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ABSTRACT

In zero-sum games, the optimal strategy is well-defined by the
Nash equilibrium. However, it is overly conservative when playing
against suboptimal opponents and it can not exploit their weak-
nesses. Limited look-ahead game solving in imperfect-information
games allows defeating human experts in massive real-world games
such as Poker, Liar’s Dice, and Scotland Yard. However, since they
approximate Nash equilibrium, they tend to only win slightly against
weak opponents. We propose methods combining limited look-
ahead solving with an opponent model, in order to 1) approximate
a best response in large games or 2) compute a robust response
with control over the robustness of the response. Both methods can
compute the response in real time to previously unseen strategies.
We present theoretical guarantees of our methods. We show that ex-
isting robust response methods do not work combined with limited
look-ahead solving of the shelf, and we propose a novel solution
for the issue. Our algorithm performs significantly better than mul-
tiple baselines in smaller games. and outperform state-of-the-art
methods against SlumBot.
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1 INTRODUCTION

We can not enumerate all the decision points in large games, which
makes computing optimal strategy, a Nash equilibrium (NE) in two-
player zero-sum games, infeasible. A breakthrough that allowed
approximating the NE and defeating human experts in several
large imperfect-information games is limited look-ahead solving
or search, which adapts the well-known approach from perfect-
information games to games with imperfect-information [3, 19, 20].
Limited look-ahead solving takes advantage of decomposition. It
iteratively builds the game to some depth and solves a small part
of the game while summarising the required values from the rest
of the game by a value function. The value function is commonly
learned using neural networks. When the algorithms solve the
game step by step, it is called continual depth-limited solving or
continual resolving.
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The vast majority of theoretically sound, continual depth-limited
solving algorithms assume perfect rationality of the opponent and
do not allow explicit modeling of an opponent and exploitation of
the opponent’s mistakes. As a result, even very weak opponents
exploitable by the heuristic local best response (LBR) [12] can tie or
lose very slowly against these methods [25]. Therefore, there has
been a significant amount of work towards computing strategies to
use against imperfect opponents to create Al systems that would
perform well in the real world, for example, against humans [1, 8,
10, 16, 17, 21, 23].

The opponent modeling and exploitation process consists of
two steps: opponent modeling and model exploitation. Opponent
modeling requires building a model from previous data or actions
observed during an online play. Model exploitation is finding a
good strategy against the given model and is the main focus of this
paper. In smaller games, we can trivially compute a best response to
exploit the opponent maximally, or we can use methods to compute
robust responses [8, 9] if there is uncertainty in the model and we
want to be safer, meaning we want to limit the possible loss when
facing the worst-case adversary. However, even the best response
(BR) computation in large games is non-trivial, and currently, no
approach can compute it while interacting in real-time.

This work explores the full model exploitation and proposes
continual depth-limited best response (CDBR). CDBR relies on the
value function used in the standard limited look-ahead solving, and
we prove theoretical guarantees on the performance. A drawback
of using the same value function is decreased performance, and
we could improve CDBR by training a specific value function for a
particular opponent model. However, it would be impractical since
the training is expensive. Furthermore, in cases where we learn the
opponent model in real-time interaction and update it after each
step, it would be impossible.

The best response and CDBR are useful, e.g., for evaluating the
quality of strategies, but they are brittle in game play. We can lose
significantly when facing an opponent different from the expected
model. In the real world, we will never have exact models, which
makes BR and CDBR impractical for game play. To address the
issue, robust responses are used [6, 8, 9]. They introduce a notion
of safety, and the safety criterion requires the response to stay
close to the NE. In other words, only to lose a limited amount
to the worst-case adversary. Trivially, we can compute both BR
and NE and create a linear combination where we can control the
safety by a parameter. However, previous work shows that we can
perform significantly better and recover the whole Pareto set of
maximally exploiting strategies with maximal safety [9]. We adapt
the method to limited look-ahead solving, creating a continual
depth-limited restricted Nash response (CDRNR). Similarly to the
full robust response, CDRNR significantly outperforms the linear
combination. However, it comes with drawbacks in the limited



look-ahead solving. Namely, we need to keep the previously solved
subgames as a path to the root to ensure theoretical soundness,
which linearly increases the size of the game solved each step,
making it scalable to games with low depth like Poker or Goofspiel
but impractical in games with high depth.

Our contributions are: 1) We formulate the algorithms to find the
responses given the opponent strategy and an evaluation function.
This results in the best performing theoretically sound robust re-
sponse applicable to large games. 2) We prove the soundness of the
proposed algorithms. 3) We provide an analysis of problems that
arise when using opponent models in limited look-ahead solving
and propose a solution we call a full gadget. 4) We empirically eval-
uate the algorithms on poker and goofspiel variants and compare
them to multiple baselines. We show that our responses exploit
the opponents, and CDBR outperforms domain-specific local best
response [12] on poker. We also compare CDBR with the approxi-
mate best response (ABR) on smaller games and on full Heads-up
No-Limit Texas Hold’em (HUNL), where we exploit SlumBot sig-
nificantly more than ABR.

2 BACKGROUND

A two-player extensive-form game (EFG) consists of a set of players
N = {1, 2, c}, where ¢ denotes the chance, 1 is the maximizer and 2
is the minimizer, a finite set A of all actions available in the game, a
set H C {ajaz---ap | aj € A, n € N} of histories in the game. We
assume that H forms a non-empty finite prefix tree. We use g C_ h
to denote that h extends g. The root of H is the empty sequence 0.
The set of leaves of H is denoted Z, and its elements z are called
terminal histories. The histories not in Z are non-terminal histories.
By A(h) = {a € A | ha € H}, we denote the set of actions available
ath. P : H\ Z — N is the player function which returns who
acts in a given history. Denoting H; = {h € H\ Z | P(h) = i},
we partition the histories as H = Hy U Hy U He U Z. o, is the
chance strategy defined on H,. For each h € H, oc(h) is a fixed
probability distribution over A(h). Utility functions assign each
player utility for each leaf node, u; : Z — R. The game is zero-
sum if Vz € Z ' u1(2) + uz(z) = 0. In the paper, we assume
all the games are zero-sum. The game is of imperfect information
if all players do not fully observe some actions or chance events.
The information structure is described by information sets for each
player i, which forms a partition f; of H;. For any information set
I; € I;, any two histories h, h’ € I; are indistinguishable to player i.
Therefore A(h) = A(h") whenever h, i’ € I;. For I; € I; we denote
by A(I;) the set A(h) and by P(I;) the player P(h) for any h € ;.
A strategy o; € X; of player i is a function that assigns a dis-
tribution over A(I;) to each I; € ;. A strategy profile o = (01, 02)
consists of strategies for both players. 79 (h) is the probability of
reaching h if all players play according to 0. We can decompose
7% (h) = [lien 77 (h) into each player’s contribution. Let 7%, be
the product of all players’ contributions except that of player i
(including chance). For I; € 1; define 77 (I;) = X pcy, 77 (h), as the
probability of reaching information set I; given all players play
according to o. 77 (I;) and 7%;(l;) are defined similarly. Finally,
let 79(h,z) = Z:—Ez) if h C z, and zero otherwise. 77 (h, z) and
7%, (h, z) are defined similarly. Using this notation, expected payoff
for player i is uj(0) = X ,cz ui(z)n°(z). A best response (BR) of
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Figure 1: Illustration of the depth-limited solving.

player i to the opponent’s strategy o_; is a strategy G?R € BR;(o-),
where ui(alBR, o-i) 2 uj(0],0-;) for all ] € Z;. A tuple of strate-
gies (O'INE, aﬁ.E), crlNE €, U_NiE € X_; is a Nash Equilibrium (NE)
if O'IN E is an optimal strategy of player i against strategy o{\[iE . For-
mally: O'lNE € BR(afiE) Vi € {1,2}.

