
A Appendix

A.1 Algorithm for Learning Categorical Data

The over all training algorithm for learning categorical generative models is similar to the other
cases. To simulate the conditioned process, given any exit point x 2 Cd,m ✓ Bd, we know that
QCd,m(· | Z⌧ = x) = QBd(· | Z⌧ = x) and thus (5) can be reused. The training of the network is
also similar, the only difference is that we have the additional term rz logBer(⌦ | Zt) in the output
of the network to ensures that the generative process in proposition 2.10 is guaranteed to hit ⌦ when
it exists V . The training loss is thus

L(✓) = 1

2
Ex⇠⇧⇤

Z⇠Qx

h Z ⌧

0

��I{Zt 2 Cd,m} �
�
f✓
t (Zt) +rZt logBer(⌦ | Z)�rZt logBer(Zt | x)

���2 dt

� log p✓0(Z0)
i
+ const.

A.2 Practical Algorithm

We give a detailed practical algorithm.

Discretized process Suppose that the diffusion step size at step k is ✏k. Given the exit point x, the
discretized conditioned process can be simulated by

Ztk+1 =
⇣
btk(Ztk) + �2

tk(Ztk)rz log h
⇧⇤

tk (Ztk)
⌘
✏k +

p
✏k�tk(Ztk)⇠k, Zt0 ⇠ Q⇧⇤

0 , (16)

where ⇠k ⇠ N (0, I) is a standard Gaussian noise. Note that (16) is terminated at tk when Ztk firstly
hits the desired domain. Alternatively, we can first sample (discretized) unconditioned process by

Ztk+1 = btk(Ztk)✏k +
p
✏k�tk(Ztk)⇠k, Zt0 ⇠ Q⇧⇤

0 , (17)

And then apply the rotation operators defined in Section 2.3.2 such that the sampled trajectory ends
at x.

A simplified loss Similar to Song and Ermon [41], Ho et al. [18], we use a stochastic version of loss
(15), in which we only uniformly sample temporal snapshots to compute the loss.

L̂(✓) = 1

2
EQ⇧⇤Et⇠Unif{0,...,⌧}

h���t(Zt)
�1(s✓t (Zt)� bt(Zt | Z⌧))

��2 � log p✓0(Z0)
i
+ const. (18)

In Algorithm A.2, we summarize the training procedure of FHDM.

Algorithm 2 Learning Generative Models by First Hitting Diffusion
Inputs: A data {x(i)} drawn from ⇧⇤ on ⌦. A baseline process Q and a model P✓ that are
absorbing to ⌦.
Goal: Find ✓ such that P✓

⌦ ⇡ ⇧⇤.
Training: By minimizing L(✓).
(Optional) Pre-simulate unconditioned trajectories of Q using (17).
for training iters do

Get a mini batch of data from training set.
//Optionally, we can use fast bridge sampling tricks to get conditioned sample by rotating //
pre-simulated unconditioned trajectories.
Sample trajectories Q(· | Z⌧ = x) for each data x in the mini batch using (16)
Calculate the mini-batch loss L(✓) defined in Equ (18).
Apply gradient descent to update ✓.

end for

A.3 Sampling with first hitting h-transform

The h-transform formula on first hitting diffusion readily provides a simple mechanism for approxi-
mate sampling from ⇧⇤: Assume the baseline process X is designed simple enough such that the

14

conditional harmonic measure Q⌦(· | Zt = z) is easy to calculate, then we can approximately h⇧⇤

t (z)
in (10) by Monte Carlo sampling from Q⌦(· | Zt = z):

h⇧⇤

t (z) ⇡ 1

m

mX

i=1

⇡⇤(x(i)), x(i) ⇠ Q⌦(· | Zt = z),

use it simulate process (9). The gradient r log h⇧⇤

t can be approximated with either the reparameteri-
zation method or score function method. See Algorithm A.3.

