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ABSTRACT
In zero-sum games, the optimal strategy is well-defined by the

Nash equilibrium. However, it is overly conservative when playing

against suboptimal opponents and it can not exploit their weak-

nesses. Limited look-ahead game solving in imperfect-information

games allows defeating human experts in massive real-world games

such as Poker, Liar’s Dice, and Scotland Yard. However, since they

approximate Nash equilibrium, they tend to onlywin slightly against

weak opponents. We propose methods combining limited look-

ahead solving with an opponent model, in order to 1) approximate

a best response in large games or 2) compute a robust response

with control over the robustness of the response. Both methods can

compute the response in real time to previously unseen strategies.

We present theoretical guarantees of our methods. We show that ex-

isting robust response methods do not work combined with limited

look-ahead solving of the shelf, and we propose a novel solution

for the issue. Our algorithm performs significantly better than mul-

tiple baselines in smaller games. and outperform state-of-the-art

methods against SlumBot.
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1 INTRODUCTION
We can not enumerate all the decision points in large games, which

makes computing optimal strategy, a Nash equilibrium (NE) in two-

player zero-sum games, infeasible. A breakthrough that allowed

approximating the NE and defeating human experts in several

large imperfect-information games is limited look-ahead solving

or search, which adapts the well-known approach from perfect-

information games to games with imperfect-information [3, 19, 20].

Limited look-ahead solving takes advantage of decomposition. It

iteratively builds the game to some depth and solves a small part

of the game while summarising the required values from the rest

of the game by a value function. The value function is commonly

learned using neural networks. When the algorithms solve the

game step by step, it is called continual depth-limited solving or

continual resolving.
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The vast majority of theoretically sound, continual depth-limited

solving algorithms assume perfect rationality of the opponent and

do not allow explicit modeling of an opponent and exploitation of

the opponent’s mistakes. As a result, even very weak opponents

exploitable by the heuristic local best response (LBR) [12] can tie or

lose very slowly against these methods [25]. Therefore, there has

been a significant amount of work towards computing strategies to

use against imperfect opponents to create AI systems that would

perform well in the real world, for example, against humans [1, 8,

10, 16, 17, 21, 23].

The opponent modeling and exploitation process consists of

two steps: opponent modeling and model exploitation. Opponent

modeling requires building a model from previous data or actions

observed during an online play. Model exploitation is finding a

good strategy against the given model and is the main focus of this

paper. In smaller games, we can trivially compute a best response to

exploit the opponent maximally, or we can use methods to compute

robust responses [8, 9] if there is uncertainty in the model and we

want to be safer, meaning we want to limit the possible loss when

facing the worst-case adversary. However, even the best response

(BR) computation in large games is non-trivial, and currently, no

approach can compute it while interacting in real-time.

This work explores the full model exploitation and proposes

continual depth-limited best response (CDBR). CDBR relies on the

value function used in the standard limited look-ahead solving, and

we prove theoretical guarantees on the performance. A drawback

of using the same value function is decreased performance, and

we could improve CDBR by training a specific value function for a

particular opponent model. However, it would be impractical since

the training is expensive. Furthermore, in cases where we learn the

opponent model in real-time interaction and update it after each

step, it would be impossible.

The best response and CDBR are useful, e.g., for evaluating the

quality of strategies, but they are brittle in game play. We can lose

significantly when facing an opponent different from the expected

model. In the real world, we will never have exact models, which

makes BR and CDBR impractical for game play. To address the

issue, robust responses are used [6, 8, 9]. They introduce a notion

of safety, and the safety criterion requires the response to stay

close to the NE. In other words, only to lose a limited amount

to the worst-case adversary. Trivially, we can compute both BR

and NE and create a linear combination where we can control the

safety by a parameter. However, previous work shows that we can

perform significantly better and recover the whole Pareto set of

maximally exploiting strategies with maximal safety [9]. We adapt

the method to limited look-ahead solving, creating a continual

depth-limited restricted Nash response (CDRNR). Similarly to the

full robust response, CDRNR significantly outperforms the linear

combination. However, it comes with drawbacks in the limited



look-ahead solving. Namely, we need to keep the previously solved

subgames as a path to the root to ensure theoretical soundness,

which linearly increases the size of the game solved each step,

making it scalable to games with low depth like Poker or Goofspiel

but impractical in games with high depth.

Our contributions are: 1)We formulate the algorithms to find the

responses given the opponent strategy and an evaluation function.

This results in the best performing theoretically sound robust re-

sponse applicable to large games. 2)We prove the soundness of the

proposed algorithms. 3)We provide an analysis of problems that

arise when using opponent models in limited look-ahead solving

and propose a solution we call a full gadget. 4)We empirically eval-

uate the algorithms on poker and goofspiel variants and compare

them to multiple baselines. We show that our responses exploit

the opponents, and CDBR outperforms domain-specific local best

response [12] on poker. We also compare CDBR with the approxi-

mate best response (ABR) on smaller games and on full Heads-up

No-Limit Texas Hold’em (HUNL), where we exploit SlumBot sig-

nificantly more than ABR.

2 BACKGROUND
A two-player extensive-form game (EFG) consists of a set of players

𝑁 = {1, 2, 𝑐}, where 𝑐 denotes the chance, 1 is the maximizer and 2

is the minimizer, a finite set 𝐴 of all actions available in the game, a

set 𝐻 ⊂ {𝑎1𝑎2 · · ·𝑎𝑛 | 𝑎 𝑗 ∈ 𝐴,𝑛 ∈ N} of histories in the game. We

assume that 𝐻 forms a non-empty finite prefix tree. We use 𝑔 < ℎ

to denote that ℎ extends 𝑔. The root of 𝐻 is the empty sequence ∅.
The set of leaves of 𝐻 is denoted 𝑍 , and its elements 𝑧 are called

terminal histories. The histories not in Z are non-terminal histories.
By 𝐴(ℎ) = {𝑎 ∈ 𝐴 | ℎ𝑎 ∈ 𝐻 }, we denote the set of actions available
at ℎ. 𝑃 : 𝐻 \ 𝑍 → 𝑁 is the player function which returns who

acts in a given history. Denoting 𝐻𝑖 = {ℎ ∈ 𝐻 \ 𝑍 | 𝑃 (ℎ) = 𝑖},
we partition the histories as 𝐻 = 𝐻1 ∪ 𝐻2 ∪ 𝐻𝑐 ∪ 𝑍 . 𝜎𝑐 is the

chance strategy defined on 𝐻𝑐 . For each ℎ ∈ 𝐻𝑐 , 𝜎𝑐 (ℎ) is a fixed

probability distribution over 𝐴(ℎ). Utility functions assign each

player utility for each leaf node, 𝑢𝑖 : 𝑍 → R. The game is zero-

sum if ∀𝑧 ∈ 𝑍 : 𝑢1 (𝑧) + 𝑢2 (𝑧) = 0. In the paper, we assume

all the games are zero-sum. The game is of imperfect information
if all players do not fully observe some actions or chance events.

The information structure is described by information sets for each
player 𝑖 , which forms a partition I𝑖 of 𝐻𝑖 . For any information set

𝐼𝑖 ∈ I𝑖 , any two histories ℎ,ℎ′ ∈ 𝐼𝑖 are indistinguishable to player 𝑖 .

Therefore 𝐴(ℎ) = 𝐴(ℎ′) whenever ℎ,ℎ′ ∈ 𝐼𝑖 . For 𝐼𝑖 ∈ I𝑖 we denote
by 𝐴(𝐼𝑖 ) the set 𝐴(ℎ) and by 𝑃 (𝐼𝑖 ) the player 𝑃 (ℎ) for any ℎ ∈ 𝐼𝑖 .

A strategy 𝜎𝑖 ∈ Σ𝑖 of player 𝑖 is a function that assigns a dis-

tribution over 𝐴(𝐼𝑖 ) to each 𝐼𝑖 ∈ I𝑖 . A strategy profile 𝜎 = (𝜎1, 𝜎2)
consists of strategies for both players. 𝜋𝜎 (ℎ) is the probability of

reaching ℎ if all players play according to 𝜎 . We can decompose

𝜋𝜎 (ℎ) = ∏
𝑖∈𝑁 𝜋𝜎

𝑖
(ℎ) into each player’s contribution. Let 𝜋𝜎−𝑖 be

the product of all players’ contributions except that of player 𝑖

(including chance). For 𝐼𝑖 ∈ I𝑖 define 𝜋𝜎 (𝐼𝑖 ) =
∑
ℎ∈𝐼𝑖 𝜋

𝜎 (ℎ), as the
probability of reaching information set 𝐼𝑖 given all players play

according to 𝜎 . 𝜋𝜎
𝑖
(𝐼𝑖 ) and 𝜋𝜎−𝑖 (𝐼𝑖 ) are defined similarly. Finally,

let 𝜋𝜎 (ℎ, 𝑧) =
𝜋𝜎 (𝑧 )
𝜋𝜎 (ℎ) if ℎ < 𝑧, and zero otherwise. 𝜋𝜎

𝑖
(ℎ, 𝑧) and

𝜋𝜎−𝑖 (ℎ, 𝑧) are defined similarly. Using this notation, expected payoff
for player 𝑖 is 𝑢𝑖 (𝜎) =

∑
𝑧∈𝑍 𝑢𝑖 (𝑧)𝜋𝜎 (𝑧). A best response (BR) of
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Figure 1: Illustration of the depth-limited solving.

player 𝑖 to the opponent’s strategy 𝜎−𝑖 is a strategy𝜎𝐵𝑅𝑖 ∈ 𝐵𝑅𝑖 (𝜎−𝑖 ),
where 𝑢𝑖 (𝜎𝐵𝑅𝑖 , 𝜎−𝑖 ) ≥ 𝑢𝑖 (𝜎′𝑖 , 𝜎−𝑖 ) for all 𝜎

′
𝑖
∈ Σ𝑖 . A tuple of strate-

gies (𝜎𝑁𝐸
𝑖

, 𝜎𝑁𝐸
−𝑖 ), 𝜎𝑁𝐸

𝑖
∈ Σ𝑖 , 𝜎

𝑁𝐸
−𝑖 ∈ Σ−𝑖 is a Nash Equilibrium (NE)

if 𝜎𝑁𝐸
𝑖

is an optimal strategy of player 𝑖 against strategy 𝜎𝑁𝐸
−𝑖 . For-

mally: 𝜎𝑁𝐸
𝑖

∈ 𝐵𝑅(𝜎𝑁𝐸
−𝑖 ) ∀𝑖 ∈ {1, 2}.