In a two-player zero-sum game, the exploitability of a strategy
is the expected utility a fully rational opponent can achieve above
the value of the game. Formally, exploitability &(o;) of strategy
oj € 2jis E(oy) = u—i(oj,0-;) — u_,’(O'NE), o—i € BR_;(oj).

Safety is defined based on exploitability and e-safe strategy is a
strategy which has exploitability at most €.

We define gain of a strategy against a model as the expected
utility we receive above the value of the game. We formally define
the gain G(oj, 0-;) of the strategy o; against a strategy o_; as
G(0i,0-1) = ui(01,0-;) —ui(aNF).

Depth-limited Solving - Figure 1. We denote H;(h) the sequence
of player i’s information sets and actions on the path to a history
h. Two histories h, b’ where player i does not act are in the same
augmented information set I; if H;(h) = H;(h’). We partition the
game histories into public states PS ¢ H, which are closed un-
der the membership within the augmented information sets of all
players. Trunk is a set of histories T C H, closed under prefixes
and public states. Subgame S C H is a forest of trees with all the
roots starting in one public state. It is closed under public states,
and the trees can end in terminal public states or often end after
a number of moves or rounds in the game. Range of a player i is
a probability distribution over his information sets in some public
state PS;, given we reached the PS;. Value function is a function
that takes the public state and both players’ ranges as input and
outputs values for each information set in the public state for both
players. We assume using an approximation of an optimal value
function, which is a value function returning the values of using
some NE after the depth-limit. Subgame partitioning % is a parti-
tioning that splits the game into trunk and subgames into multiple
different levels based on some depth-limit or other factors (domain
knowledge). Subgame partitioning can be naturally created using
the formalism of factored-observation stochastic games [11]. By
ui(a)a, we denote the utility for player i if we use strategy profile
o in trunk T and compute values at the depth-limit using value
function V. When resolving a subgame with just the ranges, there
are no guarantees on the resulting exploitability of the strategy in
the full game, and the exploitability can rise significantly [4]. To
address the issue, artificially constructed games called gadgets are
used to limit the increase in exploitability. They do it by adding



Figure 2: Simple zero-sum imperfect-information game.
Nodes denote the decisions of the players, dotted lines mark
information sets, and the leaf shows for player 1

nodes to the top of the subgame, which simulates that the opponent
is allowed to deviate from its strategy in an already solved game.

Figure 2 shows a simple game illustrating depth-limited solving.
The game starts with player 2 choosing to either play standard
biased matching pennies (p) or playing his own version of the game
(¢)- In the next round, player 1 does not know which game player 2
chose, and he chooses head (H) or tail (T). Then player 2 guesses
head (h;) or tail(¢;), and if he chooses to play the standard version,
he receives 2 when correctly guessing head and 1 when correctly
guessing tails. Otherwise, the reward is 0. In the modified version,
guessing incorrectly gives 2 to the player 2, and guessing correctly
gives 1 for heads and -1 for tails.

In the Nash equilibrium of this game, player 1 plays heads with
probability % and player 2 chooses his own version of the game
with probability % and follows with only heads. Public states in
this game are always the whole levels (rows) since the actions are
never observable by both players. When we start depth-limited
solving, we create a trunk, which we select as just the root with the
choice to play q or p. We start solving the trunk using an iterative
algorithm, e.g., counterfactual regret minimization (CFR) [26].

We initialize strategy to uniform, which gives us range in the
next public state (%, %) We give the range to the value function,
which returns values as if we played equilibrium in the rest of the
game. Value function gives us values in the information sets, which
translates to the utility of —% for playing heads and —% for playing
tails. We use the values to update regrets in the CFR and perform
the next iteration similarly. When we solve the trunk and recover
the equilibrium strategy for the first node, we move to a subgame,
for example, a game starting in the information set of player 1 and
ending after his action. We need to reconstruct what happened
earlier. If we replace the already computed strategy with a chance
node, which is called unsafe resolving, we are not guaranteed to
recover the equilibrium for player 1. Unsafe resolving can produce
solutions ranging from heads with probability % to % but the only
equilibrium is heads with probability % The situation is fixed using
the mentioned gadgets, which allow the opponent to modify their
range above the subgame, forcing the other player to play robustly
against all the possible ranges and recover the equilibrium.

3 FULLY EXPLOITING THE OPPONENT

Fully exploiting opponent models in small games boils down to
computing a best response. This is infeasible in games with an in-
tractable number of information sets for which we use the continual
depth-limited solving algorithms. The depth-limited setting does
not allow computing BR in one pass anymore. The game we already

saw in Figure 2 can be an example of that. Suppose we know the
player 2 always makes a mistake in the first move and plays only
to the standard biased matching pennies. If we knew his strategy
of guessing heads or tails, we could compute a best response. How-
ever, our trunk will end before the choice, and we need to use a
value function. Since the value function in this simple case is just a
best response of the opponent, the problem is reduced to finding
the optimal strategy against a best response, which corresponds
to finding NE, and it can not be solved in one pass. In this section,
we propose an algorithm for continual depth-limited best response
(CDBR), which generalizes a best response to be used with a value
function for depth-limited solving.

Continual Depth-limited Best Response

Given any extensive-form game G with perfect recall, opponent’s
fixed strategy O'ZF and some subgame partitioning P, we define
continual depth-limited best response (CDBR) recursively from the
top, see Figure 1. First, we have trunk T; = T and value function V.
CDBR in the trunk T for player 1 with value function V is defined
as B(JZF)‘I;l = arg max,,, u1(o1, 05)51 . In other words, we maximize
the utility over the strategy in the trunk, where we return values
from the value function after the depth limit. In each step afterward,
we create a new subgame S; and create new trunk by joining the old
one with the subgame, creating T; = Tj—1 US;. We fix the strategy of
player 1 in the T;—; and maximize over the strategy in the subgame.

B(ag)‘T;’ = argmax  s;) ul(afi U olTH, 0'5)‘7;. We continue like

()
that for each step, andlwe always create a new trunk T; using the
strategy from step T;_; until we reach the end of the game. We
denote the full CDBR strategy created by joining strategies from
all possible branches B(oﬁE )‘7,) .

Intuitively, we always solve the game until the depth limit. The
opponent is fixed everywhere above the depth limit, and the rational
player is fixed in the already solved parts, and she can play in the
part that was added last. Looking at Figure 1 CDBR in S; would
allow player 1 to play in Sy, it would replace anything bellow S,
with a value function, player 1 would be fixed in T and S; and player
2 would be fixed in T, S1 and Ss.