Algorithm 3 Approximate Sampling by First Hitting Diffusion
Goal: Draw sample from ⇧⇤ on ⌦ 2 Rd.
Prepare a baseline diffusion process Z ⇠ Ito⌦(b,�) in (3) with exit distribution Q⌦(A | Zt =
z) = Q(Z⌧ 2 A | Zt = z). Let h = d⇧⇤/dQ⌦(·|Z0 = z0) be the density ratio between ⇧⇤ and
Q⌦(·|Z0 = z0), where the initialization Z0 = z0 is in V \ ⌦.
Simulate the following process {Ẑt} starting from Ẑ0 = z0 and stop at the first hitting time
⌧ = inf{t � 0: Ẑt 2 ⌦}:

dẐt =
⇣
bt(Ẑt) + �2

t (Ẑt)rz log ĥt(Zt)
⌘
dt+ �t(Ẑt)dWt, (19)

where ĥt(z) = 1
m

Pm
i=1 ⇡

⇤(x(i)), where {x(i)}mi=1 is drawn i.i.d. from Q⌦(· | Zt = z); the
derivative rz log ĥt(z) can be calculated by either the reparameterization trick or score function
method.
Return Ẑ⌧ as an approximate draw from ⇧⇤.

A.4 Connection with SMLD and DDPM

Standard diffusion generative models such as SMLD and DDPM determinates the diffusion process
at a fixed time, which can be included as a special first hitting model as shown in Example 2.4. We
clarify the connection to SMLD and DDPM for completeness here. In this case, we set Q to be
an Ornstein-Uhlenbeck (O-U) process dZt = ↵tZtdt+ �tdWt initialized at Z0 ⇠ N (µ0, v0) and
stopped at a deterministic time t = t, where ↵t 2 R and �t � 0, v0 � 0, 8t. This is a Gaussian
process. Let Zt ⇠ N (µt, vt). Denote by Z̄t = Zt�t the time reversed process, which follows [2]

dZ̄t =

✓
�↵t�tZ̄t + �2

t�t
µt�t � Z̄t

vt�t

◆
dt+ �t�tdW̄t,

where W̄t is a copy of standard Brownian motion. If we set v0 ! +1 in the initial Z0, we expect to
have vt ! +1 under proper regularity conditions on ↵t and �t, the second term in the drift of Z̄t is
canceled, yielding dZ̄t = �↵t�tZ̄tdt+ �t�tdW̄t. This then reduces to the processes used in SMLD
(↵t = 0), and DDPM and SDE method in [43] (↵t > 0). This framework of learning fixed-time
diffusion models using bridge processes are explored separately in a recent work [34]. The authors
devote more in-depth discussions on the fixed-time diffusion case in a separate work.

A.5 Additional Experiment Details

A.5.1 Point Cloud Generation

Training details The ShapeNet dataset contains 51,127 shapes from 55 categories and is randomly
split training, testing and validation set by the ratio 80%, 15% and 5%. For each shape, we sample
2048 points to acquire the point clouds and normalize each of them to zero mean and unit variance.

We build our method on Luo and Hu [26] in which the encoder of a flow-based model is used to learn
a latent code of the shape and conditioning on the shape latent code, the point are independently
generated based on a diffusion model. We substitute the DDPM-type [18] of diffusion model with
ours and all the other components remain the same. Each point is generated using 100 diffusion steps
and the step size linearly decays starting from 0.02 to 10�4. We use the same network architecture
for flow-based model and point diffusion network. We train the model for 1M steps with batch size
128 using Adam optimizer [21].

15

More Details on Evaluation Metrics Both MMD, JSD and 1-NN measures the fidelity of the
generated samples. The 1-NN score is the accuracy of 1-NN classifier in predicting whether a
point cloud is generated by the model or from the data. Lower 1-NN scores suggest higher quality.
MMD and JSD measures the probability distance between the point distributions of the generated set
and the reference set from data and thus lower MMD and JSD means higher quality. COV detects
mode-collapse and higher COV suggests more diverse generated samples.

