
Too Tiny to See: Hazardous Obstacle Detection Dataset and Evaluation

(Supplementary Information)

Topi Miekkala1 Samuel Brucker2 Stefanie Walz2 Filippo Ghilotti2

Andrea Ramazzina3 Dominik Scheuble3 Pasi Pyykönen1 Mario Bijelic2,4 Felix Heide2,4

1VTT Technical Research Centre of Finland 2Torc Robotics 3Mercedes-Benz 4Princeton University

https://light.princeton.edu/2T2S

This supplemental document provides additional details to support the findings in the main manuscript. Section 1 describes

the proposed lost cargo dataset and explains the automatic object placement process. Section 2 outlines the implementation

of the 2T2S metric and the reference metrics. Section 3 presents the implementation and fine-tuning of the depth estima-

tion methods. Section 4 includes additional ablation studies for the 2T2S implementation, and Section 5 provides further

quantitative and qualitative results.
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1. Lost Cargo Dataset

We use a single experimental setup with two sensor configurations mounted on different vehicles. All sequences are cal-

ibrated, ensuring consistent data across setups. The first is a portable sensor rig mounted on the roof of a test vehicle,

integrating four modalities: an automotive RGB stereo camera (OnSemi AR0230), a gated stereo system (BrightwayVision

BrightEye), an automotive RCCB stereo camera (OnSemi AR0820AT), and a reference LiDAR sensor (Velodyne VLS128).

The gated system consists of two cameras and an active NIR illumination source. One camera is housed in the main sensor

box alongside the RGB stereo pair, while the second gated camera is placed in a satellite box to provide a 0.75 m baseline.

The system operates at 120 Hz, capturing near-infrared images (808 nm, 10-bit, 1280×720). Each cycle generates three

active slices and two passive images with low and high exposure times, resulting in an effective 24 Hz repetition rate. Active

illumination is supplied by two VCSEL modules mounted at the front of the vehicle, triggered by the left gated camera. The

RGB stereo pair has a 0.23 m baseline and records 1920×1024 images at 30 Hz with 12-bit quantization. The RCCB stereo

system uses OnSemi AR0820AT sensors, capturing 16-bit HDR imagery at 15 Hz with a resolution of 3848×2168. The

cameras are mounted with a 0.75 m baseline, distributed between the main and satellite sensor boxes. The stereo systems are

synchronized and calibrated, ensuring aligned epipolar geometry for disparity estimation. Ground-truth depth is provided by

a Velodyne VLS128 LiDAR, operating at 905 nm and 10 Hz, with a vertical field of view of 40° across 128 scanning lines. Its
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range exceeds 200 m for reflective targets. All sensors are recorded in a unified ROS framework with extended synchroniza-

tion to align gated slices, stereo frames, RCCB images, and LiDAR sweeps, ensuring consistent temporal alignment across

modalities for training and evaluation.

The second sensor setup is a rig mounted on another test vehicle, integrating two LiDAR sensors (Luminar H3, Livox

HAP). The Luminar H3 operates at 1550 nm and 10 Hz, with a vertical field of view of 30° across 64 scan lines and a

detection range greater than 200 m for reflective targets. Notably, the Luminar H3 implements modifiable scan patterns

allowing adjustments to the scan line density vertically along the image. For our data collection, we set an optimal Gaussian

shape scan pattern, with the focus point µ = -2.0 and σ = 3.5. The Livox HAP operates at 905 nm and 10 Hz, with a vertical

field of view of 25° and detection range of 200 m for reflective targets. In our measurements the Livox HAP operates with a

non-repeating scan pattern with a higher density focus in the middle ROI.

