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ABSTRACT

We investigate the mechanisms of self-distillation in multi-class classification,
particularly in the context of linear probing with fixed feature extractors where
traditional feature learning explanations do not apply. Our theoretical analysis
reveals that multi-round self-distillation effectively performs label averaging among
instances with high feature correlations, governed by the eigenvectors of the Gram
matrix derived from input features. This process leads to clustered predictions
and improved generalization, mitigating the impact of label noise by reducing the
model’s reliance on potentially corrupted labels. We establish conditions under
which multi-round self-distillation achieves 100% population accuracy despite label
noise. Furthermore, we introduce a novel, efficient single-round self-distillation
method using refined partial labels from the teacher’s top two softmax outputs,
referred to as the PLL student model. This approach replicates the benefits of multi-
round distillation in a single round, achieving comparable or superior performance–
especially in high-noise scenarios–while significantly reducing computational cost.

1 INTRODUCTION

Knowledge distillation, initially introduced by Hinton et al. (2015), has emerged as a powerful
technique in deep learning, where a smaller student model is trained to replicate the predictions
of a larger, more complex teacher model. In classification tasks, the teacher’s output probability
distribution, often obtained via softmax, serves as “soft targets” for training the student model. This
approach has proven effective across various domains including computer vision, speech recognition,
and natural language processing (Chebotar & Waters, 2016; Cui et al., 2017; Asif et al., 2019; Liu
et al., 2019), yielding smaller, more efficient models that often generalize better than similarly sized
models trained without distillation.

Building upon this foundation, self-distillation eliminates the need for a larger teacher model by
using a model of the same architecture as its own teacher. In this process, models of the same size
are trained over multiple rounds, with each iteration learning from the outputs of the previous one.
Surprisingly, self-distillation has been shown to enhance performance, especially when repeated over
multiple rounds (Furlanello et al., 2018; Zhang et al., 2019). This improvement is intriguing because
it cannot be fully explained by traditional theories that focus on a student mimicking a more complex
teacher, prompting a deeper exploration into the mechanisms underlying self-distillation.

Recent research has begun to provide diverse explanations for the benefits of self-distillation. For
example, Allen-Zhu & Li (2022) describe self-distillation as a feature-learning process in neural
networks, particularly under a multi-view data distribution where each class possesses multiple
orthogonal features (e.g., “windows” and “wheels” for cars). The teacher’s softmax outputs help
the student model learn a richer set of features, improving generalization. Another line of research
emphasizes that the benefits of self-distillation extend beyond neural networks to classical regression
settings (Mobahi et al., 2020; Dong et al., 2019; Das & Sanghavi, 2023). In these contexts, self-
distillation acts as a regularizer, preventing overfitting and promoting generalization.
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Despite these insights, several critical questions remain unaddressed. First, can self-distillation
provide benefits in training a simple linear classifier atop a fixed pre-trained feature extractor–a
process known as linear probing? In this setting, traditional explanations involving feature learning
do not apply, as the feature extractor is fixed. With the emergence of large-scale pre-trained networks,
or foundation models (Bommasani et al., 2021), linear probing has become an increasingly popular
method to leverage these networks’ capabilities for downstream tasks. Yet, it remains unclear whether
self-distillation can enhance this process without additional feature learning, and how repeated rounds
of distillation impact the model outputs.

Furthermore, can the benefits of multi-round self-distillation be achieved more efficiently–in
just a single round–by developing methods that replicate these gains without repeated training
cycles? While multi-round self-distillation has shown performance improvements, it can be computa-
tionally intensive due to the need for multiple training iterations. Developing efficient methods to
achieve similar gains without multiple rounds is therefore of significant practical interest.

Our Contributions In this paper, we address these questions by:

• Analyzing Self-Distillation in Linear Probing: Our analysis reveals that self-distillation effec-
tively performs label averaging among instances with high feature correlations when generating
predictions on the training data. This averaging is governed by the eigenvectors of the Gram
matrix derived from input features (defined in Sec. 2.2). As distillation progresses, the top-K
eigenvectors–where K is the number of classes–dominate this process, leading to increasingly
clustered predictions around instances from the same ground-truth class. This finding provides
insights into how self-distillation benefits even in simple linear probing without feature updates.

• Quantifying Gains in Label-Noise Scenarios: We quantify the number of distillation rounds
needed to achieve 100% population accuracy in presence of label noise–that is, correctly predicting
the ground-truth label for any training instance as the number of instances goes to infinity. This
number depends on the relative strength between signals from the given (potentially noisy) labels
and the averaged labels of instances with high feature correlation. As the latter signal strengthens
with more distillation rounds, the student model can correctly classify samples with noisy labels
after a few iterations, demonstrating the robustness imparted by multi-round self-distillation.

• Introducing an Efficient Single-Round Method using Partial Label Refinement: We introduce a
novel self-distillation approach that replicates the benefits of multi-round distillation in a single
round. This method trains the student with refined partial labels, focusing on the top two softmax
outputs from the teacher. We demonstrate that this approach outperforms traditional multi-round
self-distillation in high-noise scenarios, while significantly reducing computational cost. Our
findings are supported by experiments on synthetic and real datasets (Figure 3 and Section 6).

Related Works Since its introduction by Hinton et al. (2015) and subsequent extensions (Romero
et al., 2014; Tian et al., 2019; Lopez-Paz et al., 2015), several studies have sought to theoretically
analyze the effects of knowledge distillation and self-distillation. Many of these works rely on specific
assumptions about datasets, model architectures, or loss functions to facilitate tractable analysis.
Mobahi et al. (2020); Dong et al. (2019) explored self-distillation in classical regression settings
using mean squared error loss. They demonstrated that multi-round distillation reduces the number of
basis functions in the model, which helps prevent overfitting initially but can lead to underfitting after
excessive rounds. In another line of research focusing on binary classification with cross-entropy
loss, Phuong & Lampert (2019); Ji & Zhu (2020); Das & Sanghavi (2023) analyzed the effects
of distillation on linear networks or logistic regression under label noise. Das & Sanghavi (2023)
specifically identified the range of label corruption where the student model outperforms the teacher.

In contrast to these studies, our paper examines multi-round self-distillation for multi-class classifica-
tion with cross-entropy loss, particularly in the context of linear probing where the feature extractor
is fixed and feature learning is absent. We demonstrate that the effect of self-distillation can be
interpreted as label averaging among highly correlated instances, offering a new perspective on the
mechanism of self-distillation. While Allen-Zhu & Li (2022) explain the benefits of self-distillation
through feature learning under a multi-view data distribution, our results show that significant benefits
can be achieved through label averaging alone, even without feature evolution. Specifically, our
theoretical analyses (Theorems 3.1–4.1) illustrate how self-distillation leads to clustered outputs
based on feature correlations, enhancing generalization by reducing dependence on given (potentially
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noisy) labels. Additionally, our findings can be extended to include feature learning by considering
the evolution of the feature map over multiple distillation rounds (as discussed in Corollary C.1).

Our work also introduces a novel method for efficiently distilling “dark knowledge” from the teacher
model. Instead of utilizing the full softmax output as in traditional distillation, we refine the teacher’s
outputs into a set of feasible labels by focusing on the top two predictions. This approach is analogous
to Partial Label Learning (PLL) (Cour et al., 2011), where each training sample is associated with a
set of candidate labels rather than a single ground truth label. Various PLL methods aim to improve
classification accuracy by weighting candidate labels using logits (Lv et al., 2020; Wang et al., 2021)
or leveraging feature space topology (Wang et al., 2019; Xu et al., 2019; Lyu et al., 2019). Our
method differs by directly employing the refined partial labels derived from the teacher’s outputs,
achieving the same benefits as multi-round distillation in just one round. Importantly, our approach
outperforms traditional multi-round distillation in high-noise scenarios, as it consistently includes the
ground-truth label among the top two predictions, as demonstrated by Theorem 5.1.

2 PRELIMINARIES AND OVERVIEW OF RESULTS

Notation We denote vectors (matrices) by lowercase (uppercase) bold letters. For a vector v and a
matrix A, let [v]i or vi represent the i-th entry, and [A]i,j the (i, j)-th entry. Let e(i) be a unit vector
with 1 in the i-th entry. We use ∥ · ∥F for the Frobenius norm. Let 1n×m ∈ Rn×m be all-one matrix.

2.1 SETTING: SELF-DISTILLATION FOR K-CLASS CLASSIFICATION

We consider the problem of K-class classification, where each sample x ∈ X is associated with a
ground-truth class label y(x) ∈ Y := {1, 2, . . . ,K}. Let P denote the underlying distribution over
the sample space X × Y . Assume that we have a feature map ϕ : X → X̃ ⊂ Rd. We are given a
dataset {(ϕ(xi), ŷi)}Kn

i=1 consisting of Kn feature-label pairs, where each (ϕ(xi), ŷi) ∈ X̃ × Y . For
simplicity, we assume that the feature vectors are normalized, i.e., ∥ϕ(xi)∥2 = 1, ∀i ∈ [Kn]. The
given label ŷi may be noisy, while the ground-truth label of xi is yi := y(xi). We further assume
that the dataset is balanced with respect to both the ground-truth labels and the given labels, meaning
that for each class k ∈ [K], there are n samples with yi = k and n samples with ŷi = k.

We consider a classifier θ ∈ Rd×K based on multinomial logistic regression (softmax regression). For
an input x, the classifier outputs y = σ(θ⊤ϕ(x)), where σ : RK → (0, 1)K is the softmax function.
The predicted class label for input x is then argmaxk∈[K][σ(θ

⊤ϕ(x))]k. The population accuracy

is defined as E(x,y(x))∼P

[
1

(
argmaxk∈[K][σ(θ

⊤ϕ(x))]k = y(x)
)]

. This setting is equivalent to
linear probing in the context of neural networks, where the network consists of a fixed feature extractor
ϕ : X → X̃ followed by a tunable fully connected linear layer parameterized by θ and a softmax
layer. As the training objective, we consider the ℓ2-regularized cross-entropy (CE) loss between the
target labels (e.g., e(ŷi) for the teacher model) and the model’s predictions yi := σ(θ⊤ϕ(xi)):

fT (θ) =
1

Kn

Kn∑
i=1

CE(e(ŷi),yi) +
λ∥θ∥2F

2
, (1)

where λ > 0 is a regularization parameter, and CE(e(ŷi),yi) := −
∑K

k=1[e(ŷi)]k log[yi]k.

In self-distillation, the student model, which shares the same architecture as the teacher, minimizes
the same objective (1) over the same training set {ϕ(xi)}, but with new targets obtained from the
teacher’s output. Let θT := argminθ fT (θ) be the teacher’s optimal parameters. The new target for
an input xi becomes the teacher’s output prediction y

(T )
i := σ(θ⊤

T ϕ(xi)) rather than the given label
e(ŷi). Self-distillation can be repeated iteratively, where the t-th distilled model uses the outputs of
the (t− 1)-th model as its targets. Denoting the output of the (t− 1)-th model for the i-th instance as
y
(t−1)
i , the training objective for the t-th student model θ ∈ Rd×K , for t ∈ Z+, is given by

f (t)(θ) =
1

Kn

Kn∑
i=1

CE(y(t−1)
i ,y

(t)
i ) +

λ∥θ∥2F
2

, (2)

for y(t)
i := σ(θ⊤ϕ(xi)). f (1)(θ) is the same objective as the teacher model (1) when y

(0)
i := e(ŷi).
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The optimal θ that minimizes (2) for the t-th distilled model, denoted by θ(t), is expressed as

θ(t)⊤ =

Kn∑
i=1

(
y
(t−1)
i − y

(t)
i

)
Knλ

ϕ(xi)
⊤ =

Kn∑
i=1

α
(t)
i ϕ(xi)

⊤ where α
(t)
i :=

(
y
(t−1)
i − y

(t)
i

)
Knλ

, (3)

since it satisfies the condition df(t)(θ)
dθ = 1

Kn

∑Kn
i=1 ϕ(xi)(y

(t)
i − y

(t−1)
i )⊤ + λθ = 0. Note that

θ(t) is a linear combination of the training instances {ϕ(xi)}, with coefficients α(t)
i determined by

the difference between the target y(t−1)
i and the output y(t)

i . The key question is how the optimal
classifier θ(t) and the corresponding output y(t) = σ(θ(t)⊤ϕ(x)) evolve as t increases.

To answer this question, we need to analyze the coefficients {α(t)
i }Kn

i=1 in (3), which satisfy

Knλα
(t)
i = y

(t−1)
i − σ(θ(t)⊤ϕ(xi)) = y

(t−1)
i − σ

Kn∑
j=1

⟨ϕ(xi), ϕ(xj)⟩α(t)
j

 ,∀i ∈ [Kn], (4)

derived from the definition. Solving (4) for {α(t)
i } is challenging due to the non-linearity of the

softmax function σ. To address this, we consider the following linear approximation of the softmax:
Assumption 1. We approximate the softmax σ(v) for the logits v ∈ RK by

σ(v) =

[
exp(v1)∑K
i=1 exp(vi)

, . . . ,
exp(vK)∑K
i=1 exp(vi)

]
≈

[
1 + v1

K +
∑K

i=1 vi
, . . . ,

1 + vK

K +
∑K

i=1 vi

]
. (5)

This linear approximation has been considered in the analysis of knowledge distillation, as ini-
tially explored by Hinton et al. (2015), where the softmax output layer converts the logits v us-
ing σ(v/τ) with a high temperature τ > 0. When τ = 1, the approximation remains valid if
the logits are of sufficiently small magnitude. From (3), the logits of the t-th distilled model
for an input ϕ(xi) are given by θ(t)⊤ϕ(xi) =

∑Kn
j=1⟨ϕ(xi), ϕ(xj)⟩α(t)

j . This is equivalent to∑Kn
j=1

⟨ϕ(xi),ϕ(xj)⟩
Knλ

(
σ(θ(t−1)ϕ(xj))− σ(θ(t)ϕ(xj))

)
. Thus, the magnitude of the logits becomes

small if the average difference between the softmax outputs of the teacher (i.e., the (t− 1)-th model)
and the student (i.e., the t-th model) across the training instances is sufficiently small. In Appendix
D.1, we empirically demonstrate that this approximation holds well for class-balanced datasets with
a sufficient number of samples. Using the fact that the logits are zero-mean, i.e.,

∑K
i=1 vi = 0,

which holds since v = θ⊤ϕ(xi) =
∑Kn

j=1⟨ϕ(xi), ϕ(xj)⟩αj and
∑K

k=1[αj ]k = 0 for all j, we have
σ(v) ≈ σL(v) :=

1
K 1K + 1

Kv. Thus, the softmax output can be approximated as a uniform vector
1K/K perturbed by a (scaled) logit v. Under this approximation, we derive closed-form expressions
for {α(t)

i } in (4) and analyze how the model’s outputs change over multiple rounds of self-distillation.

2.2 OVERVIEW OF OUR RESULTS

Given a set of input features {ϕ(xi)}Kn
i=1, we define the Gram matrix Φ ∈ RKn×Kn as [Φ]ij :=

⟨ϕ(xi), ϕ(xj)⟩, ∀i, j ∈ [Kn], where ⟨·, ·⟩ denotes the inner product. The eigen-decomposition of
Φ is written as Φ =

∑Kn
i=1 λiviv

⊤
i , with orthonormal eigenvectors v1, . . . ,vKn ∈ RKn and the

corresponding eigenvalues λ1 ≥ · · · ≥ λKn ≥ 0.
Theorem 2.1 (Informal version of Thm. 3.1). As the number of self-distillation rounds t ∈ Z+

increases, the output Y(t) = [y
(t)
1 , . . . ,y

(t)
Kn] ∈ RK×Kn of the t-th distilled model for the inputs of

the training dataset {ϕ(xi), ŷi}Kn
i=1 evolves as

Y(t) − 1

K
1K×Kn =

(
Y(0) − 1

K
1K×Kn

) Kn∑
i=1

(
λi

K2nλ+ λi

)t

viv
⊤
i , (6)

where Y(0) = [e(ŷ1), · · · , e(ŷKn)] represents the one-hot encoded vectors of the given labels.

This theorem reveals that after t rounds of self-distillation, the model’s predictions become a weighted
average of the given labels, with weights determined by the transformed Gram matrix Φ(t) :=
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∑Kn
i=1(λi/(K

2nλ+ λi))
tviv

⊤
i . Note that Φ(t) retains the same eigenvectors as the Gram matrix

Φ, but its eigenvalues take the form (λi/(K
2nλ+ λi))

t, maintaining the same decreasing order
as the eigenvalues of Φ for i ∈ [Kn]. The eigenvalues of Φ(t) decay exponentially with t since
λi/(K

2nλ+ λi) < 1. Consequently, the label averaging process becomes increasingly dominated
by the top eigenvectors of Φ(t), as shown in Fig. 2a. See Section 3 for details.

The label averaging effect of multi-round self-distillation is particularly advantageous in label-noise
scenarios, as it allows the model’s output prediction for each training instance to be influenced not
only by the given (potentially noisy) label but also by the labels of other instances with high feature
correlations. To quantify the benefits of multi-round self-distillation in the presence of label noise,
we consider a low-rank structure for the Gram matrix Φ ∈ RKn×Kn:

Φ =




︸ ︷︷ ︸
class correlation matrix

+




︸ ︷︷ ︸
superclass correlation matrix

; [Φ]i,j =


1, i = j,

c, yi = yj , i ̸= j,

d, yi ̸= yj , h(yi) = h(yj),

0, h(yi) ̸= h(yj),

(7)
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Figure 1: The Gram matrix Φ of 50,000
instances of CIFAR-100, extracted from
a ResNet34 network, pre-trained on Im-
ageNet. Similar block-wise structures
of the Gram matrix are observed for six
different real datasets in Fig. 7.

where 1 > c > d ≥ 0, and h : [K]→ [R] maps each class
to a superclass or a set of confusable classes (R ≤ K).
This block-wise structure of the Gram matrix is motivated
by input feature correlations observed in real datasets, such
as those obtained from neural networks pre-trained on Im-
ageNet, as shown in Fig. 1. Under the structure (7), the
top-K eigenvectors of Φ reveal clusters of instances shar-
ing the same ground-truth class, inferred from their feature
correlations. Consequently, the label averaging by Φ(t), as
in (6), causes predictions for the instances from the same
ground-truth class to become more similar as t increase,
as illustrated in Fig. 2b, even when labels are noisy. This
clustering mitigates the impact of label noise by reducing
the model’s reliance on potentially corrupted given labels.
Our main result quantifies the benefits of multi-round self-
distillation by establishing conditions under which the t-th
distilled model can achieve 100% population accuracy.
These conditions are equivalent to those where the model
can correctly classify all training data, including label-noisy instances, in the limit of n→∞.
Theorem 2.2 (Informal version of Thm. 4.1). Given a label corruption matrix C ∈ RK×K , where
[C]k,k′ := |{i : yi = k, ŷi = k′}|/n, the t-th distilled model trained on this label-noisy dataset
achieves 100% population accuracy if

[C]k,k > [C]k,k′ + 1/
(
(λ̃K/λ̃K+1)

t − 1
)
, ∀k, k′ ∈ [K] with k ̸= k′, (8)

where λ̃K = λK/(K2nλ+λK) and λ̃K+1 = λK+1/(K
2nλ+λK+1), with λK = 1− c+n(c−d),

λK+1 = 1− c, as per the assumed Gram matrix in (7).