A.5.2 Generating Distribution on Sphere

Training details All datasets are split into training, validation and test sets with (0.8, 0.1, 0.1)
proportions. We train the model for 2000 iterations using Adam Optimizer [21] with learning rate
0.05 and batch size 128. We use a three-layer MLP with 100 hidden units and ReLU activation to
approximate the drift. We set the maximum diffusion step as 10K with step size 5 ⇥ 10�4. The
model on average takes 1K steps to hit and seldom takes more than 5K to hit. See section 4.2 for
more details on the hitting time distribution.

A.5.3 Graph Generation

Training details We set the maximum number of SDE steps as 10K, and it takes on average about
100 steps to hit. See section 4.2 for more detailed analysis. At each step, we set the standard deviation
of gaussian noise as 0.5. We initialize all the coordinate 0.5 and stop the updating of a coordinate
at the first time its distance to 0 or 1 is less than 0.05. We use the same network architecture and
training pipeline as Niu et al. [30]. Adam optimizer [21] with 0.001 learning rate is applied. Batch
size is set to 32 and for each graph, we randomly sample 6 snapshot in the trajectory for training. The
score matching loss of a hit coordinate is masked out at training.

A.5.4 Segmentation Map Generation

Training details Our network architecture and training pipeline is almost the same as the multinomial
diffusion model proposed in Hoogeboom et al. [19]. The only architecture difference is that Hooge-
boom et al. [19] first feed the image into an embedding layer before passing to the subquential U-Net
[35] like structure while we use a linear layer with the same output dimension. This is because the
multinomial diffusion model [19] is a discrete diffusion in which the value at each pixel is considered
to be discrete while FHDM is a continuous diffusion. We set the number of maximum diffusion steps
to be 100 and the step size to be 0.1. We apply step-decayed Gaussian noise at different diffusion
steps, in which the standard deviation at initial is 1 and decay to half at step 500 and 750. The pixel is
hit and stopped to update at the first time its largest categorical score (among 8 of them) is greater
than 1� ✏ with ✏ = 0.01. We apply the same data augmentation and train the model for 500 epochs
with batch size 64, learning rate 10�4 and Adam optimizer [21]. For each image in the batch, we
randomly sample one time snapshot along the diffusion trajectory for training.

For this task, we apply the fast bridge sampling method proposed in Section 2.3.2. At the beginning
of each epoch, we generate 10⇥ batch size⇥H ⇥W unconditional SDE trajectories where H,W is
the height and width of the images. At the training time, to simulate the SDE trajectories of a given
image in the training set, for each pixel, we randomly select one saved unconditional SDE trajectories
and rotates it such that it ends at that pixel.

A.6 Additional Experiment Results

Number of diffusion steps When we restrict the number of diffusion steps of EDP-GNN [30], the
second-best approach, similar to that of FHDM (120), we observe a significant performance drop. As
shown in Table 5, the performance of EDP-GNN degenerates badly when we decrease its diffusion
steps from 4K to 120.

Acceleration by fast sampling We give brief analysis on the acceleration effect of the fast bridge
sampling method described in Section 2.3.2. When applied to the segmentation generation experiment,
we pre-simulate 640 trajectories in the beginning of each training epoch which gives 2.5x acceleration
from 24.3 cpu time/epoch to 9.8 cpu time/epoch, making the training time of FHDM is comparable
to Hoogeboom et al. [19] (6.5 cpu time/epoch). We remark that although FHDM has slightly larger
training overhead, its only requires less than 100 diffusion steps at inference, giving a 40x speed up
compared with Hoogeboom et al. [19].

16

Method Community-small Ego-small AvgDeg. Clus. Orbit. Avg. Deg. Clus. Orbit. Avg.
EDP-GNN 0.053 0.144 0.026 0.074 0.052 0.093 0.007 0.050 0.062

EDP-GNN (step=120) 0.586 0.253 0.705 0.515 0.141 0.114 0.036 0.097 0.306
Ours 0.0040.0040.004 0.1040.1040.104 0.0010.0010.001 0.0360.0360.036 0.0190.0190.019 0.0470.0470.047 0.0050.0050.005 0.0240.0240.024 0.0300.0300.030

Table 5: Comparing FHDM with EDP-GNN with similar diffusion steps.

