
Supplementary Materials for
MLP-Mixer: An all-MLP Architecture for Vision

Ilya Tolstikhin∗, Neil Houlsby∗, Alexander Kolesnikov∗, Lucas Beyer∗,

Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner,

Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy
∗equal contribution

Google Research, Brain Team

{tolstikhin, neilhoulsby, akolesnikov, lbeyer,
xzhai, unterthiner, jessicayung†, andstein,

keysers, usz, lucic, adosovitskiy}@google.com
†work done during Google AI Residency

A Things that did not help

A.1 Modifying the token-mixing MLPs

We ablated a number of ideas trying to improve the token-mixing MLPs for Mixer models of various
scales pre-trained on JFT-300M.

Untying (not sharing) the parameters Token-mixing MLPs in the Mixer layer are shared across
the columns of the input table X ∈ RS×C . In other words, the same MLP is applied to each of the C
different features. Instead, we could introduce C separate MLPs with independent weights, effectively
multiplying the number of parameters by C. We did not observe any noticeable improvements.

Grouping the channels together Token-mixing MLPs take S-dimensional vectors as inputs. Every
such vector contains values of a single feature across S different spatial locations. In other words,
token-mixing MLPs operate by looking at only one channel at once. One could instead group
channels together by concatenating G neighbouring columns in X ∈ RS×C , reshaping it to a matrix
of dimension (S · G) × (C/G). This increases the MLP’s input dimensionality from S to G · S
and reduces the number of vectors to be processed from C to C/G. Now the MLPs look at several
channels at once when mixing the tokens. This concatenation of the column-vectors improved linear
5-shot top-1 accuracy on ImageNet by less than 1–2%.

We tried a different version, where we replace the simple reshaping described above with the
following: (1) Introduce G linear functions (with trainable parameters) projecting RC to RC/G. (2)
Using them, map each of the S rows (tokens) in X ∈ RS×C to G different (C/G)-dimensional
vectors. This results in G different “views” on every token, each one consisting of C/G features.
(3) Finally, concatenate vectors corresponding to G different views for each of the C/G features.
This results in a matrix of dimension (S ·G)× (C/G). The idea is that MLPs can look at G different
views of the original channels, when mixing the tokens. This version improved the top-5 ImageNet
accuracy by 3–4% for the Mixer-S/32 architecture, however did not show any improvements for the
larger scales.

Pyramids All layers in Mixer retain the same, isotropic design. Recent improvements on the ViT
architecture hint that this might not be ideal [9]. We tried using the token-mixing MLP to reduce the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Table 1: Hyperparameter settings used for pre-training Mixer models.

Model Dataset Epochs lr wd RandAug. Mixup Dropout Stoch. depth

Mixer-B ImNet 300 0.001 0.1 15 0.5 0.0 0.1
Mixer-L ImNet 300 0.001 0.1 15 0.5 0.0 0.1
Mixer-B ImNet-21k 300 0.001 0.1 10 0.2 0.0 0.1
Mixer-L ImNet-21k 300 0.001 0.1 20 0.5 0.0 0.1
Mixer-S JFT-300M 5 0.003 0.03 – – – –
Mixer-B JFT-300M 7 0.003 0.03 – – – –
Mixer-L JFT-300M 7/14 0.001 0.03 – – – –
Mixer-H JFT-300M 14 0.001 0.03 – – – –

number of tokens by mapping from S input tokens to S′ < S output tokens. While first experiments
showed that on JFT-300M such models significantly reduced training time without losing much
performance, we were unable to transfer these findings to ImageNet or ImageNet-21k. However, since
pyramids are a popular design, exploring this design for other vision tasks may still be promising.

A.2 Fine-tuning

Following ideas from BiT [4] and ViT [2], we also tried using mixup [10] and Polyak averaging [5]
during fine-tuning. However, these did not lead to consistent improvements, so we dropped them. We
also experimented with using inception cropping [7] during fine-tuning, which also did not lead to
any improvements. We did these experiments for JFT-300M pre-trained Mixer models of all scales.

B Pre-training: hyperparameters, data augmentation and regularization

In Table 1 we describe optimal hyperparameter settings that were used for pre-training Mixer models.