In a two-player zero-sum game, the exploitability of a strategy

is the expected utility a fully rational opponent can achieve above

the value of the game. Formally, exploitability E(𝜎𝑖 ) of strategy
𝜎𝑖 ∈ Σ𝑖 is E(𝜎𝑖 ) = 𝑢−𝑖 (𝜎𝑖 , 𝜎−𝑖 ) − 𝑢−𝑖 (𝜎𝑁𝐸 ), 𝜎−𝑖 ∈ 𝐵𝑅−𝑖 (𝜎𝑖 ).

Safety is defined based on exploitability and 𝜖-safe strategy is a

strategy which has exploitability at most 𝜖 .

We define gain of a strategy against a model as the expected

utility we receive above the value of the game. We formally define

the gain G(𝜎𝑖 , 𝜎−𝑖 ) of the strategy 𝜎𝑖 against a strategy 𝜎−𝑖 as
G(𝜎𝑖 , 𝜎−𝑖 ) = 𝑢𝑖 (𝜎𝑖 , 𝜎−𝑖 ) − 𝑢𝑖 (𝜎𝑁𝐸 ).

Depth-limited Solving - Figure 1. We denote 𝐻𝑖 (ℎ) the sequence
of player 𝑖’s information sets and actions on the path to a history

ℎ. Two histories ℎ,ℎ′ where player 𝑖 does not act are in the same

augmented information set 𝐼𝑖 if 𝐻𝑖 (ℎ) = 𝐻𝑖 (ℎ′). We partition the

game histories into public states 𝑃𝑆 ⊂ 𝐻 , which are closed un-

der the membership within the augmented information sets of all

players. Trunk is a set of histories 𝑇 ⊂ 𝐻 , closed under prefixes

and public states. Subgame 𝑆 ⊂ 𝐻 is a forest of trees with all the

roots starting in one public state. It is closed under public states,

and the trees can end in terminal public states or often end after

a number of moves or rounds in the game. Range of a player 𝑖 is
a probability distribution over his information sets in some public

state 𝑃𝑆𝑖 , given we reached the 𝑃𝑆𝑖 . Value function is a function

that takes the public state and both players’ ranges as input and

outputs values for each information set in the public state for both

players. We assume using an approximation of an optimal value
function, which is a value function returning the values of using

some NE after the depth-limit. Subgame partitioning P is a parti-

tioning that splits the game into trunk and subgames into multiple

different levels based on some depth-limit or other factors (domain

knowledge). Subgame partitioning can be naturally created using

the formalism of factored-observation stochastic games [11]. By

𝑢𝑖 (𝜎)𝑇𝑉 , we denote the utility for player 𝑖 if we use strategy profile

𝜎 in trunk 𝑇 and compute values at the depth-limit using value

function 𝑉 . When resolving a subgame with just the ranges, there

are no guarantees on the resulting exploitability of the strategy in

the full game, and the exploitability can rise significantly [4]. To

address the issue, artificially constructed games called gadgets are
used to limit the increase in exploitability. They do it by adding
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Figure 2: Simple zero-sum imperfect-information game.
Nodes denote the decisions of the players, dotted lines mark
information sets, and the leaf shows for player 1

nodes to the top of the subgame, which simulates that the opponent

is allowed to deviate from its strategy in an already solved game.

Figure 2 shows a simple game illustrating depth-limited solving.

The game starts with player 2 choosing to either play standard

biased matching pennies (𝑝) or playing his own version of the game

(𝑞). In the next round, player 1 does not know which game player 2

chose, and he chooses head (H) or tail (T). Then player 2 guesses

head (ℎ𝑖 ) or tail(𝑡𝑖 ), and if he chooses to play the standard version,

he receives 2 when correctly guessing head and 1 when correctly

guessing tails. Otherwise, the reward is 0. In the modified version,

guessing incorrectly gives 2 to the player 2, and guessing correctly

gives 1 for heads and -1 for tails.

In the Nash equilibrium of this game, player 1 plays heads with

probability
2

3
and player 2 chooses his own version of the game

with probability
2

3
and follows with only heads. Public states in

this game are always the whole levels (rows) since the actions are

never observable by both players. When we start depth-limited

solving, we create a trunk, which we select as just the root with the

choice to play 𝑞 or 𝑝 . We start solving the trunk using an iterative

algorithm, e.g., counterfactual regret minimization (CFR) [26].

We initialize strategy to uniform, which gives us range in the

next public state (
1

2
, 1

2
). We give the range to the value function,

which returns values as if we played equilibrium in the rest of the

game. Value function gives us values in the information sets, which

translates to the utility of − 5

3
for playing heads and − 2

3
for playing

tails. We use the values to update regrets in the CFR and perform

the next iteration similarly. When we solve the trunk and recover

the equilibrium strategy for the first node, we move to a subgame,

for example, a game starting in the information set of player 1 and

ending after his action. We need to reconstruct what happened

earlier. If we replace the already computed strategy with a chance

node, which is called unsafe resolving, we are not guaranteed to

recover the equilibrium for player 1. Unsafe resolving can produce

solutions ranging from heads with probability
3

4
to

1

3
but the only

equilibrium is heads with probability
2

3
. The situation is fixed using

the mentioned gadgets, which allow the opponent to modify their

range above the subgame, forcing the other player to play robustly

against all the possible ranges and recover the equilibrium.

3 FULLY EXPLOITING THE OPPONENT
Fully exploiting opponent models in small games boils down to

computing a best response. This is infeasible in games with an in-

tractable number of information sets for which we use the continual

depth-limited solving algorithms. The depth-limited setting does

not allow computing BR in one pass anymore. The game we already

saw in Figure 2 can be an example of that. Suppose we know the

player 2 always makes a mistake in the first move and plays only

to the standard biased matching pennies. If we knew his strategy

of guessing heads or tails, we could compute a best response. How-

ever, our trunk will end before the choice, and we need to use a

value function. Since the value function in this simple case is just a

best response of the opponent, the problem is reduced to finding

the optimal strategy against a best response, which corresponds

to finding NE, and it can not be solved in one pass. In this section,

we propose an algorithm for continual depth-limited best response

(CDBR), which generalizes a best response to be used with a value

function for depth-limited solving.

Continual Depth-limited Best Response
Given any extensive-form game 𝐺 with perfect recall, opponent’s

fixed strategy 𝜎𝐹
2
and some subgame partitioning P, we define

continual depth-limited best response (CDBR) recursively from the

top, see Figure 1. First, we have trunk 𝑇1 = 𝑇 and value function 𝑉 .

CDBR in the trunk 𝑇1 for player 1 with value function 𝑉 is defined

as B(𝜎𝐹
2
)𝑇1

𝑉
= arg max𝜎1

𝑢1 (𝜎1, 𝜎
𝐹
2
)𝑇1

𝑉
. In other words, we maximize

the utility over the strategy in the trunk, where we return values

from the value function after the depth limit. In each step afterward,

we create a new subgame 𝑆𝑖 and create new trunk by joining the old

one with the subgame, creating𝑇𝑖 = 𝑇𝑖−1∪𝑆𝑖 . We fix the strategy of

player 1 in the𝑇𝑖−1 and maximize over the strategy in the subgame.

B(𝜎𝐹
2
)𝑇𝑖
𝑉

= arg max(𝜎𝑆𝑖
1
) 𝑢1 (𝜎𝑆𝑖

1
∪ 𝜎

𝑇𝑖−1

1
, 𝜎𝐹

2
)𝑇𝑖
𝑉
. We continue like

that for each step, and we always create a new trunk 𝑇𝑖 using the

strategy from step 𝑇𝑖−1 until we reach the end of the game. We

denote the full CDBR strategy created by joining strategies from

all possible branches B(𝜎𝐹
2
)P
𝑉
.

Intuitively, we always solve the game until the depth limit. The

opponent is fixed everywhere above the depth limit, and the rational

player is fixed in the already solved parts, and she can play in the

part that was added last. Looking at Figure 1 CDBR in 𝑆2 would

allow player 1 to play in 𝑆2, it would replace anything bellow 𝑆2

with a value function, player 1 would be fixed in𝑇 and 𝑆1 and player

2 would be fixed in 𝑇, 𝑆1 and 𝑆2.

Computing CDBR and the complexity. In practice, we will compute

CDBR similarly to depth-limited solving with a few key changes.

