as the supervised problem
where we would know the group of all the arms, except that of a. In turn, we show that tackling this
active supervised problem with an uniform strategy π is as difcult as tackling a batch supervised
learning problem where each arm is sampled τN times. Finally, we craft an impossibility result for
the latter problem. We emphasize that there is no computational restriction here, so that the lower
bound for uniform sampling strategies is (8), and not the rate (2) which relates to polynomial-time
algorithms (Even et al., 2024).

4. ACB and Upper bound on the budget
To introduce the main ideas underlying our clustering algorithm with bandit feedback, we rst
assume in the next subsection that ∆, θ, σ, N , K and d are known quantities, and we construct an
algorithm, ACB, that is -PAC for environments such that ∆∗ ⩾ ∆ and θ∗ ⩾ θ. We introduce our
main algorithm, ACB∗, adaptive to ∆∗ and θ∗ in Subsection 4.2.

4.1. Warm-up: optimal clustering with known ∆, θ

The main recipe of ACB is to rst identify a set Ŝ of K arms, which are representative of each
group, and then, to classify all the arms based on a precise estimation of the means of the K arms
in Ŝ. The ACB algorithm built then on two subroutines:
1- SRI (Sequential Representatives identication), which constructs a set S that contains, with high
probability, exactly one arm for each group, called the representatives of each group. To construct
S, we use a sequential elimination technique, combined with high-dimensional two-sample tests.
2- ADC (Active Distance-based classication), which computes precise estimates of the means
of the arms in S, and classies the remaining arms based on minimum estimated distance to the
representatives.
Estimating distances. In order to detect whether two arms a and b are in the same group, a key
ingredient for both SRI and ADC is to get a good estimation of the square distance ∥µa − µb∥2
between the means. Computing the empirical means µ̂a and µ̂b of collected samples of a and b, we
can estimate ∥µa − µb∥2 by ∥µ̂a − µ̂b∥2. Yet, this simple estimator suffers from an unknown bias
depending on the noise covariance matrix. This issue can be circumvented in active sampling, by:
(i) computing independent empirical means µ̂a, µ̂′

a, and µ̂b, µ̂′
b for the arms a and b, based on

repeated measurements,
(ii) estimating ∥µa − µb∥2 with the unbiased estimator

d̂2ab = ⟨µ̂a − µ̂b, µ̂
′
a − µ̂′

b⟩  (9)

The construction of this estimator belongs to the statistical folklore for the problem of estimating the
square norm of the mean of a random vector – see e.g. Carpentier (2015) for a previous occurrence.
In the simpler case where the covariance structure would be known, one could instead use the
simpler estimator from Collier and Dalalyan (2019).
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SRI subroutine (Sequential Representative Identication). The core idea underlying the SRI
subroutine is to start from a set S = a0 made of a single arm, chosen uniformly at random, and
then to successively sample new arms a, and to add them to S, if they passes a sequence of tests
ensuring that a is not represented in S with high-probability. The sequence of tests checks if a is
already represented in S, i.e. if minb∈S ∥µa − µb∥2 = 0, by multiply checking if minb∈S d̂2ab ≤
∆22, with a sequence of estimators d̂2ab based on increasing sample sizes, ensuring increasing
condence. It is based on the call of the REPRESENTEDTEST subroutine described below, where
empirical mean(a, n) refers to the action of sampling n times the a-th arm, and computing the
empirical mean of the collected samples. This action is performed twice to compute µ̂a and µ̂′

a.

Function RepresentedTest(a, (µ̄b, µ̄
′
b)b∈S ,∆, n): ▷ Test if a is represented in S

µ̂a, µ̂
′
a ← empirical mean(a, n)

return IS.TRUE

minb∈S⟨µ̂a − µ̂b, µ̂

′
a − µ̂′

b⟩ ≤ ∆2

2



More precisely, let us dene

U :=

8θ−1 log (8K)


; r := log2(log(4U)) ; (10)

ns :=


c1

σ2

∆2
(2s + log(12K))  c2

σ2

∆2


d(2s + log(6))


; (11)

s0 :=r mins ⩾ 1;ns ⩾ 2 ; nmax := nr 

c3

σ2

∆2

√
d log(2K)


, (12)

Tmax = 2K


nmax +

r

s=s0+1

ns


+ 2Uns0 + 2U

r

s=s0+1

ns

2s−4
, (13)

with c1, c2, c3 > 0 numerical constants, explicitly provided in the proof of Lemma 25. The
SRI procedure successively samples candidate arms au at random, and performs a sequence of
REPRESENTEDTEST with (roughly) doubling sample size ns for s = s0, s0 + 1,   , until either a
REPRESENTEDTEST returns TRUE, in which case the arm au is rejected (Line 7); or all tests up
to s = r have answered FALSE, in which case the arm au is added to S (Line 10). The procedure
SRI stops when S = K, or when a maximal budget has been spent (Tmax is dened in (13)) and it
returns S = S. The minimal index s0 ensures that the sample sizes ns are not smaller than 2.

The sequence of tests is designed in order to use few samples to reject arms already represented
in S, while wrongly rejecting an unrepresented arm with probability less than 1/2. Indeed, the
choice of the sample sizes ns and nmax ensures that the probability to take a wrong decision at
the s-th step is smaller than 2−s−1. Hence, the probability that an arm already represented in S is
rightly rejected before step s is at least 1 − 2−s, leading to a quick rejection with high-probability.
In addition, the maximum sample size nr is chosen large enough, to ensure a vanishingly small
probability of (wrongly) not rejecting such an arm. As for unrepresented arms, the probability to
wrongly reject an arm au not already represented in S is smaller than


s≥1 2

−s−1 = 12, so that,
with probability at least 1− 4, we need less than U candidate arms to identify one representative
of each group.

We provide further guarantees on SRI subroutine in Appendix C, Lemma 25. In particular, if S
is the output of SRI applied with parameters ∆ and θ, then with probability larger than 1− , (a) S
does not contains two arms from the same group. Moreover, if the true parameters ∆∗ and θ∗ are

8
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Procedure SRI(,∆, θ): /* Sequential Representative Identification */
Result: S a set of arms

1 Compute U, r, s0, ns, nmax, Tmax according to (10)–(13) and sample a0 ∈ [N ]
2 Set S = a0 and µ̂a0 , µ̂

′
a0 ← empirical mean(a0, nmax)

3 for u = 1,    , U do
4 Sample au ∈ [N ]
5 for s = s0,    , r do
6 if REPRESENTEDTEST(au, (µ̂b, µ̂

′
b)b∈S ,∆, ns) then

7 BREAK ; /* reject au */
8 end
9 if s = r then /* if au has passed all tests */
10 S ← S  au /* Add au to S */
11 µ̂au , µ̂

′
au ← empirical mean(au, nmax) /* Estimate µau */

12 end
13 end
14 if S = K or budget > Tmax then
15 BREAK /* Terminate u loop */
16 end
17 end
18 return S /* Return a representative for each group */

smaller than∆, θ, then S contains exactlyK arms, with one arm from each group. We also provide
an upper bound on the budget used by SRI.
ADC subroutine (Active Distance-based Classication). Once a set S = b1,    , bK of repre-
sentatives of each group has been successfully obtained with SRI, the mean of each group can be
precisely estimated, and remaining arms can be classied based on distance estimation d̂2ab to these
means. This classication is performed by the ADC subroutine.

Let us dene

J :=


c4

σ2

∆2
L  c5

σ2

∆2


dN

K
L


, I :=


c4

σ2

∆2
L  c5

σ2

∆2


dK

N
L


, (14)

with L = log(6NK), and c4, c5 two universal constants dened in the proof of Lemma 26.
Assume, without loss of generality, that bj ∈ G∗

j for all j ∈ [K]. Then, ADC rst computes two
precise estimations µ̂(j), µ̂′(j) of the mean of arms in G∗

j (Line 6), each based on J samples of
arm bj . As these mean estimations are the references for the classication, the sample size J is
chosen large enough to ensure a small variance. Then, for each arm a, two mean estimations µ̂a, µ̂

′
a

are computed based on I samples, and the arm a is classied Line 11 according to the smallest
estimated distance (15). The budget I for individual mean estimation is much smaller than J in
high-dimension d, with I = KJN for d large. This budget ensures yet that the probability of
misclassifying an arm is smaller than N . Overall, we prove that as long as the set S obtained in
the rst step contains exactly one arm from each cluster, then subroutine ADC will provide with
high probability a perfect clustering of the arms. We summarize our guarantees on ADC in Lemma
26.

9
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Procedure ADC(,∆, S): /* Active Distance-based Classification */
1 if S ̸= K then
2 return Null ; /* Return Null if size of S is not K */
3 end
4 Enumerate S = b1,    , bK, and compute I , J according to (14)
5 for j ∈ [K] do
6 µ̂(j), µ̂′(j) ← empirical mean(bj , J) ; /* Estimate the centers */

7 Ĝj ← bj
8 end
9 for a ∈ [n] \ S do
10 µ̂a, µ̂

′
a ← empirical mean(a, I)

11

Add a to the group Ĝk such that k ∈ argmin
j=1,,K


µ̂a − µ̂(j), µ̂′

a − µ̂′(j)


(15)

; /* Classify arm a */12 end
13 return Ĝ1,    , ĜK /* Return a clustering */

ACB algorithm. Combining the SRI and ADC subroutines, we get a simple clustering with bandit
feedback algorithm ACB for the case where ∆∗ and θ∗ are known – see Algorithm 1.

Algorithm 1 ACB (θ∗ and ∆∗
known)
Input: ,∆, θ

1 Ŝ ← SRI(2,∆, θ)

2 return Ĝ = ADC(2,∆, Ŝ)

Algorithm 2 ACB∗ (θ∗ and ∆∗ unknown)
Input: 

1 for l = 0, 1,    do
2 for p = 0,    , l do
3 Compute Sp,l ← SRI(l,∆p, θp,l  1

N )
4 if Sp,l = K then
5 for a ∈ Sp,l do
6 µ̄a, µ̄

′
a ← empirical mean(a, n′

p)

7 end
8 ∆̂2 ← infa,b∈Sp,l

⟨µ̄a − µ̄b, µ̄
′
a − µ̄′

b⟩
9 return Ĝ = ADC(3, 2−12∆̂, Sp,l)

10 end
11 end
12 end

4.2. Main algorithm ACB∗

When the parameters∆∗ and θ∗ are unknown, we cannot rely on a single call to SRI and ADC as in
the ACB algorithm. Multiscale calls to SRI are required, for different candidate levels ∆p and θp,l
for ∆∗ and θ∗. These levels, related sample sizes n′

p, and condence levels l are dened by

∆2
0 = σ2[log(K) +

√
d+ log log(6N)], l =



6(l + 1)3
(16)

θp,l =
1

K2l−p
, ∆p = ∆0


1

2p
, n′

p =


c6

σ2

∆2
p


log(3K2) +


d log(3K2)


, (17)

where c6 is a numerical constant, whose value is given in (56).
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The main recipe in ACB∗, is to scan decreasing candidate values ∆p and θp,l, until we nd a
scale where SRI returns a set Sp,l of cardinality K, see Algorithm 2.

Below, we provide upper bounds on T ∗(, E(∆, θ,σ, N,K, d)) for both ACB and ACB∗. We
write τACB and τACB∗ for the budget of the non-adaptive procedure ACB(,∆, θ), and of the
adaptive one ACB∗(). Dene the quantities

A =
σ2

∆2


N log (N) +


dNK log (N) +

√
d
log(K)

θ



B =
1

θ
log(K) +

σ2

∆2

1

θ
log


K



√
d+ log log(N)




Theorem 5 Let  > 0. Let∆ > 0, θ > 0 be any two parameters such that E(∆, θ,σ, N,K, d) ̸= ∅.
Both the ACB (Algorithm 1) and its adaptive version ACB∗ (Algorithm 2) are -PAC on E(∆, θ,σ, N,K, d).
There exist numerical constants c, c′, c′′, independent of all the parameters ∆, θ,σ, N,K, d such
that the following holds. For any environment ν in E(∆, θ,σ, N,K, d), such that θ ≥ log(K)N ,
we have

EACB,ν [τACB ] ⩽ cN + c′A ; τACB ⩽ cN + c′(A+B) a.s.

PACB∗,ν

τACB∗ ⩽ cN + c′′L log2(L)(A+B)


≥ 1−  ,

where L := log2


1
θK


∆2

0
∆2  1


.

This theorem entails that the budget for both ACB and ACB∗ is optimal. We further comment
on this in the discussion section.

5. Numerical experiments
In this section, we run experiments on synthetic data with standard Gaussian noise (σ = 1) to
illustrate our theory. We consider environments with equidistant centers (with ∆∗ = 1), and bal-
anced groups (θ∗ ≈ 1K). We choose a high-dimensional setting with N = 200, d = 1000, and
K ∈ 10, 15, 20, 25.

As the main competitor, we implement oracle-BOC, an oracle version of the BOC algorithm (Yang
et al., 2024). As the setting is perfectly symmetric (balanced clusters, equidistant means), the
Oracle-BOC policy is equivalent to the Uniform Sampling strategy, where Loyd algorithm initial-
ized by maximin. We implement instead a kmeans++ initialization, as it is known to outperform
maximin (Celebi et al., 2013). Besides, the total budget of oracle-BOC is chosen in such a way that
the procedure is empirically -PAC. As a consequence, oracle-BOC both corresponds to a state-
of-the art batch clustering procedure and to an oracle version of Yang et al. (2024) where both the
stopping time and the sampling strategy are provided by an oracle.

We run the non-adaptive procedure ACB and a variation of ACB∗ called ACB†, which is adap-
tive to the unknown parameter ∆∗. Its structure is very similar to Algorithm 2 for ACB∗, with
the difference of assuming that θ is known, we provide more explanations in Appendix A. In this
experiment, we use the variant ACB† to allow for a more fair comparison to Oracle-BOC. Regard-
ing ACB, we assume that ∆∗ is known, and we implement the non-adaptive version of ACB with
 = 01. In order to provide a tighter calibration of ACB, we slightly modify ACB algorithm in
order to specialize it to the Gaussian distribution –see Appendix A.
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Figure 1: Comparison of the necessary
budget for ACB and oracle-BOC with
varying number of clusters.
We represent in blue (resp. orange) the
(empirical) budget of ACB† (resp. ACB)
computed with 100 simulations, for K =
10, 15, 20, 25. The error bars are equal
to twice the standard deviation. In green,
we provide the smallest budget for which
oracle-BOC (initialized with kmeans++)
makes less than 10% of error out of 100
experiments. As this budget is a numeri-
cal constant, there are no error bars.

In Figure 1, we plot the estimated mean budget of ACB† and ACB as a function ofK , as well as
the budget of oracle-BOC, where the budget has been chosen by an oracle so that the procedure is
exactly -PACwith  = 01. This gure conrms our theoretical ndings that, in a high-dimensional
setting (d ≫ NK), ACB improves over oracle-BOC - which is here equivalent to a state of the art
batch clustering algorithm - when the number K of groups increases. Also, we have checked that
ACB† and ACB are -PAC. Fixing  = 01, we observe no more than 1 error out of 100 experi-
ments. We detail further the experimental setup (including compute resources) in Appendix A. We
provide also an experiment for which the number of clusters is xed, and the dimension varies in
Appendix A.

6. Discussion
Optimality of ACB. First, we discuss the budget of ACB, and we compare it to the information-
theoretical lower bound of Theorem 4. To simplify the discussion, let us rst consider the case
where the partition G∗ is almost balanced, that is when θ is of the order of 1K, and assume that
∆2

σ2  log(N). According to Theorem 5, the -PAC algorithm ACB has an expected budget upper
bounded by (3), as long asK ≤ N log(N). In light of Theorem 4, we see that the expected budget
is optimal with respect to all the quantities of the problem: the number of arms N , the minimum
separation ∆, the number of groups K , the probability , and the subGaussian norm σ. The only
restriction is that the number of groups K is smaller than N log(N), but it is really mild as non-
supervised learning problems are mostly relevant for dimension reduction, that is when K is really
small compared to N . In fact, for larger K ∈ [ N

log(N) , N2], the expected budget EACB,ν [τACB ]

is optimal, up to a possible


log(N) multiplicative term. Theorem 5 also states high probability
controls of the budget τACB and τACB∗ which again, are optimal (up to log terms for the latter), in
most regimeis optimal, up to a possibles.

When the true partition G∗ is extremely unbalanced, that is for θ∗ as small as 1N but the
dimension d is seen as a constant, our procedures turns out to still match the lower bound on the
budget. When the true partition G∗ is extremely unbalanced, so that θ∗ ≤ log(K)√

log(Nδ)KN
and the

dimension d is really large, the bound A on the expected budget may be larger than the lower bound
of Theorem 4. Note that this regime is extremely atypical for clustering problems. We conjecture
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that both the lower and the upper bounds could be improved in this extreme case, but we leave this
for future work.
Further comparison with (Yang et al., 2024). When  goes to zero while σ, ∆, K, and d are
xed, the average budget of ACB in (3) is at most of the order of σ2

∆2N log(1), and is consistent
with the BOC algorithm of (Yang et al., 2024). Still, we mention that (Yang et al., 2024) manage
to pinpoint the exact value of the asymptotic optimal budget, while our non-asymptotic bounds are
only tight up to numerical constants. We however point out that this asymptotic expression hides
dependencies onK, d, and N , which are not negligible unless  is exponentially small with respect
to d,K - and in high dimension, such a high condence regime is typically out of reach.
Comparison to batch clustering. We briey come back to our fundamental questions on the
comparison between the batch and clustering with bandit feedback problems. Contrary to the usual
batch setting, we have established that the polynomial-time strategy ACB is information-theoretical
optimal, thereby establishing the absence of computation-information gap. This is in contrast with
the classical batch clustering problem, where strong evidence of a computation-information gap
were proved in (Even et al., 2024) in high dimension, when there are many groups. We therefore
illustrate here that clustering is an unsupervised learning problem, where repeated active sampling
breaks a computational barrier, which is interesting and opens perspectives for other unsupervised
clustering problems where computation-information gap are conjectured.
Conclusion and limitations. In our paper, we characterized the non-asymptotic minimal budget
for recovering the groups in a collection of environment E(∆, θ,σ, N,K, d), where the minimum
distance between the groups is higher or equal to ∆, and all groups have a size larger than θ. We
also crafted a strategy adaptive to both θ∗ and ∆∗. Unlike in batch clustering, our results prove that
there is no computation-information gap.

Our work still has limitations, and raises several open questions:
First, it remains to explore how sequential and active learning can be leveraged for adapting to
heterogeneous distances between groups and heterogeneous group sizes. This has been investigated
in (Yang et al., 2024) in the asymptotic regime, but not in the non-asymptotic regime. It would
be interesting to have an algorithm which fully adapts to all inter-groups gaps - and not just to the
minimal one, or to some target distance. This is a relevant and interesting direction for future works,
but it goes beyond the present work whose main aim was to disprove the existence of a statistical-
computational gap in sequential clustering. In our work, we also assume that the mean vector means
within each groups are exactly equal, as it allows us a simple comparison with batch clustering. An
interesting way of relaxing this assumption would be to assume that the means within each group
are not equal, but close within the groups. A recent paper Chandran et al. (2025) explores this
question in the asymptotic regime where  goes to 0.
Second, when σ is unknown, building a sampling strategy that is adaptive to it, would require to
estimate the subGaussian norm of the noise, while at the same time estimating the distances between
the means. We leave this question for a future work. Finally, as in most of the clustering literature,
we assumed that the number K of groups was known to the learner. Investigating the problem
of estimating or testing the number of groups in an active setting is also an interesting research
direction.
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Appendix A. Details on the numerical experiments

Experimental setting
We consider articial data, generated with standard Gaussian noise (σ = 1). We build environ-
ments with equidistant centers, and balanced groups. Precisely, we choose µ(k) = ek

√
2, where

e1,    , eK are the K rst vector of the canonical base of Rd, so that the centers are equidistant,
and ∆∗ = 1.