Computing CDBR and the complexity. In practice, we will compute
CDBR similarly to depth-limited solving with a few key changes.
First, we fix the opponent’s strategy in the currently resolved part of
the game to allow the player to respond to it, which corresponds to
the argmax from the definition. Another key change that simplifies
the algorithm is that we no longer need a gadget since the opponent
is fixed in the parts we already played through, so we do not need
to be robust against different ranges than the one taken from the
opponent model.

The difference from the standard depth-limited solving is that
we fix the opponent’s strategy in the resolved part of the game, and
we do not use a gadget. Hence, there is less computation required
compared to the standard depth-limited solving.

Convergence in current iterations. CFR is an algorithm that needs to
track average strategies since the current strategy does not converge
to an equilibrium. CFR against best response or a fixed strategy is
known to converge in the current strategy [5, 14]. The next lemma



says that CDBR also converges in the current strategy even when
a value function is used after the depth-limit.

LEMMA 3.1. Let G be a zero-sum imperfect-information extensive-
form game. Let 0'5 be the fixed opponent’s strategy, and let T be some
trunk of the game. If we perform CFR with t iterations in the trunk for
player 1, then for the strategy 61 from the iteration with highest ex-

pected utility max: e, u (o7, 0'5)5 —u1(61, 0'5)5 < A\/¥|ITR| +
tNses where A is a span of leaf utilities, A = max ez ui(z) —
mingez u;(z), A is an upper bound on the number of actions, | ITR|
is a number of information sets in the trunk, Ng is the number of
information sets at the root of any subgame, and value function error
is at most €s.

4 SAFE MODEL EXPLOITATION

While CDBR maximizes the exploitation of the fixed opponent
model, it allows a player to be exploited. When we face an opponent
unsure if our model is perfect we must limit our exploitability. For
example, when we gradually build a model during play, we must
limit our exploitability in the initial game rounds when the model
is still very inaccurate.

Combination of CDBR and Nash Equilibrium

The combination of CDBR and Nash equilibrium (CDBR-NE) is
the first approach to limit exploitability. We can simultaneously
compute both strategies using depth-limited solving and do a linear
combination in every decision node. Let p be the linear combi-
nation parameter and 05 be the opponent model. The gain and
exploitability are limited accordingly.

ot = poE + (1= p)B(af)]
E(ot€) = p&(al'F) + (1 - p)E(B()T)

G(01.0}) = pG (1. 03) + (1= P)G(B(c3 )y 73 )
Desired exploitability or gain may be achieved by tuning the param-
eter p while being only two times slower than the CDBR since we
need to find the Nash equilibrium separately and perform CDBR.
The required value function is the same for both parts and is still
the same as in standard depth-limited solving.

Required computation is exactly running standard depth-limited
solving and CDBR in parallel. Since CDBR computation has stan-
dard depth-limited solving as an upper bound, the required compu-
tation is at most twice as much as standard depth-limited solving.

Continual Depth-limited RNR

CDBR-NE is safe, but [9] shows we can get a much better trade-off
between gain and exploitability using RNR as it recovers the optimal
Pareto set of e-safe best responses [15]. It also gives us better control
of safety as it links the allowed exploitability to the achieved gain.
We combine depth-limited solving with RNR to create CDRNR.

Description of Restricted Nash Response. For CDRNR, we first need
to explain the RNR method briefly [9]. RNR is solved by computing
a modified game, adding an initial chance node with two outcomes
that player 1 does not observe. We copy the whole game tree under
both chance node outcomes, and in one tree, the opponent plays the
fixed strategy, and we denote it GF. In the other tree, the opponent

can play as he wants, resulting in a best response to the strategy
of player 1. We denote the other tree G’. Since player 1 does not
observe the initial chance node, his information sets span over G’
and G, and we denote the full modified game with both trees GM.
Parameter p is the method to control the safety and is the initial
probability of picking GF.

Definition. Given the opponent’s fixed strategy crg and some sub-
game partitioning P of GM, we define continual depth-limited
restricted Nash response (CDRNR) recursively from the top. First,
we have trunk TIM using # and value function V. CDRNR for

TM
player 1 in the trunk TIM using value function V' is R(JZF Py =

™ . .
argmax,, u1(o1, BR(01)),/ . And then, in every following step, we
create the new subgame SlM and enlarge the trunk to incorporate
this subgame, creating trunk Tl.M = Tl.j\_/l1 U SIM . Next, we fix strat-

™
egy o, of player 1 in the previous trunk TIA_’I1 and the CDRNR is

' is a combi-

. ™
‘R(O'f,p)T‘ = argmax gm u1(o7, BR(07));} where o]
0.

\4

1
nation of the strategy we optimize over and the fixed strategy from
sM ™
the previous step, formally o] = 07" U o,

To summarize, we optimize only over the strategy in the subgame
used in the current step while the strategy in the previous parts
of the game is fixed for player 1. The strategy of the opponent is
fixed in GF and free in G’. We denote the full CDRNR strategy

Rl p)y.

Computing CDRNR. In practice, we want to avoid duplicating the
tree, and we also want to use the exact same value function as in the
standard depth-limited solving. We explain why the RNR does not
need the duplicated trees in practice. It only needs the reaches of
the fixed strategy injected to the terminal nodes in the ratio defined
by the parameter p. This allows us to precompute the reaches, run
CFR as in standard depth-limited solving, and then modify the
computed reaches from the iteration using the precomputed fixed
reaches. However, we also need to query the value function, which
differs from the previous one in the theoretical definition as it spans
over the modified public state. However, since the reaches of p; are
the same for G’ and Gp we can compute it only once by joining
the reaches together as in the previous example and querying the
standard value function.

So far, we described exactly the standard depth-limited solving
with only one modification: modifying the reaches using the fixed
strategy. We also use the gadget since now the opponent can deviate
in the G’. However, standard gadgets will fail due to the addition
of imperfect parts of the opponent, and we discuss details along
with a solution in the next section.

5 GADGETS AND MODEL EXPLOITATION

When we exploit an opponent model, we need to worsen the strat-
egy in terms of exploitability. We must limit how much the strategy
worsens if we want a safe response. Gadgets are used to ensure
exploitability does not increase [2, 4, 18], and all the common gad-
gets work in scenarios where we do not expect our strategy to
worsen. However, we need to worsen our strategy to exploit the
opponent. We try to gain as much as possible in RNR in GF'. As



soon as the strategy gets worse and the exploitability increases,
the common gadgets fail to quantify this increase, which is crucial
in applications doing a delicate trade-off. The requirement for the
gadget which would work in CDRNR is in Definition 5.1

Definition 5.1. For each information set I € 7; we need the value
of its part in G’, formally Y.per pec zeznez 7° (2)u1(2), to be the
same as the value we would get if we let player 2 play BR in full G’.

The following examples show that the requirement is not satis-
fied for common resolving gadgets. We tried to construct a gadget
that would satisfy the condition, but in the end, we kept the previ-
ously resolved parts of the game G’ followed by the value function
which the game does not follow. We call the construction the full
gadget, it satisfies the condition, and still only increases the size of
the solved part linearly. Constant-size gadget fulfilling the Defini-
tion 5.1 is an open problem.