For pre-training on ImageNet and ImageNet-21k we used additional augmentation and regularization.
For RandAugment [1] we always use two augmentations layers and sweep magnitude, m, parameter
in a set {0, 10, 15, 20}. For mixup [10] we sweep mixing strength, p, in a set {0.0, 0.2, 0.5, 0.8}.
For dropout [6] we try dropping rates, d of 0.0 and 0.1. For stochastic depth, following the original
paper [3], we linearly increase the probability of dropping a layer from 0.0 (for the first MLP) to
s (for the last MLP), where we try s ∈ {0.0, 0.1}. Finally, we sweep learning rate, lr, and weight
decay, wd, from {0.003, 0.001} and {0.1, 0.01} respectively.

C Fine-tuning: hyperparameters and higher image resolution

Models are fine-tuned at resolution 224 unless mentioned otherwise. We follow the setup of [2].
The only differences are: (1) We exclude lr = 0.001 from the grid search and instead include
lr = 0.06 for CIFAR-10, CIFAR-100, Flowers, and Pets. (2) We perform a grid search over
lr ∈ {0.003, 0.01, 0.03} for VTAB-1k. (3) We try two different ways of pre-processing during
evaluation: (i) “resize-crop”: first resize the image to 256× 256 pixels and then take a 224× 224
pixel sized central crop. (ii) “resmall-crop”: first resize the shorter side of the image to 256 pixels and
then take a 224× 224 pixel sized central crop. For the Mixer and ViT models reported in Table 3 of
the main text we used (ii) on ImageNet, Pets, Flowers, CIFAR-10 and CIFAR-100. We used the same
setup for the BiT models reported in Table 3 of the main text, with the only exception of using (i) on
ImageNet. For the Mixer models reported in Table 2 of the main text we used (i) for all 5 downstream
datasets.

Fine-tuning at higher resolution than the one used at pre-training time has been shown to substantially
improve the transfer performance of existing vision models [8, 4, 2]. We therefore apply this technique
to Mixer as well. When feeding images of higher resolution to the model, we do not change the
patch size, which results in a longer sequence of tokens. The token-mixing MLPs have to be adjusted
to handle these longer sequences. We experimented with several options and describe the most
successful one below.

2



Table 2: Further details on computational complexity for the models in Table 3. Throughputs are
measured in images/sec/core.

Image Pre-Train Pre-Train Throughput Throughput
size Epochs exaFLOPs TPUv3 GPU V100

Mixer-S/32 224 5 9 11489 5497
Mixer-B/32 224 7 41 4208 1845
Mixer-S/16 224 5 34 3994 1605
BiT-R50x1 224 7 50 2159 1553
Mixer-B/16 224 7 161 1384 516
Mixer-L/32 224 7 145 1314 546
BiT-R152x1 224 7 141 932 639
BiT-R50x2 224 7 199 890 481
BiT-R152x2 224 14 1126 356 192
Mixer-L/16 224 14 1141 419 151
ViT-L/16 224 14 1567 280 100
Mixer-H/14 224 14 3096 194 58
BiT-R200x3 224 14 3306 141 71
ViT-H/14 224 14 4262 87 37

For simplicity we assume that the image resolution is increased by an integer factor K. The length
S of the token sequence increases by a factor of K2. We increase the hidden width DS of the
token-mixing MLP by a factor of K2 as well. Now we need to initialize the parameters of this new
(larger) MLP with the parameters of the pre-trained MLP. To this end we split the input sequence into
K2 equal parts, each one of the original length S, and initialize the new MLP so that it processes all
these parts independently in parallel with the pre-trained MLP.

Formally, the pre-trained weight matrix W1 ∈ RDS×S of the original MLP in Eq. 1 of the main text
will be now replaced with a larger matrix W′

1 ∈ R(K2·DS)×(K2·S). Assume the token sequence for
the resized input image is a concatenation of K2 token sequences of length S each, computed by
splitting the input into K ×K equal parts spatially. We then initialize W′

1 with a block-diagonal
matrix that has copies of W1 on its main diagonal. Other parameters of the MLP are handled
analogously.

D Weight visualizations

For better visualization, we sort all hidden units according to a heuristic that tries to show low
frequency filters first. For each unit, we also try to identify the unit that is closest to its inverse.
Figure 1 shows each unit followed by its closest inverse. Note that the models pre-trained on ImageNet
and ImageNet-21k used heavy data augmentation. We found that this strongly influences the structure
of the learned units.