We choose a large number of arms N = 200. We x a partition where each group has a size
NK or NK+ 1, which makes the partition almost balanced, with θ∗ = 1

N


N
K


∼ 1

K .
We provide in this paper two gures. In Figure 1, the dimension is xed to d = 1000, and the

number of clusters varies in 10, 15, 20, 25. In Figure 2, the number of clusters is xed toK = 15,
and the dimension varies in 500, 1000, 1500, 2000.

Figure 2: Comparison of the necessary
budget for ACB and oracle-BOC, with
varying dimension.
In blue (resp. orange) the (empirical)
budget of ACB† (resp. ACB) com-
puted with 100 simulations, for d =
500, 1000, 1500, 2000. The error bars are
equal to twice the standard deviation. In
green, we provide the smallest budget
for which oracle-BOC (initialized with
kmeans++) makes less than 10% of error
out of 100 experiments.

Variant of the procedure and parametrization of ACB
In the main paper, we introduced and calibrated ACB to allow for subGaussian noise. In particular,
the quantities ns, nmax, I and J , dened in eqs. (10) to (12) and (14) were calibrated by inverting
concentration inequalities, at the cost of non-optimal numerical constants.

In order to study numerically our procedure, we implement a variant of the procedures whose
tuning parameters is adjusted to the Gaussian setting. The test statistics and the classier, so as the
tuning parameters are adjusted to specically work with Gaussian distribution.

The structure of SRI remains unchanged, however, we use the following calibration. In SRI,
we avoid dual sampling when computing d̂ab ((9)) estimate of ∥µa − µb∥2 in order to save a factor
two in the budget. We modify indeed the test statistic in the function REPRESENTEDTEST used
in SRI. We use IS.TRUE


minb∈S


∥µ̂a − µ̄b∥2 − dσ2


1
ns

+ 1
nmax


≤ ∆22


, so that there is no

need to compute µ̂′
a in REPRESENTEDTEST, and neither µ̄′

b in SRI . Observe that ∥µ̂a − µ̄b∥2 is an
estimator of ∥µa − µb∥2 which is biased. As in the experiment, the variance is known, we debias it,
using the shift dσ2( 1

ns
+ 1

nmax
) in the statistics above.

In order to have a -PAC algorithm, we choose nmax = 4 σ2

∆2 (x − d), where x is the 1 − K
quantile of a χ2 distribution with d degrees of freedom. This quantile is obtained with the library
scipy.stats. Now, we cet n0,    , nr, by putting ns = 2sn0 for s = 0,    , r, for all s. We choose
n0 so that the budget spent on the rejected candidates should be close to the budget spent on the

18



CLUSTERING WITH BANDIT FEEDBACK

accepted representatives. We choose n0 = (KU ′)nmax where U ′ = (1θ) log(1). Finally, r
is chosen such that nr = 2rn0 is equal to nmax, up to a factor 2.

To simplify the procedure, the stopping condition from Line 12 in SRI is modied, and we only
stop when S contains K representatives, and not sooner.

In the Active Distance-based Classication routine (ADC), we also modify the sampling size
I and J (Equation (14)), and the classier from (11). In the classication, we label each arm with
argminj=1,,K ∥µ̂a − µ̂(j)∥, which is a distance-based classier as in Equation (15), but without
dual sampling. By the analysis of the probability of error of this classier, we choose

I =


σ2

∆2
max(16, 4


2KN)


, J =


σ2

∆2
max(16, 4


2NK)


,

where  is the 1 − (4K(N − K)) quantile of a standard normal distribution (obtained with
scipy.stats), and  is the 1−(4K(N−K)) quantile of a product of independant standardN (0, Id),
that we had to compute empirically with Monte Carlo. With this choice of tuning parameters, one
can prove that the corresponding variant of ACB is -PAC for Gaussian data. The proof is analogous
to the one in Section C. Our numerical experiments conrm that, with these tuning parameters, the
modied procedure is still -PAC.

Description of the variant ACB† and implementation
We now describe the variant ACB† of ACB∗ used in the experiments. This version is calibrated to
work well with balanced groups, or with a known balancedness θ. In ACB†, we assume no knowl-
edge of ∆∗, and we perform SRI with growing values (∆k)k. We start with ∆0 =


4σ2(x− d),

with x the 1 − K quantile of a chi-square distribution with d degrees of freedom. We then use
∆k = ∆02

k and k = (6(k + 1)2).
First, for each call of SRI, we use the calibration of SRI described in the paragraph above, and

we put a limit on its budget. We limit the budget of SRI(k,∆k, θ) by T ′
max = τADC(k,∆k) =

(N −K)I + KJ , which is the budget that we use to classify with ADC(k,∆k), and where I , J
are calibrated as in the paragraph above.

When we reach k such that SRI(,∆k, θ) contains K arms, we estimate ∆∗, based on the data
collected on this call of SRI. If S is the set of representatives identied with SRI, and (µ̂a)a∈S are
the estimates of the centers computed by SRI, we compute

∆̂2 = argmin
a̸=b∈S


∥µ̂a − µ̂b∥2 − 2d

σ2

nmax




Then, ADC is applied with the parameter ∆̂.

Algorithm 3 ACB† (∆∗ unknown)
Input: , and θ

13 for k = 0, 1,    do
14 Compute Sk ← SRI(k,∆k, θ  1

N )
15 if Sk = K then
16 ∆̂2 ← infa,b∈Sk


∥µ̂a − µ̂b∥2 − 2d σ2

nmax



17 return Ĝ = ADC(3, ∆̂, Sk)

18 end
19 end
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Experiments Compute Resource
We used for the experiments python/Anaconda/3-5.1.0 and the scikit-learn/1.02 package. The ex-
periment were ran in the cluster MESO@LR, working with CPUs of 4Gb and 8Gb. To give an idea
on the computation cost, for N, d,K = 200, 1000, 10, each call for ACB takes approximately 6
minutes, while each call for ACB† took approximately 18 minutes. In total, the curve for ACB from
Figure 1 took around 10 for each value of K and 30 hours for ACB†.

Appendix B. Proof of the Lower Bound

Sketch of the proof
Throughout Appendix B, we x∆ > 0, σ and d. In this section, we bound the worst case budget for
any -PAC algorithm on the collection of environments E(∆, θ,σ, N,K, d) –see (5), and we prove
Theorem 4.

We start in Appendix B.1 by reducing the clustering with bandit feedback problem to a binary
classication problem. For that purpose, we construct a family of environments, for which, the
problem of clustering with bandit feedback essentially reduces to K2 independent and identical
sub-problems of binary classication. The environments that we construct are symmetrical, (in
some sense dened in the proof) and we will explain in Lemma 12 that we can nd an optimal
algorithm (as dened in Denition 11) that samples (in expectation) the same number of time each
arm. This construction jointly deals with the low-dimensional (Lemma 6) and the high-dimensional
(Lemma 7) regimes. For the construction, we will need to assume that N ⩾ 2K , that K is even,
and that K divides N , and we explain in Lemma 9 how to reduce to this hypothesis.

We divide then the proof in two main lemmas, dealing with the low-dimensional and high-
dimensional regimes. We recall that T ∗ – see (5) – is the optimal worst case budget.

Lemma 6 If N ⩾ 2K , K is even, K divides N , and θ = 1K, then for any  ∈ (0, 1),

T ∗(, E(∆, θ,σ, N,K, d)) ⩾ σ2

∆2
N kl


1− ,



N


,

where kl is the relative entropy dened as kl : x, y → x log(xy) + (1− x) log((1− x)(1− )).

Lemma 7 If N ⩾ 2K , K is even, K divides N , and θ = 1K, then for all  ∈ (0, 16),

T ∗(, E(∆, θ,σ, N,K, d)) ⩾ σ2

∆2


dKN

72
kl


1

3
− 2,

4

N




In Appendix B.2, we prove Lemma 6, the dimension-free lower bound. It is enough for this term
to assume that the centers of the groups are known, and we use an information-theoretic method
with the KL-divergence, which is somewhat related to previous works for the thresholding bandit
problem derived by (Cheshire et al., 2020).

In Appendix B.3, we prove Lemma 7 in the high-dimensional regime. For this purpose, we will
consider a Bayesian setting and assume a Gaussian prior on the centers of the groups. The KL-
divergence is hard to compute for the probability induced by the interaction between an algorithm
and a Bayesian bandit environment. To overcome this technical problem, we formalize the intuition
that the problem of clustering with bandit feedback is in some sense “harder” than a problem of
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supervised learning where the player knows the labels of every arm except one arm that has to be
classied. It will reduce the problem into a two-sample (batch) testing problem (see Denition 18),
and the conclusion will follow from some explicit computation and an impossibility result for this
latter batch problem.

We postpone the proofs of some technical lemmas in Appendix B.4

Remark 8 We explain quickly the term cN in the lower bound from Theorem 4. Assume that, for
any ν ∈ E(∆, θ,σ, N,K, d), it holds that Eπ,σ[τ ] ⩽ cN with c < 12. Then, for any environment
ν, there is a xed probability that two arms from two different groups are not sampled at all during
the procedure. The best to do for the learner is then to estimate randomly the groups of the arms,
inducing a xed probability of making at least one error in the clustering. We do not discuss further
this term cN in the lower bound in the remainder of the proof. Still, note that it is only relevant in
an articial regime where ∆ is arbitrary large.

Now, we explain how the remark above, Lemmas 6 and 7 imply Theorem 4.
Proof [Proof of Theorem 4]

Let N,K such that N ⩾ 2K . Let θ > 0 such that E(∆, θ,σ, N,K, d) ̸= ∅.
We rst reduce the problem into a problem where K is even, N is a multiple of K, and the

groups have the same size NK . With this technical condition fullled, we will be able to Lemmas
6 and 7. We dene N ′, K ′, and θ′:

• if K is even, K ′ := K and N ′ := KNK ;

• if K is odd, K ′ := K − 1 and N ′ = K ′

N−⌈θN⌉

K′


;

• in both cases, θ′ := 1K ′ .

We now use the following natural reduction result, whose proof is in Appendix B.4.

Lemma 9 The optimal worst case budget over E(∆, θ,σ, N,K, d) is larger than the one over
E(∆, θ′,σ, N ′, K ′, d),

T ∗(, E(∆, θ,σ, N,K, d)) ⩾ T ∗(, E(∆, θ′,σ, N ′, K ′, d)) 

It holds immediately that thatK ′ is even, and thatK ′ dividesN ′. Moreover, as E(∆, θ,σ, N,K, d) ̸=
∅, then θN ⩽ NK . This inequality and the assumption N ⩾ 2K , implies that N ′ ⩾ 2K ′. We
can then use Lemma 6 and Lemma 7 with N ′ and K ′ in order to bound T ∗(, E(∆, θ′, N ′, K ′, d)).

We have for any  ∈ (0, 16),

T ∗(, E(∆, θ′,σ, N ′, K ′, d)) ⩾ σ2

∆2
N ′ kl


1− ,



N ′


 σ2

∆2


dK ′N ′

72
kl


1

3
− 2,

4

N ′




We can also easily deduce from the expression of N ′ that N ′ ⩾ N6.
Finally, we study  → kl(1 − , 2N ′) to obtain the bound valid for all  ∈ (0, 1) and for all

N ′ ⩾ 1,

kl


1− ,

2

N ′


⩾ log


1




+ log(N ′)(1− )− 15 
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In particular,we have the bound kl

1− , 2δ

N ′

⩾ 1

2 log(N
′) for  ∈ (0, 14).

By studying the variation of  → kl(13 − 2, 4N ′), we obtain the bound valid for all  ∈
(0, 16) and for all N ′,

kl


1

3
− 2,

4

N ′


⩾ 1

3


log


1

4


+ log(N ′)(1− 6)


− 07 

Combining all these inequalities and Remark 8, we obtain Theorem 4.

B.1. From clustering with bandit feedback to binary classication

B.1.1. CONSTRUCTION OF A FAMILY OF ENVIRONMENTS

From now on, we assume that K is even, and NK is an integer. In all the proof, we only consider
perfectly balanced environments such that θ = 1K. We also assume that N ⩾ 2K . Dene
L := K2. In this subsection, we construct a family of environments dened with a prior on the
centers of the groups.

We assume that the noises are Gaussian with covariance matrix σ2Id. This fullls the subGaus-
sian noise hypothesis from Assumption 1. In this Gaussian model, an environment is characterized
by the hidden partition G∗ and the (distinct) centers of the groups.

We use a Bayesian approach, and we dene theK = 2L centers of the groups, that we order as
µ1,1, µ1,−1,    , µL,1, µL,−1. For all l ∈ [L], we construct the centers µl,1 and µl,−1 as symmetrical
with respect to some offset. More specically, for all (l, g) ∈ [L]× −1, 1, we dene

µl,g := gµ̄(l) + C(l) , (18)

where

• for all l ∈ [L], C(l) ∈ Rd is a xed offset dened as C(l) = (l∆, 0,    , 0) ∈ Rd;

•  > 1 will be xed later and is arbitrary large;

• µ̄ := µ̄(1),    , µ̄(L) are i.i.d and µ̄(l) ∼ . The prior distribution  over Rd will be set
differently if we consider the low or high-dimensional regime. We will specify later this
prior.

Through the proof, we x a partitionG∗ of [N ] intoK groups. The partitionG∗ is composed of
K = 2L nonempty groupsG∗

1,1, G
∗
1,−1,    , G

∗
L,1, G

∗
L,−1 associated to the means µ1,1, µ1,−1,    , µL,1, µL,−1.

For each arm a ∈ [N ], we denote as (l∗a, g
∗
a) ∈ [L]× −1, 1 for the labels such that a ∈ G∗

l∗a,g∗a
and

µa = µl∗a,g∗a . Also, we will always restrict ourselves to balanced partitions G∗ so that each group
G∗

l,g has the same size NK and thus θ∗ = 1K .
In summary, we have

[N ] =


(l,g)∈[L]×−1,1
G∗

l,g ,

where the groups (G∗
l,g) are nonempty and share the same size NK .

We also dene the so-called L “blocks”. For l ∈ [L], we dene G∗
l := a ∈ [N ] ; l∗a = l =

G∗
l,1 ⊔ G∗

l,−1. For each arm a ∈ [N ], l∗a corresponds to the label of the pair of groups (block) G∗
l
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that contains a. If l∗a = l, then the arm a belongs either to G∗
l,1 or G

∗
l,−1 depending on the value of

g∗a ∈ −1, 1. We also denote as G∗
+ := a ∈ [L]; g∗a = +1.

We now construct a set of partitions obtained from G∗ by switching two arms from the two
different groups of the same block. Arbitrarily dene a set s(1),    , s(L) of arms such that
for all l ∈ [L], s(l) ∈ G∗

l,−1. For any arm a ∈ [N ], we write ba := s(l∗a). For an arm a in
G∗

+ = a ∈ [L]; g∗a = +1, we dene G∗
(a) as the partition equal to G∗ except that the arm a is

switched from Gl∗a,1 to Gl∗a,−1, and the arm ba is switched from Gl∗a,−1 to Gl∗a,+1. This is a valid
partition withK nonempty and perfectly balanced groups. As we tookN ⩾ 2K , it holds that, if any
two distinct partitionG andG′ belong to G∗G∗

(a)a∈G∗
+
, we haveG ̸∼ G′. As a consequence,

any -PAC algorithm distinguishes, with probability higher than 1− , whether the environments is
characterized by a partition G∗ or by some (G∗

a)a∈G∗
+
.

For any partition G′ such that [N ] = ⊔l,gG
′
l,g, we denote as ν(G′, µ̄) for the environment

constructed in this paragraph with the means (µl,g)l,g = (C(l) + gµ̄(l)) and µ̄ ∈ Rd. We will use
Pπ,G′,µ̄ [resp. Eπ,G′,µ̄] for the probability distribution [resp. expectation] induced by the interaction
between an algorithm π and the environment ν(G′, µ̄) for a xed realization of µ̄. We also denote
as Pπ,G′ =


µ̄ Pπ,G′,µ̄ d

⊗L(µ̄) [resp. Eπ,G′] as the integrated probability with respect to the prior
⊗L on µ̄ [resp. expectation].

There is a technical detail that has to be handled with this Bayesian prior, if µ̄l is too small or
too large, the environment ν(G′, µ̄) is not necessary in E(∆, θ,σ, N,K, d). We dene therefore
Y :=


l∈[L]∆2 ⩽ ∥µ̄(l)∥ ⩽ ∆( − 1)2. On Y , the centers are distinct, the minimal gap is

larger than ∆, and the set of possible values for (µ̄(l))l are disjoint.
We denote ESym(G∗, ) as the Bayesian family of environments of the form ν(G′, µ̄), where

µ̄ ∼ ⊗L and the partitions G′ ∈ G∗ 
a∈G∗

+
G∗

(a).
We explain a bit more the construction.

Remark 10

1. The parameter  will be arbitrary large so that it is very easy to decide if two arms belong
to different blocks or not. In this case, it is intuitively easy to rst separate the arms into L
blocks (that means to estimate l∗1,    , l

∗
N ). Then the difculty of the problem mostly lies in the

L sub-problems of binary classication, where each block has to be partition into two groups.

2. In the low-dimensional regime, we will take µ̄(l) = (∆2, 0    , 0) ( is deterministic). It
means that we will derive the lower bound from Lemma 6 for xed centers of the groups
µ(1),    , µ(K) which basically amounts to the simpler setting where the learner knows the
centers in advance.

3. In the high-dimensional regime, we will use a Gaussian prior on (µ̄(l))l∈[L]. With this prior,
we will be able to quantify to what extent we have to estimate the unknown means (µ̄(l))l∈[L]
to be able to group the arms.

B.1.2. SYMMETRIZATION

Now, we exploit the different symmetries of the environments of the shape ν(G′, µ̄), and the sym-
metries of the distribution of the centers when µ̄ ∼ , in order to restrict our study to algorithms
that are -PAC on ESym(G∗, ) and that satises a symmetry property dened below.
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Denition 11 We say that π is -PAC on ESym(G∗, ), if, conditionally on the event Y , we have

Pπ,G′(Ĝ ∼ G′Y) ⩾ 1−  ,

for any G′ ∈ G∗  G∗
(a)a∈G∗

+
. We say that an algorithm π is symmetric on ESym(G∗, ), if for

any b ∈ [N ] and G′ ∈ G∗  G∗
(a)a∈G∗

+
, then

Eπ,G′ [Nb(τ )Y ] =
1

N
Eπ,G′ [τ Y ] =

1

N
Eπ,G∗ [τ Y ] 

We denote asΠSym(, ESym(G∗, )) for the family of symmetric and -PAC algorithms on ESym(G∗, ).

Finally, we dene the optimal Bayesian budget for an algorithm in ΠSym(, ESym(G∗, )) as

T ∗(, ESym(G∗, ) := inf
π∈ΠSym

Eπ,G∗ [τ Y ] ,

where the inf is taken over ΠSym(, ESym(G∗, )), recalling that Eπ,G∗ is the integrated budget
with respect to the prior .

The next lemma implies that we only need to lower bound the quantity T ∗
Sym(, ESym(G∗, )).

Lemma 12 If K is even, K divides N , θ = 1K, and N ≥ 2K , it holds that

T ∗(, E(∆, θ,σ, N,K, d)) ⩾ T ∗
Sym(, ESym(G∗, )) 

Remark 13
We highlight that this construction essentially reduces the problem into L sub-problems of active

binary classication. On the family of environments ESym(G∗, ), the offsetsC1,    , CL and the la-
bels of the blocks l∗1,    , l

∗
N are xed and common to all the environments ν(G∗, µ̄) and ν(G∗

(a), µ̄),
it is equivalent to say that this is known by the learner. Then, the problem consists on estimating the
partition into two groups G∗

l = G∗
l,1 ⊔ G∗

l,−1 (up to switching of the two groups) for any of the L
blocks. If an algorithm is symmetric, it will have access in expectation to the same budget to solve
each sub-problem.