Restricted Nash Response with Gadget

We show that commonly used resolving gadgets are either over-
estimating or underestimating the values from Definition 5.1 on
an example game in Figure 3. In the game, we first randomly pick
a red or green coin. Player 2 observes this and decides to place
the coin heads up (RH, GH) or tails up (RT, GT). Player 1 cannot
observe anything and ultimately chooses whether he wants to play
the game (P) or quit (Q).

In equilibrium, player 1 plays action Q, and player 2 can mix
actions up to the point where the utility for P is at most 0. This
gives the value of the game 0, and counterfactual values in all inner
nodes are also 0. Assuming the modified RNR game GM with an
opponent model playing GT, that makes it worth for player 1 to
play (P) in the game, 2 will play (RH, GH) in G’ with utility -3 for
player 1 in G’. We will use gadgets to resolve the game from the
player 1 information set.

Resolving Gadget. [4] Resolving gadget constructs a game that
allows the opponent to choose whether he wants to play in the
subgame we created or terminate. It is done by inserting nodes
above the roots of the subgame, and the opponent has two actions
before each root, either to follow and play the game or to terminate
and receive a reward they would get by playing the previously
resolved equilibrium. Those nodes are grouped into information
sets based on the opponent’s augmented information sets at the
subgame’s roots.

Resolving gadget on the game in Figure 3 has all utilities after
terminate actions 0. When we resolve the gadget, the utility is 0.
However, when player 1 deviates to action P, player 2 plays follow
action in all but the rightmost node, and the utility of player 1 will
be -3.5. Therefore, the common resolving gadget may overestimate
the real exploitability of the strategy in the subgame. Overestimat-
ing may lead to not exploiting as much as we can and makes it
impossible to prove Theorem 5.2 about the minimal gain of our
algorithm. Normalization of the chance node might seem to solve
the problem, but it would only halve the value to -1.75, which is
still incorrect.

(Reach) Max-margin Gadget. [2, 18] Both reach max-margin and
max-margin gadgets allow the opponent to choose any information

set at the start of the subgame. This is done by inserting a single
node to the top, where the opponent has an action for each of his
augmented information sets in the root of the subgame. After the
action is a chance node to split the information set to the histories,
with correct reaches by the resolving player and chance. Further-
more, all the terminal values are adjusted by the same value, which
is in the terminate action in the resolving gadget. In the reach max-
margin gadget, this value is further modified by an approximation
of opponent mistakes.

All the counterfactual best response values are 0, and we assume
both players played perfectly before the depth limit. Hence, we
do not need to offset any node in the (reach) max-margin gadget.
Then, both gadget constructions are identical. We add the initial
decision node and the chance nodes (since there is only one state
in each information set, the nodes have only one action). When
we solve the gadget, player 1 will pick action Q, and the gadget
value will be 0. However, when player 1 deviates to action P, player
2 now has a choice between terminal utilities and picks action E
to receive the highest one. This will result in utility -2, and we
see that (reach) max-margin gadgets can underestimate the real
exploitability. It can lead to our algorithm being more exploitable
than we want using some p, and it makes Theorem 5.3 impossible
to prove. Similar to the previous gadget, normalizing the chance
nodes would lead to double the utility, which is still incorrect.

Full Gadget. The only construction fulfilling the requirements
we found is to keep all the previously explored parts of the game in
a path to the root and use a value function when we leave. Using
the optimal value function, the construction simulates the best
response, which measures exploitability.

Formally, when we reach subgame S; we construct a composite
game by joining S;, the trunk T, and all the previous subgames
Sj,j € 1,...,i — 1. It corresponds to the illustration in Figure 1, and
the value function will evaluate every public state PS from which
the actions lead outside of the game.

We show that other gadgets can overestimate or underestimate
exploitability, which could shift the distribution of the parameter p,
and we could still compute the same solutions. However, in Figure 4,
we show the results of games created to break the other gadgets.
We have two games in which the full gadget behaves correctly, and
each breaks the other gadget. Figure 4 shows the results joined
together. Both games have five actions for the exploiter, and each
one is crucial in reconstructing the full RNR set. The full gadget
can recover all five actions using different p, but other gadgets can
only compute two actions regardless of the choice of p.

Complexity of CDRNR. We can use other gadgets in CDRNR to
obtain fast algorithms without any theoretical guarantees and with
the same bound on computation as we have for the combination of
CDBR and Nash equilibrium. The soundness of the algorithm relies
on using the full gadget, which requires solving increasingly larger
parts of the game as the depth increases. This increase in size is
linear with the resolving steps, so the full algorithm complexity is
quadratic in the depth of the game compared with vanilla continual
resolving or CDBR. It makes the algorithm applicable to shorter
games like Poker or Goofspiel but infeasible for long games like
Stratego.
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Figure 3: (left) A game to show problems with gadgets. (middle) Resolving gadget for the left game. (right) Max-margin and
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Soundness of CDRNR. For the following theorems, we denote S as
the set consisting of the trunk and all the subgames explored when
computing the response, and S’ is the same but without the last
subgame. SB denotes a border of the subgame. We also denote S©,
the set of all the states where we leave the trunk not going in the
currently resolving subgame.

THEOREM 5.2 (GAIN OF CDRNR). Let G be any zero-sum extensive-
form game and let 0'5 be any fixed opponent’s strategy in G. Then we
set GM as restricted Nash response modification of G using 05‘ Let
P be any subgame partitioning of the game GM and using some p €
(0, 1), let O'IR be a CDRNR given approximation V of value function
V with error at most ey and opponent strategy 05 approximated in
each step with regret at most €g, formally O’;R = R(ag,p)z/). Let oVE
be any Nash equilibrium in G. Then u; (UIR, Ug) +2ses gol(1 -
plev +|Sler + Xses gsley = ui(aNF).

The previous theorem states that our approaches will receive at
least the value of the game when responding to the model. All the
proofs are in the appendix.

THEOREM 5.3 (SAFETY OF CDRNR). Let G be any zero-sum extensive-
form game and let 0'5 be any fixed opponent’s strategy in G. Then
we set GM as restricted Nash response modification of G using 05.
Let P be any subgame partitioning of the game GM and using some
p € (0,1), let O'IR be a CDRNR given approximation V of the op-
timal value function V with error at most ey, partitioning P and
opponent strategy ok, which is approximated in each step with regret
at most €g, formally UIR = O'IR (af,p)z,). Then exploitability has a
bound &(cX) < G(oR, 05)% +Yses lsol(1—pley + [Sleg +
2ses ssley, & and G are defined in Section 2.

The last theorem is more complex, and it bounds the exploitabil-
ity by the gain of the strategy against the model. With p = 0, it

is reduced to the continual resolving, and with p = 1 to CDBR
with unbounded exploitability. The theorem shows the parameter
p directly links allowed exploitability to the gain we receive. The
same works in RNR without the resolving and value errors; as far
as we know, the authors do not explicitly mention it.

SES has bound relies on opponent estimation being close to an
equilibrium strategy. When the estimation is more different, the
bound is infinity for a large portion of the parameter alpha. We
give a detailed explanation in the appendix.

More intuitively, Theorem 5.2 says that by playing the proposed
algorithm, we have at least the same safety guarantees we would
get by playing a NE against the opponent we modeled correctly.
Theorem 5.3 allows us to choose a trade-off between the exploitation
of the opponent behaving according to the model and safety against
an opponent who would deviate arbitrarily from the model.

