
PTADisc: A Cross-Course Dataset Supporting
Personalized Learning in Cold-Start Scenarios

(Appendix)

Contents

A Related Work 2

A.1 Cognitive Diagnosis and Knowledge Tracing . 2

A.2 Cross-Domain Recommendation . 2

A.3 Other educational applications . 2

B Dataset Statictics 3

C Implementation Details 4

D Baseline Model Details 5

E Supplementary Experiment Results 6

1

Our code, dataset, and detailed description for the dataset are available at https://github.com/
wahr0411/PTADisc.git.

A Related Work
A.1 Cognitive Diagnosis and Knowledge Tracing
The goal of cognitive diagnosis (CD) is to assess students’ level of proficiency of different knowledge
concepts through the prediction process of student performance, given students’ exercise records, aka
response logs. Traditional psychometric-based methods include Item Response Theory (IRT) [18],
MIRT [19] and DINA [4, 22]. These methods depend on manually designed functions and the
effectiveness requires a large number of psychological experiments to verify, which are labor-intensive
and lack of ability to capture complex relationships between students, problems, and knowledge
concepts. Recent years, with the development of artificial intelligence [10], deep learning-based
cognitive diagnosis models have been developed [23, 6, 9, 28]. Specifically, NCD [23] incorporates
neural networks to learn the complex exercising interactions. And RCD [6] models the interactive
and structural relations via a multi-layer student-problem-concept relation map.

The goal of knowledge tracing (KT) is to dynamically model students’ knowledge proficiency through
her historical learning records, so as to predict her performance to new problems. Traditional proba-
bilistic KT models assume students’ knowledge state as a set of binary variables where each variable
represents whether a student masters an individual concept or not, such as Bayesian Knowledge
Tracing (BKT) [3]. Recent years, deep learning-based KT models are proposed for learning valid rep-
resentations especially when large amounts of data are available, such as DKT [21] and DKVMN [26].
Further, from the perspective of model structure, a few methods based on transformers (SAKT [15]),
GNNs (SGKT [24]), and pre-training frameworks (PEBG [11]) are proposed.

A.2 Cross-Domain Recommendation
Cross-domain recommendation is a promising method to alleviate data sparsity and the cold-start
problem [30, 27, 2]. Several models have been proposed, including CMF [20], which uses shared
parameters for all domains, and CST [14], which transfers knowledge about users and items from
auxiliary data sources. Mapping-based methods have been shown to be effective in solving cold-start
recommendation problems [12], by learning a mapping function from the source domain to the target
domain. However, these methods have limited generalization ability for cold-start items or users. To
address this issue, TMCDR [29] introduces meta learning to improve the generalization ability and
PTUPCDR [30] further improves TMCDR by learning personalized bridges for each user. While
the cross-domain problem has been widely explored in the recommendation domain, there is limited
research on cross-course learner modeling in personalized learning.

A.3 Other educational applications
Prerequisite discovery refers to the task of identifying and establishing the sequence or order
in which concepts or topics should be learned or presented, ensuring that foundational concepts
are understood before more advanced ones [13]. Suppose a MOOC corpus is composed by n
courses in the same subject area, denoted as D = {D1, · · · ,Di, · · · ,Dn}, where Di signifies an
individual course. Course concepts are subjects taught in the course, i.e., the concepts not only
mentioned but also discussed and taught in the course. Let us denote the course concept set of D as
C = C1 ∪ · · · ∪ Cn, where Ci representing the concepts intrinsic to Di . Prerequisite relation learning
in MOOCs is formally defined as follows. Given a MOOC corpus D and its corresponding course
concepts C, the objective is to learn a function P : C2 → {0, 1} that maps a concept pair ⟨a, b⟩, where
a, b ∈ C, to a binary class that predicts whether a serves as a foundational prerequisite for concept b.