The proof of this Lemma, technical but standard is provided in Appendix B.4. In the proof, we
explain how to use the knowledge of the blocks G∗

1,    , G
∗
L and the offsets C(1),    , C(l) in order

to transform any algorithm into a symmetric algorithm – see Denition 11. The rough idea is to
permute the arms, and then to apply the algorithm to the permuted arms.

B.2. First Lower bound : proof of Lemma 6

In this section, we prove the Lower Bound from Lemma 6. We highlight that the lower bound from
Lemma 6 does not depend on the dimension d. Thus, we will derive lower bound for xed centers of
the groups which basically amounts to the simpler setting where the learner knows them in advance.

We use the construction of Appendix B.1, and we choose the prior distribution 1 := µ to
be a Dirac, i.e, µ̄(l) = µ for all l and the centers are deterministic and xed. We choose µ =
(∆2, 0,    , 0) ∈ Rd and  = 2. The environment ν(G∗, µ̄) is in E(∆, θ,σ, N,K, d), so the event
Y from Denition 11 holds almost surely.
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Remark 14 The clustering with bandit feedback problem on ESym(G∗, ) is highly connected to
a specic instance of the Thresholding Bandit Problem (TBP), another pure exploration problem
studied in (Cheshire et al., 2020). In this problem, a player interacts with a multi-armed bandit
environment with one-dimensional rewards, and she has to recover the set of arms with a mean
larger or equal to a certain threshold (for us, this threshold is∆). The proof of Lemma 6 is inspired
by the proof of Theorem 1 in (Cheshire et al., 2020). For the thresholding bandit problem, the
authors derive a lower bound in the xed budget setting. In this setting, the player has to minimize
the simple regret (related to the probability of error), using a xed budget. From their result, we
could deduce a lower bound of the form σ2

∆2 (N − K) log(N−K
δ ). Here, we use a workaround to

establish a slightly tighter lower bound of the form σ2

∆2N log(Nδ ).

We consider T ∗
Sym(, ESym(G∗, 1)) = inf

π∈ΠSym

Eπ,G∗ [τ ] where the inf is taken over all sym-

metric and -PAC algorithm on ESym(G∗, 1) –see Denition 11.

Lemma 15 If K is even, K divides N and N ⩾ K , then,

T ∗
Sym(, ESym(G∗, 1)) ⩾ N

σ2

∆2
kl


1− ,

2

N




Then, Lemma 6 simply follows from the reduction arguments of Lemma 12 and 15 that we
prove now.
Proof [Proof of Lemma 15] Let π be a symmetric and -PAC algorithm for the clustering with bandit
feedback problem on ESym(G∗, 1). It outputs a partition Ĝ of [N ] such that for any a ∈ G∗

+,

Pπ,G∗
(a)
(Ĝ ∼ G∗

(a)) ⩾ 1−  , and

Pπ,G∗(Ĝ ∼ G∗) ⩾ 1−  

The main tool that we use is a data-processing inequality– see e.g.(Gerchinovitz et al., 2020).
We will use the KL-divergence which, in our setting, turns out to be explicitly computed. The
difculty of the proof is to recover the term log(N) in the lower bound of the budget. For that, we
adapt the proof page 15 of (Cheshire et al., 2020) to the xed condence setting. The idea is that,
instead of constructing one partition, different fromG∗, we constructed a collection of G∗

(a)a∈G∗
+
,

where any algorithm has to distinguish G∗ from any of these environments (up to relabelling).
First, we use lemma 1 from (Kaufmann et al., 2016) which relies on the data-processing in-

equality and the decomposition of the KL-divergence in the multi-armed bandit model. It holds
that, for any a ∈ G∗

+,

kl

Pπ,G∗

(a)
(Ĝ ∼ G∗

(a)),Pπ,G∗(Ĝ ∼ G∗
(a))


⩽ KL


Pπ,G∗

(a)
,Pπ,G∗


(19)

= Eπ,G∗
(a)
[Na(τ ) +Nbl∗(a)(τ )]

∆2

2σ2
,

the last equality follows from the fact that the environments ν(G∗, µ̄) and ν(G∗
(a), µ̄) only differ on

arm a and ba and KL(N (−∆2,σ2),N (∆2,σ2)) = ∆22σ2. We recall that for any b ∈ [N ],
Nb(τ ) is the number of times that the arm b is sampled.
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Thanks to the joint convexity of the kl function (see Gerchinovitz et al., 2020, Corollary 3), we
have

kl


 1

N2



a∈G∗
+

Pπ,G∗
(a)
(Ĝ ∼ G∗

(a)),
1

N2



a∈G∗
+

Pπ,G∗(Ĝ ∼ G∗
(a))


 (20)

⩽ 1

N2



a∈G∗
+

kl

Pπ,G∗

(a)
(Ĝ ∼ G∗

(a)),Pπ,G∗(Ĝ ∼ G∗
(a))




By construction, the partition G∗ and all the different partitions (G∗
a)a∈G∗

+
belong to different

equivalence classes with respect to the relation ∼. As π is -PAC – see Denition 11 , we deduce
that

∀a ∈ G∗
+, Pπ,G∗

(a)
(Ĝ ∼ G∗

(a)) ⩾ 1−  ;


a∈G∗
+

Pπ,G∗(Ĝ ∼ G∗
(a)) = Pπ,G∗(⊔a∈G∗

+
Ĝ ∼ G∗

(a)) ⩽ Pπ,G∗(Ĝ ̸∼ G∗) ⩽  

With the monotony properties of the kl function, we obtain

kl


1− ,



N2


⩽ kl


 1

N2



a∈G∗
+

Pπ,G∗
(a)
(Ĝ ∼ G∗

(a)),
1

N2



a∈G∗
+

Pπ,G∗(Ĝ ∼ G∗
(a))


  (21)

Gathering Equations (19), (20) and (21), we obtain

kl


1− ,

2

N


⩽ 1

N2



a∈G∗
+

Eπ,G∗
(a)
[Na(τ ) +Nba(τ )]

∆2

2σ2
(22)

We recall that π is symmetric. Hence, For any a ∈ G∗
+, we have

Eπ,G∗
(a)
[Na(τ ) +Nba(τ )] =

2

N
Eπ,G∗

(a)
[τ ] =

2

N
Eπ,G∗ [τ ] 

Finally, with Equation (22), we conclude that

Eπ,G∗ [τ ] ⩾ σ2

∆2
N kl


1− ,

2

N


 (23)

We take now the inf over all algorithms π, which are -PAC and symmetric, this proves Lemma 15.

B.3. Second Lower Bound: proof of Lemma 7

In this section, we prove the lower bound from Lemma 7. If d ⩽ (83)2 log(K), the lower bound
from Lemma 7 is smaller than the dimension-free lower bound from Lemma 6, which is already
proved. We may then assume that d ⩾ (83)2 log(K). For the sake of the presentation, we the
proofs of some technical lemmas to the end of the next subsection.

26



CLUSTERING WITH BANDIT FEEDBACK

STEP 1: INTRODUCTION OF THE GAUSSIAN PRIOR

In this regime, we choose the prior distribution  to be Gaussian. Indeed, we introduce 2 =
N (0, ρ2Id) with ρ2 = ∆2

d and µ̄(1),    , µ̄(L) are i.i.d of law N (0, ρ2Id). Also, we choose  = 4.
We consider the Bayesian family of environments constructed in Appendix B.1 ESym(G∗, 2).

Because of this Bayesian prior, we have some additional technical challenge in comparison to
the low-dimensional case.

1. We can not use the decomposition of the KL-divergence for bandit in order to compute
KL(Pπ,G∗

(a)
,Pπ,G∗) because the integral over the prior 1 is inside the KL-divergence. Most

of the work consists on upper bounding this divergence with a divergence that can be com-
puted.

2. We can not compare the maximum budget over E(∆, θ,σ, N,K, d) (i.e. supν∈E(∆) Eπ,ν [τ ]) to
the Bayesian budget Eπ,G∗ [τ ] because the minimal gap of ν(G∗, µ̄) is not always larger than
∆. This is why we condition on the event Y =


l∈[L]∆2 ⩽ ∥µ̄(l)∥ ⩽ ∆( − 1)2 ⊂

ν(G∗, µ̄) ∈ E(∆, θ,σ, N,K, d).
We compute Pγ⊗L(Yc) for the Gaussian prior. This is the only time we will use the hypothesis

d ⩾ (83)2 log(K).

Lemma 16 If we assume that d ⩾ (83)2 log(K) and 2 = N (0, ρ2), we have

Pγ⊗L
2

(Y) = Pγ⊗L
2


 

l∈[L]
∆2 ⩽ ∥µ̄(l)∥ ⩽ 3∆4


 ⩾ 1−  

STEP 2: FROM ACTIVE BINARY CLASSIFICATION TO (BATCH) TWO-SAMPLE TESTING

Let π ∈ ΠSym be a -PAC and symmetric algorithm for the clustering with bandit feedback problem
on ESym(G∗, 2) –see Denition 11. We dene t = 6Eπ,G∗ [τ Y ]N and T = 6Eπ,G∗ [τ Y ]K.

We recall that, for any a ∈ G∗
+ = a; g∗a = 1, G∗

(a) is obtained by switching one arm a with
another arm ba ∈ G∗

l∗a,−1. We recall that Na(τ ) :=
τ

t=1⊮As=a is the number of times the arm

a is sampled. We also denote, Ml(τ ) =


b:l∗b=l

Nb(τ ) as the number of times the arms in the block

G∗
l are sampled. As π is symmetric and as the blocks have the same size 2NK, we have, for any

a ∈ G∗
+,

ta := 3Eπ,G∗
(a)
[Na(τ ) +Nba(τ )Y ] = t , and Ta := 3Eπ,G∗

(a)
[Ml∗a(τ )Y ] = T 

Remark 17 We now give some heuristic in order to explain the rest of the proof. Imagine that, at
time τ , the learner receives an oracle that gives the labels of all the arms except the arm a, assume
also that the learner knows that a ∈ G∗

l . As in a supervised classication setting, the player has
to nd the label ga of the unlabeled data sampled from a, using the labelled data available. It has
access toNa(τ ) observations from a distributed asN (gaµ̄(l), σ

2Id), andMl∗a(τ )−Na(τ ) labelled
data distributed as N (µ̄(l),σ2Id). It also has access to data from the other blocks, but those data
are not useful to nd ga. Moreover, Na(τ ) is of the order of Eπ,G∗ [τ ]N and Ml∗a(τ )−Na(τ ) is of
the order of Eπ,G∗ [τ ]L. As a consequence, with this amount of data, a learner should be able to
correctly recover the labels in this simplied setting.
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With this heuristic in mind, we introduce the following (batch) two-sample testing problem.

Denition 18 Let t, T be two integers, we consider data Y1,    , Yt, Z1,    , ZT and two symmetric
hypotheses H1 and H−1 such that, for g ∈ −1, 1, under Hg, the data follows the law Pg dened
as follows:

• µ ∼  and conditionally on µ :

• Y1,    , Yt, Z1,    , ZT are independent;

• ∀r ∈ [t], Yr ∼ N (gµ,σ2Id)

• ∀s ∈ [T ], Zr ∼ N (µ,σ2Id).

This problem is interesting because we can explicitly compute the KL-divergence.

Lemma 19 Let g ∈ −1, 1 and Pg dened in Denition 18. It holds that

KL(P−g,Pg) = KL(Pg,P−g) =
2tTρ4d

σ4 + σ2ρ2(t+ T )
⩽ 2tTρ4d

σ4
 2ρ2d

σ2

tT

t+ T


Now, we explain properly the ideas introduced in the previous remark. We dene the event
Ba = Na(τ ) + Nba(τ ) ⩽ t  Ml∗a(τ ) ⩽ T. Thanks to Markov inequality, the event Ba has a
probability higher than a constant and conditionally onBa, the algorithm π has access to strictly less
information than in (batch) two-sample testing problem dened above with ta and Ta. We formalize
this in the following coupling lemma.

Lemma 20 Let a ∈ G∗
+ be an arm and x Aa an event. Consider the family of random variables

(Y1,    , Yt), (Z1,    , ZT ) that follows a distribution P−1 – see Denition 18. Consider also an
independent sequence (ϵs, Us)s⩾1 of random variables such that for all s ⩾ 1, ϵs ∼ N (0, Id)
and Us ∼ U([0, 1]). Then, there exists a function fa that is measurable according to the random
variables Y, Z, ϵ, U and such that Aa  Ba = fa(Y, Z, ϵ, U), where the equality holds with respect
to the probability distribution Pπ,G∗

(a)
=


µ̄ Pπ,G∗

(a)
,µ̄ d

⊗L(µ̄).
Similarly, if (Y, Z) ∼ P1, with the same function fa, Aa  Ba = fa(Y, Z, ϵ, U), under the

probability distribution Pπ,G∗ .

In the previous lemma, we will consider Aa := Ĝ ∼ G∗
(a) for a ∈ G∗

+. By construction of
G∗

(a) (because N ⩾ 2K), the events Aa are disjoint. By using the fact that π is -PAC on E(,∆),
we have the following property for Aa,

Lemma 21 The family (Aa Ba)a∈G∗
+
is such that

1.


a∈G∗
+
Pπ,G∗(Aa Ba) ⩽  + Pγ⊗L(Yc) ⩽ 2;

2. Pπ,G∗
(a)
(Aa Ba) ⩾ 13−  − Pγ⊗L(Yc) ⩾ 13− 2.

We delay the technical proofs of Lemma 20 and Lemma 21. From there, we have all the tools
that we need. We now use data-processing inequalities similar to the proof of Lemma 6 to conclude.
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STEP 3: CONCLUSION TO THE PROOF OF LEMMA 7

We assume that  ∈ (0, 16), so that kl

13− 2, 2δ

N2


is dened.

We use the rst point of Lemma 21. We notice that the events (Aa)a are disjoint by construction
of G∗

(a) and because we took at least two arms by groups (N ⩾ 2K), it holds that



a∈G∗
+

Pπ,G∗(Aa Ba) = Pπ,G∗(⊔a∈G∗
+
Aa Ba) ⩽ 2 

With the second point of Lemma 21, for any a ∈ G∗
+, we have

PG∗
(a)
(Aa Ba) ⩾ 13− 2 ⩾ 0 

We use the monotony properties of the kl function, it holds that

kl


13− 2,

2

N2


⩽ kl


 1

N2



a∈G∗
+

Pπ,G∗
(a)
(Aa Ba),

1

N2



a∈G∗
+

PG∗(Aa Ba)


 

Thanks to the joint convexity of the kl function (see Gerchinovitz et al., 2020, corollary 3), we
deduce that

kl


 1

N2



a∈G∗
+

Pπ,G∗
(a)
(Aa Ba),

1

N2



a∈G∗
+

Pπ,G∗(Aa Ba)




⩽ 1

N2



a∈G∗
+

kl

Pπ,G∗

(a)
(Aa Ba),Pπ,G∗(Aa Ba)




Now, we use the coupling lemma 20,

Pπ,G∗
(a)
(Aa Ba) = P1 × Pϵ,U (fa(Y, Z, ϵ, U))

Pπ,G∗(Aa Ba) = P−1 × Pϵ,U (fa(Y, Z, ϵ, U)) 

We use the data-processing inequality (see Gerchinovitz et al., 2020, corollary 2), for all a ∈ G∗
+,

kl

Pπ,G∗

(a)
(Aa Ba),Pπ,G∗(Aa Ba)


= kl (P1 × Pϵ,U (fa(Y, Z, ϵ, U)),P−1 × Pϵ,U (fa(Y, Z, ϵ, U)))

⩽ KL (P−1 ⊗ Pϵ,U ,P1 ⊗ Pϵ,U )

= KL (P−1,P1) 

Gathering the previous inequalities, we obtain

kl


1

3
− 2,

4

N


⩽ 1

N2



a∈G∗
(a)

KL(P−1,P1) 

We recall that ρ2 = ∆2d. With the explicit computation from Lemma 19, we have

dσ4

2∆4
kl


1

3
− 2,

4

N


⩽ 1

N2



a∈G∗
+

tT = tT 
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Finally, we have, using the denition of t and T ,

Eπ,G∗ [τ Y ]2 ⩾ dσ4KN

72∆4
kl


1

3
− 2,

4

N




As it is true for any π ∈ ΠO, take the inf in the last inequality over π ∈ ΠO and use Lemma 12
to get

T ∗(, E(∆, θ,σ, N,K, d)) ⩾ σ2

∆2


dKN

72
kl


1

3
− 2,

4

N


,

this is exactly the inequality of Lemma 7.

B.4. Proof of technical lemmas

B.4.1. PROOF OF LEMMA 9

Let N,K such that N ⩾ 2K . Let θ > 0 such that E(∆, θ,σ, N,K, d) ̸= ∅. We prove Lemma 9
assuming that K is odd, the other case is simpler and can be proved with the same construction up
to minor details.

Recall the expressions introduced before Lemma 9, K ′ = K − 1, N ′ = K ′

N−⌈θN⌉

K′


and

θ′ = 1K ′.
Let π being -PAC on E(∆, θ,σ, N,K, d), we will use π to construct π′, an algorithm which is

-PAC on E(∆, θ′,σ, N ′, K ′, d).
Let ν ′ ∈ E(∆, θ′,σ, N ′, K ′, d) be an environment with K − 1 perfectly balanced groups. We

run the algorithm π where we create the data X1,    , Xτπ with the following coupling.

• If Aπ
t ∈ [N ′], we sample Xt with the arm Aπ

t from ν ′.

• If Aπ
t ∈ [N ′ + 1;N − θN], we sample Xt with a1, the rst arm from ν ′.

• If Aπ
t ∈ [N − θN+ 1, N ], we create Xt = c where c is an arbitrary large constant.

Equivalently, we have created the environment ν where the N ′ rst arms are the arms of ν; the
θN last arms are in an articial group associated to a Dirac in c, and the remaining arms are
in the same group as a1. The environment ν has a hidden partition G∗

1,    , G
∗
K where G∗

1 =
G′

1  [N ′ + 1;N − θN], G∗
2,    , G

∗
K−1 = G′

2,    , G
′
K−1, and G∗

K = [N − θN + 1, N ].
By construction, this environment is in E(∆, θ,σ, N,K, d). In particular, the balancedness is larger
than θ, and the minimal gap is larger than ∆ if c is large enough.

When π reaches τπ, it outputs a partition of [N ], Ĝπ
1 ,    , Ĝ

π
K , and we output Ĝπ′

as the
partition dened by the restriction to [N ′] of the partition Ĝπ. This is what we call the algorithm π′.

As π is -PAC on E(∆, θ,σ, N,K, d), it holds that, with a probability Pπ,ν higher than 1 − ,
Ĝ ∼ G∗, and this implies that Ĝπ′ ∼ G′. Finally, we have Pπ′,ν′(Ĝ

π′ ∼ G′) ⩾ Pπ,ν(Ĝ
π ∼ G∗) ⩾

1− . This means that π′ is indeed -PAC on E(∆, θ′,σ, N ′, K ′, d).
In terms of budget, we have τπ

′ ⩽ τπ, because the data provided from the last group are
articially created by the algorithm. We deduce that

Eπ′,ν′ [τ
π′
] ⩽ Eπ,ν [τ

π] ⩽ sup
ν∈E(∆,θ,σ,N,K,d)

Eπ,ν [τ ] 
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Then, we take the sup over ν ′ ∈ E(∆, θ′,σ, N ′, K ′, d), and we have

T ∗(, E(∆, θ′,σ, N ′, K ′, d)) ⩽ sup
ν′∈E(∆,θ′,σ,N ′,K′,d)

Eπ′,ν′ [τ ] ⩽ sup
ν∈E(∆,θ,σ,N,K,d)

Eπ,ν [τ ] 

Finally, we consider the inf over π -PAC on E(∆, θ,σ, N,K, d), which concludes the proof of
Lemma 9.