First, we fix the opponent’s strategy in the currently resolved part of

the game to allow the player to respond to it, which corresponds to

the argmax from the definition. Another key change that simplifies

the algorithm is that we no longer need a gadget since the opponent

is fixed in the parts we already played through, so we do not need

to be robust against different ranges than the one taken from the

opponent model.

The difference from the standard depth-limited solving is that

we fix the opponent’s strategy in the resolved part of the game, and

we do not use a gadget. Hence, there is less computation required

compared to the standard depth-limited solving.

Convergence in current iterations. CFR is an algorithm that needs to

track average strategies since the current strategy does not converge

to an equilibrium. CFR against best response or a fixed strategy is

known to converge in the current strategy [5, 14]. The next lemma



says that CDBR also converges in the current strategy even when

a value function is used after the depth-limit.

Lemma 3.1. Let 𝐺 be a zero-sum imperfect-information extensive-
form game. Let 𝜎F

2
be the fixed opponent’s strategy, and let 𝑇 be some

trunk of the game. If we perform CFR with 𝑡 iterations in the trunk for
player 1, then for the strategy 𝜎̂1 from the iteration with highest ex-

pected utility max𝜎∗
1
∈Σ1

𝑢1 (𝜎∗
1
, 𝜎𝐹

2
)𝑇
𝑉
− 𝑢1 (𝜎̂1, 𝜎

𝐹
2
)𝑇
𝑉

≤ Δ
√︃

𝐴
𝑡 |I𝑇𝑅 | +

𝑡𝑁𝑆𝜖𝑆 where Δ is a span of leaf utilities, Δ = max𝑧∈𝑍 𝑢𝑖 (𝑧) −
min𝑧∈𝑍 𝑢𝑖 (𝑧), 𝐴 is an upper bound on the number of actions, |I𝑇𝑅 |
is a number of information sets in the trunk, 𝑁𝑆 is the number of
information sets at the root of any subgame, and value function error
is at most 𝜖𝑆 .

4 SAFE MODEL EXPLOITATION
While CDBR maximizes the exploitation of the fixed opponent

model, it allows a player to be exploited. When we face an opponent

unsure if our model is perfect we must limit our exploitability. For

example, when we gradually build a model during play, we must

limit our exploitability in the initial game rounds when the model

is still very inaccurate.

Combination of CDBR and Nash Equilibrium
The combination of CDBR and Nash equilibrium (CDBR-NE) is

the first approach to limit exploitability. We can simultaneously

compute both strategies using depth-limited solving and do a linear

combination in every decision node. Let 𝑝 be the linear combi-

nation parameter and 𝜎𝐹
2
be the opponent model. The gain and

exploitability are limited accordingly.

𝜎𝐿𝐶
1

= 𝑝𝜎𝑁𝐸
1

+ (1 − 𝑝)B(𝜎𝐹
2
)P
𝑉

E(𝜎𝐿𝐶
1

) = 𝑝E(𝜎𝑁𝐸
1

) + (1 − 𝑝)E(B(𝜎𝐹
2
)P
𝑉
)

G(𝜎𝐿𝐶
1
, 𝜎𝐹

2
) = 𝑝G(𝜎𝐿𝐶

1
, 𝜎𝐹

2
) + (1 − 𝑝)G(B(𝜎𝐹

2
)P
𝑉
, 𝜎𝐹

2
)

Desired exploitability or gain may be achieved by tuning the param-

eter 𝑝 while being only two times slower than the CDBR since we

need to find the Nash equilibrium separately and perform CDBR.

The required value function is the same for both parts and is still

the same as in standard depth-limited solving.

Required computation is exactly running standard depth-limited

solving and CDBR in parallel. Since CDBR computation has stan-

dard depth-limited solving as an upper bound, the required compu-

tation is at most twice as much as standard depth-limited solving.

Continual Depth-limited RNR
CDBR-NE is safe, but [9] shows we can get a much better trade-off

between gain and exploitability using RNR as it recovers the optimal

Pareto set of 𝜖-safe best responses [15]. It also gives us better control

of safety as it links the allowed exploitability to the achieved gain.

We combine depth-limited solving with RNR to create CDRNR.

Description of Restricted Nash Response. For CDRNR, we first need
to explain the RNR method briefly [9]. RNR is solved by computing

a modified game, adding an initial chance node with two outcomes

that player 1 does not observe. We copy the whole game tree under

both chance node outcomes, and in one tree, the opponent plays the

fixed strategy, and we denote it𝐺𝐹
. In the other tree, the opponent

can play as he wants, resulting in a best response to the strategy

of player 1. We denote the other tree 𝐺 ′
. Since player 1 does not

observe the initial chance node, his information sets span over 𝐺 ′

and 𝐺𝐹
, and we denote the full modified game with both trees 𝐺𝑀

.

Parameter 𝑝 is the method to control the safety and is the initial

probability of picking 𝐺𝐹
.

Definition. Given the opponent’s fixed strategy 𝜎𝐹
2
and some sub-

game partitioning P of 𝐺𝑀
, we define continual depth-limited

restricted Nash response (CDRNR) recursively from the top. First,

we have trunk 𝑇𝑀
1

using P and value function 𝑉 . CDRNR for

player 1 in the trunk 𝑇𝑀
1

using value function 𝑉 is R(𝜎𝐹
2
, 𝑝)𝑇

𝑀
1

𝑉
=

arg max𝜎1

𝑢1 (𝜎1, 𝐵𝑅(𝜎1))
𝑇𝑀

1

𝑉
. And then, in every following step, we

create the new subgame 𝑆𝑀
𝑖

and enlarge the trunk to incorporate

this subgame, creating trunk 𝑇𝑀
𝑖

= 𝑇𝑀
𝑖−1

∪ 𝑆𝑀
𝑖
. Next, we fix strat-

egy 𝜎
𝑇𝑀
𝑖−1

1
of player 1 in the previous trunk 𝑇𝑀

𝑖−1
and the CDRNR is

R(𝜎𝐹
2
, 𝑝)𝑇𝑖

𝑉
= arg max

𝜎
𝑆𝑀
𝑖

1

𝑢1 (𝜎′
1
, 𝐵𝑅(𝜎′

1
))𝑇

𝑀
𝑖

𝑉
where 𝜎′

1
is a combi-

nation of the strategy we optimize over and the fixed strategy from

the previous step, formally 𝜎′
1
= 𝜎

𝑆𝑀
𝑖

1
∪ 𝜎𝑇

𝑀
𝑖−1

1
.

To summarize, we optimize only over the strategy in the subgame

used in the current step while the strategy in the previous parts

of the game is fixed for player 1. The strategy of the opponent is

fixed in 𝐺𝐹
and free in 𝐺 ′

. We denote the full CDRNR strategy

R(𝜎𝐹
2
, 𝑝)P

𝑉
.

Computing CDRNR. In practice, we want to avoid duplicating the

tree, and we also want to use the exact same value function as in the

standard depth-limited solving. We explain why the RNR does not

need the duplicated trees in practice. It only needs the reaches of

the fixed strategy injected to the terminal nodes in the ratio defined

by the parameter 𝑝 . This allows us to precompute the reaches, run

CFR as in standard depth-limited solving, and then modify the

computed reaches from the iteration using the precomputed fixed

reaches. However, we also need to query the value function, which

differs from the previous one in the theoretical definition as it spans

over the modified public state. However, since the reaches of 𝑝1 are

the same for 𝐺 ′
and 𝐺𝐹 we can compute it only once by joining

the reaches together as in the previous example and querying the

standard value function.

So far, we described exactly the standard depth-limited solving

with only one modification: modifying the reaches using the fixed

strategy.We also use the gadget since now the opponent can deviate

in the𝐺 ′
. However, standard gadgets will fail due to the addition

of imperfect parts of the opponent, and we discuss details along

with a solution in the next section.

5 GADGETS AND MODEL EXPLOITATION
When we exploit an opponent model, we need to worsen the strat-

egy in terms of exploitability. We must limit how much the strategy

worsens if we want a safe response. Gadgets are used to ensure

exploitability does not increase [2, 4, 18], and all the common gad-

gets work in scenarios where we do not expect our strategy to

worsen. However, we need to worsen our strategy to exploit the

opponent. We try to gain as much as possible in RNR in 𝐺𝐹
. As



soon as the strategy gets worse and the exploitability increases,

the common gadgets fail to quantify this increase, which is crucial

in applications doing a delicate trade-off. The requirement for the

gadget which would work in CDRNR is in Definition 5.1

Definition 5.1. For each information set 𝐼 ∈ I1 we need the value

of its part in 𝐺 ′
, formally

∑
ℎ∈𝐼 ,ℎ∈𝐺 ′,𝑧∈𝑍,ℎ<𝑧 𝜋

𝜎 (𝑧)𝑢1 (𝑧), to be the

same as the value we would get if we let player 2 play BR in full𝐺 ′
.

The following examples show that the requirement is not satis-

fied for common resolving gadgets. We tried to construct a gadget

that would satisfy the condition, but in the end, we kept the previ-

ously resolved parts of the game 𝐺 ′
followed by the value function

which the game does not follow. We call the construction the full

gadget, it satisfies the condition, and still only increases the size of

the solved part linearly. Constant-size gadget fulfilling the Defini-

tion 5.1 is an open problem.

Restricted Nash Response with Gadget
We show that commonly used resolving gadgets are either over-

estimating or underestimating the values from Definition 5.1 on

an example game in Figure 3. In the game, we first randomly pick

a red or green coin. Player 2 observes this and decides to place

the coin heads up (RH, GH) or tails up (RT, GT). Player 1 cannot

observe anything and ultimately chooses whether he wants to play

the game (P) or quit (Q).