Uniform
Small Noise

Uniform
Large Noise

Decayed
Noise

Figure 6: Compare the generated segmentation maps with different noise schedule.

Ablation studies on noise schedule In practice, we observe that the design of the noise schedule can
be important for some tasks such as segmentation generation. We show samples generated by FHDM
with uniformly small noise (std=0.25), uniformly large noise (std=1) and decayed noise as described
in Section in 4.1. It is worth noticing that using a uniformly small noise generates over-smoothed
and degenerated images that fail to reveal the details while using a uniformly large noise gives more
diverse but noisy images. In comparison, the decaying noise generates high-quality diverse images
with fine details.

A.7 Visualization of Generated Samples

Point Cloud Generation Please see Figure 7 and 8 for the generated airplane and chair point cloud
using FHDM.

Generating Distribution on Sphere Please see Figure 11 for the generated graphs using FHDM.

Segmentation Map Generation Please see Figure 9 for the generated distributions on sphere by
FHDM.

Graph Generation Please see Figure 11 for the generated graphs using FHDM.

Segmentation Map Generation Please see Figure 10 for the generated segmentation maps by
FHDM.

A.8 Discretization Error Analysis

Consider the following Ito process

dZt = b(Zt)dt+ �(Zt)dWt

17

Figure 7: The generated airplane point cloud by FHDM.

and a open subset V ✓ Rd. Here b 2 Rd is the drift and � 2 Rd⇥d is the diffusion matrix. We stop
the process when Zt hit the domain ⌦ and denote the hitting time as ⌧ := inft�0{Zt /2 V }. We
consider the discretalization error of the conditional distribution ⇡T with temporal truncation T , i.e,

⇡T := law of X⌧ | ⌧  T.

This corresponds to the situation that we discard the non-hit process after waiting for T time. To
simulate the above process, we consider the Euler discretalization on [0, T]. Suppose R is a set of
grid points on [0, T] in which we define

rt = max{r 2 R : r  t}.
The Euler discretized process is thus defined as

dZ̄t = b(Z̄rt) + �(Z̄rt)dWt.

And similarily, we can define its (discretize) stopping time ⌧̄ := minr2R{r : Z̄rt /2 V }. We want to
bound the discrepancy between ⇡T and the following distribution

⇡̄T := law of X̄⌧̄ | ⌧̄  T.

We consider the Wassestein distance W[⇡̄T ,⇡T] for measuring the discrepancy. In this section, || · ||
is vector norm when applied to vector and is matrix operator norm when applied to matrix.
Assumption 1. b and � is L-Lipschitz and supz(||b(z)||+ ||�(z)||)  L.
Assumption 2. There exists a bounded C2

b function � : Rd ! R such that � > 0 on V , � = 0 on ⌦
and � < 0 on Rd \ (V [⌦) and satisfies the non-characteristic boundary condition k�r�k � 2L�1

on {k�k  r} for some r > 0.

Assumption 1 is a standard assumption on the Lipschitz continuity and boundedness on the drift and
diffusion function. Assumption 2 is more on a technical condition and is introduced in Bouchard
et al. [4] and intuitively it can be understood in the way that there exists a bounded smooth function
that can indicate whether we are within V or out of V .

18

Theorem 1. Let � := minrt 6=rt0 |rt � rt0 |. Under Assumption 1, 2 and assume that T is properly
large such that P(⌧ � T � 1)  1/4, we have, there exists ✏ > 0 such that for any �  ✏,

W2[⇡̄T ,⇡T] = O(exp(cT)�),

for some absolute constant c < 1.

Intuitively, we show that when T is properly large (which is true in practice as we should wait the
process a reasonably enough time for hitting) and the step size is small enough, the discretalize error
is small.

Proof. Throughout the proof, c denotes absolute constant and may vary in different lines. We consider
the temporal augmented process Yt = [Zt, t] in which

dYt = b̃(Yt)dt+ �̃(Yt)dWt.

Here b̃ and �̃ are defined as

b̃(y) = [b(x), 1] , �̃y(y) =


�(y) 0
0> 0

�
.