6 EXPERIMENTS

We compared CDBR and local best response (LBR) [12]. We empiri-
cally show the performance of CDRNR and explore the trade-off
between exploitability and gain in CDRNR. The appendix contains
hardware setup, domain description, algorithm details, and experi-
ments on more domains. We use two types of opponent strategies:
strategies generated by few CFR iterations and random strategies
with different seeds.

SES explanation

Safe exploitation search (SES) [13] is a similar method to the one
we propose. However, there are two significant differences. First,
the method uses a max-margin gadget without the analysis we did.
Hence, the bound of exploitability is very loose, and for a wide
range of inputs, the exploitability can be unbounded. Second, the
method does not fix the opponent’s strategy at all and only uses
opponent reaches when resolving the subgame. As a result, SES
exploitation is very limited, and as we show in experiments, it is
often worse than using the best Nash equilibrium. On top of that, in
some games, it fundamentally cannot exploit the opponent, notably
in any perfect information game, even with simultaneous moves.

Exploitability of Robust Responses

We report both gain and exploitability for CDRNR on Leduc Hold’em.
Results in Figure 5 show that the proven bound on exploitability
works in practice, and we see that the bound is very loose in prac-
tice. For example, with p = 0.5, the bound on the exploitability
is the gain itself, but the algorithm rarely reaches even a tenth of
the gain in exploitability. This shows that the CDRNR is similar



Il BRI RNRM BNE'  VFIE CDRNR B CDBR-NE 7 SES

4 4
2
3 ;; 31
R=| <
& 2 3 21
1 g1
HINRNRNE
0 O ‘I r . . v . .
01 2 3 5 8 a 01 2 3 5 8 a
CFR iterations of opponent's strategy (p=0.1)
4 Il BRI RNR I BNE'  VFIH CDRNR B CDBR-NE [T SES
2‘4
3 ';; 31
= ]
8 2 5 21
| I AN
0 mo I‘l II“I‘III“I‘ull‘Jl‘II
01 2 3 5 8 a 01 2 3 5 8 a
CEFR iterations of opponent's strategy (p=0.5)
4 Il BRI RNRE BNE' VFIE CDRNR B CDBR-NE T SES
4
2
3 ;; 3
g <
& 2 3 21
| 81| TVIFIAAT
o el | FITIF I
0

01 2 3 5 8 a 1 2 3 5 8 a
CFR iterations of opponent's strategy (p=0.9)

Figure 5: Gain and exploitability comparison of BR, RNR,
best Nash equilibrium (BNE), CDBR-NE, SES, and CDRNR
in Leduc Hold’em against strategies from CFR using a small
number of iterations with different p values. The a stands
for the average of the other values. VF is CDRNR using an
imperfect value function.

to the restricted Nash response because, with a well-set p, it can
significantly exploit the opponent without significantly raising its
exploitability. The only exception is the CDRNR with a value func-
tion, which shows the added constants from the value function’s
imprecision. When the opponent is close to optimal, we see that
the exploitability can rise above the gain.

In most cases, the gain and exploitability of CDRNR are lower
than that of RNR. Gain must be lower because of the different value
function, but the exploitability can be higher, as seen with p = 0.1
against low iteration strategies, due to the depth-limited nature. We
provide results on other domains and for more parameter values p
in the appendix.

We also compare the algorithm against the best possible Nash
equilibrium. We compute the best NE by a linear program, and
it serves as the theoretical limit of maximal gain, which does not
allow exploitability. It would be impossible to compute for larger
games. We can see we can gain more than twice as much, with
exploitability still being almost zero.

In our results on smaller games, we use the optimal value func-
tion computed by a linear program. To show the performance of
imperfect value function we included results where the value func-
tion is approximated by CFR with 500 iterations. As expected, the

ABR | CDBR1 | CDBR3 | CDBR5 | BNE
Leduc | 98% 74.4% 96% 97.1% 32.6%
1IGS4 97% 98.5% 100% 100% 77.1%
IIGS5 95% 93.5% 100% 100% 50.4%
1IGS6 97% 90.7% 100% 100% 45.9%

Table 1: Comparison of ABR and CDBR with BNE baseline
on different games against uniform random. The values are
the percentage of gain achieved by the best response.

imperfect value function slightly decreases the performance but is
comparable to the algorithms using the optimal value function.
The last comparison is with SES, which performs poorly, and its
gain is only slightly above the best Nash equilibrium. Conversely, it
is almost not exploitable. Our results are consistent with results in
the paper [13] and are a direct consequence of using the information
from the opponent model only to set the reaches to the subgame.
Only reaches are not enough to do meaningful exploitation, and
SES produces strategies that are very close to Nash equilibrium.

ABR vs CDBR

We compared CDBR with ABR [22] on Leduc and different imperfect
information Goofspiel. The results are in Table 1, showing that our
method is slightly behind in Leduc, even with the highest search
depth. In Goofspiel, CDBR1, which looks only one action into the
future, is already pretty good, and as soon as we allow CDBR to
look three turns in the future, it fully exploits the opponents. In
IIGS4, that is half of the game, but in IIGS6, it is less than % of the
game, and it is still enough.

Local Best Response vs. CDBR

We compare LBR and CDBR in Leduc Hold’em. We also compare
CDBR with the BR in imperfect information Goofspiel 5, but without
LBR, which is poker-specific. We show that CDBR and LBR are very
similar with smaller steps, and as we increase the depth limit of
CDBR, it starts outperforming LBR. The behavior differs slightly
based on the specific strategy because LBR assumes the player
continues the game by only calling till the end, while CDBR uses
the perfectly rational extension.

The results in Figure 6 show that both concepts are good at
approximating the best response, with CDBR being better against
both strategies. LBR looks at one following action, so it is best
compared to the CDBR1 in terms of comparability. Next, we observe
a lack of monotonicity in step increase, which is explained with an
example in the appendix. When we increase the depth limit, the
algorithm can exploit some early mistake that causes it to miss a
sub-tree where the opponent makes a much bigger mistake in the
future. We can clearly see the difference between the algorithm
with guarantees and LBR without them. Against strategy from 34
CFR iterations, LBR can no longer achieve positive gain and only
worsens with more iterations. In contrast, CDBR can always achieve
at least zero gain, assuming we have an optimal value function.
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Figure 6: Gain comparison of best response (BR), local best
response (LBR - only poker), and continual depth-limited
best response (CDBR) in Leduc Hold’em (top) and IIGoofspiel
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ABR LBR CDBR
Win-rate [mbb/h] | 1259 +? | 1388 150 | 1774 + 137

Table 2: Comparison of CDBR with LBR and ABR against
SlumBot. Results are reported in milibigblinds per hand
(mbb/h) with 95% confidence intervals.