This theorem shows that as the number of distillation rounds t increases, the condition for achieving
100% population accuracy becomes less stringent due to the eigenvalue ratio, (λ̃K/λ̃K+1)

t, increasing
exponentially with t. This allows the model to tolerate higher levels of label corruption while
still guaranteeing correct classification, highlighting the robustness conferred by multi-round self-
distillation in noisy environments. See Section 4 for a detailed analysis.

Lastly, to reduce the computational cost of multiple distillation rounds, we propose a novel method
that achieves the benefits of multi-round self-distillation in a single round. The key idea is to refine
the teacher’s output into partial labels, focusing on the top two predicted classes. Specifically, we
assign equal weights (1/2) to the top two label positions in the teacher’s softmax output and use this
refined target to train the student model.
Theorem 2.3 (Informal ver. of Thm. 5.1). The student model trained using partial labels, refined from
the teacher’s outputs, achieves 100% population accuracy, if [C]k,k > [C]k,k′ ,∀k, k′( ̸= k) ∈ [K].
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Figure 2: (a) The evolution of the eigenvalues of Φ(t) as the distillation rounds t increases. Notably,
only K(= 4) top-eigenvalues dominate the others as t progresses. (b) A 2D plot showing the softmax
outputs of the teacher model and the 4th and 6th student models for the training instances. Each
corner represents the one-hot vectors of a class. As the distillation round t increases, instances form
distinct clusters based on their true labels (represented by colors in dots), driven by the label averaging
among highly correlated input instances within the same class. See Appendix G for full evolution.

This condition requires that, for each class k, the proportion of samples correctly labeled as k is
greater than the proportion mislabeled as any other class k′. Under this mild condition, our method
effectively attains the label averaging benefits of multi-round distillation without the need for repeated
distillations. See Section 5 for details. Full proofs of our theoretical results are available in Appendix.

3 LABEL AVERAGING EFFECT OF MULTI-ROUND SELF-DISTILLATION

We present a closed-form solution for the softmax outputs Y(t) = [y
(t)
1 , . . . ,y

(t)
Kn] ∈ RK×Kn of the

t-th student model, in terms of the Gram matrix Φ ∈ RKn×Kn, defined as [Φ]i,j := ⟨ϕ(xi), ϕ(xj)⟩.
Theorem 3.1. As the number of self-distillation rounds t ∈ Z+ increases, the output predictions for
the training instances evolve as

Y(t) − 1K×Kn/K =
(
Y(0) − 1K×Kn/K

) [
IKn −

(
IKn +Φ/(K2nλ)

)−1
]t
. (9)

This result shows that each round of self-distillation effectively averages the given labels (columns of
Y(0)) by repeatedly multiplying (IKn −

(
IKn +Φ/(K2nλ)

)−1
). By applying Woodbury’s matrix

identity and using the eigen-decomposition of Φ =
∑Kn

i=1 λiviv
⊤
i , we can express the right-hand

side of (9) as in (6), using Φ(t) :=
[
IKn −

(
IKn +Φ/(K2nλ)

)−1
]t

=
∑Kn

i=1

(
λi

K2nλ+λi

)t
viv

⊤
i .

The relationship between the Gram matrix Φ and the label averaging matrix Φ(t) reveals the effect
of multi-round self-distillation, summarized as follows:

• Clustering Based on Feature Correlation: The Gram matrix Φ, defined as [Φ]ij := ⟨ϕ(xi), ϕ(xj)⟩,
captures the pairwise feature correlations among the training instances. If instances from the same
ground-truth class exhibit higher feature correlations than those from different classes–as assumed
in (7)–the top K eigenvectors of Φ indicate clusters representing each class (See Appendix J
for details). Since Φ(t) shares the same eigenvectors as Φ, the label averaging process via Φ(t)

causes the predictions for each instance to be increasingly influenced by the average labels of
other instances within the same ground-truth class as the number of distillation rounds t increases.

• Dominance of Top Eigenvectors: The effect of multi-round self-distillation is reflected in the
eigenspectrum of Φ(t), where the eigenvalues are λ

(t)
i := (λi/(K

2nλ+ λi))
t, for i ∈ [Kn]. As

t increases, these eigenvalues decay at different rates depending on λi. Specifically, the top K
eigenvalues (associated with the largest λi) decay more slowly than the others. In Fig. 2a, we
illustrate how the eigenvalues of Φ(t) evolve with increasing t. We use a training dataset with
K = 4 classes and n = 100 samples per class, where the Gram matrix follows a block-wise
structure specified in (7) with parameters c = 0.4 and d = 0.1 for R = 1, and is perturbed by a
random matrix E with entries [E]i,j ∼ U(−0.05, 0.05). As the top-K eigenvalues increasingly
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Figure 3: (a) Prediction accuracy of the teacher and student models for different distillation rounds t
as the label corruption rate increases. The 100% population accuracy regime expands for student
models with more distillation rounds. (b) Softmax outputs for K = 4 classification as t increases,
using the same setup as Fig. 2 with a 50% label corruption rate. The BLUE line shows the average
softmax value at the true label, the ORANGE line for noisy samples at the given label, and the
GREEN line for other labels. Shaded regions show±1 standard deviation. For clean samples, the true
label maintains the highest value, while for noisy samples, the true label starts lower than the given
label but surpasses it after a few rounds. The shaded region shrinks with t due to label clustering.

dominate, the model’s predictions become more clustered among instances of the same ground-
truth class, as shown in Fig. 2b. This clustering effect persists as long as the top-K eigenvectors of
Φ align with the ground-truth classes. The robustness of this alignment, even under perturbations
from E, is ensured provided that the perturbations are small relative to the eigen-gap (λK−λK+1),
as established by the Davis-Kahan theorem (Davis & Kahan, 1970).

4 GAIN OF MULTI-ROUND SELF-DISTILLATION IN LABEL-NOISE SCENARIOS

In this section, we quantify the gains of multi-round self-distillation by identifying conditions under
which the t-th student model can achieve 100% accuracy, even when trained on noisy dataset.
Theorem 4.1. Suppose we have access to the population, i.e., n → ∞. Let C ∈ RK×K be the
label corruption matrix of the training dataset, defined as [C]k,k′ := |{i : yi = k, ŷi = k′}|/n. We
assume that [C]k,k′ = 0 whenever h(k) ̸= h(k′), where h(k) denotes the superclass of class k. Then,
the t-th distilled model, trained on this label-noisy dataset with Gram matrix Φ as described in (7),
achieves 100% population accuracy if

[C]k,k > [C]k,k′ + 1/
(
(λ̃K/λ̃K+1)

t − 1
)
, ∀k, k′ ∈ [K] with k ̸= k′ (10)

where λ̃K = λK/(K2nλ+λK) and λ̃K+1 = λK+1/(K
2nλ+λK+1), with λK = 1− c+n(c− d)

and λK+1 = 1− c. Conversely, if there exist k, k′ ∈ [K] with k ̸= k′ such that

[C]k,k < [C]k,k′ + 1/
(
(λ̃K/λ̃K+1)

t−1 − 1
)
, (11)

then the (t − 1)-th distilled model fails to correctly classify label-noisy samples from class k that
have been mislabelled as ŷi = k′, and thus fails to achieve 100% population accuracy.

These conditions illustrate the advantages of multi-round self-distillation. Specifically, when,

[C]k,k′ + 1/
(
(λ̃K/λ̃K+1)

t − 1
)
< [C]k,k < [C]k,k′ + 1/

(
(λ̃K/λ̃K+1)

t−1 − 1
)

(12)

for some k, k′ ∈ [K] with k ̸= k′, the t-th distilled model can correctly classify label-noisy samples
from the class k that have been mislabelled as ŷi = k′, while the (t− 1)-th distilled model cannot.
This demonstrates that multi-round self-distillation, through the label averaging effect described in
Sec. 3, enhances the model’s robustness to label noise, allowing it to tolerate higher rates of label
corruption while still achieving 100% population accuracy. This phenomenon is illustrated in Fig. 3a,
where we compare the classification accuracy of the teacher and student models across increasing
rounds of distillation (t), as the label corruption rate increases, using the same experimental setup as

7
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Fig. 2. As the distillation round t increases, the range of label corruption for which the student model
maintains 100% accuracy expands, as the condition (62) becomes easier to satisfy. In Fig. 3b, we
illustrate how the softmax output components [y(t)]k, for k ∈ [K], evolves for clean samples (left)
and label-noisy samples (right) as the distillation round t increases, with a 50% label corruption rate.
For label-noisy samples, while the teacher model (t = 1) tends to assign the highest softmax value to
the incorrect noisy label due to memorization, after a few rounds of distillation (t ≥ 3), the true label
begins to attain the highest value in the softmax output, thus improving classification performance.

Proof Sketch of Theorem 4.1. The proof relies on analyzing the evolution of the model’s outputs over
multiple distillation rounds under the Gram matrix model (7). The key result is Lemma 4.1.

Lemma 4.1. Under the Gram matrix model (7), the output of the t-th distilled model for the training
instance (ϕ(xi), ŷi) with true class yi is given by

y
(t)
i = pte(ŷi) + (qt − pt)ēyi

+ (rts − qt)ēh(yi) + (1− rts)1K/K (13)
where p, q, rs are defined as

p := (1− c)/(K2nλ+ 1− c); q := (1− c+ n(c− d))/(K2nλ+ 1− c+ n(c− d));

rs := (1− c+ n(c− d) +Ksnd))/(K
2nλ+ 1− c+ n(c− d) +Ksnd),

(14)

with Ks being the number of classes in superclass s = h(yi), ēyi
= 1

n

∑
{j:yj=yi} e(ŷj) is the

average label vector over samples of the same true class yi, ēh(yi) =
1

Ksn

∑
{j:h(yj)=s} e(ŷj) is the

average label vector over samples in the same superclass h(yi), and 1K is the all-ones vector in RK .

This expression shows that the model’s output y(t)
i is a weighted combination of the given label e(ŷi),

the average label vector ēyi
over samples from the same true class yi, the average label vector ēh(yi)

over samples from the same superclass h(yi), and the uniform vector. Since 1 > rs > q > p > 0,
as the distillation round t increases, the weights assigned to these components shift away from the
individual noisy label e(ŷi) towards the average labels of the same class and superclass, eventually
making the output converge to the uniform vector as t→∞. Theorem 4.1 can be proved by analyzing
(13) and finding the condition under which the correct label yi attains the highest value in the softmax
output components [y(t)

i ]k, k ∈ [K], for both clean (ŷi = yi) and noisy (ŷi ̸= yi) samples.

5 A NEW SELF-DISTILLATION METHOD WITH PARTIAL LABELS

In this section, we propose a novel self-distillation method that achieves the benefits of multi-round
self-distillation, as outlined in Thm. 4.1, in just a single-round. The key insight stems from the
observation that, under mild conditions on the label corruption rates, the teacher’s softmax output at
the true label (represented by the blue lines in Fig. 3b at t = 1) consistently ranks at least second-
highest–even for label-noisy samples–even if it is lower than the given label. As self-distillation
progresses through multiple rounds, the softmax output (or confidence) for the true label decreases in
clean samples while increasing in noisy samples due to the label-averaging effect among instances
from the same ground-truth class. This phenomenon improves classification accuracy for noisy
samples but reduces the model’s confidence in clean samples. This trend is illustrated in Fig. 3b,
where the blue lines for clean (left) and noisy (right) samples converge to similar levels as t increases.

Motivated by this observation, we aim to design a self-distillation method where, in a single round,
the true label achieves the highest output value, even for noisy samples. To achieve this, we
introduce the following label refinement scheme for the teacher’s output: We generate a two-hot
vector ȳi from the teacher’s output y(T )

i = σ(θ⊤
T ϕ(xi)) by selecting the top two labels with the

highest values and assigning a weight of 1/2 to each, setting all the other entries to zero. These
refined outputs become the new targets for training the student model θ, trained with the objective
fP (θ) =

1
Kn

∑Kn
i=1 CE(ȳi,y

(P )
i ) +

λ∥θ∥2
F

2 for y(P )
i = σ(θ⊤ϕ(x)). We refer to this student model

as the Partial Label Learning (PLL) student model, following the concept of PLL (Cour et al., 2011),
which trains a classifier using a candidate set of labels for each input instance. Our label refinement
emulates the effect of multi-round self-distillation by significantly boosting the confidence (assigning
weight 1/2) to the true label for noisy samples while reducing it for clean samples. As a result, the
PLL student model achieves 100% population accuracy after a single round of distillation.
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Theorem 5.1. The PLL student model, trained on the label-noisy dataset with the Gram matrix Φ
from (7), achieves 100% population accuracy if

[C]k,k > [C]k,k′ , ∀k, k′ ∈ [K] with k ̸= k′, (15)

where the label-corruption matrix C is defined by [C]k,k′ := |{i : yi = k, ŷi = k′}|/n, and we
assume that [C]k,k′ = 0 whenever h(k) ̸= h(k′).

Proof Sketch. The condition (15) ensures that, for each class k, the proportion of samples correctly
labeled as k is greater than the proportion mislabeled as any other class k′ ̸= k. Under this condition,
the teacher’s softmax output includes the true label among the top two highest values for both clean
and label-noisy samples. By using the refined partial labels ȳi, a single round of self-distillation
generates an output for the i-th sample similar to (13):

y
(P )
i = pȳi + (q − p)

 1

n

∑
{j:yj=yi}

ȳj

+ (rs − q)

 1

Ksn

∑
{j:h(yj)=s}

ȳj

+ (1− rs)
1K
K

. (16)

This expression ensures that the true label yi has the highest value in y
(P )
i , i.e., [y(P )

i ]yi > [y
(P )
i ]k

for all k ̸= yi, as each partial label ȳi assigns a weight of 1/2 to the true label.

Remark 1 (Comparison with Multi-Round Self-Distillation). The condition (62) for achieving 100%
accuracy with the t-th self-distilled model is more stringent than the condition (15) for the PLL
student model. Therefore, the PLL student model not only replicates the effect of multi-round
distillation in a single round but also achieves better performance in scenarios with high label-noise
rates, where (15) is satisfied but (62) is not. This advantage is illustrated in Fig. 3a, where the PLL
student model achieves 100% population accuracy across a wider range of label corruption rates.

6 EXPERIMENT

In this section, we validate our theoretical findings through experiments on real datasets. We employ
a two-layer neural network composed of a linear layer followed by a softmax layer on top of a
fixed feature extractor. We conduct experiments on six multi-class image classification benchmarks:
CIFAR-100 (Krizhevsky et al., 2009), Caltech-101/256 (Griffin et al., 2007), Flowers-102 (Nilsback
& Zisserman, 2008), Food-101 (Bossard et al., 2014), and StanfordCars (Krause et al., 2013), utilizing
the PyTorch torchvision library. For our fixed feature extractor, we use ResNet34 (He et al., 2016)
networks pre-trained on ImageNet. More experimental details can be found in Appendix E. We
explore three different label corruption scenarios: symmetric, asymmetric, and superclass corruption,
as described in Table 1, for a label corruption rate η ∈ [0, 1] and Ωk := {l ∈ [K] : h(l) = h(k)}.

Table 1: Definition of label corruption matrix C for different corruption scenarios
Symmetric corruption Asymmetric corruption Superclass corruption

[C]k,k′ :=

{
1− η, k′ = k,

η
K−1 , k′ ̸= k.

[C]k,k′ :=


1− η, k′ = k,
2η
K , k′ = k̃(k),
η
K , k′ ̸= k, k̃(k).

[C]k,k′ :=


1− η, k′ = k,

η
|Ωk|−1 , k′ ̸= k, k′ ∈ Ωk,

0, k′ ̸= Ωk,

Fig. 4 illustrates the accuracy improvement of student models compared to the base (teacher) model in
the superclass corruption scenario. Results for other datasets and corruption scenarios are available in
Appendix F. Across all datasets, we observe that test accuracy progressively increases with the number
of distillation rounds. Notably, the PLL student model outperforms other multi-round distillation
models at higher corruption rates (η ≥ 0.6), achieving this gain efficiently in just a single round of
distillation. These results support our theoretical findings, showing the effectiveness of multi-round
self-distillation–and especially the PLL student model–in mitigating the effects of label noise.

Verification of the Label Averaging Effect To verify the occurrence of label averaging effect by
self-distillation in real datasets, we plot the evolution of model outputs across distillation steps. We
arbitrarily select four classes from the CIFAR-100 dataset and conduct experiments only on samples
from these classes. Under 50% symmetric label corruption, we visualize the output evolution of
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Figure 4: Distillation gain in accuracy (%) by each student model compared to the teacher in the
superclass label corruption scenario. PLAIN represents the improvement of the multi-round students
over the teacher model, while ORANGE represents the improvement by the PLL student model.

both the teacher and student models in a 2D plot in Fig. 5a. As the number of distillation rounds t
increases, we observe that the outputs tend to form clusters based on their true labels. Additionally,
some instances initially misclassified by the teacher are correctly classified by the student model
due to the label averaging effect. This suggests that the distillation process helps the student model
recover from some of the teacher’s errors, especially in cases where the labels are corrupted.