In equilibrium, player 1 plays action 𝑄 , and player 2 can mix

actions up to the point where the utility for 𝑃 is at most 0. This

gives the value of the game 0, and counterfactual values in all inner

nodes are also 0. Assuming the modified RNR game 𝐺𝑀
with an

opponent model playing 𝐺𝑇 , that makes it worth for player 1 to

play (P) in the game, 2 will play (𝑅𝐻,𝐺𝐻 ) in 𝐺 ′
with utility -3 for

player 1 in 𝐺 ′
. We will use gadgets to resolve the game from the

player 1 information set.

Resolving Gadget. [4] Resolving gadget constructs a game that

allows the opponent to choose whether he wants to play in the

subgame we created or terminate. It is done by inserting nodes

above the roots of the subgame, and the opponent has two actions

before each root, either to follow and play the game or to terminate

and receive a reward they would get by playing the previously

resolved equilibrium. Those nodes are grouped into information

sets based on the opponent’s augmented information sets at the

subgame’s roots.

Resolving gadget on the game in Figure 3 has all utilities after

terminate actions 0. When we resolve the gadget, the utility is 0.

However, when player 1 deviates to action 𝑃 , player 2 plays follow
action in all but the rightmost node, and the utility of player 1 will

be -3.5. Therefore, the common resolving gadget may overestimate

the real exploitability of the strategy in the subgame. Overestimat-

ing may lead to not exploiting as much as we can and makes it

impossible to prove Theorem 5.2 about the minimal gain of our

algorithm. Normalization of the chance node might seem to solve

the problem, but it would only halve the value to -1.75, which is

still incorrect.

(Reach) Max-margin Gadget. [2, 18] Both reach max-margin and

max-margin gadgets allow the opponent to choose any information

set at the start of the subgame. This is done by inserting a single

node to the top, where the opponent has an action for each of his

augmented information sets in the root of the subgame. After the

action is a chance node to split the information set to the histories,

with correct reaches by the resolving player and chance. Further-

more, all the terminal values are adjusted by the same value, which

is in the terminate action in the resolving gadget. In the reach max-

margin gadget, this value is further modified by an approximation

of opponent mistakes.

All the counterfactual best response values are 0, and we assume

both players played perfectly before the depth limit. Hence, we

do not need to offset any node in the (reach) max-margin gadget.

Then, both gadget constructions are identical. We add the initial

decision node and the chance nodes (since there is only one state

in each information set, the nodes have only one action). When

we solve the gadget, player 1 will pick action 𝑄 , and the gadget

value will be 0. However, when player 1 deviates to action 𝑃 , player

2 now has a choice between terminal utilities and picks action 𝐸

to receive the highest one. This will result in utility -2, and we

see that (reach) max-margin gadgets can underestimate the real

exploitability. It can lead to our algorithm being more exploitable

than we want using some 𝑝 , and it makes Theorem 5.3 impossible

to prove. Similar to the previous gadget, normalizing the chance

nodes would lead to double the utility, which is still incorrect.

Full Gadget. The only construction fulfilling the requirements

we found is to keep all the previously explored parts of the game in

a path to the root and use a value function when we leave. Using

the optimal value function, the construction simulates the best

response, which measures exploitability.

Formally, when we reach subgame 𝑆𝑖 we construct a composite

game by joining 𝑆𝑖 , the trunk 𝑇 , and all the previous subgames

𝑆 𝑗 , 𝑗 ∈ 1, ..., 𝑖 − 1. It corresponds to the illustration in Figure 1, and

the value function will evaluate every public state 𝑃𝑆 from which

the actions lead outside of the game.

We show that other gadgets can overestimate or underestimate

exploitability, which could shift the distribution of the parameter 𝑝 ,

and we could still compute the same solutions. However, in Figure 4,

we show the results of games created to break the other gadgets.

We have two games in which the full gadget behaves correctly, and

each breaks the other gadget. Figure 4 shows the results joined

together. Both games have five actions for the exploiter, and each

one is crucial in reconstructing the full RNR set. The full gadget

can recover all five actions using different 𝑝 , but other gadgets can

only compute two actions regardless of the choice of 𝑝 .

Complexity of CDRNR. We can use other gadgets in CDRNR to

obtain fast algorithms without any theoretical guarantees and with

the same bound on computation as we have for the combination of

CDBR and Nash equilibrium. The soundness of the algorithm relies

on using the full gadget, which requires solving increasingly larger

parts of the game as the depth increases. This increase in size is

linear with the resolving steps, so the full algorithm complexity is

quadratic in the depth of the game compared with vanilla continual

resolving or CDBR. It makes the algorithm applicable to shorter

games like Poker or Goofspiel but infeasible for long games like

Stratego.
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Figure 3: (left) A game to show problems with gadgets. (middle) Resolving gadget for the left game. (right) Max-margin and
Reach max-margin gadget.
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Soundness of CDRNR. For the following theorems, we denote S as

the set consisting of the trunk and all the subgames explored when

computing the response, and S′
is the same but without the last

subgame. 𝑆𝐵 denotes a border of the subgame. We also denote 𝑆𝑂 ,

the set of all the states where we leave the trunk not going in the

currently resolving subgame.

Theorem 5.2 (Gain of CDRNR). Let𝐺 be any zero-sum extensive-
form game and let 𝜎F

2
be any fixed opponent’s strategy in𝐺 . Then we

set 𝐺𝑀 as restricted Nash response modification of 𝐺 using 𝜎F
2
. Let

P be any subgame partitioning of the game 𝐺𝑀 and using some 𝑝 ∈
⟨0, 1⟩, let 𝜎R

1
be a CDRNR given approximation 𝑉 of value function

𝑉 with error at most 𝜖𝑉 and opponent strategy 𝜎F
2
approximated in

each step with regret at most 𝜖𝑅 , formally 𝜎R
1

= R(𝜎𝐹
2
, 𝑝)P

𝑉
. Let 𝜎𝑁𝐸

be any Nash equilibrium in 𝐺 . Then 𝑢1 (𝜎R
1
, 𝜎𝐹

2
) +∑

𝑆∈S′ |𝐼𝑆𝑂 | (1 −
𝑝)𝜖𝑉 + |S|𝜖𝑅 +∑

𝑆∈S′ |𝐼𝑆𝐵 |𝜖𝑉 ≥ 𝑢1 (𝜎𝑁𝐸 ).
The previous theorem states that our approaches will receive at

least the value of the game when responding to the model. All the

proofs are in the appendix.

Theorem 5.3 (Safety ofCDRNR). Let𝐺 be any zero-sum extensive-
form game and let 𝜎F

2
be any fixed opponent’s strategy in 𝐺 . Then

we set 𝐺𝑀 as restricted Nash response modification of 𝐺 using 𝜎F
2
.

Let P be any subgame partitioning of the game 𝐺𝑀 and using some
𝑝 ∈ ⟨0, 1⟩, let 𝜎R

1
be a CDRNR given approximation 𝑉 of the op-

timal value function 𝑉 with error at most 𝜖𝑉 , partitioning P and
opponent strategy 𝜎F

2
, which is approximated in each step with regret

at most 𝜖𝑅 , formally 𝜎R
1

= 𝜎R
1
(𝜎𝐹

2
, 𝑝)P

𝑉
. Then exploitability has a

bound E(𝜎R
1
) ≤ G(𝜎R

1
, 𝜎𝐹

2
) 𝑝

1−𝑝 +∑
𝑆∈S′ |𝐼𝑆𝑂 | (1 − 𝑝)𝜖𝑉 + |S|𝜖𝑅 +∑

𝑆∈S′ |𝐼𝑆𝐵 |𝜖𝑉 , E and G are defined in Section 2.

The last theorem is more complex, and it bounds the exploitabil-

ity by the gain of the strategy against the model. With 𝑝 = 0, it

is reduced to the continual resolving, and with 𝑝 = 1 to CDBR

with unbounded exploitability. The theorem shows the parameter

𝑝 directly links allowed exploitability to the gain we receive. The

same works in RNR without the resolving and value errors; as far

as we know, the authors do not explicitly mention it.

SES has bound relies on opponent estimation being close to an

equilibrium strategy. When the estimation is more different, the

bound is infinity for a large portion of the parameter alpha. We

give a detailed explanation in the appendix.

More intuitively, Theorem 5.2 says that by playing the proposed

algorithm, we have at least the same safety guarantees we would

get by playing a NE against the opponent we modeled correctly.

Theorem 5.3 allows us to choose a trade-off between the exploitation

of the opponent behaving according to the model and safety against

an opponent who would deviate arbitrarily from the model.

6 EXPERIMENTS
We compared CDBR and local best response (LBR) [12]. We empiri-

cally show the performance of CDRNR and explore the trade-off

between exploitability and gain in CDRNR. The appendix contains

hardware setup, domain description, algorithm details, and experi-

ments on more domains. We use two types of opponent strategies:

strategies generated by few CFR iterations and random strategies

with different seeds.

SES explanation
Safe exploitation search (SES) [13] is a similar method to the one

we propose. However, there are two significant differences. First,

the method uses a max-margin gadget without the analysis we did.

Hence, the bound of exploitability is very loose, and for a wide

range of inputs, the exploitability can be unbounded. Second, the

method does not fix the opponent’s strategy at all and only uses

opponent reaches when resolving the subgame. As a result, SES

exploitation is very limited, and as we show in experiments, it is

often worse than using the best Nash equilibrium. On top of that, in

some games, it fundamentally cannot exploit the opponent, notably

in any perfect information game, even with simultaneous moves.