Playing SlumBot

We tested our method in HUNL against SlumBot [7], which is a
publicly available abstraction-based bot commonly used for bench-
marking. We used a fold, call, pot, and all-in (FCPA) abstraction
for CDBR, and we also rerun the results of LBR against the new
SlumBot (since the author of SlumBot confirmed that the strategy
we were provided is different from the one LBR used but the same
as the one provided to authors of ABR). CDBR significantly outper-
forms both ABR and LBR and we report the results in Table 2. We
tried to run the LBR restricted to only call in the first two rounds
but found it no longer helps against the new SlumBot, and we re-
ported results for LBR with FCPA. Authors in [22] also use FCPA
for their method but did not report a confidence interval for the
results. However, the difference is large enough to have statistical
significance if we assume they played over 50 thousand hands.

7 RELATED WORK

This section describes the related work focusing more on distin-
guishing our novel contributions.

Restricted Nash response (RNR) [9] is an opponent-exploiting
scheme. It solves the entire game and allows changing the trade-off

between exploitability and gain. Essentially it always produces €
safe best response [15]. It accomplishes the goal by copying the
whole game and then fixing the opponent in one part while having
a chance node at the top decide which game we play.

However, it is impossible to compute RNR in huge games, and
we fused the RNR approach with depth-limited solving creating a
novel algorithm we call CDRNR. CDRNR is the best performing
theoretically sound robust response calculation that can be done in
huge games, enabling new opponent exploiting approaches.

Local best response [12] is an evaluation tool for poker. It uses a
given abstraction in its action space. It picks the best action in each
decision set, looking at the fold probability for the opponent in the
next decision node and then assuming the game is called until the
end. Our algorithm CDBR is a generalization of the LBR because
we can use it on any game solvable by depth-limited solving. In the
algorithm, we have explicitly defined value function, which we can
exchange for different heuristics.

Approximate best response (ABR) [22] is also a generalization
of the LBR and showed promising results in evaluating strategies.
However, our approach focuses on model exploitation, which re-
quires crucial differences, such as quick re-computation against
unseen models. ABR needs to independently learn the response
for every combination of opponent and game, making it unusable
in the opponent modeling scenario. Our algorithms learn a sin-
gle domain-specific value function and can subsequently compute
strategies against any opponent in the run-time. Furthermore, ABR
and even CDBR are extremely brittle, making it a bad choice if
we are unsure about the opponent, which we often are in a game
against an unknown opponent. On the other hand, CDRNR tackles
exactly this issue and provides powerful exploitation with very
limited exploitability.

Another reinforcement-learning (RL) method uses neuroevolu-
tion with RL, they show a significant increase in performance over
DON and evaluate their method on HUNL. However, they do not
share the details of the baseline opponents they played against. We
tried to contact the authors without any response and we could not
compare the performance with our methods. [24]

8 CONCLUSION

Opponent modeling and exploitation is an essential topic in compu-
tational game theory, with many approaches attempting to model
and exploit opponents in various games. However, exploiting oppo-
nents in very large games is not trivial, and only recently was an
algorithm created to exploit models in depth-limited solving. We
explain the problem arising from the inability of gadgets to measure
exploitability and we propose a full gadget that solves the issue. We
propose a new algorithm to quickly compute depth-limited best
response and depth-limited restricted Nash response once we have
a value function, creating the best performing theoretically sound
robust response applicable to large games. Finally, we empirically
evaluate the algorithms on multiple games. We show that CDBR
outperforms LBR in both Leduc and HUNL and we show that CDBR
performs significantly better against SlumBot than any other previ-
ous method. Finally, we show that CDRNR outperforms SES in any
game and can achieve over half of the possible gain without almost
any exploitability.
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A PSEUDOCODE

In this section, we present the pseudocode of both CDBR and
CDRNR.

Algorithm 1 Computing CDRNR (CDBR)

Require: game G, model strategy of , value function V
create (virtually) modified game M (only CDRNR)
create subgame partitioning ? from GM (G)

01(8 = empty strategy ready to be filled
I = initial information set in which we act
S = current constructed subgame
while I not null do
if I not in S then
S = construct new S from # using previous S (CDRNR
does not delete trunk)
O'IB += solution of S using CFR+ with V
else
pick action A according to 0'18 inI
get new I using A (or null if the game ends)
end if
end while

B ADDITIONAL CDBR RESULTS

We compare LBR and CDBR in Leduc Holde’m. We also compare
CDBR with just the BR in imperfect information Goofspiel, but
without LBR, which is poker specific. We show that CDBR and LBR
are very similar with smaller steps, and as we increase the depth-
limit of CDBR, it starts outperforming LBR. The behavior differs in
every strategy because LBR assumes the player continues the game
by only calling till the end, while CDBR uses the perfectly rational
extension. Furthermore, it is possible to exchange the value function
of CDBR, and both concepts would be very similar. However, we
would lose the guarantee that CDBR will never perform worse than
the value of the game.

Looking at the results in Figure 7, we can see that both concepts
are good at approximating the best response, with CDBR being
better against both strategies. LBR looks at one following action, so
in terms of comparability, it is best compared to the CDBR1. Next,
we observe a lack of monotonicity in step increase, which is linked
to the counterexample in Figure 10. When we increase the depth-
limit, the algorithm can exploit some early mistake that causes
it to miss a sub-tree where the opponent makes a much bigger
mistake in the future. We can clearly see the difference between
the algorithm with guarantees and LBR without them. Against
strategy from 34 CFR iterations, LBR can no longer achieve positive
gain and only worsens with more iterations. In contrast, CDBR can
always achieve at least zero gain (assuming we have an optimal
value function).

C COUNTEREXAMPLE GADGET GAME

Examples in Figure 8 are the games used to generate the Figure 4.
The plot in the figure combines two games that have pure actions
with the same gain and exploitability. The full gadget reconstructs
the Pareto set using all the actions in both games. Other gadgets fail
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Figure 7: Gain comparison of best response (BR), local best
response (LBR - only poker), and continual depth-limited
best response (CDBR) in Leduc Hold’em (top), Imperfect in-
formation Goofspiel (middle) and Small Liar’s dice (bottom)
against strategies from CFR using a small number of itera-
tions (left) and random strategies (right). The a stands for
the average of the other values in the plot. The number after
CDBR stands for the number of actions CDBR was allowed
to look in the future, and CDBRNN is one step CDBR with a
neural network as a value function.

in one of the presented games in Figure 8. In Figure 9, we show the
expected utility of all the actions in the CDRNR version of the game,
showing that for the resolving gadget and max-margin gadget, two
actions dominate all the others, and we can not select any p which
would resolve any of the remaining actions.

D EXPERIMENT DETAILS

Experimental Setup

For all experiments, we use Python 3.8 and C++17. We solved lin-
ear programs using Gurobi 9.0.3, and experiments were done on
an Intel i7 1.8GHz CPU with 8GB RAM. We used Leduc Hold’ em,
imperfect information Goofspiel 5, and Liar’s dice for the smaller
detailed experiments. We used Goofspiel 6 for the large experiment,
and we only ran it against the strategy generated by the CFR with
three iterations. We used the torch library for the neural network
experiment. For most of the experiments, we wanted to solve the
concepts perfectly with perfect value function, so we used LP and
fixed the parts of the game that needed to be fixed. For the neural
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Figure 8: Example games to show the inability of common gadgets to reconstruct the whole Pareto set in the CDRNR setting.
Left: Game 1 to break the max-margin gadget. Right: Game 2 to break the resolving gadget.
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network experiment with CDBR, we used CFR+ to solve the sub-
game and the neural network as a value function. For the value
function experiment in CDRNR, we used CFR+ with 1000 iterations
to solve the game and CFR+ with 500 iterations as a value function
in the subgames.