The dataset also includes ground-truth meshes extracted from each lost-cargo item as described in the main paper. The

meshes for the winter dataset objects ’Biker’, ’Bumper’ and ’Exhaust’ were created with the Livox approach. All other

objects ’Stacked pallets’, ’Small tire’ and ’Large tire’ were scanned with the polycam app. The summer dataset objects

’Stacked pallets’, ’Bumper’, ’Large tire’, ’Muffler’ and ’Small tire’ were all scanned with the polycam app. For the mesh

approximation parameters shown in Eqs. 1-12 of the main paper, k was set to 20 and τ was set to 0.8. r was set to

[0.02, 0.06, 0.08, 0.10] for BPA. Voxel size v was set to 0.1 m when generating G(x, y, z). λc was set to 1.0, λe was set to

1.0, λl was set to 0.1, and λn was set to 0.01. The evaluation crop distance de was set to 1.0 m.

The dataset consists of two recording campaigns. The summer recordings were collected in suburban North America under

clear daytime conditions, with objects placed at 15, 30, 45, 60, 75, and 90 meters from the camera. The winter recordings

were collected in rural northern Europe on a snow-covered highway, under both day and night conditions, with objects placed

at 25, 50, 75, and 100 meters. Both campaigns include captures preformed at day and nighttime. Each sequence contains

captures at multiple distances under identical environmental and background conditions. Distances of 15 m and 100 m are

excluded from evaluation because objects fall outside the effective field of view of individual sensors—either beyond the

physical operating range of lidars in winter or outside the vertical field of view of long-range cameras (30° opening angle).

In total, the dataset comprises 14 sequences. With lost placement variations and unique lost-cargo placements a combination

of 90 test examples can be found. Figures 3 to 6 illustrate sensor outputs for the closest object placements (25 m in winter,

30 m in summer), ordered by sequence number.

1.1. Object Mesh Alignment and Calibration

To ensure consistent evaluation across distances and sensor modalities, lost-cargo objects must be placed at fixed positions

within each sequence. Since the dataset was recorded in real environments, direct placement of meshes is not possible;

instead, object meshes must be aligned to point clouds to achieve accurate positioning. An overview of the automated

placement procedure is shown in Fig. 1.

The procedure consists of two stages. Stage 1 is executed once per sequence and determines the reference placement of

objects within the scene layout. Stage 2 replicates this placement across all defined distances by positioning the meshes at

the corresponding depth locations.

Each dataset sample includes a configuration file that specifies: (i) paths to the generated object meshes, (ii) object

rotations, and (iii) the region-of-interest (ROI) given by the minimum and maximum depth where objects are expected.

Object rotations are manually determined by aligning the meshes to the closest available point cloud, ensuring realistic

orientation relative to the scene.

1.1.1 Stage 1: Object placement within the layout.

Stage 1 is executed once for each lost-cargo sequence to automatically determine the placement of objects within the respec-

tive layout. In the following we are presenting each consecutive step per paragraph.

ROI cropping and ground removal. Given a point cloud P = {pi ∈ R
3 | i = 1, . . . ,M}, where M is the number of

points, we first restrict the set to a region-of-interest (ROI) defined by a minimum and maximum depth (dmin, dmax). The

cropped point cloud is

PROI = {pi ∈ P | dmin ≤ ∥pi∥2 ≤ dmax}. (1)

Next, a morphological ground filter is applied to remove points belonging to the road plane, resulting in the filtered cloud

Pfilt.



Clustering. We apply DBSCAN clustering to Pfilt to obtain a set of clusters C = {C1, . . . , CK}, where each Ck ⊆ Pfilt

represents a coherent group of points.

Ground-truth mesh sampling. For each object mesh M, the encoding is loaded and rotated according to the configuration

file. A set of N = 10000 points is sampled from the mesh surface to form a ground-truth point cloud

PM = {qj ∈ R
3 | j = 1, . . . , N}. (2)

Using the computation steps of 2T2S metric, both PM and the cluster point sets {Ck} are encoded into feature vectors

f(·), yielding fM = f(PM) and fCk
= f(Ck).

Matching. Hungarian matching is performed between ground-truth encodings and cluster encodings by minimizing a pair-

wise cost matrix

L(i, k) = ∥fMi
− fCk

∥2, (3)

ensuring each mesh sample PMi
is matched to the most similar cluster Ck.