Computerized adaptive testing (CAT) is an emerging testing format in many standardized examina-
tions, aiming to rapidly and accurately diagnose a candidate’s level of knowledge mastery through
personalized test items [1]. Let’s conceptualize a set of students represented by S = {s1, s2, . . . , sN},
a problem set represented by P = {p1, p2, . . . , pM} and a set of knowledge concepts represented by
C = {c1, c2, . . . , cK} related to the problems. We denote the record of student si answering problem
pj as a triplet rij = ⟨si, pj , aij⟩, where aij equals 1 if si answers pj correctly, and 0 otherwise.
Problem set P is divided into a tested set PT and an untested set PU . When introduced to a novel
student si ∈ S , a problem pool P with knowledge concepts C, the challenge is to architect a strategy
A to select a X-size question set PT = {p∗1, p∗2, . . . , p∗X} step by step that has the maximum quality
and diversity. Prior to the testing phase, we set up an abstract cognitive diagnosis model M with

2

https://github.com/wahr0411/PTADisc.git
https://github.com/wahr0411/PTADisc.git

parameters θ capturing knowledge states. During testing, at step t(1 ≤ t ≤ X), we select one
question p∗t = A (PU ,M), then observe a new interaction test record r∗it = ⟨si, p∗t , a∗it⟩ and update
the knowledge states, i.e., θ, in M instantly. After testing, we measure the effectiveness of A by
computing Inf(A) and Cov(A), where Inf(A) denotes the measurement of quality and Cov(A)
denotes the measurement of diversity.

Educational recommendation lies in constructing a recommend system that can process the inter-
actions between students and questions. This system should be capable of making appropriate
learning suggestions to students [8]. In the context of a digital educational platform, assume
there are N students and P problems. We record the exercising process of a certain student
n = {(p1, r1) , (p2, r2) , · · · , (pt, rt)} , n ∈ N , where pt ∈ P represents the problems that stu-
dent n practices at her time step t, and rt denotes the corresponding score. Conventionally, a correct
response to problem pt is denoted by rt equals to 1, , and an incorrect response by rt equals to 0. Each
problem p ∈ P is characterized by a triplet p = {w, c, d}. Specifically, the element w represents
its text content as a word sequence p = {w1, w2, . . . , wW }. c ∈ C describes its knowledge concept
coming from all K concepts. And d means its difficulty factor.

B Dataset Statictics

Figure 1: Distribution of the number of students, problems, concepts and non-programming logs over
courses in PTADisc.

3

Table 1: Detailed statistics of 68 courses in PTADisc.
course name #student #problem #concept #non-programming