B.4.2. PROOF OF LEMMA 12

Let π′ be a -PAC algorithm on E(∆, θ,σ, N,K, d).
We will use the algorithm π′ to construct an algorithm π, which is symmetric and -PAC on

the class ESym(G∗, ) – see Denition 11. We will use the symmetries in the structure of the
environment ν(G′, µ̄) when µ̄ is distributed with the prior ⊗L as the main argument to prove that π
will have the wanted properties. To avoid confusion, we index (Aπ′

s )s, τπ
′
and Ĝπ′

for the algorithm
π′ and without ′ for the algorithm π. As explained in the previous remark, the algorithm π just need
to perform well (i.e., being -PAC) on the family ESym(G∗, ), so we can use the offsets and the
labels l∗1,    , l

∗
N to construct the algorithm π.

Construction of π
In this paragraph, we describe how we symmetrize a strategy π′ –see Algorithm 4. Let G′ ∈
G∗  G∗

(a)a∈G∗
+
being a partition. In order to make the reading easier, we use the notation

l∗a = l∗(a) for all a ∈ [N ]. For any arm a, we denote as g′(a) ∈ −1, 1 as the label such that the
mean of a is µa = g′(a)µ̄(l∗(a)) + C(l∗(a)), in the environment ν(G′, µ̄), for any µ̄ ∈ Rd.

We need to dene the behavior of π when facing the environment ν(G′, µ̄) for any µ̄.
Dene S as the set of permutations of [N ] that switch the blocks in G∗, that is to say if κ ∈ S

then for all l ∈ [L], ∃l′ ∈ [L], such that κ(G∗
l ) = G∗

l′ . For any κ ∈ S , κ naturally induces a
permutation of [L] denoted as κ̃ such that for all a ∈ [N ], l∗(κ(a)) = κ̃(l∗(a)).

First, the strategy π uniformly samples a permutation κ in S and a vector χ ∈ −1, 1L. From
a rough perspective, the strategy π will then apply the strategy π′ by permuting the blocks using κ
and reversing the means of each block using χ.

Algorithm 4 Symmetrization of π′.
Input: ν(G′, µ̄) an environment in ESym(G∗, )
Result: Ĝπ, partition of [N ]

1 t = 1
2 Take κ ∼ U(S)
3 Take χ ∼ U(−1, 1L)
4 while t ⩽ τπ

′
(Aπ′

1 , Xπ′
1 ,    , Aπ′

t−1, X
π′
t−1) do

5 Choose an arm with π′ and get Aπ′
t (Aπ′

1 , Xπ′
1 ,    , Aπ′

t−1, X
π′
t−1) ∈ [N ].

6 Sample Xπ
t from Aπ

t := κ(Aπ′
t )

7 Create the data Xπ′
t := χ(κ̃(l∗(Aπ′

t )))

Xπ

t − C(κ̃(l∗(Aπ′
t )))


+ C(l∗(Aπ′

t ))
8 t=t+1
9 end

10 Compute Ĝπ′
(Aπ′

1 , Xπ′
1 ,    , Aπ′

τ , Xπ′
τ ) := Ĝπ′

1 ,    , Ĝπ′
K

11 return Ĝπ
1 ,    , Ĝ

π
K := κ(Ĝπ′

1 ),    ,κ(Ĝπ′
K)
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Within the procedure π, we run algorithm π′ with modied dataXπ′
1 ,    , Xπ′

τ . At time t, the al-
gorithm π′ chooses to sample the armAπ′

t , where the decision is based on the data (Xπ′
s , Aπ′

s )s⩽t−1.
Instead of sampling the arm chosen by π′, the algorithm π samplesXπ

t from the arm Aπ
t := κ(Aπ′

t )
and sends the data Xπ′

t to π′, according to the formula

Xπ′
t = χ(κ̃(l∗(Aπ′

t )))

Xπ

t − C(κ̃(l∗(Aπ′
t )))


+ C(l∗(Aπ′

t )) ,

where we recall that C(l) is the offset associated to block l. When π′ decides to stop, π also stops;
i.e., τπ(Xπ

1 , A
π
1 ,    , X

π
τ , A

π
τ ) = τπ

′
(Xπ′

1 , Aπ′
1 ,    , Xπ′

τ ′ , A
π′
τ ′ ). Then, π

′ outputs a partition Ĝπ′
=

Ĝπ′
1 ,    , Ĝπ′

K based on the modied data, and π outputs Ĝπ
1 ,    , Ĝ

π
K := κ(Ĝπ′

1 ),    ,κ(Ĝπ′
K).

Lemma 22 Take κ ∈ S , and χ ∈ −1, 1L. For all l ∈ [L], dene µ̄κ(l) := µ̄(κ̃(l)). As µ̄ is
sampled according to ⊗L, then µ̄κ follows the same prior ⊗L. Dene G′(κ,χ) as a partition of
[N ] into 2L groups such that for all (l, g) ∈ [L]× −1; 1, then

G′(κ,χ)l,g = a ∈ [N ]; l∗(a) = l, and g′(κ(a))χ(κ̃(l∗(a))) = g = κ−1

G′

κ̃(l),gχ(κ̃(l))




Conditionally on κ,χ,µ̄, the modied data Xτ ′
s are distributed according to the probability

induced by the interaction between π′ and the environment ν(G′(κ,χ), µ̄κ), after integration on the
prior , we have

Pπ,G′(·Y ,κ,χ) = Pπ′,G′(κ,χ)(·Y) 

Remark 23 It is very important to note that, as G′ is a partition with K = 2L groups of the same
size, the partition G′(κ,χ) is also balanced.

Proof [Proof of Lemma 22] Let µ̄ ∈ (Rd)L be a realization of the prior ⊗L.
When π′ tries to sample the arm a = Aπ′

t , we sample in fact κ(a). Using the Gaussian assump-
tion on the data, and the expression of the centers of the environment ν(G′, µ̄), it holds that

Xπ
t = g′(κ(a))µ̄(l∗(κ(a))) + C(l∗(κ(a))) + ϵs = g′(κ(a))µ̄(κ̃(l∗(a))) + C(κ̃(l∗(a))) + ϵt ,

where ϵt ∼ N (0,σ2Id). We used also in the second equality that κ induces a permutation of the
blocks, so that l∗(κ(a)) = κ̃(l∗(a)).

We now decompose Xπ′
t , using the expression dened Line 7 of Algorithm 4. Assuming that

κ̃(l∗(a)) = m ∈ [L], we have

Xπ′
t =χ(m)


Xπ

t − C(m)

+ C(l∗(a))

=χ(m)

g′(κ(a))µ̄(m) + ϵt


+ C(l∗(a)) 

We develop and reorganise the terms, and we use the expression µ̄κ(l) = µ̄(κ̃(l)),

Xπ′
t =g′(κ(a))χ(m)µ̄(m) + χ(m)ϵt + C(l∗(a))

=g′(κ(a))χ(m)µ̄κ(l
∗(a)) + χ(m)ϵt + C(l∗(a)) 

As ϵt is symmetric with respect to 0, then ϵ′t := χ(m)ϵt is distributed as a normal distribution
N (0,σ2Id). Besides, the (ϵ′t)t are independent. The arm a appears to π′ to have a mean C(l∗(a))+
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g̃µ̄κ(l
∗(a)), where g̃ = g′(κ(a))χ(κ̃(l∗(a))) ∈ −1, 1. It appears then that the data received by π′

are distributed as ν(G′(κ,χ), µ̄κ), where, for all (g, l) ∈ [L]× −1, 1,

G′(κ,χ)l,g = a ∈ [N ]; l∗(a) = l, and g′(κ(a))χ(κ̃(l)) = g ,

which proves the rst part of the lemma.
The second expression for G′(κ,χ)l,g is now obtained using the fact that κ permutes the blocks

, so that l∗(κ(a)) = κ̃(l) and also that χ(κ̃(l)) ∈ −1, 1.

a ∈ [N ]; l∗(a) = l, and g′(κ(a))χ(κ̃(l)) = g =a ∈ [N ]; l∗(κ(a)) = κ̃(l), and g′(κ(a)) = gχ(κ̃(l))
=κ−1


G′

κ̃(l),gχ(κ̃(l))




Finally, if µ̄ ∼ ⊗L, by exchangeability of the law of ⊗L, and as κ̃ is a permutation of
[L], the vector (µ̄(κ̃(l)))l∈[L] is distributed as (µ̄(l))l∈[L. We also highlight that the event Y =

l∈[L]∆2 ⩽ ∥µ̄(l)∥ ⩽ ∆( − 1)2 =


l∈[L]∆2 ⩽ ∥µ̄κ(l)∥ ⩽ ∆( − 1)2 remains the
same, so that we have the equality of the laws

Pπ,G′(·Y ,κ,χ) = Pπ′,G′(κ,χ)(·Y) 

Correction of π
We now deduce that π is -PAC on ESym(G∗, ) –see Denition 11.

By construction of the algorithm, and with the denition of G′(κ,χ) given in Lemma 22, we
have conditionally on κ,χ, and µ̄,

Pπ,G′,µ̄(Ĝ
π ∼ G′κ,χ) = Pπ′,G′(κ,χ),µ̄κ


Ĝπ′ ∼ G′(κ,χ)




If µ̄ ∈ Y , then we have also µ̄κ ∈ Y and the environment ν(G′(κ,χ), µ̄κ) is in E(∆, θ,σ, N,K, d).
We recall that π is -PAC on E(∆, θ,σ, N,K, d), we then have

Pπ′,G′(κ,χ),µ̄κ


Ĝπ′ ∼ G′(κ,χ)


⊮Y ⩾ (1− )⊮Y 

The conclusion then follow by integrating over the law of κ,χ, and µ̄ to obtain Pπ,G′(Ĝπ ∼
G′Y) ⩾ 1− , and π is indeed -PAC on ESym(G∗, ).

Symmetry of π
We want to prove that π is symmetric as dened in Denition 11. Take a1, a2 ∈ [N ]2 two arms and
assume that a1 ∈ G′

l1,g1
and a2 ∈ G′

l2,g2
.

First, we recall that Aπ
t = κ(Aπ′

t ) so that,

Nπ
a1(τ ) =

τ

s=1

⊮Aπ
s=a1 =

τ

s=1

⊮κ(Aπ′
s )=a1

= Nπ′
κ−1(a1)

(τ ) 

We now use the expression of the uniform laws that follows κ,χ and Lemma 22,
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Eπ,G′ [Nπ
a1(τ )Y ] =

1

2L#S


κ∈S



χ∈−1,1L
Eπ,G′ [Nπ

a1(τ )Y ,κ,χ]

=
1

2L#S


κ∈S



χ∈−1,1L
Eπ′,G′(κ,χ)[N

π′
κ−1(a1)

(τ )Y ] 

We construct κ′ ∈ S a permutation which switches the blocks of a1 and a2, while switching a1
and a2, take

∀ϵ ∈ −1, 1,κ′(G′
l1,ϵg1) = G′

l2,ϵg2 ; ∀ϵ ∈ −1, 1,κ′(G′
l2,ϵg2) = G′

l1,ϵg1 ;

κ′(a1) = a2,κ
′(a2) = a1 , and ∀c ∈ [N ], if l∗(c) ̸∈ l1, l2,κ′(c) = c 

The permutation κ′ exists because the groups of G′ have exactly the same size.
We also dene χ′ ∈ −1, 1L with

χ′(l) = χ(l) if l ̸∈ l1, l2 , χ′(l1) = (g1g2)χ(l2) , and χ′(l2) = (g2g1)χ(l1) 

Note that κ′ ∈ S . When we consider S is a group of permutation we see that κ′S = S . Moreover,
as the law of χ(1),    ,χ(L) is exchangeable and symmetric with respect to 0, χ′ and χ follow the
same distribution.

It implies that we can use a change of variable in the sum,

Eπ,G′ [Nπ
a1(τ )Y ] =

1

2L#S


κ∈S



χ∈−1,1L
Eπ′,G′(κ,χ)[N

π′
κ−1(a1)

(τ )Y ]

=
1

2L#S


κ∈S



χ∈−1,1L
Eπ′,G′(κ′κ,χ′)[N

π′
(κ′κ)−1(a1)

(τ )Y ] 

Now, for any κ ∈ S , (κ′κ)−1(a1) = κ−1(κ′)−1(a1) = κ−1(a2) because κ′ exchanges a1 and
a2.

Then, x χ and κ and consider the partition G′(κ′κ,χ′). We want to prove that, G′(κ′κ,χ′) =
G′(κ,χ). By denition (Lemma 22), we have to prove that ∀b ∈ [N ],

g′(κ(b))χ(κ̃(l∗(b))) = g′(κ′κ(b))χ′(κ̃′κ̃(l∗(b))) , (24)

We prove Equation (24).
Take ϵ ∈ −1, 1 and b ∈ κ−1(G′

l1,ϵg1
), by construction, κ̃′ is the transposition (l1 l2), and we

have

χ′(κ̃′κ̃(l∗(b))) = χ′(κ̃′(l1)) = χ′((l1 l2)(l1)) = χ′(l2) = (g1g2)χ(l1) 

Besides, we have χ(κ̃(l∗(b))) = χ(l1). Moreover, κ(b) ∈ G′
l1,ϵg1

and then κ′(κ(b)) ∈ G′
l2,ϵg2

, i.e. ,
g′(κ′κ(b)) = ϵg2.

The equality in Equation (24) therefore holds for all b in κ−1(G′
l1,ϵg1

),

g′(κ(b))χ(κ̃(l∗(b))) = ϵg2(g1g2)χ(l1) = ϵg1χ(l1) = g′(κ(b))χ(κ̃(l∗(b))) 
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The labels l1 and l2 play the symmetric role, so we also have the equality of Equation (24) for
b ∈ κ−1(G′

l2,ϵg2
). Finally, if l∗(κ(b)) ̸∈ l1, l2, then by construction of χ′ and κ′, we have

κ′(κ(b)) = κ(b) and χ′(κ̃′κ̃(l∗(b))) = χ′(κ̃(l∗(b))) = χ(κ̃(l∗(b))).
Equation (24) being proved, we have nally,

Eπ,G′ [Nπ
a1(τ )Y ] =

1

2L#S


κ∈S



χ∈−1,1L
Eπ′,G′(κ′κ,χ′)[N

π′
(κ′κ)−1(a1)

(τ )Y ]

=
1

2L#S


κ∈S



χ∈−1,1L
Eπ′,G′(κ,χ)[N

π′
κ−1(a2)

(τ )Y ]

=Eπ,G′ [Nπ
a2(τ )Y ] 

This proves that Eπ,G′ [Nπ
a1(τ )Y ] is independent of a1 and equal to Eπ,G′ [τ Y ]N . Now, using the

same method as above with κ′ = (a ba), we also deduce that Eπ,G∗
(a)
[τ Y ] = Eπ,G∗ [τ Y ] does not

depend on a.
This proves that π is symmetric as dened in Denition 11.
We have proved that π is -PAC and symmetric on ESym(G∗, ). It remains to conclude for the

proof of the lemma.

Budget of π By construction of the algorithm, we have

Eπ,G∗ [τπY ,κ,χ] = Eπ′,G∗(κ,χ)[τ
π′ Y ] ⩽ sup

ν∈E(∆,θ,σ,N,K,d)
Eπ′,ν [τ

′] ,

since, on the event Y , we have ν(G∗(κ,χ), µ̄) ∈ E(∆, θ,σ, N,K, d). We now use the fact that π is
in ΠSym(, ESym(G∗, )), so that

T ∗
Sym(, ESym(G∗, )) ⩽ Eπ,G∗ [τ Y ] ⩽ sup

ν∈E(∆,θ,σ,N,K,d)
Eπ′,ν [τ

′] 

Finally, we prove Lemma 12 by taking the inf over π′ ∈ Π(, E(∆, θ,σ, N,K, d).

B.4.3. PROOFS FROM APPENDIX B.3

Proof [Proof of Lemma 16] Let l ∈ [L] and dene Z = ∥µ̄(l)∥2ρ2. We have µ̄(l) ∼ N (0, ρ2)
with ρ2 = ∆2d, then Z ∼ χ2(d) is a chi-square distribution with d degrees of freedom. We apply
the Laurent-Massart inequality with x = (38)2d – see 43,

P

∥µ̄(l)∥ <

∆

2


= P


Z − d <

∆2

4ρ2
− d


= P


Z − d < −2


d(38)2d


⩽ exp(−(38)2d) 

Then, we notice that  = 4 satises ( − 1)24 ⩾ 1 + 2(38)2 + 2


(38)2, we have

P

∥µ̄(l)∥ > ( − 1)

∆

2


=P


Z − d > (( − 1)24− 1)d



⩽P

Z − d > 2


d(38)2d+ 2(38)2d



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Now, we use the other side of Laurent-Massart inequality with x = (38)2d to obtain

P

∥µ̄(l)∥ > ( − 1)

∆

2


⩽ exp(−(38)2d) 

We recall that we assumed that d ⩾ (83)2 log(K), and so exp(−(38)2d) ⩽ K . A union
bound on L = K2 ensures that Lemma 16 holds.

Proof [Proof of Lemma 20]
Let a ∈ G∗

+ be an arm labelled by (l∗a, 1) in G∗ and let Y, Z ∼ P−1 –see Denition 18. We x
an algorithm π for the clustering with bandit feedback problem on E(G∗, 2). The algorithm π is
characterized by three families of measurable functions (πs, τs, fs)s⩾1 where for all s ⩾ 1

• As = πs((A1, X1),    , (As−1, Xs−1);Us)

• τ = mint ⩾ 1 ; τs((A1, X1),    , (As, Xs);Us) = 1

• ĝ = fτ ((A1, X1),    , (Aτ , Xτ );Uτ )

Here, the sequence (Us) captures the fact that π can use some external randomness to make deci-
sions. We dene Ns,a =

s
u=1⊮Au∈a,ba and Ms =

s
u=1⊮

Au∈G∗
l∗a

. We consider the event

Ba on which the inequalities Nτ,a = Na(τ ) + Nba ⩽ ta = t and Mτ ⩽ Ml∗a(τ ) ⩽ Ta = T
holds. Then, the data collected (X1,    , Xτ ) when π interacts with ν(G∗

(a), µ̄) and µ̄ ∼ ⊗L can
be constructed with Y, Z, ϵ, U using the following coupling.

First, we create the observations from arms that belongs to a block different than the one of
a, using the variables (ϵu)u⩾1. We sample once and for all (L − 1) centers by dening for any
l ∈ [L] \ l∗a,

µ̄(l) = ρϵl ,

we observe that (µ̄)l ̸=l∗a) ∼ 
⊗(L−1)
2 .

Then, for any s ⩾ 1, if As ∈ G∗
l with l ̸= l∗a, we can create Xs with the expression

Xs = C(l) + gµ̄(l) + σϵs+L 

Now, for s ⩾ 1, when As ∈ G∗
l∗a
, we use Y, Z,

• Xs = C(l∗a) + YNs,a if As = a

• Xs = C(l∗a)− YNs,a if As = ba

• Xs = C(l∗a) + g∗As
ZMs if As ∈ G∗

l∗a
\ a, ba

We highlight that the law of Y, Z is a marginal distribution that captures the fact that the data
obtained from the block G∗

l∗a
are obtained using the prior  for µ̄(l∗a).