Mesh alignment. Finally, the mesh center is aligned to the center of the matched cluster. If µ(Ck) denotes the centroid of

cluster Ck, then the translation ∆ applied to the mesh is

∆ = µ(Ck)− µ(PMi
), (4)

where µ(·) computes the mean 3D position of a point set. The mesh is then shifted by ∆ to achieve proper placement.

1.1.2 Stage 2: Alignment across distances.

Stage 2 aligns the reference point cloud P1 from the closest distance (used in Stage 1) with the point clouds P2 captured at

larger distances, in order to transfer object placements consistently.

Initial alignment. An initial alignment is performed using the region-of-interest (ROI) and measurement distance specified

in configuration files. Let (d
(1)
min, d(1)

max) and (d
(2)
min, d(2)

max) denote the ROI coordinates of P1 and P2, respectively. The

alignment ensures that these ranges overlap such that the expected object placement regions are consistent. P1 and P2 are

cropped:

P̃1 = {p ∈ P1 | d
(1)
min ≤ p ≤ d(1)

max}. (5)

P̃2 = {p ∈ P2 | d
(2)
min ≤ p ≤ d(2)

max}. (6)

A rigid transformation (R, t) is estimated by Iterative Closest Point (ICP) to align P̃2 with P̃1:

(R∗, t∗) = argmin
R,t

∑

p∈P̃1

min
q∈P̃2

∥Rp+ t− q∥22, (7)

where R ∈ SO(3) and t ∈ R
3. The optimized transformation (R∗, t∗) is applied to P2 which yields the aligned full point

cloud P ′
2 = {R∗p+ t∗ | p ∈ P2}.

Mesh transfer and pose refinement. Since object meshes have already been aligned in P1 during Stage 1, their positions

are now also aligned in P ′
2. If m denotes a mesh center in P1, its aligned position in P ′

2 is

mP2
= m. (8)

Next, P ′
2 is cropped according to the ROI defined in Stage 1:

P̃ ′
2 = {p ∈ P ′

2 | d
(1)
min ≤ ∥p∥2 ≤ d(1)max}. (9)



Figure 1. Automated Object Placement. Overview of the two-stage process: stage one places the ground-truth mesh in the recording

with the closest distance, and stage two applies this placement to all other distances and sensors.

Then for each object mesh placed in P̃ ′
2, we apply the fine pose optimization operations as presented in Section 4 of the

main paper by Eqs. (15)–(22). The optimizer is implemented in PyTorch3D [9] and minimizes the loss function in Eq. (15)

of the main paper to find and optimal transform To shown in Eq. (21). The learning rate is initially set to 0.07, and the

optimization is guided by learning rate scheduling, which halves the learning rate when the loss does not decrease for five

consecutive epochs. The optimization is considered complete when the scheduler has dropped the learning rate to less than

0.001 of the original rate. After applying To to obtain Me from Eq. 22 of the paper, we crop P̃ ′
2 to obtain the evaluation point

cloud Pe of the paper:

Pe =
{

p ∈ P̃ ′
2

∣

∣ dk(p; Me) ≤ τ
}

, (10)

dk(p; Me) = kNN-dist
(

p, Me, k
)

, (11)

where k is equivalent to de in the paper, and is set to 1 m.

2. Metrics Implementation Details

For point cloud operations and metric computations, we mainly utilize the Open3D [13], PyTorch3D [9] and Pointcept [4]

libraries. Instead of applying metrics globally to full point clouds, all metrics are applied to P0 consisting only of ground

truth object points, and to the extracted crop Pe consisting only of object points detected by the depth perception method.