log
#programming log

C++ programming 362,585 20,786 617 110,641,195 4,058,080
Computer App. foundation 37,280 7,304 527 110,200,887 216,146
C programming 1,074,901 43,140 1,069 97,385,606 164,459,382
DS. and algorithm analysis 294,236 29,914 897 41,667,618 -
Python programming 277,621 28,396 817 39,087,014 21,827,297
Java programming 198,335 24,524 906 23,542,208 8,461,930
Computational thinking foundation 34,519 4,500 401 16,871,472 2,212
Information technology 36,700 6,499 516 9,935,894 159
Computational thinking 45,329 8,399 477 6,504,414 19,085
Database principle 33,031 10,428 758 5,219,955 1,039
Information processing technology and App. 17,152 2,428 221 3,127,821 7,536
Computer network 20,333 7,372 609 2,451,121 1,023
Database technology and App. 12,646 3,616 325 2,363,206 -
Introduction to computer science 26,884 4,077 419 2,108,904 13,159
Operating system 18,237 8,563 726 1,777,233 64,947
Object oriented programming java 7,552 2,993 315 944,474 395,830
Principles of computer composition 11,699 5,474 475 755,982 34,456
Web front-end technology 6,612 4,247 438 572,879 876
Compilation principle 5,635 1,830 263 493,449 65,249
Thinking by data 2,597 1,027 156 445,636 -
Multivariate statistical analysis 1,704 790 83 416,427 62,393
Linux system 4,398 2,672 284 391,434 1,026
Computer and problem solving 14,241 1,518 226 370,605 522
Software engineering 4,197 2,815 335 270,692 -
Assembly language programming 2,830 1,300 206 200,231 26
Machine learning 2,073 1,984 331 197,685 500
Csharp programming 2,134 1,981 91 194,984 76,053
Java web 4,783 1,547 215 189,171 332
Big data processing technology 1,211 1,055 155 165,573 -
VB programming 2,032 1,273 113 157,360 5,829
Discrete mathematics and App. 3,516 1,278 123 147,522 17,855
Digital image processing 1,984 956 218 142,497 -
English 1,952 660 19 139,328 -
Software project management 850 1,753 133 133,824 970
Scala programming 1,378 616 124 127,382 9,367
Literature and history 2,306 886 31 126,748 -
Discrete mathematics 1,694 608 92 125,378 58,724
Fortran programming 1,398 858 106 123,498 248,698
Intro to algorithm competition 2,699 1,403 229 119,565 190,772
Data warehouse and data mining 689 777 97 117,717 -
Practice of statistics 210 394 35 99,217 -
Principles of information security 1,844 1,298 201 93,303 10,055
Software design and architecture 496 360 43 82,141 16,658
Single chip microcomputer principle and App. 784 505 88 80,977 -
Network programming technology 1,236 362 71 77,571 -
Digital logic 1,805 348 64 76,986 382
Introduction to computer 1,801 546 99 63,889 -
Numerical analysis 610 1,111 241 54,558 17,348
Big data management 217 640 65 51,724 -
Psychology 296 111 1 50,180 -
Probability and statistic 557 1,054 247 46,106 1,413
Problem solving fundation 1,037 373 63 38,440 323
Artificial intelligence 582 353 77 28,088 -
Intro to artificial intelligence 740 301 58 24,879 11
Software testing and quality assurance 454 172 4 24,342 -
Linear algebra 494 420 100 17,341 8,811
PHP programming 165 632 153 14,462 340
Object oriented analysis and design 265 178 47 11,872 -
Introduction to internet of things 217 291 14 10,949 -
Microcomputer principle and interface tech. 422 41 19 10,213 -
Signals and systems 378 38 12 8,502 -
Calculus 154 357 120 7,024 9,085
Matlab simulation 249 76 10 6,030 6,089
Japanese 54 190 19 5,375 -
Computer system fundamentals 67 91 25 3,643 -
Introduction to cloud computing 104 59 39 3,571 -
Wireless network 60 54 26 2,242 -
Swift programming 31 102 14 2,170 -
Data visualization 87 53 6 2,105 513
Fundamentals of analogy electron technique 36 29 19 1,476 -
Politics 56 29 3 1,450 -
Tourism 22 30 1 1,320 -
Software requirement analysis and design 331 21 20 21 5,492
Haskell programming 98 3 3 - 302

C Implementation Details

CCLMF is a model-agnostic framework that can be applied to various CD or KT models. Here,
we take NCD as an example and showcase the implementation details of CCLMF based on NCD,
namely CC-NCD. After pre-training the NCD model in the source course, the student’s proficiency
representation in the source course can be obtained by extracting the corresponding row from the

4

matrix As given the student ID i:
us
i = As

NCD[i], (1)

where As is the student representation matrix learned by NCD.

In the meta stage, we used a two-layer perceptron (MLP) as the meta network. This meta network
then generates a transformation matrix for each student as the personalized mapping function:

TKs×Kt = MLP(us
i ; θ), (2)

where θ is the parameters of MLP, and TKs×Kt is the transformation matrix. Ks and Kt denote
the dimensionality of the student proficiency representation in the source and target course respec-
tively. Specifically, the dimensionality of the student representation is determined by the number of
knowledge concepts considered.