Exploitability of Robust Responses
We report both gain and exploitability for CDRNR on LeducHold’em.

Results in Figure 5 show that the proven bound on exploitability

works in practice, and we see that the bound is very loose in prac-

tice. For example, with 𝑝 = 0.5, the bound on the exploitability

is the gain itself, but the algorithm rarely reaches even a tenth of

the gain in exploitability. This shows that the CDRNR is similar
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Figure 5: Gain and exploitability comparison of BR, RNR,
best Nash equilibrium (BNE), CDBR-NE, SES, and CDRNR
in Leduc Hold’em against strategies from CFR using a small
number of iterations with different 𝑝 values. The a stands
for the average of the other values. VF is CDRNR using an
imperfect value function.

to the restricted Nash response because, with a well-set 𝑝 , it can

significantly exploit the opponent without significantly raising its

exploitability. The only exception is the CDRNR with a value func-

tion, which shows the added constants from the value function’s

imprecision. When the opponent is close to optimal, we see that

the exploitability can rise above the gain.

In most cases, the gain and exploitability of CDRNR are lower

than that of RNR. Gain must be lower because of the different value

function, but the exploitability can be higher, as seen with 𝑝 = 0.1

against low iteration strategies, due to the depth-limited nature. We

provide results on other domains and for more parameter values 𝑝

in the appendix.

We also compare the algorithm against the best possible Nash

equilibrium. We compute the best NE by a linear program, and

it serves as the theoretical limit of maximal gain, which does not

allow exploitability. It would be impossible to compute for larger

games. We can see we can gain more than twice as much, with

exploitability still being almost zero.

In our results on smaller games, we use the optimal value func-

tion computed by a linear program. To show the performance of

imperfect value function we included results where the value func-

tion is approximated by CFR with 500 iterations. As expected, the

ABR CDBR1 CDBR3 CDBR5 BNE
Leduc 98% 74.4% 96% 97.1% 32.6%

IIGS4 97% 98.5% 100% 100% 77.1%

IIGS5 95% 93.5% 100% 100% 50.4%

IIGS6 97% 90.7% 100% 100% 45.9%

Table 1: Comparison of ABR and CDBR with BNE baseline
on different games against uniform random. The values are
the percentage of gain achieved by the best response.

imperfect value function slightly decreases the performance but is

comparable to the algorithms using the optimal value function.

The last comparison is with SES, which performs poorly, and its

gain is only slightly above the best Nash equilibrium. Conversely, it

is almost not exploitable. Our results are consistent with results in

the paper [13] and are a direct consequence of using the information

from the opponent model only to set the reaches to the subgame.

Only reaches are not enough to do meaningful exploitation, and

SES produces strategies that are very close to Nash equilibrium.

ABR vs CDBR
We compared CDBRwithABR [22] on Leduc and different imperfect

information Goofspiel. The results are in Table 1, showing that our

method is slightly behind in Leduc, even with the highest search

depth. In Goofspiel, CDBR1, which looks only one action into the

future, is already pretty good, and as soon as we allow CDBR to

look three turns in the future, it fully exploits the opponents. In

IIGS4, that is half of the game, but in IIGS6, it is less than
1

3
of the

game, and it is still enough.

Local Best Response vs. CDBR
We compare LBR and CDBR in Leduc Hold’em. We also compare

CDBRwith the BR in imperfect informationGoofspiel 5, but without

LBR, which is poker-specific. We show that CDBR and LBR are very

similar with smaller steps, and as we increase the depth limit of

CDBR, it starts outperforming LBR. The behavior differs slightly

based on the specific strategy because LBR assumes the player

continues the game by only calling till the end, while CDBR uses

the perfectly rational extension.

The results in Figure 6 show that both concepts are good at

approximating the best response, with CDBR being better against

both strategies. LBR looks at one following action, so it is best

compared to the CDBR1 in terms of comparability. Next, we observe

a lack of monotonicity in step increase, which is explained with an

example in the appendix. When we increase the depth limit, the

algorithm can exploit some early mistake that causes it to miss a

sub-tree where the opponent makes a much bigger mistake in the

future. We can clearly see the difference between the algorithm

with guarantees and LBR without them. Against strategy from 34

CFR iterations, LBR can no longer achieve positive gain and only

worsens with more iterations. In contrast, CDBR can always achieve

at least zero gain, assuming we have an optimal value function.
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Figure 6: Gain comparison of best response (BR), local best
response (LBR - only poker), and continual depth-limited
best response (CDBR) in Leduc Hold’em (top) and IIGoofspiel
5 (bottom) against strategies from CFR using a small number
of iterations (left) and random strategies (right). The a stands
for the average of the other values in the plot. The number
after CDBR stands for the number of actions CDBR was
allowed to look at in the future, and CDBRNN is a one-step
CDBR with a neural network as a value function.

ABR LBR CDBR
Win-rate [mbb/h] 1259 ± ? 1388 ± 150 1774 ± 137

Table 2: Comparison of CDBR with LBR and ABR against
SlumBot. Results are reported in milibigblinds per hand
(mbb/h) with 95% confidence intervals.

Playing SlumBot
We tested our method in HUNL against SlumBot [7], which is a

publicly available abstraction-based bot commonly used for bench-

marking. We used a fold, call, pot, and all-in (FCPA) abstraction

for CDBR, and we also rerun the results of LBR against the new

SlumBot (since the author of SlumBot confirmed that the strategy

we were provided is different from the one LBR used but the same

as the one provided to authors of ABR). CDBR significantly outper-

forms both ABR and LBR and we report the results in Table 2. We

tried to run the LBR restricted to only call in the first two rounds

but found it no longer helps against the new SlumBot, and we re-

ported results for LBR with FCPA. Authors in [22] also use FCPA

for their method but did not report a confidence interval for the

results. However, the difference is large enough to have statistical

significance if we assume they played over 50 thousand hands.

7 RELATEDWORK
This section describes the related work focusing more on distin-

guishing our novel contributions.

Restricted Nash response (RNR) [9] is an opponent-exploiting

scheme. It solves the entire game and allows changing the trade-off

between exploitability and gain. Essentially it always produces 𝜖

safe best response [15]. It accomplishes the goal by copying the

whole game and then fixing the opponent in one part while having

a chance node at the top decide which game we play.

However, it is impossible to compute RNR in huge games, and

we fused the RNR approach with depth-limited solving creating a

novel algorithm we call CDRNR. CDRNR is the best performing

theoretically sound robust response calculation that can be done in

huge games, enabling new opponent exploiting approaches.

Local best response [12] is an evaluation tool for poker. It uses a

given abstraction in its action space. It picks the best action in each

decision set, looking at the fold probability for the opponent in the

next decision node and then assuming the game is called until the

end. Our algorithm CDBR is a generalization of the LBR because

we can use it on any game solvable by depth-limited solving. In the

algorithm, we have explicitly defined value function, which we can

exchange for different heuristics.

Approximate best response (ABR) [22] is also a generalization

of the LBR and showed promising results in evaluating strategies.

However, our approach focuses on model exploitation, which re-

quires crucial differences, such as quick re-computation against

unseen models. ABR needs to independently learn the response

for every combination of opponent and game, making it unusable

in the opponent modeling scenario. Our algorithms learn a sin-

gle domain-specific value function and can subsequently compute

strategies against any opponent in the run-time. Furthermore, ABR

and even CDBR are extremely brittle, making it a bad choice if

we are unsure about the opponent, which we often are in a game

against an unknown opponent. On the other hand, CDRNR tackles

exactly this issue and provides powerful exploitation with very

limited exploitability.

Another reinforcement-learning (RL) method uses neuroevolu-

tion with RL, they show a significant increase in performance over

DQN and evaluate their method on HUNL. However, they do not

share the details of the baseline opponents they played against. We

tried to contact the authors without any response and we could not

compare the performance with our methods. [24]

8 CONCLUSION
Opponent modeling and exploitation is an essential topic in compu-

tational game theory, with many approaches attempting to model

and exploit opponents in various games. However, exploiting oppo-

nents in very large games is not trivial, and only recently was an

algorithm created to exploit models in depth-limited solving. We

explain the problem arising from the inability of gadgets to measure

exploitability and we propose a full gadget that solves the issue. We

propose a new algorithm to quickly compute depth-limited best

response and depth-limited restricted Nash response once we have

a value function, creating the best performing theoretically sound

robust response applicable to large games. Finally, we empirically

evaluate the algorithms on multiple games. We show that CDBR

outperforms LBR in both Leduc and HUNL and we show that CDBR

performs significantly better against SlumBot than any other previ-

ous method. Finally, we show that CDRNR outperforms SES in any

game and can achieve over half of the possible gain without almost

any exploitability.
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A PSEUDOCODE
In this section, we present the pseudocode of both CDBR and

CDRNR.