It is not hard to verify the Lipschitz continuity and boundedness of b̃ and �̃. We also define the hitting
set of the process Yt by Ṽ = {y : x 2 V or t < T + 1}. It is easy to show that
tildeV is a closed subset of Rd+1 and the stopping time ⌧ := inft�0{t : Yt /2 Ṽ }  T +1. Similarly,
we can define the discretized version

dȲt = b̃(Ȳrt)dt+ �̃(Ȳrt)dWt.

Here we slightly abuse the notation of ⌧ and ⌧̄ , making them denoting the hitting time of process Yt

and Ȳt rather than Zt and Z̄t. We introduce the following Lemma used in Bouchard et al. [4].

Lemma 1 (Theorem 3.11 in Bouchard et al. [4]). Under assumption 1 and 2, there exists ✏ > 0 such
that when �  ✏, E[|⌧ � ⌧̄ |]  c�1/2 for some constant c > 0.

Note that

E[||Ȳ⌧̄ � Y⌧ ||2 | ⌧̄  T] 
Z

E[||Ȳ⌧̄ � Y⌧ ||2 | |⌧̄ � ⌧ | = s, ⌧̄  T] Pr(|⌧̄ � ⌧ | = s | ⌧̄  T)ds.

Note that we can decompose

E[||Ȳ⌧̄ � Y⌧ ||2 | |⌧̄ � ⌧ | = s, ⌧̄  T]

2E[||Ȳ⌧̄ � Y⌧̄ ||2 | |⌧̄ � ⌧ | = s, ⌧̄  T] + 2E[||Y⌧̄ � Y⌧ ||2 | |⌧̄ � ⌧ | = s, ⌧̄  T].

Using Lemma A.2 in Bouchard et al. [4] and Holder’s inequality, we have

 E[||Ȳ⌧̄ � Y⌧̄ ||2 | |⌧̄ � ⌧ | = s, ⌧̄  T]  sup
t2[0,T+s]

||Ȳ⌧̄ � Y⌧̄ ||2  c�,

for some constant c. Also, by the boundedness of b̃

||Y⌧̄ � Y⌧ || = ||
Z max(⌧̄ ,⌧)

min(⌧̄ ,⌧)
b̃(Yt)dt||  (L+ 1)||⌧ � ⌧̄ ||.

Using these two bounds,

E[||Ȳ⌧̄ � Y⌧ ||2 | |⌧̄ � ⌧ | = s, ⌧̄  T]  c(�+ ||⌧ � ⌧̄ ||2).

This gives that

E[||Ȳ⌧̄ � Y⌧ ||2 | ⌧̄  T] 
Z T

0
c(�+ ||⌧ � ⌧̄ ||2)Pr(|⌧̄ � ⌧ | = s | ⌧̄  T)ds

 c

�+

Z T

0
s2Pr(|⌧̄ � ⌧ | = s | ⌧̄  T)ds

!
.

19

Now we proceed to bound

Pr(|⌧̄ � ⌧ | = s | ⌧̄  T) =
Pr(|⌧̄ � ⌧ | = s, ⌧̄  T)

Pr(⌧̄  T)
 Pr(|⌧̄ � ⌧ | = s)

Pr(⌧̄  T)
.

Note that

Pr(⌧̄ > T) =

Z T+1

0
Pr(⌧̄ > T, ⌧ = s)ds

=

Z T�1

0
Pr(⌧̄ > T, ⌧ = s)ds+

Z T+1

T�1
Pr(⌧̄ > T, ⌧ = s)ds

 (T � 1)Pr(|⌧̄ � ⌧ | � 1) +

Z 1

T�1
Pr(⌧ = s)ds

 (T � 1)E(|⌧̄ � ⌧ |) + (1� F⌧ (T � 1))

 c�+ (1� F⌧ (T � 1)),

where F⌧ denotes the CDF of ⌧ . When T is properly large and � is small enough, we have
Pr(⌧̄ > T)  1/2 and thus Pr(⌧̄  T) = 1� Pr(⌧̄ > T) � 1/2. This implies that

Pr(|⌧̄ � ⌧ | = s | ⌧̄  T)  2Pr(|⌧̄ � ⌧ | = s).