Depth-Based Metrics. To evaluate depth-based metrics MAE, RMSE, RMSE Log, Silog and Abs Rel, the evaluation cloud

Pe and sampled ground truth cloud P0 are first normalized to coordinate range [−1, 1] and rendered into depth images

I ∈ R
H×W

where H = 512 and W = 512. We render using PyTorch3D library, utilizing the alpha compositing for point-based render-

ing [14]. The depth metric calculations include only pixels which have non-zero values in both images. We define the set of

non-zero pixels as

Ω(I) = { (i, j) | I(i, j) ̸= 0, 1 ≤ i ≤ H, 1 ≤ j ≤ W }.



Depth metrics are then computed only over

Ω(I1) ∩ Ω(I2).

Spatial Metrics. Similarly to depth-based metrics, we first normalize the point clouds to range [−1, 1]. For Chamfer Distance

(CD) [1] we employ the PyTorch3D implementation to compute the value between P0 and Pe as

dCD(P,Q) =
1

|P |

∑

p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|

∑

q∈Q

min
p∈P

∥q − p∥22.

Voxel IoU is computed as

IoU(Vpred, Vgt) =
|Vpred ∩ Vgt |

|Vpred ∪ Vgt |

for a voxel grid V which is computed as

V (P ; vs) = { v(p) | p ∈ P }¸ P ⊂ R
3

where vs is voxel size, and

v(p) =
(⌊

x
vs

⌋

,
⌊

y
vs

⌋

,
⌊

z
vs

⌋)

.

2T2S Metric. Our novel metric is based on comparing deep feature embeddings learned by a point cloud feature encoder. The

choice of network layers used for metric calculation relates to their individual architectures. Our chosen point cloud encoders

are typically organized into consecutive blocks, where each block encapsulates a series of transformations, and learned

weights to extract complex semantic embeddings. In this work, we focus on extracting sets of initial layers of these blocks to

include features from both early and later stage layers of networks. All networks were trained in the Pointcept framework [4]

for a point cloud classification task. The ModelNet40 [11] dataset was chosen for its variety of object shapes, with partially

similar characteristics as point cloud representations of lost cargo objects. The networks except for PTV3 were trained for

100 epochs using an Nvidia Titan RTX 24GB GPU, using the cross entropy loss, and optimizing with stochastic gradient

descent. PTV3, which was trained on an Nvidia RTX 4090 16GB GPU due to the hardware supporting the FlashAttention [5]

mechanism, using a combination of cross entropy loss and Lovasz Loss [2], and optimizing with AdamW [7]. Figure 2 shows

the correlation of qualitative results and metric value for the objects ’Stacked pallets’ and ’Bumper’ from the winter dataset.

3. Depth Estimation Implementation Details

This Section, adds more details how depth from images (gated, rgb, rccb) was obtained. In total, we evaluate the following

methods [3, 6, 12] with different modality combinations as input. From those methods [6] did not require fine tuning due to

the foundational nature of the method, while [3, 12] were fine tuned described subsequently. For fine tuning, we collected

an additional holdout dataset with 600 samples that did not overlap with the lost-cargo test set under winter and summer

conditions. This data set contains all camera images with synchronized Velodyne VLS-128 point clouds. For supervision the

pointclouds are projected into respective camera images and the methods are trained fully supervised applying an L1-loss:

Ldepth =

∥

∥M ⊙ (Dpred −Dlidar)
∥

∥

1

∥M∥1
, (12)

where Dpred ∈ R
B×H×W denotes the predicted depth maps, Dlidar ∈ R

B×H×W the LiDAR-projected ground-truth depth

images, and M ∈ {0, 1}B×H×W is a binary mask indicating the valid LiDAR pixels (Mb,i,j = 1 if D
(b)
lidar(i, j) > 0, and 0

otherwise). The operator ⊙ denotes element-wise multiplication, and ∥ · ∥1 the element-wise L1 norm.

All methods were fine-tuned on a single NVIDIA A10G GPU with batch-size 1.

For Gated RCCB Stereo we use [3] with weights pre-trained on the Gated Stereo dataset [3]. The model is finetuned

separately for summer and winter, each for 5 epochs with a learning rate of 0.0001, while keeping the image encoders frozen

due to compute constraints on the A10 GPUs. This method is selected for its focus on high-resolution inputs and outputs.