The transformation matrix TKs×Kt is then used to map student proficiency representation to the
target course using matrix multiplication:

ut
i = us

i · TKs×Kt . (3)

The final output r̂i of CC-NCD is formulated as:

r̂i = L(Qt
p ◦ (ut

i − hdiff)× hdisc; θl), (4)

where Qt
p ∈ {0, 1}1×Kt

is the concept relevancy of the problem p in the target course. hdiff ∈
(0, 1)1×Kt

, hdisc ∈ (0, 1) denotes concept difficulty and problem discrimination learned from the
NCD model using data of the target source. L(·) denotes the Linear Layers in NCD which is shown
in full paper Figure 5 and θl is the parameters of L(·).
Given the ground truth value r from Rt, all learnable parameters are trained together with the meta
network and mapping function by optimizing the cross-entropy loss function as:

lossCC−NCD = −
∑
i

(ri log r̂i + (1− ri) log (1− r̂i)). (5)

During the inference stage, given a cold-start student sj in the target course, we can get the latent
proficiency representation in the target course as:

ut
j = As

NCD[j] ·MLP(As
NCD[j]; θ), (6)

which can be utilized to predict the student’s performance in the target course via Equation (4).

D Baseline Model Details
Cognitive diagnosis models:

DINA [4, 22] is a traditional method that is well-suited for binary scoring items, and it can effectively
account for student errors due to guessing or slipping.

IRT [5] is an important psychological and educational theory rooted in psychometrics, which employs
a linear function to model the features of both students and problems.

MIRT [19] is a multidimensional extension of IRT, modeling multiple knowledge proficiency.

NCD [23] is the first attempt to introduce neural networks for Cognitive Diagnosis, which can model
high-order and complex student-problem interaction.

RCD [6] models the interactive and structural relations via a multi-layer student-problem-concept
relation map and infers students’ proficiency through the representations from this map.

Knowledge tracing models:

DKT [17] is the first approach applying deep learning to knowledge tracing tasks, making use of the
recurrent neural network in the process of modeling students’ behavior.

DKVMN [26] makes use of a memory network, a static matrix to store all concepts and a dynamic
matrix to update students’ knowledge states of those concepts.

5

SAKT [16] employs a self-attention mechanism to capture the connections between exercises and
student responses.

AKT [7] utilizes an attention mechanism to analyze the temporal gap between questions and students’
prior interactions to better understand their past engagement.

GIKT [25] makes use of a bipartite graph to model the input information, namely problems and
concepts, and uses graph convolutional neural network (GCN) to process the data. Then the results
were sent to LSTM and get the final prediction.

SGKT [24] uses a session graph and during the process of students’ answering, a gated graph neural
network was set to handle the problem-concept graph.

PEBG [11] utilizes pre-training model to get the low-dimensional problem embeddings and models
the relation between problems and concepts as a bipartite graph.

E Supplementary Experiment Results
We conducted experiments between the selected five courses in Figure 4(a) of the paper. The
experimental results are presented in Table 2. We chose C++ Programming as the target course
due to its wide range of correlation coefficients with other courses. The source courses are marked
within brackets and are ranked from lowest to highest correlation coefficient with C++ Programming:
0.54 for Python Programming (Python), 0.59 for Data Structure and Algorithm Analysis (DS), 0.64
for i (Java), 0.79 for C Programming (C). To simulate cold-start scenarios, we sampled 5% of each
student’s response logs in C++ Programming to form the target course.

From Table 2, we can observe that CCLMF achieves a certain improvement of the two models in all
source courses. Notably, the results of the NCD model reveal that the extent of model improvement
is related to the correlation coefficient between the source course and the target course. The source
course with the highest correlation coefficient (0.79 for C Programming) exhibits the most significant
improvement, while the source course with the weakest correlation coefficient (0.54 for Python
Programming) demonstrates relatively less improvement.

Table 2: CCLMF results on MIRT and NCD, taking C++ Programming as the target course. Source
courses are marked within brackets.