We thus conclude that
Z T

0
s2Pr(|⌧̄ � ⌧ | = s | ⌧̄  T)ds

2

Z T

0
s2Pr(|⌧̄ � ⌧ | = s)ds

2T

Z T

0
sPr(|⌧̄ � ⌧ | = s)ds

=2TE(|⌧̄ � ⌧ |)
c�.

We finally conclude that

W2[⇡̄T ,⇡T]  E[||Z̄⌧̄ � Z⌧ ||2 | ⌧̄  T]  E[||Ȳ⌧̄ � Y⌧ ||2 | ⌧̄  T]  c�.

20

Figure 8: The generated chair point cloud by FHDM.

21

9ROFDQR (DUWKTXDNH)ORRG)LUH

'DWD

*HQHUDWHG

Figure 9: The generated distrubution on sphere by FHDM.

22

Figure 10: The generated segmentation maps by FHDM.

23

Figure 11: True and generated graphs of ego (upper rows) and community (lower rows) datasets.

24

A.9 Proofs

Proof of Proposition 2.3. As QBd is a product of identical and independent one-dimensional pro-
cesses, it is sufficient to consider the one dimension case d = 1, in which case the process is a Brow-
nian motion dZt = dWt starting from interval Z0 2 [0, 1] and stopped ⌧ = mint{t : Zt 62 (0, 1)}
when it exits the interval. Hence, the Poisson kernel is

QBd
⌦ (x | z) = Pr(W⌧ = x | Wt = z) = Pr(W⌧ = x | Wt = z), 8x 2 {0, 1}

Then, it is a textbook result that Pr(W⌧ = x | Wt = z) = xz + (1 � x)(1 � z) = Ber(x|z). See
e.g., Eq. 3.0.4, Page 212 of Borodin and Salminen [3].

Proof of Proposition 2.5. It is a straightforward application of formula (4) in the case of bt = 0,
�t(Zt) = I(kZtk < 1) and q⌦(x|z) = 1�kzk2

kx�zkd as shown in (2).

Proof of Proposition 2.6. It is a straightforward application of formula (4) in the case of bt = 0,
�t(Zt) = diag(I(Zt 2 (0, 1))) and Q⌦(x|z) = Ber(x|z) as shown in Proposition (2.3).

Proof of Proposition 2.7. This is the standard result on Brownian bridge. In particular, we just need
to note that (ZT | Zt = z) ⇠ N (z, T � t) and apply formula (4).

Proof of Proposition 2.8. Eq. (13) is the direct result of Q⇧⇤
= argminP KL(P || Q⇧⇤

), and that

KL(P || Q⇧⇤
) ⌘ KL(P || Q)� EP[log ⇡

⇤(Z⌧)],

where we used Q⇧⇤
(dZ) = Q(dZ)⇡⇤(Z⌧).

Eq (12) is a simple consequence of the disintegration theorem. Note that any P that satisfies P⌦ = ⇧⇤

can be written into P(dZ) = ⇧⇤(dZ⌧)P(dZ | Z⌧). By the chain rule of KL divergence,
KL(P || Q) = KL(⇧⇤ || Q⌦) + EZ⌧⇠⇧⇤ [KL(P(·|Z⌧) || Q(·|Z⌧))] . (20)

Since it is constrained that P⌦ = ⇧⇤, the optimal P is determined by the choice of P(·|Z⌧) and it
should yield P(dZ | Z⌧) = Q(dZ | Z⌧). Therefore, the optimal P is ⇧⇤(Z⌧)Q(·|Z⌧) = Q⇧⇤

.

In fact, by the same derivation, we can see that (12) remains correct if we replace KL(P || Q) with
KL(Q || P).