Gated images are rectified and cropped to heights 104–616 and widths 128–1152 and provided at 1024× 512 px and RCCB

images are rectified and cropped to heights 319–1855 and widths 388–3460 and provided at 3072 × 1536 px, with depth

maps predicted at the RCCB resolution.

For both RGB and RCCB stereo, we use IGEV-Stereo [12] for its strong zero-shot performance and detailed depth pre-

dictions. The model is fine-tuned from the KITTI checkpoint for 10 epochs with a learning rate of 0.0002. RGB images are
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Figure 2. Visual quality of objects and their corresponding 2T2S metric value. From left to right the ground truth mesh, the recon-

structions at 25 meters range and 50 meters range are respectively presented for the Luminar H3 LiDAR and for Gated RCCB Stereo [3].

The LiDAR yields sparse point clouds with less spatial detail, while the Gated RCCB Stereo method provides significantly more density

and and better shape geometry, resulting in a better (lower) 2T2S (our) metric.

rectified and downsampled to 960× 512 px, while RCCB images are rectified, cropped as in Gated RCCB Stereo, and down-

sampled to 1024 × 512 px, with depth maps matching each input resolution. Inputs are downsampled from full resolution

due to compute limitations.

For the monocular RGB baseline, we use Metric3Dv2 [6], a recently proposed depth foundation model with strong zero-

shot performance in metric depth estimation. We do not finetune the model, as our goal is to evaluate the capability of

published monocular foundation models directly. Specifically, we adopt the metric3d vit small weights provided by the

authors. The input is the left rectified RGB image at full resolution (1920 × 1024), and the output depth map matches this

resolution.

3.1. Depth Map Creation

Example depth maps for all methods are shown in Fig. 7. Depth maps were created for lost-cargo distances of 30, 45, 60,

75, 90 meters for summer sequences and 25, 50, 75 and 100 meters for winter sequences. Depth maps are projected into 3D

space using the intrinsic calibration of the camera. For each pixel (u, v) with corresponding depth value d, the 3D point in

the camera coordinate system is obtained as





x

y

z



 = d ·K−1





u

v

1



 , (13)



where K denotes the intrinsic calibration matrix. The resulting 3D points are subsequently transformed into the LiDAR

coordinate frame of the Velodyne VLS-128 by applying the extrinsic calibration parameters (R, t):

pLiDAR = Rpcam + t, (14)

with R ∈ SO(3) and t ∈ R
3 representing the rotation and translation, respectively. This procedure ensures that the recon-

structed 3D structure from the depth maps is spatially aligned with the LiDAR reference frame and enables the placement of

ground-truth lost-cargo meshes in the correct location.

4. Additional Ablations

In support of the ablation experiments in the main manuscript in Section 6 and Figure 6, we provide further information here.

Corresponding quantitative numbers from the graphs are shown in Tables 1 and 2.

To add further details, for each architecture, 4 intermediate feature layers are selected for feature aggregation to assess the

similarity at different down sampling stages. For Point Transformer V3 [10] we aggregate the output of the attention layers

of the first 4 ’enc’ blocks. For SparseUNet [4] and OA-CNN [8], the outputs of the first convolution layer in the first 4 ’enc’

blocks are used. As in the other metric estimations, the point cloud coordinates are normalized to a range [−1, 1] before

passing to the network. Additionally, the point clouds are preprocessed by grid sampling at a resolution of 0.01 m.

5. Additional Results

In this Section, we present further result tables and figures supporting the findings in Section 6 of the main manuscript.