Metrics Model no dropout 10% dropout 20% dropout 30% dropout 40% dropout 50% dropout

AUC

MIRT 0.6272 0.6218 0.6157 0.6124 0.6051 0.6057
CC-MIRT (Python) 0.7150 (+0.0878) 0.7123 (+0.0905) 0.7102 (+0.0945) 0.6864 (+0.0740) 0.6801 (+0.0750) 0.6716 (+0.0659)
CC-MIRT (DS) 0.6912 (+0.0640) 0.6933 (+0.0715) 0.6904 (+0.0747) 0.7012 (+0.0888) 0.7042 (+0.0991) 0.6990 (+0.0933)
CC-MIRT (Java) 0.7132 (+0.0860) 0.7093 (+0.0875) 0.7065 (+0.0908) 0.7004 (+0.0880) 0.6975 (+0.0924) 0.6890 (+0.0833)
CC-MIRT (C) 0.6996 (+0.0724) 0.7021 (+0.0803) 0.6935 (+0.0778) 0.6912 (+0.0788) 0.6870 (+0.0819) 0.6768 (+0.0711)

ACC

MIRT 0.7493 0.7479 0.7479 0.7471 0.6825 0.6860
CC-MIRT (Python) 0.7738 (+0.0245) 0.7721 (+0.0242) 0.7714 (+0.0235) 0.7657 (+0.0186) 0.7637 (+0.0812) 0.7606 (+0.0746)
CC-MIRT (DS) 0.7668 (+0.0175) 0.7681 (+0.0202) 0.7665 (+0.0186) 0.7694 (+0.0223) 0.7706 (+0.0881) 0.7685 (+0.0825)
CC-MIRT (Java) 0.7719 (+0.0226) 0.7707 (+0.0228) 0.7706 (+0.0227) 0.7672 (+0.0201) 0.7671 (+0.0846) 0.7641 (+0.0781)
CC-MIRT (C) 0.7703 (+0.0210) 0.7719 (+0.0240) 0.7695 (+0.0216) 0.7683 (+0.0212) 0.7671 (+0.0846) 0.7643 (+0.0783)

RMSE

MIRT 0.4919 0.4935 0.4935 0.4931 0.511 0.5106
CC-MIRT (Python) 0.4009 (-0.0909) 0.4016 (-0.0919) 0.4022 (-0.0913) 0.4104 (-0.0827) 0.4118 (-0.0992) 0.4151 (-0.0955)
CC-MIRT (DS) 0.4089 (-0.0830) 0.4074 (-0.0861) 0.4086 (-0.0849) 0.4052 (-0.0879) 0.4035 (-0.1075) 0.4054 (-0.1052)
CC-MIRT (Java) 0.4021 (-0.0898) 0.4027 (-0.0908) 0.4035 (-0.0900) 0.4055 (-0.0876) 0.4062 (-0.1048) 0.4085 (-0.1021)
CC-MIRT (C) 0.4050 (-0.0869) 0.4039 (-0.0896) 0.4062 (-0.0873) 0.4071 (-0.0860) 0.4085 (-0.1025) 0.4112 (-0.0994)

AUC

NCD 0.6981 0.6960 0.6926 0.6873 0.6846 0.6791
CC-NCD (Python) 0.7008 (+0.0028) 0.6979 (+0.0019) 0.6943 (+0.0017) 0.6931 (+0.0058) 0.6873 (+0.0027) 0.6807 (+0.0016)
CC-NCD (DS) 0.7225 (+0.0244) 0.7189 (+0.0229) 0.7164 (+0.0238) 0.7128 (+0.0255) 0.7078 (+0.0232) 0.6997 (+0.0206)
CC-NCD (Java) 0.7154 (+0.0173) 0.7123 (+0.0163) 0.7079 (+0.0153) 0.7058 (+0.0185) 0.6989 (+0.0143) 0.6907 (+0.0116)
CC-NCD (C) 0.7663 (+0.0682) 0.7627 (+0.0667) 0.7598 (+0.0672) 0.7541 (+0.0668) 0.7486 (+0.0640) 0.7423 (+0.0632)