Algorithm 1 Computing CDRNR (CDBR)

Require: game 𝐺 , model strategy 𝜎𝐹
2
, value function 𝑉

create (virtually) modified game 𝐺𝑀
(only CDRNR)

create subgame partitioning P from 𝐺𝑀
(𝐺)

𝜎B
1

= empty strategy ready to be filled

𝐼 = initial information set in which we act

𝑆 = current constructed subgame

while 𝐼 not null do
if 𝐼 not in 𝑆 then

S = construct new 𝑆 from P using previous 𝑆 (CDRNR

does not delete trunk)

𝜎B
1

+= solution of 𝑆 using CFR+ with 𝑉

else
pick action 𝐴 according to 𝜎B

1
in 𝐼

get new 𝐼 using 𝐴 (or null if the game ends)

end if
end while

B ADDITIONAL CDBR RESULTS
We compare LBR and CDBR in Leduc Holde’m. We also compare

CDBR with just the BR in imperfect information Goofspiel, but

without LBR, which is poker specific. We show that CDBR and LBR

are very similar with smaller steps, and as we increase the depth-

limit of CDBR, it starts outperforming LBR. The behavior differs in

every strategy because LBR assumes the player continues the game

by only calling till the end, while CDBR uses the perfectly rational

extension. Furthermore, it is possible to exchange the value function

of CDBR, and both concepts would be very similar. However, we

would lose the guarantee that CDBR will never perform worse than

the value of the game.

Looking at the results in Figure 7, we can see that both concepts

are good at approximating the best response, with CDBR being

better against both strategies. LBR looks at one following action, so

in terms of comparability, it is best compared to the CDBR1. Next,

we observe a lack of monotonicity in step increase, which is linked

to the counterexample in Figure 10. When we increase the depth-

limit, the algorithm can exploit some early mistake that causes

it to miss a sub-tree where the opponent makes a much bigger

mistake in the future. We can clearly see the difference between

the algorithm with guarantees and LBR without them. Against

strategy from 34 CFR iterations, LBR can no longer achieve positive

gain and only worsens with more iterations. In contrast, CDBR can

always achieve at least zero gain (assuming we have an optimal

value function).

C COUNTEREXAMPLE GADGET GAME
Examples in Figure 8 are the games used to generate the Figure 4.

The plot in the figure combines two games that have pure actions

with the same gain and exploitability. The full gadget reconstructs

the Pareto set using all the actions in both games. Other gadgets fail
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Figure 7: Gain comparison of best response (BR), local best
response (LBR - only poker), and continual depth-limited
best response (CDBR) in Leduc Hold’em (top), Imperfect in-
formation Goofspiel (middle) and Small Liar’s dice (bottom)
against strategies from CFR using a small number of itera-
tions (left) and random strategies (right). The a stands for
the average of the other values in the plot. The number after
CDBR stands for the number of actions CDBR was allowed
to look in the future, and CDBRNN is one step CDBR with a
neural network as a value function.

in one of the presented games in Figure 8. In Figure 9, we show the

expected utility of all the actions in the CDRNR version of the game,

showing that for the resolving gadget and max-margin gadget, two

actions dominate all the others, and we can not select any 𝑝 which

would resolve any of the remaining actions.

D EXPERIMENT DETAILS
Experimental Setup
For all experiments, we use Python 3.8 and C++17. We solved lin-

ear programs using Gurobi 9.0.3, and experiments were done on

an Intel i7 1.8GHz CPU with 8GB RAM. We used Leduc Hold’em,

imperfect information Goofspiel 5, and Liar’s dice for the smaller

detailed experiments. We used Goofspiel 6 for the large experiment,

and we only ran it against the strategy generated by the CFR with

three iterations. We used the torch library for the neural network

experiment. For most of the experiments, we wanted to solve the

concepts perfectly with perfect value function, so we used LP and

fixed the parts of the game that needed to be fixed. For the neural
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Figure 8: Example games to show the inability of common gadgets to reconstruct the whole Pareto set in the CDRNR setting.
Left: Game 1 to break the max-margin gadget. Right: Game 2 to break the resolving gadget.
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Figure 9: Value of each action based on 𝑝 in the games shown
in Figure 8, max-margin gadget in Game 1 (top), full gadget
on both Game 1 and 2 (middle) and resolving gadget on Game
2 (bottom)

network experiment with CDBR, we used CFR+ to solve the sub-

game and the neural network as a value function. For the value

function experiment in CDRNR, we used CFR+ with 1000 iterations

to solve the game and CFR+ with 500 iterations as a value function

in the subgames.

Domain Definition
Leduc Hold’em is a medium-sized poker game. Both players give

one chip at the beginning of the match and receive one card from a

deck with six cards of 2 suits and three ranks. Then players switch

and can call or bet. After a bet, the opponent can also fold, which

finishes the game, and he forfeits all the staked money. After both

players call or after at most two bets public card is revealed, and

another betting round begins. In the first round, the bet size is two,

and in the second, it is 4. If the game ends without anyone, folding

cards are compared, and the player with pair always wins, and

if there is no pair, the player with the higher card wins. If both

have the same card, the money is split. Goofspiel is a bidding card

game where players are trying to obtain the most points. Cards are

shuffled and set face-down. Both players have 𝐾 cards with values

from 1 to 𝐾 . These cards may be used as a bid. After bidding with

that card, the player cannot play it again. Each turn, the top point

card is revealed, and players simultaneously play a bid card; the

point card is given to the highest bidder or discarded if the bids

are equal. In this implementation, we use a fixed deck with K = 5

and K = 6. Liar’s Dice is a game where players have some number

of dice and secretly roll. The first player bids rolled numbers, and

the other player can either bid more or disbelieve the first player.

When bidding ends with disbelief action, both players show dice. If

the bid is right, the caller loses one die, and if the bidder is wrong,

the bidder loses one die. Then the game continues, but for our

computation, we use a version that ends with the loss of a die, and

we use only a single die with four sides for each player.

E PROOFS
Lemma E.1. Let 𝐺 be zero-sum imperfect-information extensive-

form game with perfect recall. Let 𝜎F
2
be fixed opponent’s strategy,

let 𝑇 be some trunk of the game. If we perform CFR iterations in the
trunk for player 1 then for the best iterate 𝜎̂1 max𝜎∗

1
∈Σ1

𝑢1 (𝜎∗
1
, 𝜎𝐹

2
)𝑇
𝑉
−

𝑢1 (𝜎̂1, 𝜎
𝐹
2
)𝑇
𝑉

≤ Δ
√︃

𝐴
𝑇
|I𝑇𝑅 | +𝑁𝑆𝜖𝑆 where Δ is variance in leaf utility,

𝐴 is an upper bound on the number of actions, |I𝑇𝑅 | is number of
information sets in the trunk, 𝑁𝑆 is the number of information sets at
the root of any subgame and value function error is at most 𝜖𝑆 .

Proof. Using Theorem 2 from [4] we know that regret for player

1 is bounded𝑅𝑇
1
= 1

𝑇
max𝜎∗

1
∈Σ1

∑𝑇
𝑡=1

(𝑢1 (𝜎∗
1
, 𝜎𝐹

2
)𝑇
𝑉
−𝑢1 (𝜎𝑡

1
, 𝜎𝐹

2
))𝑇
𝑉

≤
Δ
√
𝐴𝑇 |I𝑇𝑅 | + 𝑇𝑁𝑆𝜖𝑆 . Then we can directly map the regret to a

different regret, that uses time-independent loss function 𝑙 (𝜎1) =
−𝑢1 (𝜎1, 𝜎

𝐹
2
)𝑇
𝑉
. We can then use Lemma 2 from [14] and we get

𝑙 (𝜎̂1) − min𝜎∗
1
∈Σ1

𝑙 (𝜎∗
1
) ≤ 𝑅𝑇

1

𝑇
. Substituting 𝑙 and 𝑅𝑇

1
back we get

max

𝜎∗
1
∈Σ1

𝑢1 (𝜎∗1 , 𝜎
𝐹
2
)𝑇𝑉 − 𝑢1 (𝜎̂1, 𝜎

𝐹
2
)𝑇𝑉 ≤ Δ

√︂
𝐴

𝑇
|I𝑇𝑅 | + 𝑁𝑆𝜖𝑆

□



Theorem E.2. Let𝐺 be zero-sum extensive-form gamewith perfect
recall. Let 𝜎F

2
be fixed opponent’s strategy, let P be any subgame

partitioning of the game𝐺 and let 𝜎B
1

be a CDBR given approximation
𝑉 of the optimal value function 𝑉 with error at most 𝜖𝑉 , partitioning
P and opponent strategy 𝜎F

2
approximated in each step with regret at

most 𝜖𝑅 , formally 𝜎B
1

= 𝜎B
1
(𝜎𝐹

2
)P
𝑉
. Let 𝜎𝑁𝐸 be any Nash equilibrium.

Then 𝑢1 (𝜎B
1
, 𝜎𝐹

2
) + |S|𝜖𝑅 +∑

𝑆∈S′ |𝐼𝑆𝐵 |𝜖𝑉 ≥ 𝑢1 (𝜎𝑁𝐸 ).

Proof. Using subgame partitioning 𝑃 , let 𝑇1 be the trunk of

the game. From the properties of a NE 𝑢1 (𝜎𝑁𝐸 ) ≤ 𝑢1 (𝜎𝑁𝐸
1

, 𝜎F
2
) ≤

𝑢1 (𝜎𝑁𝐸
1

, 𝜎F
2
)𝑇1

𝑉
. To compute CDBR we are maximizing in the trunk

and using error in the value function and non-zero regret of the

computed strategy 𝑢1 (𝜎B
1
, 𝜎F

2
)𝑇1

𝑉
+ |𝐼𝑇𝐵

1

|𝜖𝑉 + 𝜖𝑅 ≥ 𝑢1 (𝜎𝑁𝐸
1

, 𝜎F
2
)𝑇1

𝑉
.