Tables 3 an 4 show quantative numbers for each perception method at averaged accross all object categories at measurement

distance per row. Figures 8, 9, 10, 11, 12 extend Figure 4 of the main manuscript with examples of summer captures, while

Figures 13, 14, 15, 16, 17 show object examples for the winter captures.
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Sector [m] Method SparseUNet PTV3 OA-CNN SPVCNN

30

Gated RCCB Stereo 0.148 0.103 0.137 0.152

Luminar H3 0.379 0.204 0.201 0.256

RCCB Stereo 0.216 0.147 0.161 0.187

RGB Mono 0.135 0.118 0.146 0.167

RGB Stereo 0.148 0.150 0.168 0.199

VLS-128 0.341 0.201 0.202 0.256

45

Gated RCCB Stereo 0.137 0.099 0.130 0.142

Luminar H3 0.380 0.210 0.221 0.285

RCCB Stereo 0.269 0.166 0.168 0.201

RGB Mono 0.188 0.139 0.158 0.188

RGB Stereo 0.175 0.168 0.178 0.212

VLS-128 0.347 0.211 0.216 0.286

60

Gated RCCB Stereo 0.117 0.096 0.146 0.157

Luminar H3 0.342 0.199 0.230 0.313

RCCB Stereo 0.246 0.175 0.174 0.211

RGB Mono 0.232 0.163 0.172 0.209

RGB Stereo 0.202 0.183 0.184 0.220

VLS-128 0.354 0.211 0.234 0.318

75

Gated RCCB Stereo 0.174 0.124 0.151 0.174

Luminar H3 0.338 0.197 0.207 0.272

RCCB Stereo 0.273 0.180 0.175 0.219

RGB Mono 0.250 0.182 0.183 0.222

RGB Stereo 0.220 0.191 0.200 0.243

vls-128 0.284 0.216 0.245 0.341

90

Gated RCCB Stereo 0.153 0.142 0.165 0.191

Luminar H3 0.371 0.198 0.224 0.300

RCCB Stereo 0.256 0.194 0.191 0.233

RGB Mono 0.280 0.197 0.187 0.226

RGB Stereo 0.303 0.198 0.204 0.272

VLS-128 0.426 0.215 0.232 0.334

Table 1. Feature Encoder Architectures Ablation Study: Summer Captures 2T2S Scores. Complementing Figure 6 of the main

manuscript, we report quantitative results of averaged metric values for different feature encoder architectures, on summer captures and for

all distances.



Sector [m] Method SparseUNet PTV3 SPVCNN OA-CNN

25

Gated RCCB Stereo 0.140 0.083 0.137 0.115

Luminar H3 0.335 0.193 0.241 0.195

RCCB Stereo 0.149 0.096 0.158 0.133

RGB Mono 0.160 0.144 0.187 0.160

RGB Stereo 0.208 0.147 0.205 0.170

VLS-128 0.337 0.196 0.244 0.194

50

Gated RCCB Stereo 0.148 0.098 0.164 0.132

Luminar H3 0.361 0.195 0.258 0.204

RCCB Stereo 0.241 0.163 0.212 0.169

RGB Mono 0.227 0.180 0.223 0.181

RGB Stereo 0.291 0.202 0.251 0.199

VLS-128 0.365 0.202 0.281 0.215

75

Gated RCCB Stereo 0.183 0.131 0.193 0.156

Luminar H3 0.347 0.196 0.276 0.212

RCCB Stereo 0.278 0.191 0.257 0.209

RGB Mono 0.248 0.191 0.226 0.187

RGB Stereo 0.296 0.210 0.272 0.216

VLS-128 0.342 0.202 0.314 0.229

Table 2. Feature Encoder Architectures Ablation Study: Winter Captures 2T2S Scores. Complementing Figure 6 of the main

manuscript, we report quantitative results of averaged metric values for different feature encoder architectures, on winter captures and for

all distances.