We also visualize the linear projection units in the embedding layer learned by different models in
Figure 2. Interestingly, it appears that their properties strongly depend on the patch resolution used
by the models. Across all Mixer model scales, using patches of higher resolution 32×32 leads to
Gabor-like low-frequency linear projection units, while for the 16×16 resolution the units show no
such structure.

E More details on computational cost

In Table 2 we report additional information on the computational cost of various models considered in
this paper, including test-time throughput on V100 GPUs and number of FLOPs during pre-training.

3



Bl
oc

k 
0

ImageNet ImageNet 21k JFT 300M

Bl
oc

k 
1

Figure 1: Weights of all hidden dense units in the first two token-mixing MLPs (rows) of the Mixer-
B/16 model trained on three different datasets (columns). Each unit has 14 × 14 = 196 weights,
which is the number of incoming tokens, and is depicted as a 14× 14 image. In each block there are
384 hidden units in total.

B/16 Embeddings B/32 Embeddings

Figure 2: Linear projection units of the embedding layer for Mixer-B/16 (left) and Mixer-B/32 (right)
models pre-trained on JFT-300M. Mixer-B/32 model that uses patches of higher resolution 32× 32
learns very structured low frequency projection units, while most of the units learned by the Mixer-
B/16 have high frequencies and no clear structure.

4



F MLP-Mixer code

1 import einops
2 import flax.linen as nn
3 import jax.numpy as jnp
4

5 class MlpBlock(nn.Module):
6 mlp_dim: int
7 @nn.compact
8 def __call__(self , x):
9 y = nn.Dense(self.mlp_dim)(x)

10 y = nn.gelu(y)
11 return nn.Dense(x.shape [-1])(y)
12

13 class MixerBlock(nn.Module):
14 tokens_mlp_dim: int
15 channels_mlp_dim: int
16 @nn.compact
17 def __call__(self , x):
18 y = nn.LayerNorm ()(x)
19 y = jnp.swapaxes(y, 1, 2)
20 y = MlpBlock(self.tokens_mlp_dim , name=’token_mixing ’)(y)
21 y = jnp.swapaxes(y, 1, 2)
22 x = x+y
23 y = nn.LayerNorm ()(x)
24 return x+MlpBlock(self.channels_mlp_dim , name=’channel_mixing ’)(y)
25

26 class MlpMixer(nn.Module):
27 num_classes: int
28 num_blocks: int
29 patch_size: int
30 hidden_dim: int
31 tokens_mlp_dim: int
32 channels_mlp_dim: int
33 @nn.compact
34 def __call__(self , x):
35 s = self.patch_size
36 x = nn.Conv(self.hidden_dim , (s,s), strides =(s,s), name=’stem’)(x)
37 x = einops.rearrange(x, ’n h w c -> n (h w) c’)
38 for _ in range(self.num_blocks):
39 x = MixerBlock(self.tokens_mlp_dim , self.channels_mlp_dim)(x)
40 x = nn.LayerNorm(name=’pre_head_layer_norm ’)(x)
41 x = jnp.mean(x, axis =1)
42 return nn.Dense(self.num_classes , name=’head’,
43 kernel_init=nn.initializers.zeros)(x)

Listing 1: MLP-Mixer code written in JAX/Flax.

References
[1] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. RandAugment: Practical automated data

augmentation with a reduced search space. In CVPR Workshops, 2020.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In ICLR, 2021.

[3] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic
depth. In ECCV, 2016.

[4] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big transfer
(BiT): General visual representation learning. In ECCV, 2020.

[5] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

5



[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. JMLR, 15(56), 2014.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[8] H. Touvron, A. Vedaldi, M. Douze, and H. Jegou. Fixing the train-test resolution discrepancy.
In NeurIPS, 2019.

[9] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao. Pyramid
vision transformer: A versatile backbone for dense prediction without convolutions. arXiv
preprint arXiv:2102.12122, 2021.

[10] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. In ICLR, 2018.

6


	Things that did not help
	Modifying the token-mixing MLPs
	Fine-tuning

	Pre-training: hyperparameters, data augmentation and regularization
	Fine-tuning: hyperparameters and higher image resolution
	Weight visualizations
	More details on computational cost
	MLP-Mixer code