Ablation Study of Top-k Targets In the PLL student model, using a larger set of partial labels in-
creases the likelihood of including the true label but introduces a trade-off by reducing the confidence
in instances that are already well-classified. Our theoretical analysis in Sec. 5 indicates that the true
label’s prediction is at least the second highest in the teacher’s output, supporting the use of a top-2
candidate set. To validate this choice, we conduct experiments under the same conditions as Fig. 4,
using the top-k partial labels as targets for various k. In Fig. 5b, we plot the accuracy gain of each
PLL student model with top-k partial labels, chosen from the teacher’s output, on the CIFAR-100
dataset. Results for other datasets are provided in Appendix H.1. As shown, using more candidates
generally leads to lower test accuracy across most datasets, supporting our choice of top two labels.

Class 1 Class 2

Class 3 Class 4

[1, 0, 0, 0] [0, 1, 0, 0]
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Class 1 Class 2

Class 3 Class 4

[1, 0, 0, 0] [0, 1, 0, 0]

[0, 0, 1, 0] [0, 0, 0, 1]

1st Student
Class 1 Class 2

Class 3 Class 4

[1, 0, 0, 0] [0, 1, 0, 0]

[0, 0, 1, 0] [0, 0, 0, 1]

4th Student
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Figure 5: (a) Visualization of the softmax outputs of the teacher model, and the first and fourth
student models on the CIFAR-100 dataset, reduced to four-class classification outputs for clarity. (b)
Accuracy improvement (%) for each PLL student model using top-k partial labels compared to the
teacher model in the superclass label corruption scenario on the CIFAR-100 dataset.

7 CONCLUSION

We investigated self-distillation for multi-class classification in the context of linear probing with
fixed feature extractors. Our theoretical analysis showed that multi-round self-distillation effectively
performs label averaging among instances with high feature correlations, which helps correct label
noise by reducing the model’s reliance on potentially corrupted labels. Additionally, we introduced
the PLL student model as an efficient approach for label refinement, offering a practical method
to distill the teacher’s “dark knowledge” into a candidate set of labels. This method achieves the
benefits of multi-round self-distillation in just a single round, providing a practical and efficient way
to improve model performance. Limitations and future works are available in Appendix B.
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A BROADER IMPACT

Our paper theoretically analyzes self-distillation, particularly highlighting its advantages in multi-
class classification problems with label noise. We also explore the integration of self-distillation
with partial label learning, demonstrating its superior performance gains over traditional multi-round
self-distillation, especially in high noise rate regimes. This research directly addresses the prevalent
challenges in handling real-world data, where acquiring clean and accurately labeled datasets is often
difficult and costly.

With the recent breakthroughs in large-scale pre-trained neural networks or foundation models,
various studies have been conducted to effectively utilize well-trained large neural networks as feature
extractor backbones. We believe that our result can be applied to such scenarios and theoretically
demonstrate the performance gains achievable by self-distillation through a simple linear probing
within a pre-trained neural network.

By enhancing our understanding of knowledge distillation and self-distillation, we also provide the
way for the development of more efficient models, capable of matching the performance of their larger
and more complex counterparts, which is especially beneficial in scenarios with limited resources.

B LIMITATIONS AND FUTURE WORKS

In this work, we theoretically analyzed the effect of multi-round self-distillation and self-distillation
with refined outputs by deriving closed-form solutions for the outputs of the student model as the
number of distillation rounds increases (Sec. 3). The main technical challenge in this analysis lies
in the non-linearity of softmax functions. We addressed this by using a linear approximation of the
softmax function, similar to the original work by Hinton et al. (2015), as detailed in Assumption
1. We justified this assumption within proper parameter regimes through numerical experiments in
Sec. D.1. Generalizing our results to fully incorporate the non-linear nature of the softmax function
remains a future work.

After deriving closed-form solutions for the outputs of the distilled models in Theorem 3.1 in terms
of the general Gram matrix Φ, representing instance-wise feature correlations, we considered a
particular low-rank feature correlation map (7) to conduct further analysis on the student models’
outputs. The practicality of this feature correlation model is validated using six different real datasets,
as detailed in Sec. D.2, demonstrating its applicability in real-world model training. We also provided
additional analysis for four additional feature correlation maps in Sec. J, including a more generalized
version of the superclass feature correlation model. Relaxing the assumption on a class-wise feature
correlation, for example by generalizing it to

E[⟨ϕ(xi), ϕ(xj)⟩|(yi, yj) = (a, b)] = ω(a, b),

remains a future work.

Lastly, our main analysis and experimental results show the gain of self-distillation in training a linear
classifier on top of a fixed feature extractor. Our results can also be combined with the feature learning
perspective of self-distillation by considering the feature map evolving over the distillation rounds,
as illustrated in Corollary C.1. Understanding the role of self-distillation in more general setups,
including distilling foundational models with more diverse applications, such as natural language
processing, is an important direction for future work.
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C SELF-DISTILLATION WITH FEATURE LEARNING

We next provide an extended version of our analysis for the full-to-full self-distillation scenarios,
where not only the last linear layer but also the feature extractor can be updated through multi-round
self-distillations. To illustrate this point, consider the quantified gains of self-distillation in label-noise
scenarios presented in Theorem 4.1. This theorem provides the sufficient number of distillation
rounds required for the student’s softmax output to assign the highest value to the ground-truth label
for both clean and noisy samples. The condition depends not only on the class-wise label corruption
rates but also on the relative gap in feature correlations between samples of the same ground-truth
class, parameterized by c, and those of different ground-truth classes, parameterized by d, in the
Gram matrix model Φ (7).

We can generalize our theory by allowing these correlations to evolve over distillation rounds, denoted
by c(i) and d(i), due to feature updates during self-distillation. Recent work by Allen-Zhu & Li
(2022) demonstrates that self-distillation’s effectiveness arises from an implicit ensemble of teacher
and student models, enabling the student to learn more diverse features when using the teacher’s
softmax outputs as targets. This suggests that the intra-class feature correlation c(i) may increase
with each distillation round i, enhancing the separation between classes.

Assuming the class-wise feature map defined in (7), and allowing c and d to change over distillation
steps, our parameters p and q in (14), which govern the label averaging effect, also become functions
of i:

p(i) :=
1− c(i)

K2nλ+ 1− c(i)

q(i) :=
1− c(i) + n(c(i) − d(i))

K2nλ+ 1− c(i) + n(c(i) − d(i))
.

(17)

Under the extended class-wise feature correlation assumption, our Theorem 4.1 can be generalized
to:
Corollary C.1 (Extended version). Under the evolving feature correlation model, the t-th distilled
model achieves 100% population accuracy if

[C]k,k > [C]k,k′ +
1∏t

i=1(q
(i)/p(i))− 1

, ∀k, k′(̸= k) ∈ [K].

If the student model learns more diverse features than the teacher model, leading to an increased
intra-class feature correlation c(i) as i increases, then q(i)/p(i) also increases. This means that
the regime for a student model to achieve 100% population accuracy expands, ultimately leading
to performance gains from self-distillation. Thus, our result can be integrated with the aspect of
Allen-Zhu & Li (2022), where the gain from self-distillation is explained by diverse features learned
by the student model. Specifically, Corollary C.1 quantifies the gains both from the feature learning
and label averaging effects of self-distillation under label noise scenarios. The proof of Corollary C.1
can be found in Appendix K.3.

D JUSTIFICATION OF ASSUMPTIONS

In this section, we provide empirical justifications for the assumptions we have imposed in the
theoretical analysis.

D.1 JUSTIFICATION OF SOFTMAX APPROXIMATION (ASSUMPTION 1)

In Assumption 1, we approximate the softmax function σ(v) to the linear function 1/K + v/K,
assuming a small enough magnitude of v ∈ RK . To justify our approximation, let us recall the
equation for y(t)

i :

y
(t)
i = σ

Kn∑
j=1

⟨ϕ(xi), ϕ(xj)⟩α(t)
j

 = σ

Kn∑
j=1

⟨ϕ(xi), ϕ(xj)⟩
Knλ

(
y
(t−1)
j − y

(t)
j

) . (18)
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We numerically validate Assumption 1, by analyzing the softmax approximation error. The softmax
approximation error is defined as the maximum difference (ℓ∞-norm) between the softmax outputs
derived in Lemma 4.1, based on the linear approximation of the softmax, and the outputs obtained by
numerically solving (18) for {y(t)

i }Kn
i=1. (see Appendix E.4 for details.)

We set K = 4, λ = 10−4, and the Gram matrix Φ follows a block-wise structure as in (7) with
parameters c = 0.4 and d = 0.1. Under the symmetric label corruption with rate η = 0.5, we analyze
the softmax error as the number of samples per class n increases. As shown in Fig. 6, the softmax
error becomes negligible, especially as the number of samples exceeds 104.
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Figure 6: We plot the softmax approximation error as the number of samples increases. We use
K = 4, λ = 10−4, c = 0.4, d = 0.1, and impose the symmetric label corruption with rate η = 0.5.

D.2 JUSTIFICATION OF CLASS-WISE FEATURE CORRELATION MAP

In (7), we argue that the feature correlation matrix exhibits a block diagonal structure, i.e.,

⟨ϕ(xi), ϕ(xj)⟩ =


1 i = j;

c, yi = yj , i ̸= j;

d, yi ̸= yj , h(yi) = h(yj);

0, h(yi) ̸= h(yj).

(19)

We empirically demonstrate the validity of this claim on diverse real-world datasets (with dataset
details in Appendix E.1). We first conduct hierarchical clustering to rearrange the order of classes so
that the highly-correlated classes become adjacent. The results of hierarchical clustering are presented
in Appendix L.2. Under the rearranged class orders, the Gram matrices (input feature correlation
matrices) have a block-diagonal matrix structure for the real datasets, as shown in Fig. 7.

Additionally, we assume that feature correlation between any two instances is determined by their
corresponding true labels. To verify this assumption, we investigate the mean and standard deviation
values of the feature correlation for all pairs of instances, for three cases as follows: 1) yi = yj , 2)
yi ̸= yj , h(yi) = h(yj), and 3) h(yi) ̸= h(yj). We calculate the mean and standard deviation for all
sample pairs corresponding to each case. As shown in Table 2, we find that there exists a gap in the
mean feature correlations between the three cases. This empirical evidence supports the validity of
our class-wise feature map, modeled as (7).

Table 2: Statistics for three different cases of instance-wise feature correlation.

Dataset # of superclass yi = yj yi ̸= yj , h(yi) = h(yj) h(yi) ̸= h(yj)

CIFAR-100 3 0.25±0.16 0.02±0.12 -0.03±0.10
Caltech-101 4 0.42±0.15 0.03±0.08 -0.02±0.07
Caltech-256 3 0.35±0.16 0.02±0.08 -0.03±0.07
Flowers-102 2 0.36±0.15 0.03±0.12 -0.04±0.13

Food-101 2 0.17±0.15 0.01±0.12 -0.02±0.12
StanfordCars 2 0.21±0.16 0.06±0.14 -0.07±0.13
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Figure 7: Class-wise feature correlation map of six different real-world datasets. The features are
extracted by a pre-trained ResNet34. Block diagonal patterns are exhibited in all the six datasets, as
assumed in our feature correlation map (7).

D.3 EFFECT OF TEMPERATURE SCALING

Let us define the softmax στ : RK → (0, 1)K with a temperature scaling parameter τ as στ (v) =[
exp(v1/τ)∑K
i=1 exp(vi/τ)

, . . . , exp(vK/τ)∑K
i=1 exp(vi/τ)

]
for the logits v = [v1, . . . , vK ] ∈ RK . We set τ = 1 and

denote σ1(·) = σ(·) in the main document. In this section, we show that the temperature scaling
of the softmax, combined with the proper scaling of the cross-entropy (CE) loss function in the
regularized CE loss (1), results in the same optimal solution for θ as in τ = 1. Let y(t)

i represent the
output of the t-th student model for the i-th sample. The objective function for the t-th student model
f (t)(θ), scaled by temperature τ is given by

f (t)(θ) =
τ2

Kn

Kn∑
i=1

CE(y(t−1)
i , στ (θ⊤ϕ(xi))) +

λ∥θ∥2F
2

, (20)

for t ∈ N. Then, the optimal θ, denoted as θ∗ satisfies

θ∗⊤ = τ

Kn∑
i=1

1

Knλ

(
y
(t−1)
i − y

(t)
i

)
︸ ︷︷ ︸

:=α
(t)
i

ϕ(xi)
⊤ = τ

Kn∑
i=1

α
(t)
i ϕ(xi)

⊤. (21)

Substituting the optimal θ∗ yields

y
(t)
i = στ

(
θ∗⊤ϕ(xi)

)
= στ

τ

Kn∑
j=1

⟨ϕ(xi), ϕ(xj)⟩α(t)
j


= σ1

Kn∑
j=1

⟨ϕ(xi), ϕ(xj)⟩
Knλ

(
y
(t−1)
j − y

(t)
j

) .
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This implies that even with temperature scaling with τ , the equation of the optimal prediction y
(t)
i

remains unchanged for f (t)(θ). In other words, temperature scaling does not affect the optimal
prediction.

E EXPERIMENTAL DETAILS

In this section, we provide the details of the experiments presented in Sec. 6. Our code is publicly
available at https://github.com/Hyeonsu-Jeong/SelfPLL.

E.1 IMAGE CLASSIFICATION DATASETS

To validate our theoretical findings, we conduct experiments on several real-world datasets using the
PyTorch torchvision library. Below are the details of the real-world datasets we used.

• CIFAR-100 (Krizhevsky et al., 2009): CIFAR-100 consists of 60,000 32x32 images in 100
classes. This dataset covers a wide range of object categories such as animals, vehicles, and
household items, with each class having 600 images.

• Caltech-101 (Griffin et al., 2007): Caltech-101 contains images from 101 object categories with
a background category named “BACKGROUND_Google”. For each category, there are about
40 to 800 samples, with an average of 50 samples per category. We removed the background
category and divided the dataset into training and validation sets using an 8:2 ratio.

• Caltech-256 (Griffin et al., 2007): Caltech-256 is a large-scale dataset consisting of 30,607
images across 256 object categories. Similar to the Caltech-101 dataset, we removed the “clutter”
category and divided the dataset into training and validation sets using an 8:2 ratio.

• Flowers-102 (Nilsback & Zisserman, 2008): The Flowers-102 dataset contains 102 different
categories of flowers, with a total of 8,189 images. Each class consists of varying numbers of
images, ranging from 40 to 258 images per class. Since the test set of the Flowers-102 dataset is
larger than the training set, we swapped the training and test sets for use.

• Food-101 (Bossard et al., 2014): Food-101 is a large-scale dataset specifically designed for food
recognition tasks. It contains 101,000 images of food items categorized into 101 classes, with
each class consisting of 1,000 images.

• StanfordCars (Krause et al., 2013): The StanfordCars dataset is focused on car recognition and
consists of 16,185 images of 196 classes of cars. The dataset includes images of cars taken from
various viewpoints and under different lighting conditions.

E.2 CHOOSING AN APPROPRIATE HYPERPARAMETER λ

In real experiments, we extract the features of input instances of the diverse datasets using the
pre-trained ResNet34 model. Recall the definition of p and q from (14):

p :=
1− c

K2nλ+ 1− c
, (22)

q :=
1− c+ n(c− d)

K2nλ+ 1− c+ n(c− d)
. (23)

In this setting, we visualize the variation of the q/p ratio as λ changes across the six real datasets
to find an appropriate λ considering, the intra-class feature correlation c and the inter-class feature
correlation d from Table 2. When the q/p ratio is too small or too large, it becomes hard to demonstrate
the effect of distillation from Thm. 4.1.

In Fig. 8, we observe that to achieve a q/p ratio close to 2, λ should be selected around 10−3 for
Caltech-101, Flowers-102, and StanfordCars, while around 10−4 for CIFAR-100, Caltech-256, and
Food-101. Therefore, in the main text, we set λ to 5 × 10−4 for Caltech-101, Flowers-102, and
StanfordCars, and 5× 10−5 for CIFAR-100, Caltech-256, and Food-101 to illustrate the impact of
distillation. Additional experimental results for various values of λ are presented in Appendix L.1.

17

https://github.com/Hyeonsu-Jeong/SelfPLL


Published as a conference paper at ICLR 2025

1e-4 2e-4 5e-4 1e-3
1

1.5

2

2.5

3

3.5

4

q p

Caltech-101
Flowers-102
Stanford-Cars

1e-5 2e-5 5e-5 1e-4
1

1.5

2

2.5

3

3.5

4

CIFAR-100
Caltech-256
Food-101

Figure 8: Variation of q/p with changing weight decay λ.

E.3 TRAINING

We train a two-layer network consisting of a linear layer and a softmax layer. Our loss function
is defined as the cross-entropy between the softmax output of the teacher model and the soft-
max output of the student model. To mitigate uncertainty, we conduct three repeated runs for
all experiments with seeds 0, 1 and 2. We perform a grid search over learning rates, in the set
{0.1, 0.05, 0.01, 0.005, 0.001}. Each model is trained for 200 epochs, employing the SGD optimizer
with a momentum value of 0.9. In our experiments, we observe that using CE loss with the PLL
student model often leads to instability during training. The PLL student model trains with a set of
candidate labels for each sample with equal weights–in our case, the top two labels with weights of
1/2 each. Using CE loss with equally weighted candidate labels can cause instability since the model
may converge incorrectly when the candidate set includes incorrect labels. Hence, for the stable
convergence of the PLL student model, we use Generalized Cross Entropy(GCE) (Zhang & Sabuncu,
2018) loss with the hyperparameter q = 0.7. Our neural networks are trained using multiple NVIDIA
RTX A6000 GPUs.