ACC

NCD 0.7619 0.7602 0.7616 0.7552 0.7556 0.7558
CC-NCD (Python) 0.7693 (+0.0074) 0.7675 (+0.0073) 0.7666 (+0.0050) 0.7674 (+0.0122) 0.7668 (+0.0112) 0.7668 (+0.0110)
CC-NCD (DS) 0.7747 (+0.0128) 0.7702 (+0.0100) 0.7677 (+0.0061) 0.7673 (+0.0121) 0.7675 (+0.0119) 0.7671 (+0.0113)
CC-NCD (Java) 0.7661 (+0.0043) 0.7695 (+0.0093) 0.7687 (+0.0071) 0.7667 (+0.0115) 0.7668 (+0.0112) 0.7660 (+0.0102)
CC-NCD (C) 0.7854 (+0.0235) 0.7875 (+0.0273) 0.7833 (+0.0217) 0.7759 (+0.0207) 0.7734 (+0.0178) 0.7710 (+0.0152)

RMSE

NCD 0.4116 0.4124 0.4115 0.4174 0.4164 0.4156
CC-NCD (Python) 0.4102 (-0.0014) 0.4094 (-0.0030) 0.4111 (-0.0004) 0.4115 (-0.0059) 0.4123 (-0.0041) 0.4130 (-0.0026)
CC-NCD (DS) 0.4018 (-0.0098) 0.4059 (-0.0065) 0.4081 (-0.0034) 0.4133 (-0.0041) 0.4123 (-0.0041) 0.4181 (0.0025)
CC-NCD (Java) 0.4088 (-0.0028) 0.4066 (-0.0058) 0.4075 (-0.0040) 0.4097 (-0.0077) 0.4104 (-0.0060) 0.4130 (-0.0026)
CC-NCD (C) 0.3877 (-0.0239) 0.3881 (-0.0243) 0.3913 (-0.0202) 0.3956 (-0.0218) 0.3967 (-0.0197) 0.4028 (-0.0128)

6

References
[1] Haoyang Bi, Haiping Ma, Zhenya Huang, Yu Yin, Qi Liu, Enhong Chen, Yu Su, and Shijin

Wang. Quality meets diversity: A model-agnostic framework for computerized adaptive testing.
In ICDM, pages 42–51. IEEE, 2020.

[2] Ye Bi, Liqiang Song, Mengqiu Yao, Zhenyu Wu, Jianming Wang, and Jing Xiao. Dcdir: A deep
cross-domain recommendation system for cold start users in insurance domain. In SIGIR, pages
1661–1664, 2020.

[3] Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition of
procedural knowledge. User modeling and user-adapted interaction, 4(4):253–278, 1994.

[4] Jimmy De La Torre. Dina model and parameter estimation: A didactic. Journal of educational
and behavioral statistics, 34(1):115–130, 2009.

[5] Susan E Embretson and Steven P Reise. Item response theory. Psychology Press, 2013.

[6] Weibo Gao, Qi Liu, Zhenya Huang, Yu Yin, Haoyang Bi, Mu-Chun Wang, Jianhui Ma, Shijin
Wang, and Yu Su. Rcd: Relation map driven cognitive diagnosis for intelligent education
systems. In SIGIR, pages 501–510, 2021.

[7] Aritra Ghosh, Neil Heffernan, and Andrew S Lan. Context-aware attentive knowledge tracing.
In SIGKDD, pages 2330–2339, 2020.

[8] Zhenya Huang, Qi Liu, Chengxiang Zhai, Yu Yin, Enhong Chen, Weibo Gao, and Guoping Hu.
Exploring multi-objective exercise recommendations in online education systems. In CIKM,
pages 1261–1270, 2019.

[9] Jiatong Li, Fei Wang, Qi Liu, Mengxiao Zhu, Wei Huang, Zhenya Huang, Enhong Chen,
Yu Su, and Shijin Wang. Hiercdf: A bayesian network-based hierarchical cognitive diagnosis
framework. In SIGKDD, pages 904–913, 2022.

[10] Mengze Li, Tianbao Wang, Haoyu Zhang, Shengyu Zhang, Zhou Zhao, Wenqiao Zhang, Jiaxu
Miao, Shiliang Pu, and Fei Wu. Hero: Hierarchical spatio-temporal reasoning with contrastive
action correspondence for end-to-end video object grounding. In Proceedings of the 30th ACM
International Conference on Multimedia, pages 3801–3810, 2022.