We continue using induction over steps with induction assumption

that in step 𝑖 , 𝑢1 (𝜎B
1
, 𝜎F

2
)𝑇𝑖
𝑉

+ 𝜖𝑖 ≥ 𝑢1 (𝜎𝑁𝐸 ). We already know it

holds for 𝑇1. Now we assume we have trunk 𝑇𝑖−1 for which the

induction step holds and trunk 𝑇𝑖 which is 𝑇𝑖−1 joined with new

subgame 𝑆𝑖−1. Our algorithm recovers approximate equilibrium in

𝑆𝑖−1 using 𝑉 at the boundary 𝑆𝐵
𝑖−1

, which means 𝑢1 (𝜎B
1
, 𝜎𝐹

2
)𝑇𝑖
𝑉

+
|𝐼𝑆𝐵

𝑖−1

|𝜖𝑉 + 𝜖𝑅 ≥ 𝑢1 (𝜎
𝑁𝐸𝑆𝑖−1

1
∪ 𝜎

B𝑇𝑖−1

1
, 𝜎𝐹

2
)𝑇𝑖
𝑉
. If we use equilib-

rium for the opponent in the subgame 𝑆𝑖−1 we can replace equi-

librium in the subgame by the value function 𝑉 and we have

𝑢1 (𝜎
𝑁𝐸𝑆𝑖−1

1
∪ 𝜎

B𝑇𝑖−1

1
, 𝜎𝐹

2
)𝑇𝑖
𝑉

≥ 𝑢1 (𝜎B
1
, 𝜎F

2
)𝑇𝑖−1

𝑉
and joining it all

together we have 𝑢1 (𝜎B
1
, 𝜎F

2
)𝑇𝑖−1

𝑉
≤ 𝑢1 (𝜎B

1
, 𝜎F

2
)𝑇𝑖
𝑉

+ |𝐼𝑆𝐵
𝑖−1

|𝜖𝑉 + 𝜖𝑅
and 𝑢1 (𝜎𝑁𝐸 ) ≤ 𝑢1 (𝜎B

1
, 𝜎F

2
)𝑇𝑖
𝑉

+ |𝐼𝑆𝐵
𝑖−1

|𝜖𝑉 + 𝜖𝑅 + 𝜖𝑖−1. Accumulat-

ing the errors through the subgames will give the desired result

𝑢1 (𝜎B
1
, 𝜎𝐹

2
) + |S|𝜖𝑅 +∑

𝑆∈S′ |𝐼𝑆𝐵 |𝜖𝑉 ≥ 𝑢1 (𝜎𝑁𝐸 ) We omit last sub-

game from the accumulated value function error because the last

step does not use value function. □

Theorem E.3. Let 𝐺 be any zero-sum extensive-form game with
perfect recall and let 𝜎F

2
be any fixed opponent’s strategy in 𝐺 . Then

we set 𝐺𝑀 as restricted Nash response modification of 𝐺 using 𝜎F
2
.

Let P be any subgame partitioning of the game 𝐺𝑀 and using some
𝑝 ∈ ⟨0, 1⟩, let 𝜎R

1
be a CDRNR given approximation 𝑉 of the op-

timal value function 𝑉 with error at most 𝜖𝑉 and opponent strat-
egy 𝜎F

2
approximated in each step with regret at most 𝜖𝑅 , formally

𝜎R
1

= 𝜎R
1
(𝜎𝐹

2
, 𝑝)P

𝑉
. Let 𝜎𝑁𝐸 be any Nash equilibrium in 𝐺 . Then

𝑢1 (𝜎R
1
, 𝜎𝐹

2
) + ∑

𝑆∈S′ |𝐼𝑆𝑂 | (1 − 𝑝)𝜖𝑉 + |S|𝜖𝑅 + ∑
𝑆∈S′ |𝐼𝑆𝐵 |𝜖𝑉 ≥

𝑢1 (𝜎𝑁𝐸 ).

Proof. Let 𝑇𝑀
1

be a trunk of a modified game 𝐺𝑀
using parti-

tioning P. We will use 𝑢𝐺 (𝜎) as utility in 𝐺 . Utility of player 1 for

playing Nash equilibrium of the𝐺 in trunk 𝑇1 will be higher or the

same as game value of 𝐺 , formally 𝑢𝐺
1
(𝜎𝑁𝐸 ) ≤ 𝑢𝐺𝑀

1
(𝜎𝑁𝐸 )𝑇

𝑀
1

𝑉
. To

compute CDRNR we use the approximate value function. In the

fixed part of the game𝐺𝐹
the value will be worse at most by sum of

errors as in the CDBR case. However, in the𝐺 ′
the situation is more

complicated and we use Theorem 2 from [4] to bound the utility

increase, resulting in 𝑢𝐺
𝑀

1
(𝜎R

1
, 𝐵𝑅(𝜎R

1
))𝑇𝑖
𝑉

+ |𝐼
𝑇
𝑀,𝐵
1

|𝜖𝑉 + |𝐼𝑇𝑀
1

|𝜖𝑅 ≥
𝑢𝐺

1
(𝜎𝑁𝐸 ). We continue using induction over steps with induction

assumption that in step 𝑖 , 𝑢𝐺
𝑀

1
(𝜎R

1
, 𝐵𝑅(𝜎R

1
))𝑇

𝑀
𝑖

𝑉
+ 𝜖𝑖 ≥ 𝑢𝐺

1
(𝜎𝑁𝐸 )

and we already showed it holds for 𝑇1. Now we assume we have

trunk 𝑇𝑖−1 for which the induction step holds and trunk 𝑇𝑖 which

is 𝑇𝑖−1 joined with new subgame 𝑆𝑖−1. Our algorithm recovers ap-

proximate equilibrium in 𝑆𝑀
𝑖−1

and we want similar equation as for

the CDBR. Part of the game tree 𝐺𝐹
has the errors bounded as in

CDBR but because we use gadget in the𝐺 ′
we need to also consider

error in actions ending with value function player 2 can play in

the top with error bounded by 𝜖𝑉 . We have |𝐼𝑆𝑂 | of actions leading
out of the tree so the error increase in the 𝐺 ′

going to the next

subgame is at most |𝐼𝑆𝑂 |𝜖𝑉 + |𝐼
𝑆
𝑀,𝐵
𝑖−1

|𝜖𝑉 + |𝐼𝑆𝑀
𝑖−1

|𝜖𝑅 which together

gives us𝑢𝐺
𝑀

1
(𝜎′

1
, 𝐵𝑅(𝜎′

1
))𝑇𝑖
𝑉
+(1−𝑝) |𝐼𝑆𝑂 |𝜖𝑉 + |𝐼

𝑆
𝑀,𝐵
𝑖−1

|𝜖𝑉 + |𝐼𝑆𝑀
𝑖−1

|𝜖𝑅 ≥

𝑢𝐺
𝑀

1
(𝜎R

1
, 𝐵𝑅(𝜎R

1
))𝑇𝑖−1

𝑉
, where 𝜎′

1
is a combination of the strategy

we approximated in the subgame and the fixed strategy from previ-

ous step, formally 𝜎′
1
= 𝜎

𝑆𝑖−1

1
∪ 𝜎R,𝑇𝑖−1

1
. Joining it with the induc-

tion assumption we have 𝑢𝐺
𝑀

1
(𝜎R

1
, 𝐵𝑅(𝜎R

1
))𝑇𝑖
𝑉

+ (1 − 𝑝) |𝐼𝑆𝑂 |𝜖𝑉 +
|𝐼
𝑆
𝑀,𝐵
𝑖−1

|𝜖𝑉 + |𝐼𝑆𝑀
𝑖−1

|𝜖𝑅 + 𝜖𝑖−1 ≥ 𝑢𝐺
1
(𝜎𝑁𝐸 ). Accumulating the errors

in the last subgame we have 𝑢𝐺
𝑀

1
(𝜎R

1
, 𝐵𝑅(𝜎R

1
)) +∑

𝑆∈S′ |𝐼𝑆𝑂 | (1 −
𝑝)𝜖𝑉 + |S|𝜖𝑅 + ∑

𝑆∈S′ |𝐼𝑆𝐵 |𝜖𝑉 . However, we still need to show it

works for 𝑢𝐺
1
(𝜎R

1
, 𝜎𝐹

2
). We can do it by replacing strategy of player

2 in the𝐺 ′
by 𝜎𝐹

2
which will effectively transform𝐺𝑀

game back

to 𝐺 with player 2 playing 𝜎𝐹
2
. Since we did this transformation by

changing the strategy that was a best response the utility can only

increase and 𝑢𝐺
1
(𝜎R

1
, 𝜎𝐹

2
) ≥ 𝑢𝐺

𝑀

1
(𝜎R

1
, 𝐵𝑅(𝜎R

1
)) which concludes

the proof. □

Theorem E.4. Let 𝐺 be any zero-sum extensive-form game with
perfect recall and let 𝜎F

2
be any fixed opponent’s strategy in 𝐺 . Then

we set 𝐺𝑀 as restricted Nash response modification of 𝐺 using 𝜎F
2
.

Let P be any subgame partitioning of the game 𝐺𝑀 and using some
𝑝 ∈ ⟨0, 1⟩, let 𝜎R

1
be a CDRNR given approximation 𝑉 of the op-

timal value function 𝑉 with error at most 𝜖𝑉 , partitioning P and
opponent strategy 𝜎F

2
, which is approximated in each step with regret

at most 𝜖𝑅 , formally 𝜎R
1

= 𝜎R
1
(𝜎𝐹

2
, 𝑝)P

𝑉
. Then exploitability has a

bound E(𝜎R
1
) ≤ G(𝜎R

1
, 𝜎𝐹

2
) 𝑝

1−𝑝
∑
𝑆∈S′ |𝐼𝑆𝑂 | (1 − 𝑝)𝜖𝑉 + |S|𝜖𝑅 +∑

𝑆∈S′ |𝐼𝑆𝐵 |𝜖𝑉 , E and G are defined in Section 2.