E.4 NUMERICAL METHOD FOR CALCULATING THE OUTPUTS OF STUDENT MODELS

For synthetic experiments in Fig. 2–3, we compute the outputs of multi-round self-distillation models
using numerical methods, instead of applying the approximation in Assumption 1. Recall from (3),
the equation for θ(t):

θ(t)⊤ =

Kn∑
i=1

(
y
(t−1)
i − y

(t)
i

)
Knλ

ϕ(xi)
⊤

The optimal output of the t-th disitlled model {y(t)
i }Kn

i=1 satisfies the following equation:

y
(t)
i = σ

Kn∑
j=1

⟨ϕ(xi), ϕ(xj)⟩
Knλ

(
y
(t−1)
j − y

(t)
j

) (24)

Therefore, given the feature correlations and the output of the (t − 1)-th distilled student model
{y(t−1)

i }Kn
i=1, the optimal output for the t-th distilled student model {y(t)

i }Kn
i=1 can be found by

minimizing the difference between the left-hand side and right-hand side of (24). The corresponding
pseudo-code for this process is outlined below:
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Algorithm 1: Optimal Output Calculation by Numerical Method
Input: K: number of classes, n: number of samples per class, λ: weight-decay, T : total

distillation steps, η: learning rate, ϵ: convergence tolerance
Input: Given label (target) Y(0) = [y

(0)
1 , . . . ,y

(0)
Kn] ∈ RK×Kn

Output: Output of t-th distilled model Y(t) = [y
(t)
1 , . . . ,y

(t)
Kn] ∈ RK×Kn for t = 1, . . . , T

1 for t = 1, 2, . . . , T do
2 Step 1: Initialize Y(t);
3 for each instance i = 1, 2, . . . ,Kn do
4 y

(t)
i = u∑Kn

k=1 uk
, uk ∼ U(0, 1);

5 while iter < max_iter do
6 Step 2: Compute Ŷ(t);
7 for each instance i = 1, 2, . . . ,Kn do
8 ŷ

(t)
i = σ

(∑Kn
j=1

⟨ϕ(xi),ϕ(xj)⟩
Knλ

(
y
(t−1)
j − y

(t)
j

))
;

9 Step 3: Compute Loss L;
10 L(Y(t)) = ∥Y(t) − Ŷ(t)∥;

11 Step 4: Update Y(t);
12 Y(t) ← Y(t) − η∇Y(t)L(Y(t));

13 Step 5: Check for Convergence;
14 if L(Y(t)) < ϵ then
15 Break;
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F FULL EXPERIMENTAL RESULTS ON THREE DIFFERENT LABEL
CORRUPTION SCENARIOS

For our Theorems 4.1 and 5.1 in the main text, we formulate the gain of self-distillation using the label
corruption matrix C without making any specific assumptions about the label corruption. To validate
our theoretical results, we conduct experiments with various types of label corruption. Fig. 9 shows
the accuracy gain of the student models for six different datasets under the three corruption scenarios,
described in Table 1. The precise accuracies of each distillation models can be found in Appendix M.
Overall, we observe that there is a gain as the distillation step t increases in multi-round distillation,
and we confirm that the PLL student model outperforms other multi-round distillation models. This
results validate our theoretical finding in Sec. 4 and 5, where we show that self-distillation plays a
role as label averaging, facilitating the correction of label noise.
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(a) Superclass label corruption (Full version of Fig. 4)
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(b) Symmetric label corruption
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Figure 9: Distillation gain in accuracy (%) by each student model compared to the teacher model in
three different label corruption scenarios. PLAIN represents the gap between the multi-round SD
students and the teacher model, while ORANGE represents the gap between the PLL students and
the teacher model. We use weight decay value λ = 5 × 10−4 for Caltech-101, Flowers-102, and
StanfordCars datasets, and λ = 5× 10−5 for CIFAR-100, Caltech-256, and Food-101 datasets.

G FULL OUTPUT EVOLUTION OF FIG. 2B AND FIG. 5A

In Sec. 3, our analysis reveals that multi-round self-distillation effectively performs label averaging
among instances with high feature correlations. This process leads to clustered predictions and
improved generalization. To verify our claim, we conduct experiments on both synthetic and real
data and illustrate the clustering effect of softmax outputs of the student models as the number of
distillation rounds t increases. Fig. 10 presents the full version of Fig. 2b, depicting the output
evolution for K = 4 class classification task for synthetic dataset. Each dotted circle represents a
cluster containing all instances of a true label. As the number of distillation round t progresses, the
student model’s outputs converge to unique clustering points, depending on its true label.
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Figure 10: (Full version of Fig. 2b) The output evolution of the teacher model and the multi-round
self-distilled student model. Each corner represents the one-hot vectors of the respective class. We
use n = 100 and λ = 3.125 × 10−4, with 50% symmetric label corruption. The Gram matrix is
assumed to follow a block-wise structure as described in (7), with parameters c = 0.4 and d = 0.1,
added by a random perturbation matrix E, where each entry [E]i,j ∼ U(−0.05, 0.05).
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Figure 11: (Full version of Fig. 5a) The output evolution of the teacher model and the multi-round
self-distilled student models for the 4-class CIFAR-100 dataset. Each corner represents the one-hot
vectors of the respective class. We use λ = 2.5× 10−4, with 50% symmetric label corruption.

Fig. 11 is the full version of Fig. 5a. For the CIFAR-100 dataset, we arbitrarily select 4 classes and
use only the instances belonging to these 4 classes, with 500 samples per class. As the distillation
step t progresses, the outputs form clusters due to the label averaging effect.

H ABLATION STUDY

H.1 TARGETING TOP-K PARTIAL LABELS IN PLL STUDENT MODEL

In Sec. 5, we theoretically demonstrate the effectiveness of our novel student model, the PLL student
model. By selecting the top two label positions from the teacher model’s output, we ensure the
inclusion of the ground-truth label in the partial label list. While increasing the number of candidate
labels may improve the likelihood of including the true label, it can also reduce confidence in the
correct label for both noisy and clean-label samples, potentially leading to performance degradation.
We conduct additional ablation studies on the sizes of candidate sets to validate the appropriateness
of using only the top-two labels, as shown in Fig. 12. We observe that the model targeting the top-two
vectors achieves the best trade-offs between accurately including the correct label in the partial label
list while maintaining a high enough confidence for the correct label within the list, resulting in the
best test accuracies across six benchmark datasets.
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Figure 12: Full version of 5b. Distillation gain in accuracy (%) by each top-k PLL student model
compared to the teacher model in the superclass label corruption scenario. ORANGE represents
the improvement by our proposed top-2 PLL student model compared to the teacher model, while
PLAIN represents the gap between the top-k PLL students and the teacher model for k > 2.
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H.2 EMPLOYING A LARGER FEATURE EXTRACTOR BACKBONE

We also conduct additional experiments using a larger backbone–a pretrained Vision Transformer
(Vit-B) (Dosovitskiy et al., 2021) model–as a fixed feature extractor. The distillation gains in test
accuracy (%) over six benchmark datasets across different label corruption rates are presented in
Fig. 13.
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Figure 13: Distillation gain in accuracy (%) by each student model compared to the teacher model in
three different label corruption scenarios, using ViT-B as a fixed feature extractor. PLAIN represents
the gap between the multi-round SD students and the teacher model, while ORANGE represents the
gap between the PLL students and the teacher model. We use weight decay value λ = 5× 10−4 for
Caltech-101, Flowers-102, and StanfordCars datasets, and λ = 5×10−5 for CIFAR-100, Caltech-256,
and Food-101 datasets.

Using a larger backbone like ViT-B enhances feature extraction capabilities, resulting in a greater
disparity between intra-class and inter-class feature correlations. For example, when calculating
feature correlations on the CIFAR-100 dataset using the pretrained ViT-B model, we observe that the
average intra-class feature correlation increases to 0.35, compared to 0.25 with ResNet34. This higher
intra-class correlation amplifies the clustering effect of self-distillation on model predictions, allowing
significant performance improvements to be achieved with fewer distillation steps, as implied by our
Theorem 4.1.

In experiments with the larger backbone (ViT-B), we find that most of the distillation gains occur
within the first few rounds. As shown in Fig. 13, nearly all performance improvements are observed
in the first and second distillation steps when using ViT-B, although additional distillation steps still
bring slight gains in high noise rate regimes. The PLL student model also effectively achieves the
gains of multi-round self-distillation in a single round in high label-noise regimes for the ViT-B
backbone. These additional experiments confirm that our approach is effective with larger models,
further validating the versatility and robustness of our method.
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I PROOF OF THEOREM 3.1

Recall (4), the equation for the coefficients {α(t)
i }Kn

i=1:

Knλα
(t)
i = y

(t−1)
i − σ

Kn∑
j=1

⟨ϕ(xi), ϕ(xj)⟩α(t)
j

 . (25)

By applying the softmax approximation (Assumption 1), we have

K2nλα
(t)
i = Ky

(t−1)
i −

Kn∑
j=1

⟨ϕ(xi), ϕ(xj)⟩α(t)
j − 1K . (26)

Define the output matrix Y(t) ∈ RK×Kn and the coefficient matrix A(t) ∈ RK×Kn as:

Y(t) := [y
(t)
1 , . . . ,y

(t)
Kn], A(t) := [α

(t)
1 , . . . ,α

(t)
Kn]. (27)

We also define the Gram matrix Φ ∈ RKn×Kn, where each entry is given by

[Φ]i,j = ⟨ϕ(xi), ϕ(xj)⟩, ∀i, j ∈ [Kn]. (28)

Denoting the i-th column of a matrix A by A[:, i], (26) can be written as

K2nλA(t)[:, i] = KY(t−1)[:, i]−
Kn∑
j=1

[Φ]i,jA
(t)[:, j]− 1K

= KY(t−1)[:, i]− (A(t)Φ⊤)[:, i]− 1K×Kn[:, i].

Since Φ is symmetric, we have

A(t)(K2nλIKn +Φ) = KY(t−1) − 1K×Kn.

Also, from the definition of A(t), we obtain the relation between Y(t) and Y(t−1) as follows:

1

Knλ

(
Y(t−1) −Y(t)

)
= K

(
Y(t−1) − 1

K
1K×Kn

)(
K2nλIKn +Φ

)−1
;

(
Y(t−1) −Y(t)

)
=

(
Y(t−1) − 1

K
1K×Kn

)(
IKn +

1

K2nλ
Φ

)−1

;(
Y(t−1) − 1

K
1K×Kn

)
−
(
Y(t) − 1

K
1K×Kn

)
=

(
Y(t−1) − 1

K
1K×Kn

)(
IKn +

1

K2nλ
Φ

)−1

;(
Y(t) − 1

K
1K×Kn

)
=

(
Y(t−1) − 1

K
1K×Kn

)[
IKn −

(
IKn +

1

K2nλ
Φ

)−1
]
.

From this recursive relation, we can express Y(t) in terms of Y(0) and Φ as:

Y(t) − 1

K
1K×Kn =

(
Y(0) − 1

K
1K×Kn

)[
IKn −

(
IKn +

1

K2nλ
Φ

)−1
]t

. (29)

Similarly, for the outputs of the student model with partial labels, the only difference is that Y(0) is
replaced by Ȳ:

Y(P ) − 1

K
1K×Kn =

(
Ȳ − 1

K
1K×Kn

)[
IKn −

(
IKn +

1

K2nλ
Φ

)−1
]
, (30)

where Y(P ) is the output of the student model with partial labels using the input Ȳ = [ȳ1, · · · , ȳKn].
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J PROOF OF LEMMA 4.1 AND THE CLOSED-FORM OUTPUT SOLUTIONS FOR
FIVE DIFFERENT FEATURE CORRELATIONS

Recall the closed-form solution for Y(t) from (6):

Y(t) − 1

K
1K×Kn =

(
Y(0) − 1

K
1K×Kn

) Kn∑
i=1

(
λi

K2nλ+ λi

)t

viv
⊤
i , (31)

where {(λi,vi)}Kn
i=1 represents the eigenvalue-eigenvector pairs of the Gram matrix Φ, satisfying

Φ =
∑Kn

i=1 λiviv
⊤
i . In this section, we compute {(λi,vi)}Kn

i=1 for diverse class-wise feature
correlation scenarios and simplify the closed-form solution for Y(t).

Assume the feature correlation between two instances ⟨ϕ(xi), ϕ(xj)⟩ is determined by their true
labels:

⟨ϕ(xi), ϕ(xj)⟩ =
{
1, i = j;

ω(yi, yj), i ̸= j.
(32)

Define the class-wise feature correlation matrix W ∈ RK×K , with entries

[W]i,j := ω(i, j), ∀i, j ∈ [K]. (33)

Without loss of generality, we assume that the dataset is sorted by true labels yi. Then, the Gram
matrix Φ can be written as

Φ =




︸ ︷︷ ︸
block matrix with n×n blocks

+




︸ ︷︷ ︸
diagonal matrix

= P⊤WP+D([1− [W]i,i]
K
i=1P), (34)

where D(z) is a diagonal matrix with elements from the vector z, and P ∈ RK×Kn is defined as:

P = [e(y1), . . . , e(yKn)] =


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 . . . 0 1 · · · 1 · · · 0 · · · 0

...
...

. . .
0 · · · 0 0 · · · 0 · · · 1 · · · 1

 . (35)

︸ ︷︷ ︸
n

︸ ︷︷ ︸
n

︸ ︷︷ ︸
n

In the following sub-sections, we derive closed-form solutions for the model outputs (6) for five
different class-wise feature correlations W.

J.1 CASE I: POSITIVE CORRELATIONS ONLY AMONG SAME-CLASS INSTANCES

Assume that the class-wise feature correlation ω(yi, yj) is defined as follows:

ω(yi, yj) =

{
c, yi = yj ;

0, yi ̸= yj ,
(36)

for c > 0. From (34), the Gram matrix Φ can be computed as:

Φ = P⊤WP+D([1− [W]i,i]
K
i=1P)

= P⊤(cIK)P+D([1− c]Ki=1P)

= nc

(
1√
n
P

)⊤(
1√
n
P

)
+ (1− c)IKn.

Let us represent P in (35) by P = [p1, . . . ,pK ]⊤ for pi ∈ RKn. It can be shown that Φ has two
types of eigenvalue-eigenvector pairs {λi,vi}Kn

i=1:
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• K pairs with eigenvalues
λi = nc+ 1− c, for i = 1, . . . ,K,

and the corresponding eigenvectors vi =
1√
n
pi;

• (Kn−K) pairs with the eigenvalues (1− c) and the corresponding eigenvectors, denoted
by vi for i = K + 1, . . . ,Kn.

Note that
∑Kn

i=K+1 viv
⊤
i , the sum of outer-product of (Kn−K) eigenvectors satisfies

Kn∑
i=K+1

viv
⊤
i = IKn −

K∑
i=1

viv
⊤
i = IKn −

1

n
P⊤P. (37)

Hence, the label averaging matrix Φ(t) is given as

Φ(t) =

Kn∑
i=1

(
λi

K2nλ+ λi

)t

viv
⊤
i

=
1

n

(
1− c+ nc

K2nλ+ 1− c+ nc

)t

P⊤P+

(
1− c

K2nλ+ 1− c

)t(
IKn −

1

n
P⊤P

)
.

For simplicity, we define two constants p and q:

p =
1− c

K2nλ+ 1− c
, q =

1− c+ nc

K2nλ+ 1− c+ nc
. (38)

The label averaging matrix Φ(t) can be expressed as

Φ(t) =
1

n
(qt − pt)P⊤P︸ ︷︷ ︸

class-wise label averaging matrix

+ptIKn. (39)

Then, the closed-form of Y(t) is

Y(t) =

(
Y(0) − 1

K
1K×Kn

)
Φ(t) +

1

K
1K×Kn

=

(
Y(0) − 1

K
1K×Kn

)(
1

n
(qt − pt)P⊤P+ ptIKn

)
+

1

K
1K×Kn

= ptY(0) +
1

n

(
qt − pt

)
Y(0)P⊤P+

1

K
(1− qt)1K×Kn,

where the last equality holds due to 1K×KnP
⊤P = n1K×Kn.

Finally, we arrive at the closed form of y(t)
i :

y
(t)
i = pte(ŷi) +

1

n
(qt − pt)

∑
{j:yj=yi}

e(ŷj) +
1

K
(1− qt)1K . (40)

J.2 CASE II: CLASS-DEPENDENT INTRA-CLASS CORRELATIONS

Let the feature correlation between two samples with the same true label change depending on the
class. We model the feature correlation between instances as a function of their true labels:

ω(yi, yj) =

{
ω(yi), yi = yj ;

0, yi ̸= yj .
(41)

Here, we assume ω(yi) > 0 for all yi ∈ [K]. The Gram matrix Φ can be computed as

Φ = P⊤WP+D([1− [W]i,i]
K
i=1P)

= P⊤D([ω(1), . . . , ω(K)])P+D([(1− ω(i))]Ki=1P)

=

K∑
i=1

nω(i)

(
1√
n
pi

)(
1√
n
pi

)⊤

+D([(1− ω(i))]Ki=1P).

It can be checked that Φ has two types of eigenvalue-eigenvector pairs:

26



Published as a conference paper at ICLR 2025

• K pairs with eigenvalues
λi = nω(i) + 1− ω(i), i = 1, . . . ,K,

and the corresponding eigenvectors vi =
1√
n
pi;

• (Kn−K) pairs with eigenvalues
[λK+1, . . . , λKn] = [1− ω(1), . . . , 1− ω(1)︸ ︷︷ ︸

(n−1) eigenvalues

, . . . , 1− ω(K), . . . , 1− ω(K)︸ ︷︷ ︸
(n−1) eigenvalues

], (42)

and the corresponding eigenvectors vi for i = K + 1, . . . ,Kn.

Hence, the label averaging matrix Φ(t) is given as

Φ(t) =

Kn∑
i=1

(
λi

K2nλ+ λi

)t

viv
⊤
i

=
1

n

K∑
i=1

(
1− ω(i) + nω(i)

K2nλ+ 1− ω(i) + nω(i)

)t

p⊤
i pi +

K∑
i=1

(
1− ω(i)

K2nλ+ 1− ω(i)

)t ∑
{j:λj=1−ω(i)}

vjv
⊤
j

Note that ∑
{j:λj=1−ω(i)}

vjv
⊤
j = D([0, . . . , 0︸ ︷︷ ︸

(i−1)n

, 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
(K−i)n

])− 1

n
p⊤
i pi. (43)

For simplicity, let us define two vectors p = [p1, . . . , pK ]⊤,q = [q1, . . . , qK ]⊤ ∈ RK :

pi =
1− ω(i)

K2nλ+ 1− ω(i)
, qi =

1− ω(i) + nω(i)

K2nλ+ 1− ω(i) + nω(i)
. (44)

Then, Φ(t) can be simplified as

Φ(t) =

K∑
i=1

1

n
(qti − pti)p

⊤
i pi +

K∑
i=1

ptiD([0, . . . , 0︸ ︷︷ ︸
(i−1)n

, 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
(K−i)n

])

=
1

n
P⊤D(qt − pt)P︸ ︷︷ ︸

class-wise label averaging matrix

+D(ptP).