From there, it is possible to give (explicitly) a function fa measurable with respect to Y, Z, ϵ, U
such thatAaBa = f(Y, Z, ϵ, U)where the equality holds in law with respect to Pπ,G∗

(a)
(integrated

with respect to µ̄). If we use the same measurable function fa with X,Y ∼ P1, then Aa  Ba =
f(Y, Z, ϵ, U) where the equality holds with respect to Pπ,G∗ .
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Proof [Proof of Lemma 21 ] We recall that π is a -PAC algorithm for the problem of clustering
with bandit feedback with an oracle. We recall that Aa = Ĝ ∼ G∗

(a). By construction of the
partitions G∗

(a), these partitions are not equivalent (for the relation ∼). We highlight that this is
due to the fact that all the groups contain more than two arms. The events (Aa)a are disjoints, and
⊔a∈G∗

+
(Aa Ba) ⊂ Ĝ ̸∼ G∗.

Now, we have directly

Pπ,G∗(a∈[N ]\SAa Ba) ⩽ Pπ,G∗(Ĝ ̸∼ G∗) 

By denition, π is -PAC on ESym(G∗, 2), we have

Pπ,G∗(Ĝ ̸∼ G∗) = Pπ,G∗(Ĝ ̸∼ G∗Y)Pγ⊗L(Y) + Pπ,G∗(Ĝ ̸∼ G∗Yc)Pγ⊗L(Yc)

⩽  + Pγ⊗L(Yc) ⩽ 2

For the second point of the lemma, we x a ∈ G∗
+.

Pπ,G∗
(a)
((Aa Ba)

c) = Pπ,G∗
(a)
(Ac

a Bc
aY)Pγ⊗L(Y) + Pπ(A

c
a Bc

aYc)Pγ⊗L(Yc)

⩽ Pπ,G∗
(a)
(Ac

a Bc
aY) + Pγ⊗L(Yc)

⩽ Pπ,G∗
(a)
(Ac

aY) + Pπ,G∗
(a)
(Bc

aY) + Pγ⊗L(Yc) 

Now, π is -PAC which implies that

Pπ,G∗
(a)
(Ac

aY) = Pπ,G∗
(a)
(Ĝ ̸∼ G∗

(a)Y) ⩽  

For the second term, we use Markov inequality with respect to the distribution Pπ,G∗
(a)
(·Y). We

recall that π satises a symmetry property and that t = ta = 3Eπ,G∗
(a)
[Na(τ )+Nba(τ )Y ] and T =

Ta = 3Eπ,G∗
(a)
[Ml∗a(τ )Y ]. We also recall that Ba = Na(τ ) + Nba(τ ) ⩽ ta  Ml∗a(τ ) ⩽ Ta.

We have with Markov inequality

Pπ,G∗
(a)
(Bc

aY) ⩽ Pπ,G∗
(a)
(Na(τ ) +Nba(τ ) > taY) + Pπ,G∗

(a)
(Ml∗a(τ ) > TaY) ⩽ 1

3
+

1

3
=

2

3


This concludes the proof of Lemma 21.

Proof [Proof of Lemma 19]
Let g ∈ −1, 1 and take Pg dened in Denition 18 with the Gaussian prior. We have µ ∼

N (0, ρ2Id) and conditionally on µ,

• Y1,    , Yt, Z1,    , ZT are independent ;

• ∀r ∈ [t], Yr ∼ N (gµ,σ2Id)

• ∀s ∈ [T ], Zr ∼ N (µ,σ2Id).

First, Y1,    , Yt, Z1,    , ZT have i.i.d coordinates and so has µ. Then, it is enough to prove
Lemma 19 in dimension 1. The general case will be obtained by multiplying by d the result for
dimension 1. We assume then that d = 1, and we want to prove that KL(P−g,Pg) =

2tTρ4

σ4+σ2ρ2(T+t)
.
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Now, we specify the distribution of the vector Y, Z. As µ follows a Gaussian distribution, the
vector (X,Y ) = Y1,    , Xt, Z1,    , ZT is a Gaussian vector.

With the law of total variance, we have Y, Z ∼ N (0,Σg) where Σg is the covariance (square)
matrix of size (T + t). The matrix Σg is dened as follows:

Σg = σ2It+T + ρ2


Jt,t gJt,T
gJT,t JT,T


=: σ2I(t+T ) + ρ2Hg ,

where I(t+T ) is the identity matrix of size (T + t), and we dene Jt,T being the rectangle matrix of
size t× T where all entries are equal to 1.

We observe that Hg has a particular shape, in particular, H2
g = (T + t)Hg. As a consequence,

it is easy to compute its inverse. We have:

Σ−1
g =

1

σ2
I(t+T ) +

1

ρ̃2
Hg ;

with ρ̃2 = −σ2

ρ2
(σ2 + ρ2(t+ T )) 

Now,

Σ−1
g Σ−g−I(T+t) =


1

σ2
I(T+t) +

1

ρ̃2
Hg


σ2I(T+t) + ρ2H−g


−I(T+t) =

ρ2

σ2
H−g+

σ2

ρ̃2
Hg+

ρ2

ρ̃2
HgH−g ,

where we compute

HgH−g = (t− T )


Jt,t −gJt,T
gJT,t −JT,T




Finally, with the formula for the KL divergence between two multidimensional Gaussian distribu-
tion, we have

KL(P−g,Pg) =
1

2


log

Σg
Σ−g

+ Tr(Σ−1
g Σ−g − I(T+t)) + 0Σ−1

g 0



=
1

2


ρ2

σ2
Tr(H−g) +

σ2

ρ̃2
Tr(Hg) +

ρ2

ρ̃2
Tr(HgH−g)



=
1

2


ρ2(t+ T )

σ2
− ρ2(T + t)

σ2 + ρ2(T + t)
− ρ4(T − t)2

σ2(σ2 + ρ2(t+ T ))



=
1

2


ρ4((t+ T )2 − (T − t)2)

σ2(σ2 + ρ2(T + t))


=

2tTρ4

σ4 + σ2ρ2(T + t)


This concludes the computation of KL(P−g,Pg).

Appendix C. Analysis of ACB

In this section, we establish that ACB 1 is -PAC and we control its budget thereby proving the part
of Theorem 5 pertaining to ACB.
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Theorem 24 Let  > 0. Let ∆ > 0, θ > 0 be the two parameters used in the design of ACB, such
that E(∆, θ,σ, N,K, d) ̸= ∅. The ACB algorithm (1) is -PAC on E(∆, θ,σ, N,K, d).
Moreover, dene τACB for the budget of ACB(,∆, θ). There exist two universal constants c and c′

(with c small), independent of all the parameters∆, θ,σ, N,K, d and such that for any environment
ν in E(∆, θ,σ, N,K, d), if we assume that log(K)

θ ⩽ N , then EACB,ν [τACB ] ⩽ cN + c′A, and
τACB ⩽ cN + c′(A+B) almost surely, where

A =
σ2

∆2


N log (N) +


dNK log (N) +

√
d
log(K)

θ



B =
log(K)

θ
+

σ2

∆2

1

θ
log


K



√
d+ log log


1

θ




In fact, Theorem 24 is a straightforward consequence of the two following lemmas that sepa-
rately consider the two sub-routines SRI and ADC.

Lemma 25 (Analysis of SRI)
Let  > 0 be xed. Let ∆ > 0 and 1K > θ > 0 and let Ŝ =SRI(,∆, θ) be the output of

Algorithm SRI applied to an environment in E(∆, θ,σ, N,K, d). Let τSRI be the number of samples
used by the SRI routine to compute Ŝ. with probability higher than 1 − , it holds that Ŝ contains
exactly one arm by group.

Moreover, there exist two universal constant c and c′ (independent of all the parameters) such
that almost surely, we have

τSRI ⩽c
1

θ
log


K




+ c′

σ2

∆2

1

θ
log


K




log(K) +

√
d+ log log


1

θ


 (25)

Also, the expected budget satises

Eν [τSRI ] ⩽ c
log(K)

θ
+ c′

σ2

∆2


log(K)

θ
log


1

θ


+

log(K)

θ
+


dK

log(K)

θ
log


K






(26)

Lemma 26 (Analysis of ADC) Let ν be an environment in E(∆, θ,σ, N,K, d). Let S be a set of
K arms containing exactly one arm belonging to each of the K groups. Let Ĝ =ADC(,∆, S) be
the output of the ACD routine, and τADC be the budget of ADC, i.e., the number of samples used to
compute Ĝ. First, with probability larger than 1− , Ĝ is a perfect clustering, that is

PADC,ν(Ĝ ∼ G∗) ⩾ 1−  

Second, there exists a universal constant c such that

τADC ⩽ 2N + c
σ2

∆2
N log


N




+ c

σ2

∆2


dKN log


N




 (27)
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C.1. Analysis of the SRI subroutine

In this section, we prove theorem 25. We organize the proof in several steps. As a warm-up, we
discuss the intuition behind the SRI routine in Appendix C.1. We also further explanation, along
with notation. Then, we provide guarantees on SRI which holds even if the parameters∆, θ used to
calibrate SRI are larger than the trues parameters ∆∗,θ∗. We bound the probability that SRI would
reject a good candidate for being a representative, or add a bad one to the set S. Then, we prove
Lemma 25 by proving its correction and bounding its budget. The proofs of some technical lemmas
are postponed to Appendix C.2. Finally, we establish Lemma 26 in Appendix C.3.

STEP 1: EXPLANATION AND NOTATION.

In this section, we x ∆ > 0, and θ > 0 the two parameters used in the design of the SRI routine.
We also x  > 0 and σ > 0. We consider then the algorithm SRI = SRI(,∆, θ), where the
parameters of the algorithm U , (ns)s, nmax and r are computed with σ, ∆, θ and , using the
expressions from Remark 27. We denote by Pν for the probability induced by SRI(,∆, θ) and an
environment ν.

Let ν be an environment with a hidden partition G∗ = G∗
1,    , G

∗
K and the centers of the

groups µ(1),    , µ(K), with σ-subGaussian noises Assumption 1. We associate to G∗ the labels
(k(a))a∈[N ] such that the mean of a is µa = µ(k(a)) and a ∈ G∗

k(a). We recall that ∆∗ denotes
the minimal gap of ν and θ∗ is the proportion of arms in the smallest group. We want to study
how SRI = SRI(,∆, θ) behaves when it interacts with the environment ν. For now, ν denotes
any environment in the hidden partition model, with subGaussian noises of parameters σ – see
Assumption 1 and Assumption 3. In particular,for now, we do not assume anything about ∆∗ and
θ∗.

In the algorithm, there are some parameters dened in (10)–(12) that we recall here.

Remark 27 For any s ⩾ 1,

U =


8

θ
log


8K




,

r = log2(log(4U)) ,

ns =


c1

σ2

∆2
(2s + log(12K))





c2

σ2

∆2


d(2s + log(6))


,

nmax = nr 

c3

σ2

∆2

√
d log(2K)


,

s0 = r mins ⩾ 1;ns ⩾ 2 ,

where the universal constants c1, c2, c3 are respectively dened by c1 = 322  8cHW , c2 =
16


cHW 2  32

√
2, and c3 = 32

√
2 where cHW is the constant of Hanson-Wright inequality

–see Appendix E. Also the maximum budget Tmax (13) is dened as

Tmax = 2K


nmax +

r

s=s0+1

ns


+ 2Uns0 + 2U

r

s=s0+1

ns

2s−4
,

and thereby only depends on θ, ∆, K, and 
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We refer as an epoch of the algorithm, the successive passage in the u loop in the SRI routine.
We introduce some notation, taking into account the dependency on u.

At the beginning of the u-th epoch, the arm au is taken randomly and uniformly on the set
[N ] of arms (independently of everything else). We denote by Su for the set of arms selected as
representatives before the u-th epoch. Before the rst epoch, we initialize S1 = a0. During the
u-th epoch, the algorithm decides to add au to Su or not by performing a sequence of tests – see
Line 5 to 11 in SRI routine. If au is added to Su, it compute (Line 11) two empirical means µ̂au and
µ̂′
au using 2nmax samples.
We say that

• the arm au is bad if there exists a ∈ Su such that ∥µau − µa∥ ⩽ ∆4;

• the arm au is good if for any arm a ∈ Su then ∥µau − µa∥ ⩾ ∆.

Remark 28 If ∆ ⩾ ∆∗, it is possible that some arms are neither good nor bad. Nonetheless, if
∆∗ ⩾ ∆, then all arms from ν are good or bad. Moreover, in this case, the arm au is bad if and
only if au is already represented in Su.

We want to add au to Su if au is good, but we allow the algorithm to reject some good arms if it
does not affect the budget (up to a numerical constant). Anyway, we want to reject every bad arm,
and reject them as quickly as possible.

For s ⩾ 1, we dene as ϕu
s for the output of REPRESENTEDTEST(au, (µ̂b, µ̂

′
b)b∈Su ,∆, ns)

computed during the u-th epoch and for the s-th step . We call it the test (u, s). We further write,

ϕu
s := ⊮

mina∈Su ⟨µ̄u,s−µ̂a,µ̄′
u,s−µ̂′

a⟩⩽∆2

2

 ,

where µ̄u,s and µ̄′
u,s denotes the two empirical means of arm au computed with 2ns samples, when

REPRESENTEDTEST(au, (µ̂b, µ̂
′
b)b∈Su ,∆, ns) is called. Remark that these empirical means are

only used for the test (u, s).
We start with some s0 equal to r  mins ⩾ 1;ns ⩾ 2 so that ns strictly increases at each

iteration s → s + 1. If, at some test s0 ⩽ s ⩽ r, it holds that ϕu
s = 1, then au is rejected and

considered as a bad arm (Line 7). If au is rejected, we denote by τu for the time of rejection of au,
τu := mins0 ⩽ s ⩽ r ;ϕu

s = 1. If for all s = s0,    , r, ϕu
s is equal to zero (False) (condition

in Line 9), then au is added to Su (Line 10) and considered as a new representative. If au is not
rejected, τu = +∞ by convention. The empirical mean µ̂au (resp. µ̂′

a) denotes the estimator of µau

computed once and for all when au is added to Su (Line 11), and used in every test that follows.

Remark 29 In REPRESENTEDTEST, the condition ⟨µ̄u,s− µ̂a, µ̄
′
u,s− µ̂′

a⟩ ⩽ ∆2

2 is natural, because
Eν [⟨µ̄u,s− µ̂a, µ̄

′
u,s− µ̂′

a⟩] = ∥µau −µa∥2, which is equal to zero if a and au are in the same group,
and is larger than ∆∗ else. This is a benet of sub-sampling.

STEP 2: CONTROL THE PROBABILITY OF REJECTING A GOOD ARM OR ADDING A BAD ARM TO

S

In order to use the subGaussian noise assumption– see Assumption 1, we dene ϵa =
√
nmax

σ (µ̂a −
µa) and ϵu,s =

√
ns

σ (µ̄u,s− µau) (and respectively ϵ
′
u,s, ϵ

′
a). We refer to Corollary 45 for concentra-

tion inequalities on these variables.
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With these notation, we develop the statistic ⟨µ̄u,s − µ̂a, µ̄
′
u,s − µ̂′

a⟩ as follows


µ̄u,s − µ̂a, µ̄

′
u,s − µ̂′

a


= ∥µau − µa∥2 +

√
2σ√
nmax


ϵa + ϵ′a√

2
, µa − µau


+

σ2

nmax


ϵa, ϵ

′
a



− σ2

√
nmaxns


ϵu,s, ϵ

′
a


− σ2

√
nmaxns


ϵ′u,s, ϵa


(28)

+

√
2σ√
ns


ϵu,s + ϵ′u,s√

2
, µau − µa


+

σ2

ns


ϵu,s, ϵ

′
u,s




We will use concentration inequalities in order to control all deviations of

µ̄u,s − µ̂a, µ̄

′
u,s − µ̂′

a



around its mean ∥µau − µa∥2.

Remark 30 In order to estimate the means of the representatives added to S, we compute once
and for all (µ̂a, µ̂

′
a) when arm a is added to S (Line 11 of the SRI routine. It implies that the test

statistics (ϕu
s )s,u are not independent. This is why we condition on the event Y dened below, which

controls once and for all the deviation of the random variables ϵa and ϵ′a).

We dene Y as the event:

Y =


∀a ∈ Ŝ, ∀k ∈ [K] \ k(a),



ϵa + ϵ′a√

2
,

µa − µ(k)

∥µa − µ(k)∥

 ⩽
1

16


∆2

2σ2

√
nmax




∀a ∈ Ŝ,

ϵa, ϵ′a
 ⩽ 1

16

∆2

σ2
nmax


(29)


∀a ∈ Ŝ, ∥ϵ′a∥2  ∥ϵa∥2 − E[∥ϵa∥2] ⩽ cHW log(12K) 


cHW d log(12K)


,

where cHW is the universal constant from Hanson-Wright inequality (Lemma 44).

Lemma 31 For any environment ν, we have,

Pν(Y) ⩾ 1− 4 

We leave the proof of this technical lemma to Appendix C.2; it is a consequence of the concen-
tration of subGaussian random variables, in particular Hanson-Wright inequality (Lemmas 44 and
Corollary 45).

We now give an auxiliary lemma that will be used in the rest of the proof as an elementary brick.
For every test (u, s), we dene the event Zu,s as

Zu,s =


∃k ∈ [K] \ k(au) ;



ϵu,s + ϵ′u,s√

2
,

µau − µ(k)

∥µau − µ(k)∥

 ⩾
1

16

∆

σ


ns

2



ϵu,s, ϵ′u,s
 ⩾ 1

16

∆2

σ2
ns


(30)


∃a ∈ Ŝ ;

ϵu,s, ρ′a
+

ϵ′u,s, ρa
 ⩾ 1

4

∆2

σ2


nsnmax

4d+ cHW l 
√
cHW dl


,

with l = log(12K) and cHW is the constant from Lemma 44.
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Lemma 32 The sequence of events (Zu,s)u⩾1,s⩾s0 satises four properties.

1. Conditionally on the random directions (ρa, ρ′a)a :=


ϵa
∥ϵa∥ ,

ϵ′a
∥ϵ′a∥


a
, with a ∈ Ŝ the events

Zu,s are independent (for all test (u, s)).

2. For all u ⩾ 1 and ∀s0 ⩽ s ⩽ r, the inclusion Y  au is good and ϕu
s = 1 ⊂ Zu,s holds.

3. For all u ⩾ 1 and ∀s0 ⩽ s ⩽ r, the inclusion Y au is bad and ϕu
s = 0 ⊂ Zu,s also holds.

4. Finally, we have ∀u ⩾ 1 and ∀s0 ⩽ s ⩽ r, Pν(Zu,s) ⩽ exp(−2s).

This results is important to prove that the SRI routine actually rejects bad arms and add good
arms to S. We recall that ϕu

s = 1 implies that the test (u, s) would reject au.
Proof [Sketch of proof] The terminology bad and good was introduced in the previous paragraph.
Let u ⩾ 1 and s0 ⩽ s ⩽ r. The variables (ϵu,s, ϵ′u,s) are mutually independent (for any test (u, s),
and the eventZu,s is measurable with respect to


(ρa, ρ

′
a)a∈Ŝ , ϵu,s, ϵ

′
u,s


, the rst point of Lemma 32

is clear.
The construction of the event Zu,s follows from the decomposition in Equation (28). We notice

that if the event Y holds, the estimation of all centers (µa, µ
′
a) for a in Ŝ are concentrated around the

true centers. The points two and three follow from this observation. Moreover, the deviation of µ̄u,s

around µau are subGaussian, the point 4 will follow from subGaussian concentration inequalities.
We postpone the proof of this result to Appendix C.2.

Now, in the next lemma, we prove that r is large enough to ensure that, within the procedure,
every bad arm is rejected with large probability.