Proof. We will examine the exploitability increase in each step.

First, we define gain in a single step as G(𝜎1, 𝜎2)𝑇𝑖𝑉 = 𝑢1 (𝜎1, 𝜎2)𝑇𝑖𝑉 −
𝑢1 (𝜎1, 𝜎2)𝑇𝑖−1

𝑉
for 𝑖 > 0 and G(𝜎1, 𝜎2)𝑇0

𝑉
= 𝑢1 (𝜎1, 𝜎2)𝑇0

𝑉
− 𝑢1 (𝜎𝑁𝐸 ).

This is consistent with full definition of gain because sum of gains

over all stepswill results in𝑢1 (𝜎1, 𝜎2)𝐺−𝑢1 (𝜎1, 𝜎2)𝑇𝑛𝑉 +𝑢1 (𝜎1, 𝜎2)𝑇𝑛𝑉 −
...−𝑢1 (𝜎1, 𝜎2)𝑇0

𝑉
+𝑢1 (𝜎1, 𝜎2)𝑇0

𝑉
−𝑢1 (𝜎𝑁𝐸 ) = 𝑢1 (𝜎1, 𝜎2)𝐺−𝑢1 (𝜎𝑁𝐸 ) =

G(𝜎1, 𝜎2). We define exploitability in a single step similarly as

E(𝜎1)𝑇𝑖𝑉 = 𝑢2 (𝜎1, 𝐵𝑅(𝜎1))𝑇𝑖𝑉 − 𝑢2 (𝜎1, 𝐵𝑅(𝜎1))𝑇𝑖−1

𝑉
for 𝑖 > 0 and

E(𝜎1)𝑇0

𝑉
= 𝑢2 (𝜎1, 𝐵𝑅(𝜎1))𝑇0

𝑉
− 𝑢2 (𝜎𝑁𝐸 ) and it also sums to full

exploitability. In each step we approximate the strategy in the mod-

ified game, having full utility in step written as G(𝜎R
1
, 𝜎𝐹

2
)𝑇

𝑀
𝑖

𝑉
𝑝 −

E(𝜎R
1
)𝑇

𝑀
𝑖

𝑉
(1 − 𝑝). If we had exact equilibrium in the subgame

this would always be at least 0. However, we have 𝑉 instead of

𝑉 , values at the top of the gadget are not exact and the com-

puted strategy has regret 𝜖𝑅 . As in the previous proof the error is

bounded by |𝐼𝑆𝑂 | (1 − 𝑝)𝜖𝑉 + |𝐼
𝑆
𝑀,𝐵
𝑖−1

|𝜖𝑉 + |𝐼𝑆𝑀
𝑖−1

|𝜖𝑅 and we can write
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Figure 10: Example of gamewhere step best response is worse
than NE against fixed strategy 𝜎 (ℎ) = 2

3
, 𝜎 (𝑥) = 1.

G(𝜎R
1
, 𝜎𝐹

2
)𝑇

𝑀
𝑖

𝑉
𝑝 − E(𝜎R

1
)𝑇

𝑀
𝑖

𝑉
(1 − 𝑝) + |𝐼𝑆𝑂 | (1 − 𝑝)𝜖𝑉 + |𝐼

𝑆
𝑀,𝐵
𝑖−1

|𝜖𝑉 +

|𝐼𝑆𝑀
𝑖−1

|𝜖𝑅 ≥ 0.We reorganize the equation to getG(𝜎R
1
, 𝜎𝐹

2
)𝑇

𝑀
𝑖

𝑉

𝑝
1−𝑝 +

|𝐼𝑆𝑂 | (1 − 𝑝)𝜖𝑉 + |𝐼
𝑆
𝑀,𝐵
𝑖−1

|𝜖𝑉 + |𝐼𝑆𝑀
𝑖−1

|𝜖𝑅 ≥ E(𝜎R
1
)𝑇

𝑀
𝑖

𝑉
and summing

over all the steps gives us G(𝜎R
1
, 𝜎𝐹

2
) 𝑝

1−𝑝 +∑𝑆∈S′ |𝐼𝑆𝑂 | (1− 𝑝)𝜖𝑉 +
|S|𝜖𝑅 +∑

𝑆∈S′ |𝐼𝑆𝐵 |𝜖𝑉 ≥ E(𝜎R
1
) □

F CDBR AGAINST NASH STRATEGY
Observation 1. An example in Figure 10 shows that CDBR can

perform worse than a Nash equilibrium against the fixed opponent
because of the perfect opponent assumption after the depth-limit. An
example is a game of matching pennies with a twist. Player 2 can
choose in the case of the tails whether he wants to give the opponent 10
instead of only 1. A rational player will never do it, and the equilibrium
is a uniform strategy as in normal matching pennies.

Now we have an opponent model that plays ℎ with probability
2

3
and always plays 𝑥 . The best response to the model will always

play 𝑇 and get payoff 10

3
. Nash equilibrium strategy will get payoff

2, and CDBR with depth-limit 2 will cut the game before the 𝑥/𝑦
choice. Assuming the opponent plays perfectly after the depth-limit
and chooses 𝑦, 1 will always play𝐻 . Playing𝐻 will result in receiving
payoff 2

3
, which is higher than the value of the game ( 1

2
) but lower

than what Nash equilibrium can get against the model.

G ADDITIONAL EMPIRICAL RESULTS
CDRNR. We show more results for Goofspiel, Leduc Hold’em,

and Liar’s dice with different values of 𝑝 . SX is CDRNR with step

size denoted by X. We also evaluate SES and only use the highest

step value of 5. Next, we show the same setup as in the main text

with exactly the same partitioning as they used in SES, and we

include more values of 𝑝 .

Repeated RPS. In Figure 15, we show the strategy sets recovered

for all possible 𝑝 against one strategy in two round biased RPS

where after the round information is revealed. As we explained

before, we can see that SES cannot gain anything in a game where

only information imperfections are simultaneous moves. Exp-strat

can exploit only the second round, and it gains half of the maximum,

while the other algorithms can gain the maximum and are more or

less successful in achieving the best trade-off. The full gadget is the

best, followed by the other gadgets without theoretical guarantees,

and then by a combination of Nash and CDBR.

H SES BOUND
The bound in SES [13] is
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Figure 11: Additional results for CDRNR showing the per-
formance of CDRNR with varying step-size. Generated on
Goofspiel 5.

Theorem H.1. Let S be a disjoint set of subgames S. Let 𝜎∗ =

⟨𝜎∗
1
, 𝜎∗

2
⟩ be the NE where player 1’s strategy is constrained to be the

same with 𝜎1 outside S. Define Δ = max𝑆∈S,𝐼 𝑖
2
∈𝑆𝑡𝑜𝑝 |𝐶𝐵𝑉𝜎∗

1

2
(𝐼 𝑖

2
) −

𝑣𝜎
2
(𝐼 𝑖

2
) |. Let 𝑝 (𝐼 𝑖

2
) be the reach probability given by 𝜎∗

2
. Let 𝑝 (𝐼 𝑖

2
) be

the estimation of reach probability 𝑝 (𝐼 𝑖
2
) given by the real opponent

strategy. Define 𝜏 = max𝑆∈S,𝐼 𝑖
2
∈𝑆𝑡𝑜𝑝 | 𝑝 (𝐼

𝑖
2
)−𝑝̃ (𝐼 𝑖

2
)

𝑝̃ (𝐼 𝑖
2
) |. Whenever 1−(2𝜏+

1)𝛼 > 0, the exploitability bound is given by:
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Figure 12: Additional results for CDRNR showing the per-
formance of CDRNR with varying step-size. Generated on
Leduc Hold’em.

E(𝜎′
1
) ≤ E(𝜎∗

1
) + 2

1 − (2𝜏 + 1)𝛼 Δ

We switched the players since authors in the previous work use

player 2 as the rational player.

We can see that the bound relies on the estimation being close

to an equilibrium strategy defined by authors as 𝜏 . However, it

does max over all the differences in reaches to the subgame, and

in practice, some of the reaches will be very different, resulting

in a large value of 𝜏 . To demonstrate the difference, we assume
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Figure 13: Additional results forCDRNRwith different values
of 𝑝. Generated on Leduc Hold’em split only by the round.

the opponent model plays such that some action difference from

equilibrium is 1, which is the highest it can be, and hence 𝜏 = 1.

Parameter 𝛼 in SES directly matches 𝑝 . For 𝛼 = 0, the bound is the

same as in the max-margin gadget, and 𝜏 is disregarded. However,

as 𝛼 increases, the bound steeply rises, and as 𝛼 goes in the limit

to
1

3
, the bound goes to infinity, and for any larger 𝛼 , the bound

says nothing. In comparison, our bound does not have this problem,

and in the same setup, with 𝑝 = 0.5, our bound still limits the

exploitability by exactly the gain achieved. Note that since in SES,

they do not account for errors in value function and errors in
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Figure 14: Additional result on Liar’s dice. For every 𝑝 it
exactly mimics the RNR so we only show one value.
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Figure 15: Results showing gain and exploitability trade-off
in two round biased RPS. Max-margin and resolving gadget
overlaps

resolving, for this comparison only, we also omitted error terms

caused by those errors.
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