Therefore, we arrive at the closed form for y(t)
i :

y
(t)
i =

(
Y(0) − 1

K
1K×Kn

)
Φ(t)[:, i] +

1

K
1K

= ptyi
e(ŷi) +

1

n

(
qtyi
− ptyi

) ∑
{j:yi=yj}

e(ŷj) +
1

K

(
1− qtyi

)
1K . (45)

J.3 CASE III: CORRELATION GAP BETWEEN INTRA- AND INTER-CLASS INSTANCES

Let c be the feature correlation between two samples with the same true label, and let d be the
correlation between two samples with different true labels. The class-wise feature correlation
ω(yi, yj) is defined as follows:

ω(yi, yj) =

{
c, yi = yj ;

d, yi ̸= yj ,
(46)

for c > d ≥ 0. The Gram matrix Φ can be computed as

Φ = P⊤WP+D([1− [W]i,i]
K
i=1P)

= P⊤(d1K×K + (c− d)IK)P+ (1− c)IKn.

Note that W = d1K×K + (c− d)IK is a type of diagonal-shift to a low-rank matrix, which has two
types of eigenvalue-eigenvector pairs {σi,ui}Ki=1:
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• one pair with an eigenvalue
σ1 = Kd+ (c− d),

and the corresponding eigenvector u1 = 1√
K

1K ;

• (K − 1) pairs with eigenvalues

σi = (c− d), i = 2, . . . ,K,

and the corresponding eigenvectors ui.

Then, the Gram matrix Φ can be expressed as

Φ = P⊤WP+ (1− c)IKn =

K∑
i=1

nσi

(
1√
n
P⊤ui

)(
1√
n
P⊤ui

)⊤

+ (1− c)IKn.

It can be checked that Φ has three types of eigenvalue-eigenvector pairs:

• one pair with an eigenvalue

λ1 = nσ1 + (1− c) = Knd+ n(c− d) + (1− c),

and the corresponding eigenvector

v1 =
1√
n
P⊤u1 =

1√
Kn

P⊤1K ;

• (K − 1) pairs with eigenvalues

λi = nσi + (1− c) = n(c− d) + (1− c), i = 2, . . . ,K,

and the corresponding eigenvectors

vi =
1√
n
P⊤ui, i = 2, . . . ,K;

• (Kn−K) pairs with eigenvalues

λi = (1− c), i = K + 1, . . . ,Kn,

and the corresponding eigenvectors vi’s.

Define p, q, and r according to the following equations:

p =
1− c

K2nλ+ 1− c
,

q =
1− c+ n(c− d)

K2nλ+ 1− c+ n(c− d)
,

r =
1− c+ n(c− d) +Knd

K2nλ+ 1− c+ n(c− d) +Knd
.

Then, the label averaging matrix Φ(t) is given as

Φ(t) =

Kn∑
i=1

(
λi

K2nλ+ λi

)t

viv
⊤
i

=
rt

n
P⊤u1u

⊤
1 P+

qt

n

K∑
i=2

P⊤uiu
⊤
i P+ pt

Kn∑
i=K+1

viv
⊤
i

=
rt

Kn
P⊤1K×KP+

qt

n
P⊤

[
IK −

1

K
1K×K

]
P+ pt

(
IKn −

1

n

K∑
i=1

P⊤uiu
⊤
i P

)

=
rt − qt

Kn
1Kn×Kn +

qt − pt

n
P⊤P︸ ︷︷ ︸

class-wise label averaging matrix

+ptIKn.
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Finally, we obtain the closed form for y(t)
i :

y
(t)
i =

(
Y(0) − 1

K
1K×Kn

)
Φ(t)[:, i] +

1

K
1K

= pte(ŷi) + (qt − pt)

 1

n

∑
{j:yi=yj}

e(ŷj)

+ (rt − qt)

 1

Kn

Kn∑
j=1

e(ŷj)

+ (1− rt)
1

K
1K

= pte(ŷi) + (qt − pt)

 1

n

∑
{j:yi=yj}

e(ŷj)

+ (1− qt)
1

K
1K .

(47)

The last equality holds due to the balanced given labels, {ŷi}, across the K classes. Note that the
closed form for y(t)

i consists of the following three components, across all the three cases considered
so far:

• e(ŷi): the given label,
• 1

n

∑
{j:yj=yi} e(ŷj): the average label vector among samples from the same true class yi,

• 1
K 1K : the uniform vector.

J.4 CASE IV: SUPERCLASS FEATURE CORRELATION (PROOF OF LEMMA 4.1)

Let us assume that there exists a set of superclasses, where the classes within the same superclass have
higher feature correlation, while the classes from different superclasses have zero feature correlation.
Let h : [K]→ [R] be a function that map the class index to a superclass index. The model for the
superclass feature correlation is defined as

ω(yi, yj) =


c, yi = yj ;

d, yi ̸= yj , h(yi) = h(yj);

0, h(yi) ̸= h(yj)

(48)

for c > d ≥ 0. Without loss of generality, we assume that the labels are sorted according to the
superclass index, which implies that h is a non-decreasing function. Then, the class-wise feature
correlation matrix W ∈ RK×K can be expressed as the sum of rank-R block diagonal matrix and a
diagonal matrix:

W =




︸ ︷︷ ︸
block diagonal matrix

+




︸ ︷︷ ︸
diagonal matrix

= dQ⊤Q+ (c− d)IK , (49)

where Q ∈ RR×K are defined as

Q = [e(h(1)), . . . , e(h(R))] =


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 . . . 0 1 · · · 1 · · · 0 · · · 0

...
...

. . .
0 · · · 0 0 · · · 0 · · · 1 · · · 1

 . (50)

︸ ︷︷ ︸
K1

︸ ︷︷ ︸
K2

︸ ︷︷ ︸
KR

with Ki := |{k ∈ [K] : h(k) = i}| for i ∈ [R], where
∑R

i=1 Ki = K.

Let us represent Q in (50) as Q = [q1, . . . ,qR]
⊤ for qi ∈ RK . Then, W can be written as

W =

R∑
i=1

Kid

(
1√
Ki

qi

)(
1√
Ki

qi

)⊤

+ (c− d)IK .

It can be shown that W has two types of eigenvalue-eigenvector pairs {σi,ui}Ki=1:

29



Published as a conference paper at ICLR 2025

• R pairs with eigenvalues
σi = Kid+ (c− d), i = 1, . . . , R,

and the corresponding eigenvectors ui =
1√
Ki

qi.

• (K −R) pairs with the eigenvalues
σi = (c− d), i = R+ 1, . . . ,K,

and the corresponding eigenvectors ui.

Then, Φ can be expressed as follows:

Φ = P⊤WP+ (1− c)IKn =

K∑
i=1

nσi

(
1√
n
P⊤ui

)(
1√
n
P⊤ui

)⊤

+ (1− c)IKn

Thus, it can be shown that Φ has three types of eigenvalue-eigenvector pairs:

• R pairs with eigenvalues
λi = nσi + (1− c) = Kind+ n(c− d) + (1− c), i = 1, . . . , R,

and the corresponding eigenvectors

vi =
1√
n
P⊤ui =

1√
Kin

qi;

• (K −R) pairs with eigenvalues
λi = nσi + (1− c) = n(c− d) + (1− c), i = R+ 1, . . . ,K,

and the corresponding eigenvectors

vi =
1√
n
P⊤ui;

• (Kn−K) pairs of eigenvalues
λi = (1− c), i = K + 1, . . . ,Kn,

with eigenvectors vi.

Define p, q and r = [r1, . . . , rR] ∈ RR as follows:

p =
1− c

K2nλ+ 1− c

q =
1− c+ n(c− d)

K2nλ+ 1− c+ n(c− d)

ri =
1− c+ n(c− d) +Kind

K2nλ+ 1− c+ n(c− d) +Kind
, i ∈ [R].

Then, the label averaging matrix Φ(t) is given as

Φ(t) =

Kn∑
i=1

(
λi

K2nλ+ λi

)t

viv
⊤
i

=

R∑
i=1

rti
n
P⊤uiu

⊤
i P+

qt

n

K∑
i=R+1

P⊤uiu
⊤
i P+ pt

Kn∑
i=K+1

viv
⊤
i

=

R∑
i=1

rti
n
P⊤uiu

⊤
i P+

qt

n
P⊤

[
IK −

R∑
i=1

uiu
⊤
i

]
P+ pt

[
IKn −

1

n

K∑
i=1

P⊤uiu
⊤
i P

]

=

R∑
i=1

rti − qt

Kin
P⊤qiq

⊤
i P+

qt − pt

n
P⊤P+ ptIKn

= P⊤D

([
rti − qt

Kin
1Ki×Ki

]R
i=1

)
P︸ ︷︷ ︸

superclass-wise label averaging matrix

+
qt − pt

n
P⊤P︸ ︷︷ ︸

class-wise label averaging matrix

+ptIKn.
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Finally, we arrive at the closed form of y(t)
i ,

y
(t)
i = pte(ŷi)+(qt−pt)

 1

n

∑
{j:yi=yj}

e(ŷj)

+(rts−qt)

 1

Ksn

∑
{j:h(yj)=s}

e(ŷj)

+(1−rts)
1

K
1K

(51)
where s = h(yi) is the superclass of yi. The closed form for y(t)

i consists of the following four
components:

• e(ŷi): the given label,
• 1

n

∑
{j:yj=yi} e(ŷj): the average label vector among samples from the same true class yi,

• 1
Ksn

∑
{j:h(yj)=s} e(ŷj): the average label vector among samples from the same superclass class

s = h(yi),
• 1

K 1K : the uniform vector.

J.5 CASE V: EXTENDED SUPERCLASS FEATURE CORRELATION

As the last case, we allow a non-zero inter-superclass correlation, fixed as a constant e. The model
for the class-wise feature correlation is defined as

ω(yi, yj) =


c, yi = yj ;

d, yi ̸= yj , h(yi) = h(yj);

e, h(yi) ̸= h(yj)

(52)

for c > d ≥ e ≥ 0. Under this model, the class-wise feature correlation matrix W is expressed as:

W = e1K×K + (d− e)Q⊤Q+ (c− d)IK , (53)
and the Gram matrix Φ is given by:

Φ = P⊤WP+D([1− [W]i,i]
K
i=1P) = P⊤WP+ (1− c)IKn

Then, the label averaging matrix of the Φ(t) can be formulated as:

Φ(t) =

(
IKn −

(
IKn +

1

K2nλ
Φ

)−1
)t

=

(
IKn −

(
K2nλ+ 1− c

K2nλ
IKn +

1

K2nλ
P⊤WP

)−1
)t

Since PP⊤ = nIKn, the following matrix inversion holds for any U ∈ RK×K and v ∈ R:(
vIKn +

1

n
P⊤UP

)−1

=
1

v
IKn +

1

n
P⊤

[
(vI+U)

−1 − 1

v
I

]
P.

Thus, we have(
K2nλ+ 1− c

K2nλ
IKn +

1

K2nλ
P⊤WP

)−1

=
K2nλ

K2nλ+ 1− c
IKn+

1

n
P⊤

[
V−1 − K2nλ

K2nλ+ 1− c
I

]
P

where V ∈ RK×K is given by:

V =
K2nλ+ 1− c

K2nλ
IK +

W

K2λ
.

Substituting back into Φ(t), we get:

Φ(t) =

((
1− K2nλ

K2nλ+ 1− c

)
IKn +

1

n
P⊤

[
K2nλ

K2nλ+ 1− c
I−V−1

]
P

)t

,

CLAIM: For any t ≥ 1, U ∈ RK×K , and v ∈ R,(
1

n
P⊤UP+ vIKn

)t

=
1

n
P⊤[(U+ vIK)t − vtIK ]P+ vtIKn. (54)
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Proof. Since PP⊤ = nIKn, we have:(
1

n
P⊤UP+ vIKn

)t

= vtIKn +

t∑
i=1

(
t

i

)
vi
(
1

n
P⊤UP

)t−i

= vtIKn +
1

n

t∑
i=1

(
t

i

)
viP⊤Ut−iP

= vtIKn +
1

n
P⊤

[
t∑

i=1

(
t

i

)
viUt−i

]
P

= vtIKn +
1

n
P⊤[(U+ vIK)t − vtIK ]P.

From (54), we can express Φ(t) as

Φ(t) =

(
1− K2nλ

K2nλ+ 1− c

)t

IKn +
1

n
P⊤

[
(I−V−1)t −

(
1− K2nλ

K2nλ+ 1− c

)t

IK

]
P.

(55)

The main problem is to calculate the inverse of V, which can be written as

V−1 =

[
K2nλ+ 1− c+ n(c− d)

K2nλ
IK +

e

K2λ
1K×K +

d− e

K2λ
Q⊤Q

]−1

(56)

By simple matrix calculations, we have

1K×K1K×K = K1K×K ;

1K×KQ⊤Q = Q⊤D([Ki]
R
i=1)Q;

Q⊤QQ⊤Q = Q⊤D([Ki]
R
i=1)Q.

Hence, the following matrix inversion holds true for the corresponding α > 0, β and γ of (56):(
αIK + β1K×K + γQ⊤Q

)−1
=

(
1

α
IK −

β

α(α+Kβ)
1K×K −Q⊤D([δi]

R
i=1)Q

)
,

where δi is given as

δi =
1

α+Kiβ +Kiγ

(
γ

α
− Kiβγ

α(α+Kβ)

)
.

Define p, q, s and r = [r1, . . . , rR] ∈ RR according to the following equations:

p =
1− c

K2nλ+ 1− c
;

q =
1− c+ n(c− d)

K2nλ+ 1− c+ n(c− d)
;

ri =
1− c+ n(c− d) +Kind

K2nλ+ 1− c+ n(c− d) +Kind
, i ∈ [R];

s =
1− c+ n(c− d) +Kne

K2nλ+ 1− c+ n(c− d) +Kne
.

Then, the coefficients for IK , 1K×K , 1Ki×Ki of V−1 in (56) can be written, respectively, as follows:

1

α
= 1− q,

− β

α(α+Kβ)
=

1

K

(
1

α+Kβ
− 1

α

)
=

s− q

K
,
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and

δi =
1

α+Kiβ +Kiγ

(
−γ

α
+

Kiβγ

α(α+Kβ)

)
=

1

α+Kiβ +Kiγ

γ(α+Kβ −Kiβ)

α(α+Kβ)

=
γ

K

1

α+Kiβ +Kiγ

(
K −Ki

α
+

Ki

α+Kβ

)
=

d− e

K3λ

K2nλ

K2nλ+ 1− c+ n(c− d) +Kind

×
(

(K −Ki)K
2nλ

K2nλ+ 1− c+ n(c− d)
+

Ki(K
2nλ)

K2nλ+ 1− c+ n(c− d) +Kne

)
=

(K −Ki)(d− e)

KKid
(ri − q) +

Ki(d− e)

K(Kid−Ke)
(ri − s).

Substituting the expanded form of V−1, we get:

Φ(t) = ptIKn +
1

n
P⊤ [(I−V−1)t − ptIK

]
P

= ptIKn +
1

n
P⊤

((
qIK +

q − s

K
1K×K +Q⊤D([δi]

R
i=1)Q

)t

− ptIK

)
P.

Also, for j ∈ Z+, the following holds:(q − s

K
1K×K+Q⊤D([δiQ1Ki×Ki

]Ri=1Q
)j

=
(q − s)j

K
1K×K +

j∑
k=1

(
j

k

)(
q − s

K
1K×K

)j−k (
Q⊤D([δi]

R
i=1)Q

)k
=

(q − s)j

K
1K×K +

j∑
k=1

(
j

k

)(
q − s

K
Q⊤Q

)j−k (
Q⊤D([δi]

R
i=1)Q

)k
=

(q − s)j

K
1K×K +Q⊤D

[Kj−1
i

{(
q − s

K
+ δi

)j

−
(
q − s

K

)j
}]R

i=1

Q.

Hence, we get(
qIK +

q − s

K
1K×K +Q⊤D([δi]

R
i=1)Q

)t

= qtIK +

t∑
j=1

(
t

j

)
qt−j

(
q − s

K
1K×K +D([δi1Ki×Ki

]Ri=1

)j

= qtIK + ν(t)1K×K +Q⊤D([µ
(t)
i /Ki]

R
i=1)Q,

where ν(t) and µ
(t)
i are defined as

ν(t) =

(
q +

q − s

K

)t

− qt;

µ
(t)
i =

{
q +Ki

(
q − s

K
+ δi

)}t

−
{
q +Ki

(
q − s

K

)}t

, i ∈ [R].
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Finally, we get the closed-form of the label averaging matrix Φ(t) as

Φ(t) = ptIKn +
1

n
P⊤

((
qIK +

q − s

K
1K×K +Q⊤D([δi]

R
i=1)Q

)t

− ptIK

)
P

= ptIKn +
qt − pt

n
P⊤P+P⊤Q⊤D([µ

(t)
i /Ki]

R
i=1)QP+ ν(t)1Kn×Kn

= P⊤D

[ µ(t)
i

Kin
1Ki×Ki

]R
i=1

P

︸ ︷︷ ︸
superclass-wise label averaging matrix

+
qt − pt

n
P⊤P︸ ︷︷ ︸

class-wise label averaging matrix

+ptIKn +
ν(t)

n
1Kn×Kn.

Then, the closed-form of y(t)
i for the extended feature map is given as follows:

y
(t)
i = pte(ŷi)+(qt−pt)

 1

n

∑
{j:yi=yj}

e(ŷj)

+
µ
(t)
s

Ksn

 ∑
{j:h(yj)=s}

e(ŷj)

+(1−µ(t)
s −qt)

1

K
1K

(57)
where h(yi) = s. Note that when e = 0, ν(t) and µ

(t)
s are given as

ν(t) = 0, µ(t)
s = rts − qt,

which recovers the result in (51).

K PROOF OF THEOREM 4.1, THEOREM 5.1 AND COROLLARY C.1

In this section, we present the complete proofs of Theorem 4.1 and 5.1, and Corollary C.1. As in
Sec. 4, we define the corruption matrix C ∈ RK×K by

[C]k,k′ :=
|{i : yi = k, ŷi = k′}|

n
.

Then, the mean of the given labels for samples that share the same true label, denoted as
1
n

∑
{j:yi=yj} e(ŷj), corresponds to the yi-th row of the matrix C, expressed as:

1

n

∑
{j:yi=yj}

e(ŷj) = C[yi, :]
⊤.

Here, we aim to find the conditions for the prediction vector y(t)
i to have the maximum value at the

true label position yi, indicating a correct prediction. To achieve this, we use the closed-form solution
(13) of y(t)

i , presented in Lemma 4.1.