Domain Definition

Leduc Hold’em is a medium-sized poker game. Both players give
one chip at the beginning of the match and receive one card from a
deck with six cards of 2 suits and three ranks. Then players switch
and can call or bet. After a bet, the opponent can also fold, which
finishes the game, and he forfeits all the staked money. After both
players call or after at most two bets public card is revealed, and
another betting round begins. In the first round, the bet size is two,
and in the second, it is 4. If the game ends without anyone, folding
cards are compared, and the player with pair always wins, and
if there is no pair, the player with the higher card wins. If both
have the same card, the money is split. Goofspiel is a bidding card
game where players are trying to obtain the most points. Cards are
shuffled and set face-down. Both players have K cards with values
from 1 to K. These cards may be used as a bid. After bidding with
that card, the player cannot play it again. Each turn, the top point
card is revealed, and players simultaneously play a bid card; the
point card is given to the highest bidder or discarded if the bids
are equal. In this implementation, we use a fixed deck with K =5
and K = 6. Liar’s Dice is a game where players have some number
of dice and secretly roll. The first player bids rolled numbers, and
the other player can either bid more or disbelieve the first player.
When bidding ends with disbelief action, both players show dice. If
the bid is right, the caller loses one die, and if the bidder is wrong,
the bidder loses one die. Then the game continues, but for our
computation, we use a version that ends with the loss of a die, and
we use only a single die with four sides for each player.

E PROOFS

LEmMMA E.1. Let G be zero-sum imperfect-information extensive-
form game with perfect recall. Let (rg be fixed opponent’s strategy,
let T be some trunk of the game. If we perform CFR iterations in the
trunk for player 1 then for the best iterate 1 maXgses, U1 (d}, ag){/ -

u1(61, 05){, < A\/;|ITR| + Nges where A is variance in leaf utility,
A is an upper bound on the number of actions, |ITR| is number of
information sets in the trunk, Ng is the number of information sets at
the root of any subgame and value function error is at most €s.

Proor. Using Theorem 2 from [4] we know that regret for player
lisbounded RT = %maxgi«ezl ZtT:l(ul((r;‘, 05)‘T,—u1(0t, 05)){/ =
AVAT|ITR| + TNses. Then we can directly map the regret to a
different regret, that uses time-independent loss function (o) =
—u1 (o1, o{)‘T,, We can then use Lemma 2 from [14] and we get

T
1(61) — min(,l*ez1 l(o]) < RTl. Substituting [ and R{ back we get

R A
max u1(o}, 0} )y, — u1 (61,047, < A\/7|ITR| + Nses

01 €%



THEOREM E.2. Let G be zero-sum extensive-form game with perfect
recall. Let (rg be fixed opponent’s strategy, let P be any subgame
partitioning of the game G and let UIB be a CDBR given approximation
V of the optimal value function V with error at most ey, partitioning
P and opponent strategy 05 approximated in each step with regret at
most €g, formally UlB = alB (05)‘7,3. Let o™VE be any Nash equilibrium.
Thenuy (o, 0f) +|Sler + Tses Issley > ui(aNE).

Proor. Using subgame partitioning P, let Ty be the trunk of
the game. From the properties of a NE u; (oVF) < u; (O'{VE, 0'5) <

uy (0'{\] E crg )‘T} To compute CDBR we are maximizing in the trunk
and using error in the value function and non-zero regret of the
computed strategy ul(GIB, 05)3;1 + |ITIB|6V +€r > ul(a{VE, UF)T1
We continue using induction over steps with induction assumption
that in step i, ul(alg, 0'5){," +e > u(oVE). We already know it
holds for T;. Now we assume we have trunk T;_; for which the
induction step holds and trunk T; which is T;_; joined with new
subgame S;_1. Our algorithm recovers approximate equilibrium in

, which means u; (O'IB, JZF)‘T,i +
BTz L

Si—1 using V at the boundary SP |

NEs . o
|15£1|6V +er = u(o; Sict yg 5){,‘ If we use equilib-
rium for the opponent in the subgame Si_l we can replace equi-
librium in the subgame by the value function V and we have

NEs B . B C .
u1 (o, Sict Yy gl 0'5)5’ > 141(0'1 ) Tit and joining it all
together we have w (63 (rF)TH < ui(c® O’F)Ti + |IB ley +¢€

g 180109y = U101, 05 )y 511'3—1 |4 R

and u; (eVE) < ul(alB,ag)‘T/i +|Igp |ey + €R + €i-1. Accumulat-
i-1

ing the errors through the subgames will give the desired result

uI(UIB, 05) +|Sler + Xses lgpley > u1(6NE) We omit last sub-

game from the accumulated value function error because the last

step does not use value function. O

THEOREM E.3. Let G be any zero-sum extensive-form game with
perfect recall and let 0'5 be any fixed opponent’s strategy in G. Then
we set GM as restricted Nash response modification of G using 05‘
Let P be any subgame partitioning of the game GM and using some
p € (0,1), let 0 be a CDRNR given approximation V of the op-
timal value functlon V with error at most ey and opponent strat-

egy 05 approximated in each step with regret at most eg, formally

R
1

ur (o}, 0) + Tses lso|(1 = pley + [Sler + Lses: Iseley >
u1(oNE).

ot = alﬂ(ozF,p)z,). Let oVE be any Nash equilibrium in G. Then

ProOF. Let TIM be a trunk of a modified game GM using parti-
tioning . We will use u® (o) as utility in G. Utility of player 1 for
playing Nash equilibrium of the G in trunk T; will be higher or the

M
same as game value of G, formally ulG (eNE) < ulGM (O'NE)z;l To
compute CDRNR we use the approximate value function. In the
fixed part of the game GF the value will be worse at most by sum of
errors as in the CDBR case. However, in the G’ the situation is more
complicated and we use Theorem 2 from [4] to bound the utility

increase, resulting in uG (a BR(O'R))V + L M,B|6V +|Irmler =
1
G(O'N E). We continue using induction over steps with induction

assumption that in step i, uG (O' BR(O'R))V +€ > uG(aNE)
and we already showed it holds for T;. Now we assume we have

trunk T;—1 for which the induction step holds and trunk T; which
is T;—1 joined with new subgame S;_1. Our algorithm recovers ap-
proximate equilibrium in Sf\f , and we want similar equation as for
the CDBR. Part of the game tree G has the errors bounded as in
CDBR but because we use gadget in the G’ we need to also consider
error in actions ending with value function player 2 can play in
the top with error bounded by ey. We have |Igo| of actions leading
out of the tree so the error increase in the G’ going to the next
subgame is at most |Igo|ey + |1, .3 ley + |ISM |er which together

gives us uS" (07, BR(0])) 1 +(1-p)|Igoley+II suslev +gu leg =

G (0' BR(O’Q)) ! where a{ is a combination of the strategy
we approxlmated in the subgame and the fixed strategy from previ-

ous step, formally o] = O'S‘ 'y O'R Ti-

!. Joining it with the induc-
tion assumption we have uG (0' BR(GR)) + (1 -p)llsoley +

|ISM.B lev + |Igm |eg +€i-1 2 ?(UNE), Accumulating the errors
i-1 i-1

in the last subgame we have uch (O'IR, BR(crlR)) +2ses Hsol(1 -

pev + |Sler + Xses lIsaley. However, we still need to show it
works for uG(O'R F 5 )- We can do it by replacing strategy of player
2 in the G’ by 02 wh1ch will effectively transform GM game back
to G with player 2 playing 0'5 . Since we did this transformation by
changing the strategy that was a best response the utility can only
increase and u?(alR, 05 ) = G (0' BR(O'R)) which concludes
the proof. O