Proof of Proposition 2.9. Denote by Qx = Q(·|Z⌧ = x). Let p✓ be the density function of P✓ w.r.t.
to some reference measure (e.g., Q⇧⇤

). We have

KL(Q⇧⇤
|| P✓) = �EZ⇠Q⇧⇤ [log p✓(Z)] + const

= �Ex⇠⇧⇤EZ⇠Qx [log p✓(Z)] + const

= Ex⇠⇧⇤
⇥
KL(Qx || P✓)

⇤
+ const,

where KL(Qx || P✓) can be evaluated using Girsanov theorem,

KL(Qx || P✓) = KL(Qx
0 || P✓

0) +
1

2
EZ⇠Qx

Z ⌧

0

��s✓t (Zt)� bt(Zt|x)
��2
2
dt

�

= EZ⇠Qx


� log p✓0(Z0) +

1

2

Z ⌧

0

��s✓t (Zt)� bt(Zt|x)
��2
2
dt

�
+ const.

Hence

L(✓) = Ex⇠⇧⇤,Z⇠Qx


� log p✓0(Z0) +

1

2

Z ⌧

0

��s✓t (Zt)� bt(Zt|x)
��2
2
dt

�
+ const

= EZ⇠Q⇧⇤


� log p✓0(Z0) +

1

2

Z ⌧

0

��s✓t (Zt)� bt(Zt|Z⌧)
��2
2
dt

�
+ const.

25

Proof of Proposition 2.10. Assume kfk1 := supt2[0+1),x2[0,1]d kft(x)k2 < +1. Consider the
following two processes with the same initialization:

Q0 : dZt = I(Zt 2 (0, 1)) � (rz log Ber(⌦ | Zt)dt+ dWt)

Qf : dZt = I(Zt 2 (0, 1)) �
�
f✓
t (Zt) + rz log Ber(⌦ | Zt)dt+ dWt

�
.

(21)

Girsanov theorem shows that KL(Q0 || Qf) = 1
2EQ0 [

R ⌧
0 kft(Zt)k2]  1

2 kfk
2
1 EQ0 [⌧] < +1,

where we used the fact that the expected hitting time EQ0 [⌧] of Q0 is finite (see Lemma A.1 below).

Now KL(Q0 || Qf) < +1 implies that that Q0 and Qf has the same support. Hence the fact that
Q0 guarantees to hit ⌦ when exiting V , i.e., Q0(Z⌧ 2 ⌦) = 1, when exit implies that Qf has the
same property, i.e., Qf (Z⌧ 2 ⌦) = 1.

Lemma A.1. Let ⌧0 = inf{t : Zt 2 ⌦} be the first hitting time to ⌦ ✓ {0, 1}d of the the process Q0

in Eq. (21). Then E[⌧0] < +1.

Proof. Consider the following two processes starting from the same deterministic initialization
Z0 = Y0 = z0 2 (0, 1)d:

Q0 : dZt = I(Zt 2 (0, 1)) � (rz log Ber(⌦ | Zt)dt+ dWt)

Q⇤ : dYt = I(Yt 2 (0, 1)) � (dWt) .

Denote by ⌧0 and ⌧⇤ the corresponding hitting times to ⌦, that is, ⌧0 = inf{t : Zt 2 ⌦}, and
⌧⇤ = inf{t : Yt 2 ⌦}.

Then we know from h-transform that Q0 is the conditioned process of Q⇤ given that Z⌧ 2 ⌦, that is,
Q0 = Q⇤(· | Z⌧ 2 ⌦).

Therefore, the first hitting time ⌧0 of Q0 has the same law as that of ⌧⇤ | Y⌧ 2 ⌦, that is, Q0(⌧0 2
A) = Q⇤(⌧⇤ 2 A | Y⌧ 2 ⌦) for any measurable set A ✓ [0,+1).

But we know that E[⌧⇤ | Y⌧ 2 ⌦] < +1 due to the diffusion nature of Brownian motion. Hence,
E[⌧0] = E[⌧⇤ | Y⌧ 2 ⌦] < +1.