Lemma 33 Recall that r = log2(log(4U)). If Y holds, then, with probability higher than
1− 4, we do not add bad arms to S, i.e.

Pν


∃a, b ∈ Ŝ , ∥µa − µb∥ ⩽ ∆4  Y


⩽ 

4


Proof Within the procedure, the algorithm picks at most U arms (without counting a0) – see Line
3 in SRI routine. If there exists a, b ∈ Ŝ such that ∥µa − µb∥ ⩽ ∆4, it means that there exists an
epoch 1 ⩽ u ⩽ U , where the last test statistic ϕu

r is equal to zero, although au is bad. If the events
Y holds, using the third point of Lemma 32, the event Zu,r holds.

In terms of probability, with a simple union bound, we have

Pν


∃a, b ∈ Ŝ , ∥µa − µb∥ ⩽ ∆4  Y


⩽ Pν(∃1 ⩽ u ⩽ U , au is bad ,ϕu

r = 0  Y)

⩽
U

u=1

Pν(Zu,r) 

We recall that the probability of Zu,r is smaller than exp(−2r) and we conclude with the expression
of r.

Pν


∃a, b ∈ Ŝ , ∥µa − µb∥ ⩽ ∆4  Y


⩽ U exp(−2r) ⩽ 

4

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STEP 3: SRI IS -PAC

For all epochs u ⩾ 1 and s0 ⩽ s ⩽ r, we denoteHs,u :=

u−1

v=1

⊮s⩽τv⩽r as the number of arms that

are rejected with a time of rejection larger than s within the epochs 1,    , u− 1. We highlight that
Hs0,u is the total number of arms rejected before epoch u.

Now, we dene M = inf u ⩾ 1; Su = K or u > U or Budget > Tmax as the stopping time
(i.e. the number of epochs) of SRI. It corresponds to the number of arms taken randomly from [N ],
(namely a0,    , aM−1) to build the set Ŝ. When M is reached, SRI outputs Ŝ = SM , whether or
not it contains K arms.

We will prove that, with probability high than 1 − , we have , on E(∆, θ,σ, N,K, d), we will
have SM  = K and SM contains each representant of each cluster.

Now, assume that θ∗ ⩾ θ and ∆∗ ⩾ ∆. We use Appendix C.1 to prove that the SRI rou-
tine outputs a set with exactly one arm by group when it interacts with the environment ν ∈
E(∆, θ,σ, N,K, d).

First, we dene

X :=

r

s=s0+1

Hs,M <
1

2s−4
U  (31)

The denition (13) of Tmax ensures that, on the event X , the stopping condition of the SRI routine
reduces to the condition Su = K  u > U and thenM = (U +1)minu ⩾ 1; Su = K.
It turns out that the event X has a large probability when it is intersected with Y .

Lemma 34 Let 1+ s0 ⩽ s ⩽ r and recall thatHs,M = #u ∈ [1;M −1], s ⩽ τu ⩽ r. It holds
that

Pν


Hs,M ⩾ 1

2s−4
U  Y


⩽ exp(−U2)  (32)

This implies that

Pν(Y  X c) ⩽ 

8


Proof [Proof of Lemma 34] We start with the rst statement of Lemma 34, take s such that s0 <
s ⩽ r.

If s = 1, 2 or 3, the inequality is trivial because Hs,M ⩽ U , we assume that s > 3  s0.
Recall that ν ∈ E(∆, θ,σ, N,K, d), so that all arms are either good or bad. By denition of τu, if
s ⩽ τu ⩽ r, it means that at some test t ∈ [s, r], ϕu

t = 1 but ϕu
t = 0 for t < s. Moreover, each arm

is either good or bad because ∆∗ ⩾ ∆. The following inclusion holds then,

s ⩽ τu ⩽ r  Y =(s ⩽ τu ⩽ r  au is good   Y)


(s ⩽ τu ⩽ r  au is bad   Y)

⊂ (s⩽t⩽rϕu
t = 1  au is good  Y)


ϕu

s−1 = 0  au is bad  Y




We use the points 2 of Lemma 32 to get the inclusion ϕu
t = 1  au is good  Y ⊂ Zu,t

valid for any t ∈ [s, r]. Using the point 3 of the same lemma with s − 1 ⩾ s0, we have also
ϕu

s−1 = 0  au is bad  Y ⊂ Zu,s−1. Then,

s ⩽ τu ⩽ r  Y ⊂


s−1⩽t⩽r

Zu,t , (33)
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and we recall that the events (


s−1⩽t⩽r Zu,t)u⩾1 are independent according to Lemma 32 (if we
condition on the random directions (ρa, rho′a)a. Now, we use a union bound on t and the bound
Pν(Zu,t) ⩽ exp(−2t) valid for any t ∈ [s0, r], and we have,

Pν

 

s−1⩽t⩽r

Zu,t


⩽ exp(−2s−2) 

From the inequality Hs,M =
M−1

u=1 ⊮s⩽τu⩽r ⩽
U

u=1⊮s⩽τu⩽r, we deduce that Hs,M⊮Y
is stochastically dominated by B(U, qs) where qs := exp(−2s−2).

We use Chernoff bound with  ⩾ √
qs, we have

Pν (Hs,M⊮Y ⩾ (1 + qs)qsU) ⩽


eαqs

(1 + qs)1+αqs

qsU

=exp

U


1− log(1 + qs)(1 + qs)



=(1 + qs)
−αU2 exp[U(1− log(1 + qs)2)− Uqs log(1 + qs)] 

As  ⩾ √
qs and s ⩾ 4, we have α

qs
⩾ 1√

qs
= exp(2s−3) ⩾ e2 − 1 and then 1 − log(1 +

qs)2 ⩽ 0. It follows that

Pν (Hs,M⊮Y ⩾ 2U) ⩽(1 + qs)
−αU2

⩽(1 + 1
√
qs)

−αU2

⩽ exp


−U

2
2s−3


= exp(−U2s−4) 

Finally, taking  = 12s−3 ⩾ exp(−2s−3) =
√
qs, we deduce the rst result of Lemma 34

Pν


Hs,M ⩾ 1

2s−4
U  Y


⩽ Pν


Hs,M⊮Y ⩾ 1

2s−4
U


⩽ exp(−U2) 

Directly,

Y  X c =

r

s=1

Y  Hs,M ⩾ 1

2s−4
U ,

then, we use the rst part of the lemma and a union bound,

P (Y  X c) ⩽ r exp(−U2) ⩽ 8 ,

where we conclude with the expression of U ⩾ 8
θ log


8K
δ


⩾ 2 log


8r
δ


. The last inequality

follows from the expression of r.

Now, we study the probability of addingK arms to S, before reaching the maximum number of
epochs U .
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Lemma 35 Recall that Ŝ denotes the output of SRI, consider a group G∗
k, it holds that

Pν(Ŝ G∗
k = ∅  ∀a, b ∈ Ŝ, µa ̸= µb  Y  X ) ⩽ 2 exp


−Uθ

8




Proof [Proof of Lemma 35] Let k ∈ [K], we study the event Ŝ  G∗
k = ∅, event where the

group G∗
k is not represented in Ŝ (the output of the SRI routine). We use here the assumption that

the groups are nonempty. If Ŝ contains arms from different groups but no arm from the group
G∗

k, it implies that Ŝ < K and then, if the event X also holds, the algorithm has passed every
epochs from u = 1 to U , i.e., M = U + 1. In particular, the algorithm rejected every arm from
G∗

k  a1,    , aU. We have the inclusion between events,

Ŝ G∗
k = ∅  ∀a ̸= b ∈ Ŝ, µa ̸= µb  X ⊂



u∈Bk

au rejected ,

where Bk := G∗
k  a1,    , aU and denoteXk := Bk. As a1,    , aU are i.i.d and uniform on

[N ] then Xk is binomial with parameters U and θk = GkN ⩾ θ∗ ⩾ θ. Using Hoeffding’s bound
and taking  ∈ (0, 1) to be specied later, it holds that

Pν(Xk ⩽ θU(1− )) ⩽ exp(−22Uθ)  (34)

Then, as ∆∗ ⩾ ∆, the arms in Gk  a1,    , aU are good until one of them is added to S. In
particular, if none are added to S, they are all good. We then have

Ŝ G∗
k = ∅  ∀a ̸= b ∈ Ŝ, µa ̸= µb  Y  X ⊂



u∈Bk

au good and rejected  Y 

If au is rejected, it means that ϕu
s = 1 for some s0 ⩽ s ⩽ r, we then have the inclusion

au is good and rejected ⊂ 
s⩾s0

au is good and ϕu
s = 1. According to the second point of

Lemma 32, we have au is good and rejected  Y ⊂ s⩾s0Zu,s. We denote Zu = s⩾s0Zu,s.
In terms of probability, we have Pν (u∈Bk

au rejected  Y) ⩽ Pν (u∈Bk
Zu).

Then, we also have Pν(Zu,s) ⩽ exp(−2s) for any s ∈ [s0, r], and with a union bound,
Pν(Zu) ⩽ 12. Moreover, with the rst point of Lemma 32, we deduce that the events (Zu)u
are independent (if we condition on ρa, ρ

′
a).

If Xk > θU(1− ) and using the independence of the events (Zu)u, we have

Pν


Xk > θU(1− ) 


 

u∈Bk

Zu





 ⩽


1

2

θU(1−α)



Finally, with Equation (34), we have

Pν(Ŝ G∗
k = ∅  ∀a ̸= b ∈ Ŝ, µa ̸= µb  Y  X )

⩽Pν


Xk > θU(1− ) 


 

u∈Bk

Zu





+ Pν (Xk ⩽ θU(1− ))

⩽ exp (− log(2)θU(1− )) + exp

−22Uθ



⩽2 exp(−Uθ8) 
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In the last line, we took  = 12.

We now have all the tools that we need to prove that SRI(,∆, θ) is -PAC on E(∆, θ,σ, N,K, d)
for the representative identication problem, which means that with probability higher than 1 − ,
SRI outputs a set of K representatives for environments that are E(∆, θ,σ, N,K, d).
Proof [Proof of the rst statement of Lemma 25.] recall that in this subsection, ν ∈ E(∆, θ,σ, N,K, d).

As a direct consequence of Lemma 33, we know that with high probability, Ŝ does not contain
two arms from the same group.

Pν


∃a, b ∈ Ŝ , µa = µb  Y


⩽ Pν


∃a, b ∈ Ŝ , ∥µa − µb∥ ⩽ ∆4  Y


⩽ 

4


Now, with Lemma 35, for all k ∈ [K],

Pν


Ŝ G∗

k = ∅  ∀a ̸= b ∈ Ŝ, µa ̸= µb  Y  X

⩽ 2 exp(−Uθ8) 

Now, we recall that U ⩾ 8
θ log


8K
δ


and then exp(−Uθ8) ⩽ 8K. If the set Ŝ contains strictly

less than K arms then at least one group is not represented. With a union bound on k ∈ [K],

Pν


Ŝ < K  ∀a ̸= b ∈ Ŝ, µa ̸= µb  Y  X


⩽ 2K exp(−Uθ8) ⩽ 4 

Finally, together with Lemmas 31 and 34, we conclude that

Pν


∀k ∈ [K] , ∃!a ∈ Ŝ ;µa = µ(k)


≥ 1− Pν(Yc)− Pν(Y  X c)

− Pν


Ŝ < K  ∀a ̸= b ∈ Ŝ, µa ̸= µb  Y  X



− Pν


∃a, b ∈ Ŝ , µa = µb  Y



⩾ 1−  

In summary, we have proved that SRI is -PAC on E(∆, θ,σ, N,K, d) for the Representatives iden-
tication problem.

STEP 4: UPPER BOUND ON THE BUDGET τSRI

We establish here the bounds on the budget τSRI of Lemma 25.
Explanation on Tmax

By denition (13) of Tmax, we know that, almost surely, the total budget τSRI satises:

τSRI ≤ Tmax = 2K


nmax +

r

s=s0+1

ns


+ 2Uns0 + 2U

r

s=s0+1

ns

2s−4
 (35)

Although plugging the values of nmax, ns, U , and s0, will lead to (25), we start by gently describing
the budget of SRI in order to give intuition on the denition of Tmax.

To analyze the budget, we divide the budget in two parts, τSRI = τaSRI + τ rSRI , where τ
a
SRI is

the number of samples used for arms that are added to Ŝ and τ rSRI is the number of samples uses
for arms that are rejected.
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First, we study τaSRI . From the algorithm, the arms that are selected in Ŝ are arms that pass
successfully all the tests, and after the tests, they are sampled again 2nmax times. In total, each
arm in Ŝ is sampled 2nmax +

r
s=s0

2ns, the factor 2 comes from the fact that we compute two
empirical means at each time. We have then

τaSRI = 2Ŝnmax + (Ŝ − 1)

r

s=s0

2ns ⩽ 2K


nmax +

r

s=s0+1

ns


+ 2(Ŝ − 1)ns0  (36)

Now, consider the the budget spent for arms that are ultimately rejected during the procedure.
For s0 ⩽ s ⩽ r , we dened previouslyHs,M =

M−1
u=1 ⊮s⩽τu⩽r, as the number of arms rejected

after at least s tests in the procedure. The algorithm outputs Ŝ after M − 1 epochs. In particular,
Hs0,M = M − Ŝ. Besides, if the candidate au is rejected, it is sampled

τu
s=s0

2ns times. This
leads us to the equality

τ rSRI =

M−1

u=1

τu

s=s0

2ns⊮au is rejected  =

r

s=s0

2Hs,Mns = 2

M − Ŝ


ns0 + 2

r

s=s0+1

Hs,Mns 

(37)

This justies the denition Tmax (13), as under the large probability event X , τSRI ⩽ Tmax is
directly implied by (36) and (37).

Upper bound on Tmax

In order to upper bound Tmax (13), we need the following lemmas, whose proofs are postponed to
Appendix C.2. These lemmas are direct consequences of the expressions of ns, nmax, U and r from
equations (10),(12).

Lemma 36 Using the explicit expression of r, ns, nmax and s0 from Remark 27, we have, up to a
universal constant c, the inequality

K


nmax +

r

s=s0+1

ns


⩽ K + c

σ2

∆2


log(K)

θ
log(K) +


dK

log(K)

θ
log(K)



⩽ K + c
σ2

∆2

1

θ
log


K




log(K) +

√
d




Lemma 37 Using the explicit expression of r, U , ns and s0 from Remark 27, we have

U

r

s=s0+1

ns

2s−4
⩽ c

σ2

∆2

1

θ
log


K




log(K) +

√
d+ log log


1

θ


,

where c is a numerical constant.

Now, by combining (35) with Lemmas 36 and 37, and bounding Uns0 by U +A where A is the
right side of Lemma 37, we conclude that

τSRI ≤ Tmax ⩽ 2(U +K) + c
σ2

∆2

1

θ
log


K




log(K) +

√
d+ log log


1

θ


, (38)
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where c is a numerical constant. We have proved (25).
Upper bound on E[τSRI ]
We now upper bound the expectation of τSRI . For that purpose, we now assume that ν ∈

E(∆, θ,σ, N,K, d). We will prove (26).
With the same decomposition on the budget τSRI = τaSRI + τ rSRI , and by linearity of the

expectation, we deduce from (36) and (37) that

Eν [τSRI ] = Eν [τSRI⊮Yc ] + Eν [τSRI⊮Y ]

≤ Tmax + 2ns0Eν [(M − 1)⊮Y ] +
r

s=s0+1

2nsEν [Hs,M⊮Y ]

+ 2Eν [Ŝ⊮Y ]


nmax +

r

s=s0+1

ns



≤ Tmax + 2K


nmax +

r

s=s0+1

ns


+ 2ns0Eν [(M − 1)⊮Y ] +

r

s=s0+1

2nsEν [Hs,M⊮Y ] 

(39)

Let us focus on the terms Eν [(M − 1)⊮Y ] and Eν [Hs,M⊮Y ].
Recall that Hs,M =

M−1
u=1 ⊮s⩽τu⩽r. We also recall Equation (33) , valid for s > s0, and

which is a consequence of Lemma 32 and the fact that ∆∗ ⩾ ∆,

s ⩽ τu ⩽ r  Y ⊂


s−1⩽t⩽r

Zu,t 

We have then,

Eν [Hs,M⊮Y ] = Eν


M−1

u=1

⊮s⩽τu⩽r∩Y


⩽ Eν


M−1

u=1

⊮s−1⩽t⩽r Zu,t




We can use Wald’s equation. Indeed, if we condition on the direction of the estimated centers
(ρa, ρ

′
a), the random variables ⊮s−1⩽t⩽r Zu,t are independent and identically distributed for u =

1,    , U . Moreover Pν(


s−1⩽t⩽r Zu,t) ⩽ exp(−2s−4) thanks to Lemma 32. We observe that M
is a stopping time with respect to the ltration naturally associated to the sequence of epochs, and
the sequence (


s−1⩽t⩽r Zu,t)u is adapted to this ltration. With Wald’s equation, we deduce that

Eν [Hs,M⊮Y ] ⩽ Eν [(M − 1)⊮Y ] exp(−2s−4)  (40)

Hence, we conclude that

r

s=s0+1

2nsEν


Hs,M⊮Y


⩽

r

s=s0+1

2nsEν [(M − 1)⊮Y ] exp(−2s−4)  (41)

It remains to bound Eν [(M − 1)⊮Y ]. We will bound stochastically M − 1 by a sum of geometric
random variables. We recall that Su is the state of the set of representatives at the beginning of the
epoch u and Ŝ = SM . We dene for k ∈ [K − 1], Mk =

M−1
u=1 ⊮Su=k. The number Mk is the
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number of epochs necessary to add the (k + 1)-th arm to S. Once Su = K , the algorithm stops,
so that

M − 1 =

K−1

k=1

Mk 

Fix now k ∈ [K − 1]. If Ŝ < k, we have Mk = 0. We assume that Ŝ ⩾ k, and we condition
on S(k) and Y , the set containing the k rst arms that were added to Ŝ. Let u such that Su = k.
Thanks to the second point of Lemma 32, it holds that

au is good   Y 

s∈[s0,r]Zc

u,s


⊂ s∈[s0,r]ϕu

s = 0 = au is added to S 

Then, the events au is good , Y and s∈[r]Zc
u,s are independent. Moreover, Pν(au is good ) ⩾

(K − k)θ∗ ⩾ (K − k)θ because it remains at least (K − k) groups not represented in S(k) and all
these groups have a proportion larger than θ∗. We also have thanks to Lemma 31 and Lemma 32,
Pν(Y) ⩾ 1− 4 and Pν(s∈[r]Zc

u,s) ⩾ 12.
Conditionally on Su = S(k), and on the estimated centers of the representatives in S(k), the

event au is added to S are independent and of probability larger than (1 − 4)(K − k)θ2.
Then, Mk is stochastically dominated by a geometric random variable of parameter (K − k)θ4.
Finally, Eν [Mk⊮Y ] ⩽ 4

(K−k)θ and

Eν [(M − 1)⊮Y ] =
K−1

k=1

Eν [Mk⊮Y ] ⩽
K−1

k=1

4

(K − k)θ
=

4

θ

K−1

k=1

1

k
⩽ 4

θ
(1 + log(K))  (42)

Now, Equation (41) becomes

r

s=s0+1

2nsEν [Hs,M⊮Y ] ⩽
r

s=s0+1

2ns


4

θ
(1 + log(K)) exp(−2s−4)




We bound the previous expression, using the same computation as Lemma 37, and we state the
bound as a lemma proved later.

Lemma 38 Using the explicit expression of r, U , ns, nmax and s0 from Remark 27, we have

r

s=s0

ns


4

θ
· 1 + log(K)

exp(2s−4)


⩽ c

σ2

∆2

log(K)

θ


log(K) +

√
d

,

where c is a universal constant.