[11] Yunfei Liu, Yang Yang, Xianyu Chen, Jian Shen, Haifeng Zhang, and Yong Yu. Improving
knowledge tracing via pre-training question embeddings. arXiv preprint arXiv:2012.05031,
2020.

[12] Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. Cross-domain recommendation: An
embedding and mapping approach. In IJCAI, volume 17, pages 2464–2470, 2017.

[13] Liangming Pan, Chengjiang Li, Juanzi Li, and Jie Tang. Prerequisite relation learning for con-
cepts in moocs. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1447–1456, 2017.

[14] Weike Pan, Evan Xiang, Nathan Liu, and Qiang Yang. Transfer learning in collaborative filtering
for sparsity reduction. In AAAI, volume 24, pages 230–235, 2010.

[15] Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. arXiv
preprint arXiv:1907.06837, 2019.

[16] Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. In 12th In-
ternational Conference on Educational Data Mining, EDM 2019, pages 384–389. International
Educational Data Mining Society, 2019.

[17] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J
Guibas, and Jascha Sohl-Dickstein. Deep knowledge tracing. NIPS, 28, 2015.

[18] Georg Rasch. Studies in mathematical psychology: I. probabilistic models for some intelligence
and attainment tests. 1960.

7

[19] Mark D Reckase and Mark fD Reckase. Multidimensional item response theory models.
Springer, 2009.

[20] Ajit P Singh and Geoffrey J Gordon. Relational learning via collective matrix factorization. In
SIGKDD, pages 650–658, 2008.

[21] K Sohn, H Lee, X Yan, C Cortes, N Lawrence, and D Lee. Advances in neural information
processing systems. NIPS, pages 3483–3491, 2015.

[22] Matthias Von Davier. The dina model as a constrained general diagnostic model: Two variants of
a model equivalency. British Journal of Mathematical and Statistical Psychology, 67(1):49–71,
2014.

[23] Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang, and Shijin
Wang. Neural cognitive diagnosis for intelligent education systems. In AAAI, volume 34, pages
6153–6161, 2020.

[24] Zhengyang Wu, Li Huang, Qionghao Huang, Changqin Huang, and Yong Tang. Sgkt: Session
graph-based knowledge tracing for student performance prediction. Expert Systems with
Applications, 206:117681, 2022.

[25] Yang Yang, Jian Shen, Yanru Qu, Yunfei Liu, Kerong Wang, Yaoming Zhu, Weinan Zhang,
and Yong Yu. Gikt: a graph-based interaction model for knowledge tracing. In PKDD, pages
299–315. Springer, 2021.

[26] Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory
networks for knowledge tracing. In WWW, pages 765–774, 2017.

[27] Cheng Zhao, Chenliang Li, Rong Xiao, Hongbo Deng, and Aixin Sun. Catn: Cross-domain
recommendation for cold-start users via aspect transfer network. In SIGIR, pages 229–238,
2020.

[28] Yuqiang Zhou, Qi Liu, Jinze Wu, Fei Wang, Zhenya Huang, Wei Tong, Hui Xiong, Enhong
Chen, and Jianhui Ma. Modeling context-aware features for cognitive diagnosis in student
learning. In SIGKDD, pages 2420–2428, 2021.

[29] Yongchun Zhu, Kaikai Ge, Fuzhen Zhuang, Ruobing Xie, Dongbo Xi, Xu Zhang, Leyu Lin,
and Qing He. Transfer-meta framework for cross-domain recommendation to cold-start users.
In SIGIR, pages 1813–1817, 2021.

[30] Yongchun Zhu, Zhenwei Tang, Yudan Liu, Fuzhen Zhuang, Ruobing Xie, Xu Zhang, Leyu Lin,
and Qing He. Personalized transfer of user preferences for cross-domain recommendation. In
WSDM, pages 1507–1515, 2022.

8

	Related Work
	Cognitive Diagnosis and Knowledge Tracing
	Cross-Domain Recommendation
	Other educational applications

	Dataset Statictics
	Implementation Details
	Baseline Model Details
	Supplementary Experiment Results