Sector [m] Method Silog RMSE Log MAE Abs Rel RMSE CD Voxel IoU 2T2S

30

Gated RCCB Stereo 7.007 0.074 0.286 0.059 0.364 0.070 0.377 0.152

Luminar H3 3.060 0.039 0.150 0.032 0.190 0.106 0.231 0.256

RCCB Stereo 7.592 0.082 0.327 0.068 0.406 0.071 0.389 0.187

RGB Mono 6.208 0.073 0.302 0.063 0.366 0.053 0.367 0.167

RGB Stereo 10.459 0.106 0.428 0.089 0.518 0.103 0.306 0.199

VLS-128 2.982 0.035 0.126 0.026 0.172 0.149 0.210 0.256

45

Gated RCCB Stereo 8.188 0.085 0.329 0.069 0.418 0.072 0.382 0.142

Luminar H3 2.153 0.030 0.122 0.026 0.145 0.141 0.175 0.285

RCCB Stereo 8.607 0.090 0.357 0.074 0.448 0.084 0.326 0.201

RGB Mono 9.263 0.101 0.418 0.088 0.494 0.098 0.321 0.188

RGB Stereo 10.453 0.106 0.430 0.089 0.525 0.106 0.269 0.212

VLS-128 4.879 0.053 0.206 0.042 0.266 0.164 0.101 0.286

60

Gated RCCB Stereo 7.862 0.082 0.321 0.068 0.404 0.069 0.380 0.157

Luminar H3 4.132 0.057 0.224 0.048 0.280 0.150 0.105 0.313

RCCB Stereo 9.023 0.095 0.379 0.079 0.473 0.086 0.320 0.211

RGB Mono 7.276 0.080 0.331 0.070 0.404 0.104 0.251 0.209

RGB Stereo 10.116 0.104 0.428 0.089 0.517 0.094 0.281 0.220

VLS-128 2.989 0.039 0.141 0.028 0.190 0.241 0.082 0.318

75

Gated RCCB Stereo 9.039 0.095 0.397 0.083 0.472 0.098 0.357 0.174

Luminar H3 1.252 0.020 0.083 0.017 0.099 0.091 0.155 0.272

RCCB Stereo 9.293 0.100 0.405 0.085 0.502 0.096 0.275 0.219

RGB Mono 11.329 0.121 0.521 0.109 0.598 0.147 0.248 0.222

RGB Stereo 9.998 0.102 0.418 0.087 0.505 0.105 0.219 0.243

VLS-128 5.738 0.068 0.309 0.066 0.328 0.126 0.089 0.341

90

Gated RCCB Stereo 9.480 0.105 0.442 0.093 0.521 0.100 0.317 0.191

Luminar H3 2.578 0.030 0.125 0.027 0.146 0.189 0.084 0.300

RCCB Stereo 10.410 0.111 0.451 0.095 0.546 0.106 0.205 0.233

RGB Mono 11.354 0.116 0.477 0.099 0.577 0.168 0.209 0.226

RGB Stereo 10.579 0.113 0.476 0.098 0.567 0.188 0.122 0.272

VLS-128 1.554 0.026 0.107 0.022 0.129 0.045 0.134 0.334

Table 3. Metric scores for all distance sectors for summer dataset. The values of 2T2S metric are seen generally increasing along with

measurement distance: Gated RCCB Stereo [3], Luminar H3, RCCB Stereo [12], RGB Mono [6], RGB Stereo [12], VLS-128. The

best scoring depth perception method for each reference metric at each distance is highlighted.