We come back to Equation (39), using Equations (41),(42), we have

Eν [τSRI ] ⩽Tmax + 2K


nmax +

r

s=s0+1

ns



+
8ns0

θ
(1 + log(K)) +

r

s=s0+1

2ns


4

θ
(1 + log(K)) exp(−2s−4)



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Now, if we deneA′ = σ2

∆2


log(K)

θ log(1(θ)) + log(K)
θ

√
d+


dK log(K)

θ log(K)


, Lemma 36

and Lemma 38 implies that we can choose c large enough (and universal) such that

r

s=s0+1

2ns


4

θ
(1 + log(K)) exp(−2s−4)


+ 2K


nmax +

r

s=s0+1

ns


⩽ 2K + cA′ 

By denition of ns0 , we can also see that

8ns0

θ
(1 + log(K)) ⩽ 16

log(K)

θ
+ cA′ 

Finally, it follows from (38) and  log(1) ≤ 1 that

Tmax ≤ c′
log(K)

θ
+ cA′ 

In summary, we have the desired bound in expectation,

Eν [τSRI ] ⩽ c′
log(K)

θ
+ c

σ2

∆2


log(K)

θ
log(1(θ)) +

log(K)

θ

√
d+

log2(K)

θ




C.2. Proofs of technical lemmas

Proof [Proof of Lemma 31] We want to prove that Pν(Yc) ⩽ 4, where Yc is equal to

Yc =


∃a ∈ Ŝ, ∃k ∈ [K] \ k(a),



ϵa + ϵ′a√

2
,

µa − µ(k)

∥µa − µ(k)∥

 >
1

16


∆2

2σ2

√
nmax




∃a ∈ Ŝ,

ϵa, ϵ′a
 > 1

16

∆2

σ2
nmax




∃a ∈ Ŝ, ∥ϵ′a∥2  ∥ϵa∥2 − E[∥ϵa∥2] > cHW log(12K) 


cHW d log(12K)




From the denition of ns and nmax as given in (11), (12), it holds that nmax ⩾ nr, with

ns ⩾ c1
σ2

∆2
(2s + log(12K))  c2

σ2

∆2


d(2s + log(6)) 

With the denition of r in (10), we have also 2r ⩾ log(4U) and U ⩾ 8K log(K). We prove
that, for c1 = 322  8cHW and c2 = 16


cHW 2  c3, then nmax is large enough to ensure

Lemma 31 (the value of c3 will be useful later).
We start with a union bound on Ŝ × [K], where Ŝ ⩽ K . We have

Pν


∃a ∈ Ŝ, ∃k ∈ [K] \ k(a),



ϵa + ϵ′a√

2
,

µa − µ(k)

∥µa − µ(k)∥

 >


nmax∆2

2 · 162σ2



⩽K2Pν



ϵa + ϵ′a√

2
,

µa − µ(k)

∥µa − µ(k)∥

 >


nmax∆2

2 · 162σ2



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From the assumption on the noise (Assumption 1), it is easy to see that

ϵa+ϵ′a√

2
, µa−µ(k)
∥µa−µ(k)∥


is

1-subGaussian, proceeding as in the same proof of Corollary 45. With the standard concentration
inequality Lemma 42 for subGaussian variables, we have

Pν



ϵa + ϵ′a√

2
,

µa − µ(k)

∥µa − µ(k)∥

 >


nmax∆2

2 · 162σ2


⩽2 exp


−nmax∆

2

(32σ)2


,

Now, c1 ⩾ 322 and 2r ⩾ log(4K) so that nmax ⩾ c1
σ2

∆2 (2
r + log(12K)) ⩾ 322 σ2

∆2 log

48K2

δ


.

Finally, with the union bouund above, we have

Pν


∃a ∈ Ŝ, ∃k ∈ [K] \ k(a),



ϵa + ϵ′a√

2
,

µa − µ(k)

∥µa − µ(k)∥

 >


nmax∆2

2 · 162σ2


⩽ 

24
 (43)

Now, as proved in Corollary 45, Hanson Wright inequality imply a bound for ⟨ϵa, ϵ′a⟩ and then
with the constant cHW from Lemma 44, we have:

Pν


∃a ∈ Ŝ, ,

ϵa, ϵ′a
 > ∆2nmax

16σ2


⩽2K exp


− 2

cHW


∆2nmax

16σ2
 ∆4n2

max

162σ4d


⩽ 

24
,

(44)

because the denition of c1, c2 and r, implies that

nmax ⩾ 8cHW
σ2

∆2
log


48K




 16


cHW

2

σ2

∆2


d log


48K






Finally, a direct application of Hanson-Wright inequality (Lemma 44) ensures that

Pν


∃a ∈ Ŝ, ∥ϵ′a∥2  ∥ϵa∥2 − E[∥ϵa∥2] ≥ cHW log(12K) 


cHW d log(12K)



⩽ 2K exp(− log(12K)) ⩽ 

6
, (45)

This concludes the proof of Lemma 31, using a union bound and inequalities (43) to (45).

Proof [Proof of Lemma 32 ]
We recall that in this lemma, ν is an environment with minimal gap ∆∗ and balancedness θ∗,

and ν is not necessary in E(∆, θ,σ, N,K, d)). Let u ⩾ 1 and s ∈ [s0, r].
The rst point of the lemma is a direct consequence of the expression of Zu,s and the mutual

independence of the series of empirical means (µ̄u,s, µ̄
′
u,s).

Second point of Lemma 32
We assume that au is a good arm rejected by the test (u, s), which by denition of the test statistic
means that for all a ∈ Su, then µau − µa ⩾ ∆, while the test statistic ϕu

s is equal to 1. It implies
that there exists a ∈ Su such that


µ̄u,s − µ̂a, µ̄

′
u,s − µ̂′

a


⩽ ∆2

2

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From the decomposition of 28, and conditionally on the event Y 29, we have:

∆2

2
⩾∥µau − µa∥2 −

∆

16
∥µau − µa∥ −

∆2

16

− σ2

√
nmaxns


ϵu,s, ρ

′
a


∥ϵ′a∥ −

σ2

√
nmaxns


ϵ′u,s, ρa


∥ϵa∥ (46)

+

√
2σ√
ns


ϵu,s + ϵ′u,s√

2
, µau − µa


+

σ2

ns


ϵu,s, ϵ

′
u,s


 (47)

We also have on Y , ∥ϵa∥2 ⩽ E[∥ϵa∥2] + cHW l 
√
cHW dl with l := log


12K
σ


. Moreover

E[∥ϵa∥2] ⩽ 4d is a direct consequence of the subGaussian assumption (see Rigollet and Hütter,
2023, Lemma 1.4) . We have

(46) ⩾ − σ2

√
nmaxns

ϵ′u,s, ρa
+

ϵu,s, ρ′a



4d+ cHW l 


cHW dl 

We also have directly,

(47) ⩾ −


2σ2∥µau − µa∥2
ns



ϵu,s + ϵ′u,s√

2
,

µau − µa

∥µau − µa∥

−
σ2

ns

ϵu,s, ϵ′u,s
 

We recall that∆ ⩽ ∥µau−µa∥, because au is a good arm. Hence, we have ∥µau−µa∥2− ∆
16∥µau−

µa∥ − ∆2

16 − ∆2

2 ⩾ 3
8∥µau − µa∥2 ≥ 3

8∆
2.

From there, we state that if au is good and ϕu
s = 1 then there exists a ∈ Ŝ such that at least one

of the these three inequalities holds:

ϵu,s, ρ′a
+

ϵ′u,s, ρa
 ⩾ 1

4

∆2

σ2


nsnmax

4d+
√
cHW dl  cHW l

,

ϵu,s, ϵ′u,s
 ⩾ 1

16

∆2

σ2
ns ,



ϵu,s + ϵ′u,s√

2
,

µau − µa

∥µau − µa∥

 ⩾
1

16

∆

σ


ns

2


By denition, Zu,s is the event where one of these three inequalities hold for some a ∈ Ŝ, so the
inclusion Y  au is good and ϕu

s = 1 ⊂ Zu,s is proved.
Third point of Lemma 32

We now assume that au is bad, but the s-th test accept au, i.e., ϕu
s = 0. As au is bad, there

exists a ∈ Su such that ∥µau − µa∥ ⩽ ∆4. As ϕu
s = 0, for this specic arm a, we have:

µ̄u,s − µ̂a, µ̄
′
u,s − µ̂′

a


> ∆2

2 .
Assume that 0 < ∥µau − µa∥ ⩽ ∆4, with the same computation as in the rst case, we have

∆2

2
⩽∥µau − µa∥2 +

∆

16
∥µau − µa∥+

∆2

16

+
σ2

√
nmaxns


4d+ cHW l 


cHW dl

ϵu,s, ρ′a
+

ϵ′u,s, ρa


+


2σ2∥µau − µa∥2

ns



ϵu,s + ϵ′u,s√

2
,

µau − µa

∥µau − µa∥

+
σ2

ns

ϵu,s, ϵ′u,s
 
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In the last line, we upper bound ∥µau − µa∥ by ∆4. Now, consider the constant terms, ∆2

2 −
∥µau − µa∥2 − ∆

16∥µau − µa∥ − ∆2

16 ⩾ ∆2

2 − ∆2

16 − ∆2

64 − ∆2

16 ⩾ ∆2

1
4 + 1

16 + 1
4·16


. As above, we

deduce that at least one of the three inequalities dening Zu,s holds. If ∥µau − µa∥ = 0, there are
simply less terms in the equality. This proves the inclusion Y  au is bad and ϕu

s = 0 ⊂ Zu,s.
Probability of Zu,s

We prove now that the probability of Zu,s decrease exponentially fast with s. Fix s0 ⩽ s ⩽ r.
We recall the expression of ns, and nmax

ns ⩾ c1
σ2

∆2
(2s + log(12K))  c2

σ2

∆2


d(2s + log(6)) ,

where c1 = 3228cHW , c2 = 16


cHW 232
√
2, c3 = 32

√
2, and nmax ⩾ nrc3 σ2

∆2

√
d log(2K).

Let k ∈ [K] such that µau ̸= µ(k), as a consequence of Assumption 1, the one-dimensional

variable

ϵu,s+ϵ′u,s√

2
, µau−µ(k)
∥µau−µ(k)∥


is 1-subGaussian. With standard concentration of subGaussian

variables (Lemma 42), we have

Pν



ϵu,s + ϵ′u,s√

2
,

µau − µ(k)

∥µau − µ(k)∥

 ⩾
1

16

∆

σ


ns

2


⩽ 2 exp


−∆2

σ2

ns

322


⩽ 1

3K
exp(−2s) ,

because ns ⩾ 322 σ2

∆2 (2
s + log(6K)).

Now, with a union bound over k ∈ [K], it holds that

P

∃k ∈ [K] \ k(au) ;



ϵu,s + ϵ′u,s√

2
,

µau − µ(k)

∥µau − µ(k)∥

 ⩾
1

16

∆

σ


ns

2


⩽ 1

3
exp(−2s) , (48)

Then,

ϵu,s, ϵ

′
u,s


is the inner product of two independent vectors, for which the assumptions

from Corollary 45 holds. We use this corollary of Hanson-Wright inequality, and obtain

Pν

ϵu,s, ϵ′u,s
 ⩾ ∆2

σ2

ns

16


⩽ 2 exp


− 2

cHW


∆2

σ2

ns

16
 1

d

∆4

σ4

n2
s

162


⩽ 1

3
exp(−2s) , (49)

where the last inequality follows from the denition of ns (and c1, c2) where ns ⩾ 8cHW
σ2

∆2 (2
s +

log(6))  16


cHW
2

σ2

∆2


d(2s + log(6)).

Finally, we want to upper bound the probability that the cross term between ϵa and ϵu,s is too
large. By conditioning with respect to the random variables (ρa, ρ′a)a, we consider these variables
as constants. We start with a union bound and the inequality a+ b ⩽ 2a  b.

Pν


∃a ∈ Ŝ ;

ϵu,s, ρ′a
+

ϵ′u,s, ρa
 ⩾ 1

4

∆2

σ2


nsnmax

4d+
√
cHW dl  cHW l



⩽2KPν


 ⟨ϵu,s, ρ⟩  ⩾

1

8

∆2

σ2


nsnmax

4d+
√
cHW dl  cHW l


,

with ρ of norm 1. Then ⟨ϵu,s, ρ⟩ is a 1-dimensional subGaussian random variable. We use therefore
the concentration inequality in Lemma 42, and we state that
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Pν


∃a ∈ Ŝ ;

ϵu,s, ρ′a
+

ϵ′u,s, ρa
 ⩾ 1

4

∆2

σ2


nsnmax

4d+
√
cHW dl  cHW l



⩽4K exp


− 1

2 · 82
∆4

σ4

nsnmax

4d+
√
cHW dl  cHW l



⩽4K exp


− 1

162
∆4

σ4

nsnmax

4d 
√
cHW dl  cHW l


,

in the last line, we use again the inequality a+ b ⩽ 2a  b.
Now, we need to bound this last expression by 1

3 exp(−2s) by using the denition of ns and
nmax We recall that l = log(12K) ⩽ 2r.

Now, with our choice for c1 and c2, it holds that ns ⩾ 322 σ
2

δ2
(2s + log(12K)) and nmax ⩾

cHW l 
√
cHW dl, so that

nsnmax ⩾ 162
σ4

∆2
(


cHW dl  cHW l)(2s + log(12K)) 

We nally use the assumption that c2 ⩾ 32
√
2 and c3 = 32

√
2, so that ns ⩾ 16

√
2 σ2

∆2


(4d)(2s + log(6)),

nmax ⩾ 16
√
2 σ2

∆2

√
4d


2s + log(6) and nmax ⩾ 16

√
2 σ2

∆2

√
4d log(2K). Then, with the inequality

a  b ⩾ (a+ b)2, we have

nsnmax ⩾ 162
σ4

∆2
(4d)(2s + log(12K)) 

We combine these lower bound on nsnmax to deduce that

nsnmax ⩾ 162
σ4

∆2
(4d 


cHW dl  cHW l)(2s + log(12K)) 

This allows us to conclude that

Pν


∃a ∈ Ŝ ;

ϵu,s, ρ′a
+

ϵ′u,s, ρa
 ⩾ 1

4

∆2

σ2


nsnmax

4d+
√
cHW dl  cHW l



⩽ 4K exp


− 1

162
∆4

σ4

nsnmax

4d 
√
cHW dl  cHW l


⩽ 1

3
exp(−2s)  (50)

We nish the proof with a union bound, gathering the inequalities (48) to (50),

Pν(Zu,s) ⩽
1

3
exp(−2s) +

1

3
exp(−2s) +

1

3
exp(−2s) = exp(−2s) 

Proof [ Proof of Lemma 36]
Throughout the proofs of Lemmas 36, 37, 38, c is a universal constant changing from one line

to another. Also, we use that, by the denition of s0 and ns, it turns out, that if s > s0 then

ns ⩽ 2c1
σ2

∆2
(2s + log(12K))  2c2

σ2

∆2


d(2s + log(6))  (51)
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We now boundK
r

s=s0+1 ns + nmax


. Relying on the expression of ns above, and the sums

r
s=1 2

s ⩽ 2r+1 and
r

s=1

√
2
s ⩽

√
2
r+1

(1 +
√
2), we deduce that

K

r

s=s0+1

ns ⩽2c1
σ2

∆2
K(2r+1 + log(12K)r)


2c2

σ2

∆2
K
√
d
√

2r(2 +
√
2) +


log(6)r




Now, from the expression of r and U , we have 2r ⩽ 2 log(4U) ⩽ c log(1(θ)). It leads to the
bound

K

r

s=s0+1

ns ⩽ c
σ2

∆2


K log(1(θ)) +K log(K) log log(1(θ)) +K


d log(1(θ))




As 1θ ⩾ K, we have K log

1
θ


⩽ 1

θ log(K), so that we can bound the term above by

K

r

s=s0+1

ns ⩽ c
σ2

∆2


1

θ
log(K) +


dK

1

θ
log(K)




We also compute nmax, we have Knmax ⩽ K + c σ2

∆2


Knr +K log(K)

√
d

, where Knr is

upper bounded by the same bound as K
r

s=s0+1 ns.
Finally, it implies that

K

r

s=s0+1

ns +Knmax ⩽ K + c
σ2

∆2


log(K)

θ
log(K) +


dK

log(K)

θ
log(K)




The second inequality in Lemma 36 is clear, and the lemma is proved.

Proof [ Proof of Lemma 37] With the bound on ns for s > s0 from Equation (51), we simplify the
terms in 2s and obtain,

r

s=s0+1

U

2s−4
ns ⩽2c1

16Uσ2

∆2

r

s=s0+1


1 +

1

2s
log(12K)


2c2

16Uσ2

∆2

r

s=s0+1


1√
2
s

√
d+

1

2s

√
d


log(6)



⩽2c1
16Uσ2

∆2
(r + 2 log(12K))


2c2

16Uσ2

∆2


(2 +

√
2)
√
d+ 2


log(6)

√
d


⩽c
σ2

∆2
U


log log


1

θ


+ log(K) +

√
d


,

because


s⩾1 12
s ⩽ 2 and


s⩾1 1

√
2
s
= 2 +

√
2. We also use in the last inequality that

log(U) ⩽ 2 log(8θ), so that r ⩽ log(2 log(8θ)) ⩽ c log log(1θ).
From the previous bound, we conclude that

r

s=s0+1

U

2s−4
ns ⩽ c

σ2

∆2
U


log log


1

θ


+ log(K) +

√
d


+ c

σ2

∆2


d log(K)KU 
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Moreover, we have by denition of U (10), U ⩾ K log(K), and then

σ2

∆2


d log(K)KU ⩽ σ2

∆2
U
√
d 

Finally, using the expression of U (10), we have

r

s=s0+1

U

2s−4
ns ⩽ c

σ2

∆2

1

θ
log(K)


log(K) +

√
d+ log log


1

θ




Proof [ Proof of Lemma 38] With the same computation as in Lemma 37, we obtain

r

s=s0+1

ns


4

θ
(1 + log(K)) exp(−2s−4)


⩽ c

σ2

∆2

log(K)

θ


log(K) +

√
d

+ c

σ2

∆2


dK

log(K)

θ
log(K)

⩽ c
σ2

∆2

log(K)

θ


log(K) +

√
d


,

where we use K ⩽ 1θ in the last inequality.

C.3. Proof of Lemma 26

In this section, we want to prove that the subroutine ADC outputs the exact partition with probability
larger than 1− , for environments in E(∆, θ,σ, N,K, d). Let ν be an environment with a minimal
gap smaller than ∆, following Assumptions 1 and 3. We highlight that the algorithm ADC uses ∆,
σ, N , K and d as parameters but not θ. Let S = b1,    , bK be a set of K arms containing one
representative by group. The objective is to nd the groupsG∗

1,    , G
∗
K up to permutation. Without

loss of generality, we x the label of the groups so that G∗
k = a ∈ [N ], µa = µbk. We denote by

k(a) as the corresponding label of any arm a a (a ∈ G∗
k(a)). With this convention, making an error

of clustering is equivalent of making an error of labeling.
We denote Ĝ for the output of the ADC routine. The algorithm labels the arms in S so that bk ∈

Ĝk for k ∈ [K] (see Line 7). Then, it labels each arm a ∈ [N ] \ S by k̂(a) dened (Equation (15))
by

k̂(a) ∈ argmin
j=1,,K


µ̂a − µ̂(j), µ̂′

a − µ̂′(j)




We have Ĝ ∼ G∗ = ∃a ∈ [N ] \ S ; k̂(a) ̸= k(a).
Consider j ∈ [K] a group and a ∈ [N ] an arm. As explained in the introduction, the statistic

d̂2a,j :=

µ̂a − µ̂(j), µ̂′

a − µ̂′(j)

is a natural non-biased estimator of ∥µa − µ(j)∥2 where µ(j) =

µbj is the center of G∗
j . In the expression of k̂(a), µ̂(j) [resp. µ̂′(j)] is the empirical mean of

representative bj computed with J =


c4

σ2

∆2L  c5
σ2

∆2


dLN

K


samples –see Equation (14) and

Line 6– and L = log(6NK). The random variable µ̂a [resp. µ̂′
a] is the empirical mean of

the arm a computed with I =


c4

σ2

∆2L  c5
σ2

∆2


dLK

N


samples – see Line 10. We emphasise
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that in high dimension, J ≍ NIK is much larger than I . We want to bound the probability of
misclassication for a single arm in [N ]\S. Let a ∈ [N ]\S such that a belongs to the groupG∗

k(a).