THEOREM E.4. Let G be any zero-sum extensive-form game with
perfect recall and let 0'5 be any fixed opponent’s strategy in G. Then
we set GM as restricted Nash response modification of G using oF
Let P be any subgame partitioning of the game GM and using some
p € (0,1), let O'(R be a CDRNR given approximation V of the op-
timal value functlon V with error at most ey, partitioning P and
opponent strategy 0—5 , which is approximated in each step with regret
at most €, formally O'IR = o] (02 p)V Then exploitability has a
bound E(o}%) < G(o,0]) 125 Tses Isol(1 = plev + [Sler +
2.ses lspley, & and G are defined in Section 2.

Proor. We will examine the exploitability increase in each step.
First, we define gain in a single step as G (o1, 0'2)‘1; =ui(o1, 02)‘7;" -
141(01,02)5"1 for i > 0 and 9(01,02)5’ = u1(01,02)‘T,° —uy (oNE).
This is consistent with full definition of gain because sum of gains
over all steps will results in u; (o7, O'z)G—ul (o1, 02)‘T/" +ui (o1, 02)‘T/" -

T T;
w.—u1(01, 02);) +u1 (01, 02);) —u1 (oNE) = ug(01,02) S —ur (eNE) =
G (o1, 02). We define exploitability in a single step similarly as
6(01)5" = uz(oy, BR(Ul))‘T} — uz(oy, BR(UI))‘T,H fori > 0 and
8(0‘1)5’ = uz(al,BR(O'l))‘T}’ — uz(oNE) and it also sums to full
exploitability. In each step we approximate the strategy in the mod-

ified game, having full utility in step written as Q(alﬂ, 0'5 W

M
8(017%)3; (1 — p). If we had exact equilibrium in the subgame
this would always be at least 0. However, we have V instead of
V, values at the top of the gadget are not exact and the com-
puted strategy has regret eg. As in the previous proof the error is
bounded by |Iso|(1 - p)ey + ”55”'13 ley + |15?f1 |er and we can write



Figure 10: Example of game where step best response is worse
than NE against fixed strategy o(h) = % o(x)=1.

g(ol,az)v p- 6(0*)‘, (1=p) + 5ol (1 = plev + ILgmslev +

£ 4

[Igm |er = 0. We reorganize the equation to get g(crl )V e
i-1

™ .
> S(GR)V’ and summing

|Iso|(1 - pley + |IS{\f’15|€V + |ISM ler
over all the steps gives us Q(O' N ) T + 2ses go|(1=p)ey +
ISler + Sses Isslev = E(af) o

F CDBR AGAINST NASH STRATEGY

OBSERVATION 1. An example in Figure 10 shows that CDBR can
perform worse than a Nash equilibrium against the fixed opponent
because of the perfect opponent assumption after the depth-limit. An
example is a game of matching pennies with a twist. Player 2 can
choose in the case of the tails whether he wants to give the opponent 10
instead of only 1. A rational player will never do it, and the equilibrium
is a uniform strategy as in normal matching pennies.

Now we have an opponent model that plays h with probability
% and always plays x. The best response to the model will always
play T and get payoﬁ”%. Nash equilibrium strategy will get payoff
2, and CDBR with depth-limit 2 will cut the game before the x/y
choice. Assuming the opponent plays perfectly after the depth-limit
and chooses y, 1 will always play H. Playing H will result in receiving
payoﬁf%, which is higher than the value of the game (%) but lower
than what Nash equilibrium can get against the model.

G ADDITIONAL EMPIRICAL RESULTS

CDRNR. We show more results for Goofspiel, Leduc Hold’em,
and Liar’s dice with different values of p. SX is CDRNR with step
size denoted by X. We also evaluate SES and only use the highest
step value of 5. Next, we show the same setup as in the main text
with exactly the same partitioning as they used in SES, and we
include more values of p.

Repeated RPS. In Figure 15, we show the strategy sets recovered
for all possible p against one strategy in two round biased RPS
where after the round information is revealed. As we explained
before, we can see that SES cannot gain anything in a game where
only information imperfections are simultaneous moves. Exp-strat
can exploit only the second round, and it gains half of the maximum,
while the other algorithms can gain the maximum and are more or
less successful in achieving the best trade-off. The full gadget is the
best, followed by the other gadgets without theoretical guarantees,
and then by a combination of Nash and CDBR.

H SES BOUND
The bound in SES [13] is
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Figure 11: Additional results for CDRNR showing the per-
formance of CDRNR with varying step-size. Generated on
Goofspiel 5.

THEOREM H.1. Let S be a disjoint set of subgames S. Let ¢* =

(07, 0;) be the NE where player 1’s strategy is constrained to be the
. . o (1i
same.‘ with o1 o.utszde S. Define A = MaXges rics,,, |CBV, ! (Ié) -
09 (I)|. Let p(I) be the reach probabi?ity given by ;. Let p(I,) be
the estimation of reach probability p(I}) given by the real opponent
- ) P -pU3)

strategy. Definet = MaXges ries,,, | 5 |. Whenever1—(27+
1)a > 0, the exploitability bound is given by:
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Figure 12: Additional results for CDRNR showing the per-
formance of CDRNR with varying step-size. Generated on
Leduc Hold’em.

2

8(0’;) < 8(0’?) + m

We switched the players since authors in the previous work use
player 2 as the rational player.

We can see that the bound relies on the estimation being close
to an equilibrium strategy defined by authors as 7. However, it
does max over all the differences in reaches to the subgame, and
in practice, some of the reaches will be very different, resulting
in a large value of 7. To demonstrate the difference, we assume
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Figure 13: Additional results for CDRNR with different values
of p. Generated on Leduc Hold’em split only by the round.

the opponent model plays such that some action difference from
equilibrium is 1, which is the highest it can be, and hence 7 = 1.
Parameter « in SES directly matches p. For @ = 0, the bound is the
same as in the max-margin gadget, and 7 is disregarded. However,
as a increases, the bound steeply rises, and as « goes in the limit
to % the bound goes to infinity, and for any larger «, the bound
says nothing. In comparison, our bound does not have this problem,
and in the same setup, with p = 0.5, our bound still limits the
exploitability by exactly the gain achieved. Note that since in SES,
they do not account for errors in value function and errors in
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Figure 14: Additional result on Liar’s dice. For every p it
exactly mimics the RNR so we only show one value.
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Figure 15: Results showing gain and exploitability trade-off
in two round biased RPS. Max-margin and resolving gadget
overlaps

resolving, for this comparison only, we also omitted error terms
caused by those errors.
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