Sector [m] Method Silog RMSE Log RMSE MAE Abs Rel CD Voxel IoU 2T2S

25

Gated RCCB Stereo 4.973 0.062 0.298 0.255 0.054 0.056 0.346 0.137

Luminar H3 3.794 0.048 0.235 0.186 0.039 0.041 0.431 0.241

RCCB Stereo 3.847 0.050 0.246 0.207 0.044 0.024 0.416 0.158

RGB Mono 7.864 0.087 0.426 0.354 0.074 0.079 0.309 0.187

RGB Stereo 5.938 0.072 0.357 0.296 0.062 0.051 0.317 0.205

VLS-128 3.088 0.040 0.195 0.158 0.033 0.055 0.352 0.244

50

Gated RCCB Stereo 8.908 0.097 0.468 0.389 0.081 0.090 0.310 0.164

Luminar H3 4.907 0.060 0.295 0.242 0.050 0.085 0.271 0.258

RCCB Stereo 5.835 0.066 0.325 0.264 0.055 0.040 0.415 0.212

RGB Mono 9.563 0.102 0.504 0.418 0.088 0.099 0.270 0.223

RGB Stereo 10.455 0.110 0.548 0.458 0.095 0.114 0.174 0.251

VLS-128 3.846 0.047 0.230 0.181 0.038 0.092 0.187 0.281

75

Gated RCCB Stereo 8.424 0.093 0.450 0.379 0.079 0.120 0.253 0.193

Luminar H3 3.231 0.046 0.226 0.203 0.043 0.095 0.121 0.276

RCCB Stereo 10.623 0.109 0.543 0.455 0.093 0.155 0.168 0.257

RGB Mono 10.646 0.116 0.575 0.481 0.102 0.099 0.256 0.226

RGB Stereo 9.752 0.101 0.502 0.424 0.088 0.116 0.143 0.272

VLS-128 2.820 0.046 0.224 0.197 0.042 0.085 0.112 0.314

Table 4. Metric scores for all distance sectors for winter dataset: Gated RCCB Stereo [3], Luminar H3, RCCB Stereo [12], RGB

Mono [6], RGB Stereo [12], VLS-128. The best scoring depth perception method for each reference metric at each distance is highlighted.



Figure 3. Dataset Visualization 1 Sequence Nr. 1 - 4.



Figure 4. Dataset Visualization 2 Sequence Nr. 5 - 8



Figure 5. Dataset Visualization 3 Sequence Nr. 9 - 12



Figure 6. Dataset Visualization 4 Sequence Nr. 13 - 14



Figure 7. Depth Map Visualizations Lost cargo objects are placed at 25 meters in these examples, with reference images taken directly

from the raw dataset and preprocessed for depth generation as detailed in Section 3.



Figure 8. Summer Recording: Small Tire. Visual results of lost cargos captured at different distances, with different depth estimation

methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and LiDAR

sensors from Luminar and Velodyne.



Figure 9. Summer Recording: Bumper. Visual results of lost cargos captured at different distances, with different depth estimation

methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and LiDAR

sensors from Luminar and Velodyne.



Figure 10. Summer Recording: Exhaust. Visual results of lost cargos captured at different distances, with different depth estimation

methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and LiDAR

sensors from Luminar and Velodyne.



Figure 11. Summer Recording: Pallets. Visual results of lost cargos captured at different distances, with different depth estimation

methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and LiDAR

sensors from Luminar and Velodyne.



Figure 12. Summer Recording: Small Tire. Visual results of lost cargos captured at different distances, with different depth estimation

methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and LiDAR

sensors from Luminar and Velodyne.



Figure 13. Winter Recording: Bumper. Visual results of lost cargos captured at different distances, with different depth estimation

methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and LiDAR

sensors from Luminar and Velodyne.



Figure 14. Winter Recording: Exhaust. Visual results of lost cargos captured at different distances, with different depth estimation

methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and LiDAR

sensors from Luminar and Velodyne.



Figure 15. Winter Recording: Angle View Motorcyclist. Visual results of lost cargos captured at different distances, with different depth

estimation methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and

LiDAR sensors from Luminar and Velodyne.



Figure 16. Winter Recording: Head View Motorcyclist. Visual results of lost cargos captured at different distances, with different depth

estimation methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and

LiDAR sensors from Luminar and Velodyne.



Figure 17. Winter Recording: Small Tire. Visual results of lost cargos captured at different distances, with different depth estimation

methods, comprising cross spectral Gated RCCB fusion [3], RGB Stereo [12], RCCB Stereo [12] and RGB Monocular [6], and LiDAR

sensors from Luminar and Velodyne.