K.1 PROOF OF THEOREM 4.1

According to Lemma 4.1, the closed-form outputs of the t-th distilled model can be formulated as

y
(t)
i = pte(ŷi)+ (qt− pt)

( 1
n

∑
{j:yj=yi}

e(ŷj)
)
+(rts− qt)

( 1

Ksn

∑
{j:h(yj)=s}

e(ŷj)
)
+

(1− rts)

K
1K ,

where s = h(yi) is the superclass of yi, Ks is the size of the superclass s, and p, q, and rs are defined
as in (14). Also, we assume that the label error happens only within each superclass, which implies
that [C]k,k′ = 0 if h(k) ̸= h(k′). Remind that we assume that the dataset is balanced with respect to
both the ground-truth labels and given labels, i.e., |{i : yi = k}| = |{i : ŷi = k}| = n for ∀k ∈ [K].
Then, we can simplify the third term, the mean of superclass labels, using the indicator function,
denoted as 1, as follows:

(rts − qt)
( 1

Ksn

∑
{j:h(yj)=s}

e(ŷj)
)
=

rts − qt

Ks
[1(h(1) = s), . . . ,1(h(K) = s)], (58)
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which means that third term is uniform inside the superclass, while zero outside the superclass. Now,
we will analyze the prediction of clean samples and label-noise samples.

For the clean samples, i.e., ŷi = yi, the prediction of the t-th distilled model for the i-th sample can
be written as

[y
(t)
i ]k =


pt + (qt − pt)[C]yi,yi

+ (rts − qt)/Ks + (1− rts)/K, k = yi;

(qt − pt)[C]yi,k + (rts − qt)/Ks + (1− rts)/K, k ̸= yi, h(k) = h(yi);

(1− rts)/K. h(k) ̸= h(yi).

Then, the condition for the correct classification of the clean sample i is given by

[C]yi,yi
> [C]yi,k −

1

(q/p)t − 1
, ∀k ̸= yi. (59)

For the noisy samples such that ŷi ̸= yi, the prediction of the t-th distilled model can be written as

[y
(t)
i ]k =


(qt − pt)[C]yi,yi

+ (rts − qt)/Ks + (1− rts)/K, k = yi;

pt + (qt − pt)[C]yi,ŷi
+ (rts − qt)/Ks + (1− rts)/K, k = ŷi;

(qt − pt)[C]yi,k + (rts − qt)/Ks + (1− rts)/K, k ̸= yi, ŷi, h(k) = h(yi);

(1− rts)/K, h(k) ̸= h(yi).

Thus, the condition for the correct classification of the noisy sample i is given as

[C]yi,yi
> [C]yi,ŷi

+
1

(q/p)t − 1
and (60)

[C]yi,yi
> [C]yi,k, ∀k ̸= yi, ŷi (61)

Note that (59) is the easiest condition, and (60) is the most stringent condition. Thus, if

[C]k,k > [C]k,k′ + 1/
(
(q/p)t − 1

)
, ∀k, k′ ∈ [K] with k ̸= k′ (62)

then the t-th student model can correctly classify both the noisy samples and clean samples. On the
other hand, if

[C]k,k < [C]k,k′ + 1/
(
(q/p)t−1 − 1

)
, (63)

then the (t − 1)-th distilled model fails to correctly classify label-noisy samples from class k that
have been mislabelled as ŷi = k′, and thus fails to achieve 100% population accuracy.

To find the regimes where the student model outperforms the teacher model, we need to find t ∈ Z+

that satisfies

[C]k,k′ +
1

(q/p)t−1 − 1
> [C]k,k > [C]k,k′ +

1

(q/p)t − 1
, (64)

In such a t, the student model correctly classifies the samples whose true labels are k and the given
labels are k′, but the teacher model makes mistakes.

K.2 PROOF OF THEOREM 5.1

The closed form solution for the output of the PLL student model for the i-th training instance is
given by

y
(P )
i = pȳi + (q − p)

 1

n

∑
{j:yj=yi}

ȳj

+ (rs − q)

 1

Ksn

∑
{j:h(yj)=s}

ȳj

+ (1− rs)
1K
K

, (65)

for s = h(i). This can be derived from Lemma 4.1, by plugging in the refined teacher’s output ȳi at
the position of e(ŷi) and considering the one more step of distillation t = 1. Here, ȳi is the two-hot
vector with weights 1/2, at the positions of top two labels with the highest values in the teacher’s
predictions.
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Suppose that [C]yi,yi
> [C]yi,k holds for all k ̸= yi. From the conditions (59) and (61), the true

label is always included in the top-two candidate set. Let us define ỹi as
ỹi = argmax

k ̸=yi

[C]yi,k. (66)

Note that ỹi is always in the superclass of h(yi). Then, the equation for ȳi can be expressed as:

ȳi =
1

2
e(yi) +

1

2
e(ỹi) (67)

for the clean sample, and

ȳi =
1

2
e(yi) +

1

2
e(ŷi) (68)

for the noisy sample. Then, 1
n

∑
{j:yj=yi} ȳj and 1

Ksn

∑
{j:h(yj)=s} ȳj are given as

1

n

∑
{j:yj=yi}

ȳj =
1

2
e(yi) +

1

2
[C]yi,yie(ỹi) +

1

2

∑
j ̸=yi

[C]yi,je(j),

and
1

Ksn

∑
{j:h(yj)=s}

ȳj =
1

Ks
[1(h(1) = s), . . . ,1(h(K) = s)],

since the true labels and the given labels are balanced. Hence, for the clean sample, the prediction of
the PLL student model for the i-th sample can be written as

[y
(P )
i ]k =


p
2 + q−p

2 + rs−q
Ks

+ 1−rs
K , k = yi;

p
2 + q−p

2 ([C]yi,yi + [C]yi,ỹi) +
rs−q
Ks

+ 1−rs
K , k = ỹi;

q−p
2 [C]yi,k + rs−q

Ks
+ 1−rs

K k ̸= yi, ỹi, h(k) = h(yi);
1−rs
K , h(k) ̸= h(yi).

Here, [y(P )
i ]k has the maximum value at k = yi, because [C]yi,yi

+ [C]yi,ỹi
is less than or equal to 1.

For the noisy sample, when ŷi = ỹi, we have

[y
(P )
i ]k =


p
2 + q−p

2 + rs−q
Ks

+ 1−rs
K , k = yi;

p
2 + q−p

2 ([C]yi,yi + [C]yi,ỹi) +
rs−q
Ks

+ 1−rs
K , k = ŷi;

q−p
2 [C]yi,k + rs−q

Ks
+ 1−rs

K k ̸= yi, ŷi, h(k) = h(yi);
1−rs
K , h(k) ̸= h(yi).

On the other hand, when ŷi ̸= ỹi, we have

[y
(P )
i ]k =



p
2 + q−p

2 + rs−q
Ks

+ 1−rs
K , k = yi;

p
2 + q−p

2 [C]yi,ŷi +
rs−q
Ks

+ 1−rs
K , k = ŷi;

q−p
2 ([C]yi,yi + [C]yi,ỹi) +

rs−q
Ks

+ 1−rs
K , k = ỹi;

q−p
2 [C]yi,k + rs−q

Ks
+ 1−rs

K k ̸= yi, ŷi, ỹi, h(k) = h(yi);
1−rs
K , h(k) ̸= h(yi).

Therefore, the prediction of the PLL student model has the highest probability at the true label yi for
all noisy samples as well.

Throughout all the cases, it can be concluded that the PLL model consistently achieves 100%
population accuracy when the PLL candidate sets of size two always contain the true label. Note that
the condition for this situation is given by (15).

To summarize, the t-th distilled model attains 100% population accuracy when
[C]k,k > [C]k,k′ + 1/

(
(q/p)t − 1

)
, ∀k, k′ ∈ [K] with k ̸= k′

holds. For the PLL student model, the condition for achieving 100% population accuracy is given by
[C]k,k > [C]k,k′ , ∀k, k′ ∈ [K] with k ̸= k′

which implies that the PLL student model outperforms any t-th distilled model in the population
accuracy.
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K.3 PROOF OF COROLLARY C.1

Suppose that the class-wise feature correlation at the t-distillation round is given by

[Φ′(t)]i,j := ⟨ϕ(xi), ϕ(xj)⟩ =


1, i = j;

c(t), yi = yj , i ̸= j;

d(t), yi ̸= yj , h(yi) = h(yj);

0, h(yi) ̸= h(yj).

(69)

Then, following the similar analysis as in Sec. J.4, the label averaging matrix Φ(t) :=[
IKn −

(
IKn +Φ′(t)/(K2nλ)

)−1
]

at the t-th distillation round can be expressed as follows:

Φ(t) =
1

n
P⊤

(q(t) − p(t))IK +D

[r(t)s − q(t)

Ks
1Ks×Ks

]R
s=1

P+ p(t)IKn, (70)

where p(t), q(t), r
(t)
s are defined as

p(t) =
1− c(t)

K2nλ+ 1− c(t)
;

q(t) =
1− c(t) + n(c(t) − d(t))

K2nλ+ 1− c(t) + n(c(t) − d(t))
;

r(t)s =
1− c(t) + n(c(t) − d(t)) +Ksnd

(t)

K2nλ+ 1− c(t) + n(c(t) − d(t)) +Ksnd(t)
.

For simplicity in notation, define D : RR → RK×K as

D(u) = D

([
us

Ks
1Ks×Ks

]R
s=1

)
. (71)

CLAIM. For any t ≥ 1,
t∏

i=1

Φ(i) =
1

n
P⊤

( t∏
i=1

q(i) −
t∏

i=1

p(i))IK +D

[ t∏
i=1

r(i)s −
t∏

i=1

q(i)

]R
s=1

P+

t∏
i=1

p(i)IKn,

Proof. When t = 1, the above claim holds trivially. Next, suppose our claim holds true for t = k.

Then, we have
k∏

i=1

Φ(i) =
1

n
P⊤

( k∏
i=1

q(i) −
k∏

i=1

p(i))IK +D

[ k∏
i=1

r(i)s −
k∏

i=1

q(i)

]R
s=1

P+

k∏
i=1

p(i)IKn

and

Φ(k+1) =
1

n
P⊤

[
(q(k+1) − p(k+1))IK +D

(
[r(k+1)

s − q(k+1)]Rs=1

)]
P+ p(k+1)IKn.

Since PP⊤ = nIK and D(u)D(v) = D(u ◦ v), we have
k+1∏
i=1

Φ(i) =
1

n
P⊤ [aIK +D([bi]Ri=1)

]
P+

k+1∏
i=1

p(i)IKn,

for some a and bi. Then, a and bi can be computed as following:

a = (

k∏
i=1

q(i) −
k∏

i=1

p(i))(q(k+1) − p(k+1)) + p(k+1)(

k∏
i=1

q(i) −
k∏

i=1

p(i)) +

k∏
i=1

p(i)(q(k+1) − p(k+1))

=

k+1∏
i=1

q(i) −
k+1∏
i=1

p(i),
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and

bi = (r(k+1)
s − q(k+1))

(
k∏

i=1

r(i)s −
k∏

i=1

q(i)

)
+ (q(k+1) − p(k+1))

(
k∏

i=1

r(i)s −
k∏

i=1

q(i)

)

+ (r(k+1)
s − q(k+1))

(
k∏

i=1

q(i) −
k∏

i=1

p(i)

)
+ +p(k+1)

(
k∏

i=1

r(i)s −
k∏

i=1

q(i)

)

+ (r(k+1)
s − q(k+1))

k∏
i=1

p(i)

=

k+1∏
i=1

r(i)s −
k+1∏
i=1

q(i).

Thus, by the mathematical induction, our claim holds true for all t ≥ 1.

From our claim, we can derive a closed-form solution of y(t)
i in the evolving feature map (69) as

follows:

y
(t)
i =

t∏
i=1

p(i)e(ŷi) +

(
t∏

i=1

q(i) −
t∏

i=1

p(i)

) 1

n

∑
{j:yi=yj}

e(ŷj)


+

(
t∏

i=1

r(i)s −
t∏

i=1

q(i)

) 1

Ksn

∑
{j:h(yj)=s}

e(ŷj)

+

(
1−

t∏
i=1

r(i)s

)
1

K
1K

(72)

The only difference from the original equation is that pt, qt, and rts have changed to
∏t

i=1 p
(i),∏t

i=1 q
(i), and

∏t
i=1 r

(i)
s , respectively. Hence, Corollary C.1 holds.
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L ADDITIONAL EXPERIMENTAL RESULTS

L.1 ABLATION STUDY: VARYING WEIGHT-DECAY VALUE λ

We perform an ablation study for λ values that make q/p near 2 as explained in Appendix E.2. For
these λ values, we observe that there is a consistent accuracy gain as the distillation round t increases.
Also, we observe that our PLL student model outperforms the multi-round SD models.
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(a) Superclass label corruption
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(b) Symmetric label corruption
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(c) Asymmetric label corruption

Figure 14: Accuracy gap for each student model compared to the teacher model in three different
label corruption scenarios. PLAIN represents the gap between multi-round SD students and the
teacher model, while ORANGE represents the gap between PLL students and the teacher model. We
use weight decay value λ = 2× 10−4 for Caltech-101, Flowers-102, and StanfordCars datasets, and
λ = 2× 10−5 for CIFAR-100, Caltech-256, and Food-101 datasets.
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(b) Symmetric label corruption
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(c) Asymmetric label corruption

Figure 15: Accuracy gap for each student model compared to the teacher model in a three label
corruption scenarios. PLAIN represents the gap between multi-round SD students and the teacher
model, while ORANGE represents the gap between PLL students and the teacher model. We use
weight decay value λ = 1 × 10−3 for Caltech-101, Flowers-102, and StanfordCars datasets, and
λ = 1× 10−4 for CIFAR-100, Caltech-256, and Food-101 datasets.
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L.2 HIERARCHICAL CLUSTERING RESULTS

We conduct hierarchical clustering to estimate the super-class on six different real datasets. The
figures below show the hierarchical clustering results of each dataset. Clustering is performed to
place similar classes adjacent to each other.
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Infiniti G Coupe IPL 2012
Porsche Panamera Sedan 2012
Ferrari FF Coupe 2012
BMW M3 Coupe 2012
BMW M5 Sedan 2010
Tesla Model S Sedan 2012
Bentley Continental GT Coupe 2007
Audi TT Hatchback 2011
Bentley Continental GT Coupe 2012
Aston Martin Virage Convertible 2012
Aston Martin V8 Vantage Convertible 2012
BMW Z4 Convertible 2012
Ferrari 458 Italia Convertible 2012
Chevrolet Corvette Convertible 2012
Ferrari California Convertible 2012
Lamborghini Gallardo LP 570-4 Superleggera 2012
Lamborghini Aventador Coupe 2012
McLaren MP4-12C Coupe 2012
Lamborghini Reventon Coupe 2008
Bugatti Veyron 16.4 Coupe 2009
Jaguar XK XKR 2012
Aston Martin Virage Coupe 2012
Audi TT RS Coupe 2012
Mercedes-Benz SL-Class Coupe 2009
Aston Martin V8 Vantage Coupe 2012
Fisker Karma Sedan 2012
Ferrari 458 Italia Coupe 2012
Ford GT Coupe 2006
Spyker C8 Convertible 2009
Chevrolet Corvette ZR1 2012
Chevrolet Corvette Ron Fellows Edition Z06 2007
Bugatti Veyron 16.4 Convertible 2009
Spyker C8 Coupe 2009
Audi R8 Coupe 2012
Dodge Challenger SRT8 2011
BMW 6 Series Convertible 2007
Chrysler Crossfire Convertible 2008
Ford Mustang Convertible 2007
Audi RS 4 Convertible 2008
Audi S5 Convertible 2012
Bentley Continental Supersports Conv. Convertible 2012
MINI Cooper Roadster Convertible 2012
BMW M6 Convertible 2010
BMW 1 Series Convertible 2012
Chevrolet Camaro Convertible 2012
Acura TL Sedan 2012
Hyundai Sonata Sedan 2012
Honda Accord Coupe 2012
Hyundai Sonata Hybrid Sedan 2012
Nissan Juke Hatchback 2012
Acura ZDX Hatchback 2012
Hyundai Azera Sedan 2012
FIAT 500 Abarth 2012
Hyundai Veloster Hatchback 2012
Maybach Landaulet Convertible 2012
Chrysler Sebring Convertible 2010
Nissan 240SX Coupe 1998
Rolls-Royce Phantom Sedan 2012
Bentley Arnage Sedan 2009
Chrysler 300 SRT-8 2010
Bentley Mulsanne Sedan 2011
Rolls-Royce Ghost Sedan 2012
BMW ActiveHybrid 5 Sedan 2012
Buick Regal GS 2012
Suzuki Kizashi Sedan 2012
Chevrolet Cobalt SS 2010
Acura Integra Type R 2001
Volkswagen Beetle Hatchback 2012
Audi A5 Coupe 2012
Audi S4 Sedan 2012
BMW 1 Series Coupe 2012
BMW 3 Series Sedan 2012
Dodge Charger Sedan 2012
Eagle Talon Hatchback 1998
Bentley Continental Flying Spur Sedan 2007
Dodge Charger SRT-8 2009
Audi TTS Coupe 2012
Cadillac CTS-V Sedan 2012
Mercedes-Benz 300-Class Convertible 1993
Rolls-Royce Phantom Drophead Coupe Convertible 2012
Chrysler PT Cruiser Convertible 2008
Geo Metro Convertible 1993
Chevrolet Monte Carlo Coupe 2007
Lincoln Town Car Sedan 2011
Mercedes-Benz E-Class Sedan 2012
Audi S5 Coupe 2012
Mercedes-Benz S-Class Sedan 2012
Mercedes-Benz C-Class Sedan 2012
Audi S6 Sedan 2011
Audi S4 Sedan 2007
FIAT 500 Convertible 2012
Nissan Leaf Hatchback 2012
Hyundai Accent Sedan 2012
Toyota Camry Sedan 2012
Acura RL Sedan 2012
Buick Verano Sedan 2012
Volvo C30 Hatchback 2012
Acura TSX Sedan 2012
Mitsubishi Lancer Sedan 2012
Acura TL Type-S 2008
Hyundai Genesis Sedan 2012
Plymouth Neon Coupe 1999
BMW 3 Series Wagon 2012
Chevrolet Malibu Hybrid Sedan 2010
Hyundai Elantra Sedan 2007
Toyota Corolla Sedan 2012
Chevrolet Impala Sedan 2007
Chevrolet Malibu Sedan 2007
Honda Accord Sedan 2012
BMW X6 SUV 2012
Dodge Magnum Wagon 2008
Hyundai Tucson SUV 2012
smart fortwo Convertible 2012
Ford Focus Sedan 2007
Suzuki Aerio Sedan 2007
Daewoo Nubira Wagon 2002
Volkswagen Golf Hatchback 2012
Ford Fiesta Sedan 2012
Cadillac SRX SUV 2012
Chevrolet Sonic Sedan 2012
Hyundai Elantra Touring Hatchback 2012
Suzuki SX4 Sedan 2012
Audi 100 Sedan 1994
Audi 100 Wagon 1994
Audi V8 Sedan 1994
Volvo 240 Sedan 1993
Dodge Caliber Wagon 2012
Dodge Caliber Wagon 2007
Suzuki SX4 Hatchback 2012
Buick Enclave SUV 2012
Hyundai Veracruz SUV 2012
Dodge Journey SUV 2012
Scion xD Hatchback 2012
Dodge Durango SUV 2012
Ford Edge SUV 2012
Infiniti QX56 SUV 2011
GMC Acadia SUV 2012
BMW X5 SUV 2007
BMW X3 SUV 2012
Chevrolet HHR SS 2010
Volkswagen Golf Hatchback 1991
Chevrolet Traverse SUV 2012
Honda Odyssey Minivan 2012
Ram C/V Cargo Van Minivan 2012
Chrysler Town and Country Minivan 2012
Ford Freestar Minivan 2007
Dodge Caravan Minivan 1997
Honda Odyssey Minivan 2007
Dodge Ram Pickup 3500 Crew Cab 2010
Chevrolet Avalanche Crew Cab 2012
Chevrolet Silverado 1500 Classic Extended Cab 2007
Dodge Dakota Crew Cab 2010
Ford Ranger SuperCab 2011
Dodge Dakota Club Cab 2007
GMC Canyon Extended Cab 2012
Dodge Ram Pickup 3500 Quad Cab 2009
Ford F-150 Regular Cab 2007
Chevrolet Silverado 1500 Hybrid Crew Cab 2012
Ford F-150 Regular Cab 2012
Chevrolet Silverado 2500HD Regular Cab 2012
Chevrolet Silverado 1500 Extended Cab 2012
Chevrolet Silverado 1500 Regular Cab 2012
Ford F-450 Super Duty Crew Cab 2012
AM General Hummer SUV 2000
HUMMER H3T Crew Cab 2010
HUMMER H2 SUT Crew Cab 2009
Jeep Wrangler SUV 2012
Jeep Patriot SUV 2012
Jeep Liberty SUV 2012
Mazda Tribute SUV 2011
Land Rover LR2 SUV 2012
Toyota 4Runner SUV 2012
Land Rover Range Rover SUV 2012
Cadillac Escalade EXT Crew Cab 2007
GMC Terrain SUV 2012
Jeep Compass SUV 2012
Volvo XC90 SUV 2007
Chevrolet TrailBlazer SS 2009
GMC Yukon Hybrid SUV 2012
Jeep Grand Cherokee SUV 2012
Ford E-Series Wagon Van 2012
Nissan NV Passenger Van 2012
GMC Savana Van 2012
Chevrolet Express Cargo Van 2007
Chevrolet Express Van 2007
Dodge Sprinter Cargo Van 2009
Mercedes-Benz Sprinter Van 2012
Hyundai Santa Fe SUV 2012
Buick Rainier SUV 2007
Chrysler Aspen SUV 2009
Dodge Durango SUV 2007
Toyota Sequoia SUV 2012
Chevrolet Tahoe Hybrid SUV 2012
Ford Expedition EL SUV 2009
Isuzu Ascender SUV 2008
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M DETAILED EMPIRICAL RESULTS