A.10 More Discussions on First Hitting Diffusion Models on Rd

Assume the distribution ⇧⇤ of interest is on Rd. To design first hitting diffusion models that yield
results on ⇧⇤, we embed Rd into the hyperplane ⌦ := {(x, y) 2 Rd+1 : y = ymax} in Rd+1 where
ymax is a constant (e.g., ymax = 1). We construct a baseline process Q̄ to be a diffusion process on
Rd+1:

Q̄ : dZt = dWt, dYt = b(Yt, t)dt+ �dW̃t, Z0 = z0 2 Rd, Y0 = 0, (22)

where Wt and W̃t are independent Brownian motions in Rd and R, respectively.

We can think Yt as an “effective age” of the particle Zt, and the sample is collected when Yt = ymax.
Therefore, the hitting time of interest is ⌧ := {t : (Xt, Yt) 2 ⌦} = {t : Yt = ymax}.

A special case is � = 0 and b(Yt, t) = 1, in which case (Zt, Yt) hits the target domain ⌦ in the fixed
time t = ymax. This corresponds to the standard denoising diffusion models [e.g., 43].

Another extreme case is to take b = 0, so that Yt is a Brownian motion without a drift. In this case, the
hitting time follows an inverse Gamma distribution, and the exit distribution is a Cauchy distribution:

(⌧ | Zt, Yt) ⇠ InvGamma

✓
1

2
,
(ymax � Yt)2

2�2

◆
, (Z⌧ | Zt, Yt) ⇠ Cauchy

✓
Zt,

ymax � Yt

2

◆
,

where the density of InvGamma(↵,�) is f(x;↵,�) = �↵

�(↵)x
�(↵+1) exp(��/x), and density of

Cauchy(µ, s) is f(x;µ, s) / (s2 + kx� µk2)�(d+1)/2.

An advantage of using random hitting is that it allows us to spend less time on generating Zt that is
close to the starting point (i.e., small kZt � x0k), and more time on the further points. It allows us to
adapt the time based on the “hardness” of the target distribution.

26

Accelerating the First Hitting Time The inverse Gamma distribution above has a heavy tail and
occasional causes large hitting time. One way to ensure a bounded hitting time is to derive the
conditioned process of Brownian motion given that the hitting time ⌧ is no larger than a threshold.
Specifically, assume B : dYt = dWt starting from Y0 = y0 < ymax and ⌧ = inf{t : Yt = ymax}.
Using h-transform, we can show that B(· | ⌧  T) is governed by the following diffusion process:

BT := B(· | ⌧  T) : dYt = ry log

✓
1� F

✓
|ymax � Yt|
�
p
T � t

◆◆
dt+ �dW̃t,

where F is the CDF of standard Gaussian distribution.

Taking b(Yt, t) = ry log
⇣
1� F

⇣
|ymax�Yt|
�
p
T�t

⌘⌘
in Eq. 22, we can obtain the following Poisson

kernel for Q̄:

Q̄(Z⌧ = dx0 | Zt = x, Yt = y) = �

✓
↵,

�(x0;x, y)

T � t

◆
|ymax � Yt|
�(x0;x, y)↵

dx0,

where ↵ = d+1
2 and �(x0;x, y) = 1

2 ((ymax � y)2 + kx0 � xk2), and �(↵, x) is the up-
per incomplete gamma function. Correspondingly, the hitting time of this new process is
InvGamma

⇣
1
2 ,

(ymax�Yt)
2

2�2

⌘
truncated on [0, T].

27

	Introduction
	Main Framework
	First Hitting Diffusion Processes
	Diffusion Process Tools: Conditioning and h-transform
	Learning First Hitting Diffusion Models
	Learning Categorical Generative Models
	Fast Sampling of Bridges

	Discretization Error

	Related Work
	Experiments
	Generation Experiment
	Analysis

	Conclusion
	Acknowledge
	Appendix
	Algorithm for Learning Categorical Data
	Practical Algorithm
	Sampling with first hitting h-transform
	Connection with SMLD and DDPM
	Additional Experiment Details
	Point Cloud Generation
	Generating Distribution on Sphere
	Graph Generation
	Segmentation Map Generation

	Additional Experiment Results
	Visualization of Generated Samples
	Discretization Error Analysis
	Proofs
	More Discussions on First Hitting Diffusion Models on Rd