The misclassication probability for the arm a using the classier k̂(a) of Equation (15) is

Pν(k̂(a) ̸= k(a)) =Pν


∃j = 1,    ,K , j ̸= k(a); d̂2a,j < d̂2a,k(a)



⩽
K

j ̸=k(a)

Pν


d̂2a,j < d̂2a,k(a)


 (52)

We used here a rst union bound over j ∈ [1;K] \ k(a), and now, we upper bound each term
on the sum.

Lemma 39 For all a ∈ [N ] \ S, and j ∈ [K], if µ(j) ̸= µa then

Pν


d̂2a,j < d̂2a,k(a)


⩽ 

(K − 1)(N −K)


This lemma easily leads to the desired result (Lemma 26) by a union bound on a ∈ [N ] \ S. With
Equation (52) and Lemma 39, we have indeed

Pν


Ĝ ̸∼ G∗


= Pν


∃a ∈ [N ] \ [S] ; k̂(a) ̸= k(a)



⩽


a∈[N ]\S



j∈[K]\k(a)
Pν


d̂2a,j < d̂2a,k(a)


⩽  

Moreover, the budget τADC used to compute ADC is deterministic and equal to 2(N −K)I +
2KJ with the notation of the algorithm which leads to the second part of the lemma directly.

We have indeed the (deterministic) bound on the budget of ADC

τADC = 2(N −K)I + 2KJ ⩽ 2N + 2c4
σ2

∆2
NL  4c5

σ2

∆2

√
dKNL 

It remains now to prove the auxiliary lemma.
Proof [Proof of Lemma 39
]

Without loss of generality, we assume that µa = µ(1) and consider j = 2. We write

µ̂a = µa +
σ√
I
a = µ(1) +

σ√
I
a ,

where a :=
√
I
σ (µ̂a − µa). We dene in the same way (1) :=

√
J
σ (µ̂(1)− µ(1)) and also (2), ′a,

′(1) and ′(2).
From direct computation, reorganising the terms, we wright the event d̂2a,2 < d̂2a,1 as


µ̂a − µ̂(2), µ̂′

a − µ̂′(2)

<


µ̂a − µ̂(1), µ̂′

a − µ̂′(1)

⇔

√
2σ∥µ(1)− µ(2)∥√

I
A+

√
2σ∥µ(1)− µ(2)∥√

J
B +

√
2σ2

√
IJ

(C +D) +
σ2

J
(E + F ) > ∥µ(1)− µ(2)∥2 ,

(53)
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where

A := −


µ(1)− µ(2)

∥µ(1)− µ(2)∥ ,
′a + a√

2


; C := −


a,

′(1)− ′(2)√
2


; E := −


(2), ′(2)


;

B := −


µ(2)− µ(1)

∥µ(2)− µ(1)∥ ,
′(2) + (2)√

2


; D := −


′a,

(1)− (2)√
2


; F := −


′(1), (1)




Let us control the variation of each of these terms.
First, by Assumption 1, as in the proofs of Appendix C.1, A and B are subGaussian. With the

concentration inequality (Lemma 42) for subGaussian (real) variables, we have

Pν(A >
√
2L) ⩽ exp(−L) and P(B >

√
2L) ⩽ exp(−L) 

For the other terms, we use Hanson-Wright inequality (Corollary 45) with cHW the universal
constant from the lemma. The scalar products C, D, E and F veries all the assumptions for
Corollary 45, and for instance,

Pν


C >

cHWL

2



cHW

dL

2


⩽ exp(−L) ,

and we have the same bound for D,E and F .
We recall the expression L = log


6NK
δ


dened after Equation (14), in particular, exp(−L) ⩽

δ
6NK . With a union bound on these 6 errors, it holds that with probability larger than 1− NK we
have √

2σ∥µ(1)− µ(2)∥√
I

A+

√
2σ∥µ(1)− µ(2)∥√

J
B +

√
2σ2

√
IJ

(C +D) +
σ2

J
(E + F )

⩽
√
2σ∥µ(1)− µ(2)∥√

I

√
2L+

√
2σ∥µ(1)− µ(2)∥√

J

√
2L+

2
√
2σ2

√
IJ


cHWL

2



cHW

dL

2



+
2σ2

J


cHWL

2



cHW

dL

2




The parameters I ,J are dened as

I =


σ2

∆2


c4L  c5


K

N
dL

 
; J =


σ2

∆2


c4L  c5


N

K
dL


,

with c4 and c5 two universal constants dened as c4 = 82  4
√
2cHW and c5 = 8

√
cHW with cHW

the universal constant in Hanson-Wright inequality (Lemma 44). Now, each term in the last sum
is smaller than ∥µ(1) − µ(2)∥∆4, or ∆24. As ν ∈ E(∆, θ,σ, N,K, d), we have ∆∗ ⩾ ∆ and
∥µ(1)− µ(2)∥ ⩾ ∆. It implies that with probability larger than 1− NK, it holds that
√
2σ∥µ(1)− µ(2)∥√

I
A+

√
2σ∥µ(1)− µ(2)∥√

J
B +

√
2σ2

√
IJ

(C +D) +
σ2

J
(E + F ) ⩽ ∥µ(1)− µ(2)∥2 

From there, eq. (53) assures that

Pν


µ̂1 − µ̂(2), µ̂′

1 − µ̂′(2)

<


µ̂a − µ̂(k(a)), µ̂′

a − µ̂′(k(a))


⩽ 

KN


59



THUOT CARPENTIER GIRAUD VERZELEN

Appendix D. Analysis of ACB∗

In this section, we prove the part of Theorem 5 pertaining to ACB∗. In fact, this result is a straight-
forward consequence of the following theorem

Theorem 40 Let  > 0. For any environment ν, ACB∗ Algorithm 2 is -PAC. There exist positive
numerical constants c, c′, and c′′ such that the following holds.

PACB∗,ν


τACB∗ ⩽ cN + c′

σ2

∆2∗θ∗
L∗ log


L∗K



log(K) +

√
d+ log log(L∗) + log log(N)



+ c′
L∗
θ∗

log


L∗K



+ c′′

σ2

∆2∗


N log (N) +


dNK log (N)

 
≥ 1−  , (54)

where

L∗ :=

log2


1

θ∗K


∆2

0

∆2∗
 1


 (55)

We set the numerical constant c6 in the denition (17) of n′
p as

c6 = 2048  64cHW  92
√
cHW , (56)

where cHW is the constant arising in Hanson-Wright inequality –see Lemma 44.

D.1. Analysis of SRI for ∆ ≤ 4∆∗

We explained in Appendix C.1 how the algorithm Ŝ =SRI(,∆, θ) behaves for environments that
are not in E(∆, θ,σ, N,K, d). If∆∗ ⩾ ∆ then the identication ofK representatives goes well but,
if∆∗ ≫ ∆, the budget will be unnecessarily large. If∆∗ ⩽ ∆, then the set of representative Ŝ may
contain less than K representative. The following lemma summarizes the properties of SRI.

Lemma 41 Take ν an environment with a minimal gap ∆∗ and a balancedness θ∗. Consider
Ŝ =SRI(,∆, θ) the output of the SRI routine, designed with ∆ > 0 and θ > 0. With probability
PSRI,ν larger than 1− , the follwoing holds

• the set Ŝ does not contain two arms from the same cluster,

• if ∆∗ ⩽ ∆4, then Ŝ contains strictly less than K arms,

• if ∆∗ ⩾ ∆ and θ∗ ⩾ θ then Ŝ contains exactly one arm by group.

Proof The rst point is a consequence of Lemma 31 and Lemma 33. The third point is exactly the
result of Lemma 25.

For the second point, recall that by denition, a candidate au is bad if there exists an arm a in the
set S such that ∥µau − µa∥ ⩽ ∆4. In Lemma 33, we prove that with probability larger than 1− ,
no bad arms would be added to S. Moreover, if ∆∗ ⩽ ∆4, then there exists at least one group
whose arms are bad during all the procedure, and hence, the second point is also a consequence of
Lemma 31 and Lemma 33.
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D.2. Proof of Theorem 40

D.2.1. ACB∗ IS -PAC

We consider separately two cases ∆∗ ≤ ∆0 and ∆∗ > ∆0. We rst focus on the case where
∆∗ ⩽ ∆0.

We remind the reader that the procedure ACB∗ consists on a sequence of calls for SRI, with
different parameters, we remind these parameters as dened in (16), (17)

∆2
0 = σ2[log(K) +

√
d+ log log(6N)], l =



6(l + 1)3

θp,l =
1

K2l−p
, ∆p = ∆0


1

2p
, n′

p =


c6

σ2

∆2
p


log(3K2) +


d log(3K2)




For short, we write SRI(p, l) for SRI routine with parameters l, ∆p, and θp,l. For l ⩾ 0 and
p = 0,    , l, we dene Ep,l as the event of probability larger than 1 − l under PSRI(p,l),ν dened
in Lemma 41. We write E for the intersection of these events.

From Lemma 41, the event Ep,l has a probability larger than 1 − l. With a union bound, and
the denition of l (16), we deduce that

P(E) = P




p,l

Ep,l


 ⩾ 1−



l⩾1

l

p=0

l = 1−


l⩾0



6(l + 1)2
⩾ 1− 3 

We write (l′, p′) the rst value of (l, p) in Algorithm 2 such that Sl,p = K. On the event E , we
have that Ŝ = Sl′,p′ contains exactly one arm by cluster – see again Lemma 41.

Even, if on the event E , we know that ∆∗ ≥ ∆p′4 (see also Lemma 41). This lower bound
on∆∗ could be used to parameterize the ADC, however, we prefer to estimate∆∗ directly in Algo-
rithm 2 before applying the routine ADC.

Recall that n′
p = c6

σ2

∆2
p


log(3K2) +


d log(3K2)


. We use 2Kn′

p′ samples to estimate

∆∗–see ∆ in Line 8 of Algorithm 2. Arguing as in the proof of Lemma 31, we deduce from the
denition (56) of c6, that, on the intersection of the event E with an event of probability higher than
1− 3, we have

1

4
∆2

∗ ⩽
1

2
∆̂2 ⩽ ∆2

∗

Since, on this event, we have 2−12∆̂ ≤ ∆∗, we are in position to apply Lemma 26 toADC(3, 2−12∆̂, Ŝ).
In summary, we have proved that ACB∗ is -PAC.

D.2.2. CONTROL OF THE BUDGET OF ACB∗

We now bound the budget of ACB∗ under the same event as in the previous subsection.
The key observation was proven page 22 of (Jamieson et al., 2016), taking Tl = 2l, it holds that

θ ∈ (0, 1K),∆ ∈ (0,∆0);
∆2

0

Kθ∆2
⩽ 2l ⊂

l−1

p=0

(θ,∆) : θ ⩾ θp,l,∆ ⩾ ∆p 

61



THUOT CARPENTIER GIRAUD VERZELEN

In particular, if 2l ⩾ ∆2
0

Kθ∗∆2∗
, then, there exists p ∈ [l − 1] such that θp,l ⩽ θ∗ and ∆p,l ⩽ ∆∗.

From this result and from Lemma 41, we get that, on the event E , the stopping time l′ satises
l′ ⩽ L∗ =


log2


∆2

0
θ∗K∆2∗


–recall that L∗ is dened in (55).

We write τ1 at the total budget we have spent for computing S. Recall that the budget of the
routine SRI is almost surely bounded by Tmax –see (13) – and we upper bounded Tmax in (38). In
order to emphasize the dependency of this budget on (,∆, θ) we write Tmax(,∆, θ) in the sequel.

By (38), on the event E , we have

τ1 ⩽
L∗

l=0

l

p=0

Tmax(l,∆p, θp,l  1N)

⩽
L∗

l=0

l

p=0

2


8

θp,l
log


8K

l


+K


+ c′

σ2

∆2
p

1

θp,l
log


K

l


log(K) +

√
d+ log log


N

l




We observe that, in ACB∗ Line 3, we use SRI with θp,l  1N because any environment has
necessary a balancedness larger than 1N . It allows us to bound the log log-term in Equation (38)
by log log(N).

Now, by denition (17), θp,l = 1
K2l−p and ∆2

p =
∆2

0
2p so that 1

∆2
p

1
θp,l

= K2l

∆2
0
and then

τ1 ⩽
L∗

l=0

l

p=0


16K · 2p log


8K

l


+ 2(K + 1)



+

L∗

l=0

l

p=0

c′
σ2

∆2
0

K2l log


K

l


log(K) +

√
d+ log log


N

L∗



⩽2(L∗ + 1)2(K + 1) + cK2L
∗
log


8K

L∗



+c′
σ2

∆2
0

K(L∗ + 1)2L∗ log


K

L∗


log(K) +

√
d+ log log


N

L∗




Now, 2L∗ ⩽ 2
∆2

0
θ∗K∆2∗

, so that

τ1 ⩽2(L∗ + 1)2(K + 1) + c
∆2

0

θ∗∆2∗
log


8
K(L∗ + 1)3





+c′(L∗ + 1)
σ2

θ∗∆2∗
log


6K(L∗ + 1)3




log(K) +

√
d+ log log


6N(L∗ + 1)3





⩽cL2
∗K + c′L∗

σ2

θ∗∆2∗
log


KL∗



log(K) +

√
d+ log log


NL∗



 (57)

In the last inequality, we used the expression of ∆2
0 (16) which implies that

∆2
0

θ∗∆2∗
log


8
K(L∗ + 1)3




⩽ c′

σ2

θ∗∆2∗
log


KL∗



log(K) +

√
d+ log log


N





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Let us now consider the budget τ2 dedicated to the estimator of ∆∗. Since ∆−2
p′ ≤ 2L∗∆−2

0 , we
deduce that

τ2 = 2Knp′ ≤ 2K + c
σ2

θ∗∆2∗


log(3K2) +


d log(3K2)


 (58)

Finally, as we are working under the event ∆2∆2
∗ ∈ [12, 2], we deduce from Lemma 26 that the

budget τ3 incurred by ADC is smaller or equal to

τ3 ≤ 2N + c
σ2

∆2∗
N log


N




+ c

σ2

∆2∗


dKN log


N




 (59)

The total budget is obtained by summing the bounds (57), (58), and (59).
It remains to consider the case where ∆∗ ≥ ∆0. In that case, under the events of the previous

subsection, the rst phase of the algorithm stops at the latest as (l, p) = (L∗, 0), where L∗ =
log2(1(θ∗K)). Arguing as above, we deduce that τ1 satises

τ1 ≤ cKL2
∗ + c′L∗

1

θ∗
log


KL∗



 (60)

Regarding the second step of the algorithm, we know that p′ ≤ L∗ so that ∆−2
p′ ≤ 2L∗∆−2

0 ≤ ∆−2
0

θ∗K
.

We deduce that

τ2 ≤ 2K + c
1

θ∗

log(3K2) +


d log(3K2)

[log(K) +
√
d+ log log(6N)]

≤ 2K + c′L∗
1

θ∗
log


KL∗



 (61)

Finally, the budget τ3 is still given by (59). Gathering (60), (61), and (59) allows us to conclude.

Appendix E. Concentration inequalities

We now give a few concentration inequalities used in the paper.
First, a consequence of the denition of σ-subGaussian random variables given in Assumption 1

is the following,

Lemma 42 Let Y ∈ R be subGaussian, then for all x > 0,

P(X > x) ⩽ exp(−x2

2
), and P(X < −x) ⩽ exp(−x2

2
) 

Here is Laurent and Massart inequality , page 1325 of (Laurent and Massart, 2000).

Lemma 43 (Laurent & Massart) LetZ ∼ χ2
d a chi-square distribution, where d ⩾ 1 is the degree

of freedom, then for any x > 0,

P(Z ⩾ d+ 2
√
dx+ 2x) ⩽ exp(−x), and P(Z ⩽ d− 2

√
dx) ⩽ exp(−x)

We now give the Hanson-Wright inequality for the concentration of scalar products of subGaus-
sian random variables – see (Rudelson and Vershynin, 2013) for the proof.
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Lemma 44 (Hanson-Wright inequality) Let Y be a d-dimensional vector in Rd with indepen-
dent, centered and 1-subGaussian components. Let A be an d × d matrix. Then, there exists a
constant cHW such that for any x ⩾ 0,

P(Y TAY − E[Y TAY ] > x) ⩽ exp


− 1

cHW


x2

∥A∥2F
 x

∥A∥op


,

where ∥A∥op is the operator norm of A, ∥A∥F is the Frobenius norm.

We use in this paper the following corollary,

Corollary 45 Let ν1 and ν2 be two probability distribution, with respective expectations µ1 and
µ2. We assume that there exists Σ1 and Σ2 two symmetric d × d matrices such that, for a = 1, 2,
under νa,E = Σ

−12
a [X−µa] is a vector with independent subGaussian random variables. Assume

also that ∥Σ1∥op ⩽ σ2 and ∥Σ2∥op ⩽ σ2.
Let m1 ∈ N∗ and m2 ∈ N∗ be two integer. Consider X1,1,    , X1,n1 be i.i.d variables dis-

tributed as ν1, and X2,1,    , X2,n2 i.i.d variables distributed as ν2, independent from the observa-
tions of a2.

If ϵ1 :=
√
n1

σ


1
n1

n1
i=1X1,i − µ1


, and ϵ2 :=

√
n2

σ


1
n2

n2
i=1X2,i − µ2


, then, for any x ⩾ 1,

P(⟨ϵ1, ϵ2⟩ > x) ⩽ exp


− 2

cHW


x2

d
 x




Similarly, for any x > 0, we have

P

⟨ϵ1, ϵ2⟩ >

cHW

2
x 


cHW

2
dx


⩽ exp (−x) 

Proof
Let a = 1, 2. We specify the rotation Σa in the expression of ϵa,

ϵa =

√
na

σ


1

na

na

i=1

Xa,i − µa


=

1

σ
Σ12
a

1√
N

na

t=1

Σ−12
a [Xa,i − µa] 

Now, by assumption on the distribution νa, for all i ∈ [na], the vector Σ−12
a [Xa,i − µa] has in-

dependent and subGaussian entries. By independence of the random variables (Xa,1,    , Xa,na),
the vector 1√

N

na
t=1Σ

−12
a [Xa,i − µa] has independent entries. By independence and using the

denition of subGaussian variables given in Assumption 1, Ya := 1√
N

na
t=1Σ

−12
a [Xa,i − µa] is

composed of independent and subGaussian entries. It holds then that

⟨ϵ1, ϵ2⟩ = Y T
1

Σ
12
1 Σ

12
2

σ2
Y2 =


Y1

Y2

T
S


Y1

Y2


,

where the matrix S := 1
2


 0

Σ
1/2
1 Σ

1/2
2

σ2

Σ
1/2
1 Σ

1/2
2

σ2 0


 is a 2d×2d matrix. We can then apply Lemma 44,

noticing that E[⟨ϵ1, ϵ2⟩] = 0, ∥S∥op = ∥Σ12
1 Σ

12
2

1
σ2 ∥op2 ⩽ 12 and ∥S∥2F ⩽ d2.
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