In this section, we report the full results of the experiments presented in the Sec. 6, Appendix F
and L.1.

Table 3: (Details of Fig. 9a) Test accuracy of Caltech-101 dataset applying superclass label corruption,
where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.03±0.07% 93.47±0.22% 90.40±0.35% 84.31±0.86% 78.76±0.89% 67.80±1.21% 47.35±1.77% 16.38±0.98%
2 95.10±0.05% 93.74±0.20% 90.94±0.24% 85.46±0.85% 79.88±0.65% 68.59±1.28% 47.83±2.22% 18.45±1.42%
3 95.05±0.09% 93.74±0.24% 90.84±0.37% 85.60±1.01% 80.15±0.56% 68.87±1.28% 47.85±2.20% 18.66±1.59%
4 94.97±0.17% 93.74±0.20% 90.92±0.35% 85.54±1.16% 80.05±0.52% 69.01±1.31% 48.04±2.13% 18.63±1.78%
5 94.85±0.15% 93.68±0.12% 90.88±0.26% 85.60±1.16% 80.15±0.52% 69.01±1.12% 47.96±2.15% 18.59±1.81%

PLL 94.03±0.19% 92.67±0.41% 89.69±0.53% 85.54±2.30% 81.11±0.77% 70.79±1.11% 48.58±2.40% 19.78±1.45%

Table 4: (Details of Fig. 9a) Test accuracy of Caltech-256 dataset applying superclass label corruption,
where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.63±0.03% 81.70±0.22% 77.96±0.25% 72.61±0.34% 69.57±0.05% 63.68±0.58% 52.63±0.74% 28.35±1.55%
2 83.67±0.07% 81.98±0.15% 78.16±0.17% 72.66±0.30% 69.79±0.17% 63.93±0.69% 52.97±0.93% 28.67±1.82%
3 83.60±0.08% 81.95±0.15% 78.12±0.11% 72.56±0.41% 69.83±0.23% 63.89±0.68% 52.91±0.98% 28.60±1.83%
4 83.53±0.08% 81.88±0.14% 78.02±0.09% 72.53±0.39% 69.80±0.24% 63.86±0.65% 52.92±0.95% 28.56±1.88%
5 83.53±0.05% 81.83±0.21% 77.93±0.10% 72.42±0.39% 69.80±0.25% 63.86±0.65% 52.88±0.90% 28.50±1.86%

PLL 82.64±0.24% 80.23±0.29% 76.08±1.13% 71.00±0.46% 69.63±1.67% 65.37±1.45% 54.33±1.25% 28.68±2.74%

Table 5: (Details of Fig. 9a) Test accuracy of CIFAR-100 dataset applying superclass label corruption,
where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 70.60±0.05% 65.60±0.11% 59.58±0.22% 52.38±0.19% 46.76±0.11% 39.59±0.25% 28.33±0.32% 13.21±0.22%
2 71.73±0.22% 69.55±0.11% 66.03±0.20% 62.13±0.21% 58.46±0.60% 53.24±0.43% 43.10±0.37% 22.62±1.22%
3 72.05±0.22% 69.79±0.26% 66.34±0.20% 62.35±0.12% 58.63±0.57% 53.41±0.51% 43.57±0.32% 23.34±1.13%
4 72.03±0.25% 69.83±0.27% 66.48±0.21% 62.40±0.12% 58.70±0.55% 53.52±0.52% 43.72±0.32% 23.53±1.17%
5 72.04±0.28% 69.86±0.28% 66.49±0.17% 62.41±0.14% 58.74±0.54% 53.63±0.52% 43.86±0.33% 23.65±1.22%

PLL 69.46±0.16% 67.85±0.05% 66.91±0.23% 63.88±0.28% 61.33±0.43% 57.13±0.14% 48.60±0.87% 26.46±0.73%

Table 6: (Details of Fig. 9a) Test accuracy of Flowers-102 dataset applying superclass label corruption,
where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.10±0.17% 80.85±0.30% 67.75±0.64% 51.93±1.06% 42.39±1.77% 32.88±1.62% 22.55±0.48% 9.64±0.28%
2 87.94±0.29% 83.04±0.28% 73.20±0.09% 60.20±1.05% 52.06±2.67% 41.80±2.69% 29.02±1.64% 11.76±0.85%
3 87.78±0.39% 83.66±0.20% 75.39±0.21% 63.14±1.68% 53.73±2.52% 43.53±2.06% 30.23±1.01% 13.01±1.01%
4 87.29±0.39% 83.82±0.14% 75.82±0.41% 63.73±1.52% 54.12±2.17% 44.25±1.60% 30.72±1.06% 13.27±1.17%
5 87.03±0.24% 83.92±0.35% 75.92±0.60% 64.22±1.61% 54.44±1.53% 44.61±1.39% 31.18±1.06% 13.43±1.10%

PLL 85.62±0.20% 79.71±0.37% 74.84±0.32% 63.86±1.07% 56.90±3.11% 46.37±1.91% 34.44±1.25% 14.22±0.42%

Table 7: (Details of Fig. 9a) Test accuracy of Food-101 dataset applying superclass label corruption,
where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.52±0.02% 61.77±0.16% 57.96±0.25% 52.44±0.23% 48.35±0.10% 42.36±0.12% 32.80±0.97% 15.69±0.36%
2 63.45±0.07% 62.41±0.09% 59.74±0.30% 56.06±0.08% 53.35±0.20% 49.57±0.28% 39.21±3.73% 19.00±3.81%
3 63.29±0.08% 62.22±0.07% 59.68±0.24% 56.01±0.10% 53.30±0.18% 49.61±0.29% 39.30±3.79% 19.11±3.88%
4 63.17±0.08% 62.13±0.09% 59.63±0.25% 55.97±0.11% 53.24±0.17% 49.61±0.28% 39.33±3.79% 19.13±3.93%
5 63.00±0.12% 62.04±0.13% 59.55±0.23% 55.96±0.11% 53.24±0.17% 49.63±0.26% 39.35±3.80% 19.17±3.93%

PLL 63.31±0.09% 61.93±0.09% 59.99±0.37% 57.74±0.07% 55.73±0.25% 53.24±0.09% 43.02±5.77% 21.06±7.16%

Table 8: (Details of Fig. 9a) Test accuracy of StanfordCars dataset applying superclass label corruption,
where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 43.02±0.03% 35.92±0.27% 26.60±0.13% 17.52±0.11% 13.43±0.26% 9.88±0.21% 5.92±0.14% 2.93±0.29%
2 43.18±0.06% 38.04±0.15% 29.97±0.11% 20.77±0.09% 16.81±0.16% 12.22±0.13% 7.60±0.25% 3.20±0.35%
3 42.97±0.06% 38.80±0.15% 31.58±0.06% 21.76±0.61% 17.65±0.07% 12.63±0.16% 7.85±0.18% 3.27±0.42%
4 42.38±0.14% 38.96±0.15% 32.30±0.22% 21.80±0.92% 17.78±0.22% 12.73±0.16% 7.93±0.25% 3.32±0.52%
5 41.76±0.01% 38.79±0.36% 32.65±0.21% 21.81±1.08% 17.96±0.24% 12.68±0.22% 7.82±0.36% 3.33±0.53%

PLL 41.28±0.14% 36.32±0.18% 31.36±0.25% 23.55±0.22% 19.67±0.47% 14.17±0.40% 8.88±0.40% 3.04±0.53%
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Table 9: (Details of Fig. 9b) Test accuracy of Caltech-101 dataset applying symmetric label corruption,
where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.03±0.07% 93.51±0.18% 91.11±0.48% 87.92±0.17% 84.56±0.45% 80.76±0.54% 69.59±0.36% 45.97±0.66%
2 95.10±0.05% 93.70±0.22% 91.74±0.52% 88.40±0.47% 85.39±0.78% 81.14±0.45% 70.97±0.74% 47.56±1.39%
3 95.05±0.09% 93.63±0.23% 91.84±0.47% 88.63±0.64% 85.45±0.85% 81.11±0.46% 71.22±0.71% 47.85±1.43%
4 94.97±0.17% 93.47±0.14% 91.78±0.35% 88.61±0.63% 85.41±0.88% 81.09±0.48% 71.29±0.64% 47.75±1.51%
5 94.85±0.15% 93.41±0.07% 91.80±0.26% 88.59±0.57% 85.50±0.81% 81.01±0.46% 71.41±0.87% 47.62±1.43%

PLL 94.03±0.19% 92.78±0.52% 91.53±0.50% 88.63±0.72% 85.56±2.25% 82.51±0.19% 73.69±1.44% 51.77±2.93%

Table 10: (Details of Fig. 9b) Test accuracy of Caltech-256 dataset applying symmetric label
corruption, where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.63±0.03% 81.76±0.15% 78.59±0.39% 74.50±0.29% 71.47±0.12% 66.45±0.76% 57.47±0.42% 34.41±0.17%
2 83.67±0.07% 82.01±0.35% 78.78±0.39% 74.68±0.26% 71.64±0.11% 66.86±0.87% 57.42±0.31% 34.31±0.12%
3 83.60±0.08% 81.90±0.30% 78.71±0.37% 74.61±0.31% 71.56±0.14% 66.84±0.85% 57.30±0.31% 34.23±0.15%
4 83.53±0.08% 81.80±0.31% 78.67±0.37% 74.57±0.28% 71.51±0.15% 66.77±0.78% 57.20±0.30% 34.15±0.12%
5 83.53±0.05% 81.78±0.32% 78.65±0.35% 74.57±0.26% 71.42±0.18% 66.69±0.73% 57.17±0.31% 34.07±0.15%

PLL 82.64±0.24% 80.43±0.71% 76.47±0.41% 73.33±0.68% 70.60±0.20% 68.16±1.11% 58.38±0.33% 32.58±1.35%

Table 11: (Details of Fig. 9b) Test accuracy of CIFAR-100 dataset applying symmetric label corrup-
tion, where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 70.60±0.05% 66.07±0.06% 61.66±0.21% 55.98±0.10% 51.60±0.22% 45.78±0.08% 35.83±0.19% 18.81±0.14%
2 71.73±0.22% 70.02±0.14% 67.41±0.36% 64.44±0.43% 62.43±0.20% 58.83±0.81% 51.42±0.66% 34.38±0.70%
3 72.05±0.22% 70.25±0.18% 67.72±0.35% 64.59±0.36% 62.49±0.18% 59.03±0.79% 51.77±0.55% 35.48±0.79%
4 72.03±0.25% 70.28±0.19% 67.77±0.39% 64.68±0.39% 62.54±0.18% 59.16±0.77% 51.91±0.57% 35.62±0.87%
5 72.04±0.28% 70.27±0.14% 67.76±0.43% 64.72±0.37% 62.63±0.17% 59.23±0.80% 52.05±0.58% 35.76±0.95%

PLL 69.46±0.16% 68.40±0.21% 67.48±0.34% 65.52±0.14% 63.66±0.27% 61.09±0.35% 56.21±0.18% 40.55±0.25%

Table 12: (Details of Fig. 9b) Test accuracy of Flowers-102 dataset applying symmetric label
corruption, where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.10±0.17% 80.39±0.56% 67.16±0.88% 51.41±1.79% 43.82±1.24% 34.48±0.53% 22.55±0.08% 10.75±1.35%
2 87.94±0.29% 82.91±1.04% 74.41±0.42% 62.22±2.37% 55.39±1.24% 45.52±1.44% 32.39±1.85% 12.81±1.04%
3 87.78±0.39% 83.82±0.64% 75.26±0.47% 63.40±2.73% 57.12±0.59% 46.63±0.93% 33.50±2.12% 13.89±1.75%
4 87.29±0.39% 83.99±0.76% 75.39±0.68% 63.66±2.54% 57.78±0.32% 46.86±0.68% 33.79±2.51% 14.25±1.74%
5 87.03±0.24% 84.02±1.05% 75.56±0.60% 63.56±2.64% 57.78±0.26% 47.09±0.79% 34.02±2.54% 14.48±1.44%

PLL 85.62±0.20% 80.07±0.49% 74.48±0.85% 66.83±2.73% 60.39±2.68% 50.26±1.38% 35.88±1.40% 14.35±1.59%

Table 13: (Details of Fig. 9b) Test accuracy of Food-101 dataset applying symmetric label corruption,
where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.52±0.02% 61.92±0.10% 58.24±0.24% 53.39±0.23% 49.73±0.07% 44.31±0.23% 35.49±0.24% 18.44±0.32%
2 63.45±0.07% 62.56±0.10% 60.21±0.07% 56.99±0.15% 53.22±2.36% 51.21±0.28% 44.69±0.11% 24.92±4.30%
3 63.29±0.08% 62.47±0.09% 60.15±0.07% 56.95±0.17% 53.24±2.37% 51.22±0.34% 44.79±0.11% 24.94±4.36%
4 63.17±0.08% 62.39±0.12% 60.10±0.07% 56.92±0.16% 53.20±2.40% 51.19±0.36% 44.84±0.09% 25.00±4.42%
5 63.00±0.12% 62.25±0.11% 60.00±0.05% 56.90±0.16% 53.19±2.41% 51.18±0.36% 44.84±0.11% 25.04±4.45%

PLL 63.31±0.09% 62.03±0.12% 60.24±0.05% 57.97±0.29% 54.26±2.81% 54.01±0.09% 49.23±0.18% 29.36±8.03%

Table 14: (Details of Fig. 9b) Test accuracy of StanfordCars dataset applying symmetric label
corruption, where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 43.02±0.03% 35.62±0.35% 26.51±0.32% 17.54±0.14% 13.26±0.39% 9.16±0.29% 5.45±0.17% 2.49±0.12%
2 43.18±0.06% 37.89±0.17% 29.77±0.30% 21.27±0.23% 16.76±0.10% 12.20±0.11% 6.89±0.34% 2.77±0.22%
3 42.97±0.06% 38.86±0.06% 30.91±0.43% 21.95±0.17% 16.89±0.46% 12.40±0.14% 7.20±0.44% 2.84±0.25%
4 42.38±0.14% 38.95±0.11% 31.36±0.54% 22.13±0.46% 16.91±0.56% 12.32±0.17% 7.26±0.54% 2.90±0.33%
5 41.76±0.01% 38.86±0.10% 31.61±0.63% 22.10±0.46% 16.72±0.70% 12.19±0.16% 7.23±0.62% 2.92±0.34%

PLL 41.28±0.14% 36.58±0.19% 31.97±0.76% 24.76±0.37% 20.56±0.27% 14.61±0.99% 8.26±0.69% 2.93±0.34%
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Table 15: (Details of Fig. 9c) Test accuracy of Caltech-101 dataset applying asymmetric label
corruption, where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.03±0.07% 93.63±0.22% 91.05±0.19% 87.69±0.41% 85.14±0.66% 80.22±1.08% 70.87±0.91% 45.12±0.92%
2 95.10±0.05% 93.66±0.29% 91.44±0.55% 88.27±0.45% 85.93±0.35% 80.66±1.10% 71.74±0.60% 46.52±1.40%
3 95.05±0.09% 93.55±0.33% 91.53±0.55% 88.31±0.40% 85.96±0.23% 80.68±1.04% 71.83±0.81% 46.70±1.47%
4 94.97±0.17% 93.53±0.23% 91.61±0.53% 88.40±0.37% 85.89±0.21% 80.63±1.04% 71.79±0.75% 46.83±1.37%
5 94.85±0.15% 93.53±0.24% 91.57±0.65% 88.46±0.35% 85.98±0.22% 80.57±0.95% 71.72±0.82% 46.87±1.25%

PLL 94.03±0.19% 92.74±0.09% 90.84±0.68% 88.71±0.64% 87.14±0.53% 81.43±0.78% 72.50±2.54% 48.73±2.36%

Table 16: (Details of Fig. 9c) Test accuracy of Caltech-256 dataset applying asymmetric label
corruption, where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.63±0.03% 81.65±0.18% 78.52±0.20% 74.35±0.19% 71.22±0.28% 66.50±0.37% 57.42±0.71% 35.13±1.10%
2 83.67±0.07% 81.86±0.10% 78.62±0.24% 74.82±0.49% 71.27±0.42% 66.76±0.28% 57.72±0.87% 35.19±1.18%
3 83.60±0.08% 81.72±0.14% 78.58±0.30% 74.80±0.55% 71.32±0.43% 66.73±0.23% 57.64±0.99% 35.16±1.19%
4 83.53±0.08% 81.69±0.16% 78.53±0.28% 74.74±0.54% 71.27±0.42% 66.68±0.25% 57.57±1.02% 35.11±1.18%
5 83.53±0.05% 81.65±0.18% 78.51±0.32% 74.72±0.54% 71.21±0.44% 66.63±0.31% 57.54±1.01% 35.11±1.24%

PLL 82.64±0.24% 80.38±0.21% 75.87±0.49% 74.04±1.26% 70.82±0.87% 68.04±0.84% 57.91±2.38% 34.65±2.46%

Table 17: (Details of Fig. 9c) Test accuracy of CIFAR-100 dataset applying asymmetric label
corruption, where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 70.60±0.05% 66.13±0.18% 61.97±0.11% 55.76±0.19% 51.61±0.19% 45.46±0.32% 35.83±0.11% 18.88±0.32%
2 71.73±0.22% 69.87±0.36% 67.29±0.19% 64.21±0.11% 62.15±0.51% 58.55±0.21% 52.36±0.32% 34.72±0.40%
3 72.05±0.22% 70.01±0.43% 67.37±0.19% 64.43±0.17% 62.25±0.48% 58.78±0.18% 52.62±0.32% 36.16±0.11%
4 72.03±0.25% 70.06±0.43% 67.43±0.15% 64.50±0.18% 62.29±0.42% 58.86±0.19% 52.74±0.30% 36.34±0.15%
5 72.04±0.28% 70.06±0.46% 67.47±0.14% 64.57±0.18% 62.32±0.41% 58.89±0.25% 52.84±0.26% 36.46±0.16%

PLL 69.46±0.16% 68.41±0.15% 67.59±0.20% 65.08±0.26% 63.55±0.28% 60.73±0.22% 56.51±0.10% 40.53±0.55%

Table 18: (Details of Fig. 9c) Test accuracy of Flowers-102 dataset applying asymmetric label
corruption, where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.10±0.17% 80.33±0.12% 67.71±1.07% 52.29±1.45% 44.90±1.39% 34.28±1.90% 22.22±0.32% 11.08±1.13%
2 87.94±0.29% 82.71±0.20% 73.89±0.46% 63.59±2.16% 57.19±2.98% 46.50±1.42% 31.24±2.05% 15.95±1.93%
3 87.78±0.39% 83.40±0.61% 75.92±0.72% 65.20±2.21% 59.44±1.73% 48.33±1.08% 32.39±2.28% 15.95±1.62%
4 87.29±0.39% 83.53±0.72% 76.31±1.00% 65.56±1.92% 60.20±1.11% 48.82±0.88% 32.61±2.14% 15.82±1.74%
5 87.03±0.24% 83.82±0.85% 76.57±1.15% 65.62±1.86% 60.52±0.91% 48.95±0.61% 32.32±2.04% 15.72±1.74%

PLL 85.62±0.20% 79.44±0.18% 75.23±0.74% 66.73±2.00% 62.22±1.67% 51.27±1.27% 36.44±1.60% 17.48±2.36%

Table 19: (Details of Fig. 9c) Test accuracy of Food-101 dataset applying asymmetric label corruption,
where weight decay value λ = 5× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.52±0.02% 61.83±0.14% 58.27±0.10% 53.17±0.12% 49.74±0.17% 44.34±0.22% 35.16±0.20% 18.62±0.34%
2 63.45±0.07% 62.43±0.11% 60.17±0.12% 56.84±0.08% 53.95±0.64% 51.07±0.40% 43.86±0.21% 25.16±4.31%
3 63.29±0.08% 62.31±0.12% 60.12±0.12% 56.84±0.07% 53.97±0.63% 51.06±0.43% 43.92±0.17% 25.24±4.35%
4 63.17±0.08% 62.19±0.13% 60.04±0.17% 56.81±0.11% 53.96±0.63% 51.03±0.44% 43.94±0.17% 25.31±4.39%
5 63.00±0.12% 62.10±0.14% 60.00±0.18% 56.78±0.13% 53.96±0.63% 51.04±0.44% 43.96±0.17% 25.35±4.39%

PLL 63.31±0.09% 61.86±0.06% 60.11±0.13% 57.69±0.07% 55.71±0.73% 53.86±0.29% 48.52±0.33% 29.71±7.46%

Table 20: (Details of Fig. 9c) Test accuracy of StanfordCars dataset applying asymmetric label
corruption, where weight decay value λ = 5× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 43.02±0.03% 35.51±0.18% 26.38±0.31% 17.22±0.31% 13.04±0.24% 9.48±0.15% 5.35±0.19% 2.51±0.10%
2 43.18±0.06% 37.84±0.05% 29.76±0.26% 21.00±0.31% 16.76±0.35% 11.79±0.39% 6.78±0.46% 3.03±0.20%
3 42.97±0.06% 38.70±0.04% 31.13±0.14% 21.71±0.53% 16.97±0.62% 12.05±0.32% 7.08±0.51% 3.12±0.20%
4 42.38±0.14% 38.73±0.03% 31.89±0.24% 21.76±0.90% 16.84±0.77% 12.00±0.33% 7.17±0.57% 3.13±0.20%
5 41.76±0.01% 38.52±0.04% 32.02±0.15% 21.77±1.15% 16.63±0.68% 11.87±0.36% 7.19±0.58% 3.18±0.16%

PLL 41.28±0.14% 36.63±0.22% 31.57±0.40% 24.78±0.56% 20.69±0.34% 13.17±0.71% 8.20±1.14% 3.17±0.35%
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Table 21: (Details of Fig. 14a) Test accuracy of Caltech-101 dataset applying superclass label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.01±0.10% 93.45±0.24% 90.38±0.33% 84.29±0.91% 78.74±0.92% 67.76±1.16% 47.37±1.77% 16.36±1.02%
2 95.10±0.05% 93.70±0.19% 90.86±0.27% 84.41±0.85% 79.80±0.64% 68.43±1.31% 49.42±1.79% 18.47±1.41%
3 95.05±0.05% 93.61±0.14% 90.82±0.26% 84.39±0.80% 79.99±0.49% 68.64±1.36% 49.48±1.96% 18.51±1.58%
4 94.95±0.05% 93.61±0.12% 90.73±0.25% 84.25±0.78% 79.92±0.50% 68.70±1.32% 49.40±2.02% 18.61±1.67%
5 94.91±0.07% 93.57±0.15% 90.63±0.17% 84.16±0.79% 79.90±0.50% 68.70±1.32% 49.25±2.04% 18.99±2.42%

PLL 93.82±0.96% 92.67±0.41% 89.75±0.50% 84.31±0.72% 81.13±0.67% 70.87±1.13% 51.67±2.74% 19.72±1.43%

Table 22: (Details of Fig. 14a) Test accuracy of Caltech-256 dataset applying superclass label
corruption, where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.63±0.01% 81.69±0.23% 77.96±0.24% 72.60±0.36% 69.57±0.03% 63.66±0.57% 52.61±0.75% 28.32±1.56%
2 83.68±0.08% 81.97±0.16% 78.14±0.17% 72.62±0.28% 69.77±0.18% 63.87±0.68% 52.88±0.95% 28.62±1.82%
3 83.64±0.08% 81.91±0.19% 78.09±0.09% 72.52±0.37% 69.76±0.21% 63.84±0.69% 52.80±0.91% 28.54±1.91%
4 83.55±0.08% 81.83±0.23% 78.03±0.11% 72.46±0.34% 69.72±0.21% 63.78±0.63% 52.76±0.94% 28.48±1.85%
5 83.50±0.07% 81.78±0.25% 77.92±0.10% 72.45±0.33% 69.68±0.26% 63.72±0.70% 52.73±0.98% 28.40±1.89%

PLL 82.49±0.12% 80.23±0.31% 76.09±1.11% 71.00±0.46% 69.63±1.68% 65.42±1.44% 54.37±1.23% 28.70±2.70%

Table 23: (Details of Fig. 14a) Test accuracy of CIFAR-100 dataset applying superclass label
corruption, where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 70.35±0.02% 64.82±0.07% 58.54±0.26% 51.24±0.08% 45.54±0.12% 38.39±0.20% 27.34±0.27% 12.82±0.17%
2 71.45±0.18% 68.02±1.09% 65.87±0.23% 61.70±0.19% 59.01±0.16% 52.27±0.27% 42.63±0.40% 22.04±0.97%
3 71.59±0.24% 68.12±1.06% 66.26±0.37% 62.07±0.37% 59.11±0.20% 53.07±1.15% 43.05±0.20% 22.75±0.95%
4 71.63±0.23% 68.14±1.07% 66.31±0.39% 62.11±0.40% 59.15±0.21% 53.15±1.16% 43.17±0.22% 22.83±0.97%
5 71.62±0.18% 68.14±1.05% 66.34±0.38% 62.13±0.40% 59.19±0.20% 53.18±1.16% 43.23±0.27% 22.95±1.00%

PLL 69.30±0.20% 66.21±0.72% 65.85±0.46% 62.96±0.34% 60.65±0.21% 56.61±0.23% 47.50±0.81% 25.58±0.80%

Table 24: (Details of Fig. 14a) Test accuracy of Flowers-102 dataset applying superclass label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.01±0.17% 80.36±0.09% 66.41±0.53% 50.36±0.99% 40.16±1.76% 31.01±1.36% 21.14±0.59% 9.22±0.28%
2 87.75±0.29% 82.35±0.21% 72.12±0.58% 58.04±0.81% 48.95±1.00% 39.44±1.93% 27.48±1.76% 10.36±0.48%
3 87.75±0.24% 82.88±0.17% 73.69±0.81% 59.61±1.60% 50.85±0.36% 40.62±1.32% 28.33±1.35% 10.69±0.76%
4 87.55±0.16% 82.97±0.33% 74.12±0.85% 60.16±1.72% 51.24±0.32% 41.24±0.74% 28.86±1.59% 10.69±0.90%
5 87.09±0.30% 83.04±0.49% 74.08±0.88% 60.33±1.93% 51.57±0.52% 41.27±0.50% 29.25±1.78% 10.65±1.09%

PLL 85.23±0.18% 79.08±0.26% 70.33±1.38% 57.91±2.22% 50.29±1.32% 40.16±1.29% 28.92±1.42% 11.67±0.69%

Table 25: (Details of Fig. 14a) Test accuracy of Food-101 dataset applying superclass label corruption,
where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.46±0.03% 61.66±0.17% 57.79±0.24% 52.15±0.24% 48.09±0.06% 42.04±0.14% 32.56±1.05% 15.58±0.46%
2 63.52±0.05% 62.25±0.29% 59.72±0.26% 56.14±0.27% 51.75±2.53% 47.45±2.69% 37.55±3.69% 19.13±4.01%
3 63.28±0.08% 62.10±0.30% 59.66±0.28% 56.12±0.25% 51.68±2.56% 47.42±2.68% 37.54±3.70% 19.15±4.05%
4 63.13±0.04% 61.99±0.29% 59.56±0.24% 56.08±0.28% 51.63±2.53% 47.39±2.68% 37.52±3.69% 19.16±4.06%
5 62.98±0.08% 61.90±0.29% 59.47±0.23% 56.04±0.26% 51.59±2.52% 47.37±2.70% 37.52±3.71% 19.15±4.09%

PLL 63.36±0.14% 61.85±0.20% 59.93±0.36% 57.70±0.12% 53.57±3.23% 50.75±3.39% 40.59±5.43% 21.30±7.40%

Table 26: (Details of Fig. 14a) Test accuracy of StanfordCars dataset applying superclass label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 42.62±0.06% 34.42±0.30% 24.40±0.13% 15.74±0.09% 11.94±0.24% 8.95±0.09% 5.51±0.14% 2.96±0.19%
2 42.97±0.15% 35.96±0.25% 27.42±0.22% 18.23±0.47% 14.48±0.45% 9.97±0.97% 6.04±0.19% 3.15±0.23%
3 43.03±0.18% 36.90±0.21% 28.61±0.45% 18.60±0.63% 14.99±0.44% 10.28±1.27% 6.29±0.31% 3.21±0.33%
4 42.92±0.09% 37.36±0.28% 28.77±0.69% 18.75±0.72% 15.13±0.44% 10.32±1.36% 6.30±0.39% 3.25±0.37%
5 42.82±0.07% 37.74±0.36% 28.88±0.76% 18.73±0.68% 15.23±0.48% 10.41±1.48% 6.28±0.43% 3.23±0.35%

PLL 41.30±0.06% 34.57±0.46% 27.97±0.50% 18.51±1.10% 14.61±0.28% 9.44±1.37% 5.99±0.36% 2.98±0.36%
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Table 27: (Details of Fig. 14b) Test accuracy of Caltech-101 dataset applying symmetric label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.01±0.10% 93.51±0.18% 91.09±0.51% 87.86±0.12% 84.52±0.43% 80.72±0.57% 69.57±0.31% 45.87±0.73%
2 95.10±0.05% 93.70±0.27% 91.72±0.54% 88.38±0.50% 85.23±0.83% 81.03±0.55% 70.89±0.84% 47.37±1.39%
3 95.05±0.05% 93.59±0.30% 91.90±0.42% 88.36±0.55% 85.22±0.85% 80.99±0.54% 70.95±0.78% 47.43±1.49%
4 94.95±0.05% 93.49±0.29% 91.82±0.38% 88.36±0.54% 85.12±0.73% 80.86±0.43% 70.89±0.86% 47.48±1.27%
5 94.91±0.07% 93.43±0.26% 91.72±0.39% 88.34±0.49% 85.06±0.73% 80.78±0.47% 70.72±0.84% 47.31±1.22%

PLL 93.82±0.96% 92.78±0.48% 91.51±0.52% 88.81±0.72% 85.56±2.39% 82.39±0.17% 73.71±1.42% 51.69±2.92%

Table 28: (Details of Fig. 14b) Test accuracy of Caltech-256 dataset applying symmetric label
corruption, where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.63±0.01% 81.76±0.14% 78.59±0.39% 74.50±0.29% 71.49±0.14% 66.44±0.75% 57.44±0.43% 34.41±0.17%
2 83.68±0.08% 81.98±0.34% 78.79±0.40% 74.65±0.25% 71.63±0.10% 66.84±0.87% 57.38±0.32% 34.62±0.40%
3 83.64±0.08% 81.89±0.30% 78.68±0.37% 74.60±0.26% 71.51±0.10% 66.81±0.82% 57.25±0.37% 34.60±0.35%
4 83.55±0.08% 81.82±0.34% 78.61±0.41% 74.52±0.25% 71.43±0.09% 66.76±0.76% 57.09±0.32% 34.48±0.40%
5 83.50±0.07% 81.76±0.34% 78.55±0.38% 74.46±0.25% 71.39±0.11% 66.72±0.76% 57.02±0.39% 34.40±0.44%

PLL 82.49±0.12% 80.45±0.71% 76.51±0.39% 73.33±0.65% 70.60±0.19% 68.19±1.15% 58.41±0.31% 34.30±1.03%

Table 29: (Details of Fig. 14b) Test accuracy of CIFAR-100 dataset applying symmetric label
corruption, where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 70.35±0.02% 65.18±0.14% 60.68±0.17% 55.04±0.07% 50.50±0.23% 44.69±0.01% 34.64±0.17% 18.09±0.10%
2 71.45±0.18% 69.27±0.63% 67.30±0.29% 64.13±0.20% 62.07±0.02% 58.56±0.83% 51.33±0.87% 33.35±0.70%
3 71.59±0.24% 69.60±0.42% 67.39±0.33% 64.43±0.10% 62.21±0.07% 58.74±0.80% 51.78±0.65% 34.36±0.73%
4 71.63±0.23% 69.64±0.39% 67.41±0.33% 64.45±0.10% 62.26±0.08% 58.83±0.77% 51.87±0.61% 34.41±0.74%
5 71.62±0.18% 69.62±0.38% 67.39±0.32% 64.47±0.08% 62.30±0.11% 58.85±0.81% 51.93±0.60% 34.42±0.76%

PLL 69.30±0.20% 67.34±0.43% 67.14±0.18% 65.20±0.11% 63.35±0.39% 60.54±0.30% 55.18±0.81% 38.94±1.43%

Table 30: (Details of Fig. 14b) Test accuracy of Flowers-102 dataset applying symmetric label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.01±0.17% 79.74±0.54% 66.18±0.87% 49.48±1.79% 41.31±1.45% 32.12±0.86% 21.01±0.18% 10.07±1.55%
2 87.75±0.29% 82.45±0.37% 72.55±1.73% 58.01±0.09% 52.88±0.38% 42.97±0.56% 29.08±1.20% 11.37±1.88%
3 87.75±0.24% 83.40±0.41% 73.53±1.56% 59.12±0.48% 55.59±1.06% 45.42±0.82% 30.23±1.42% 11.99±2.72%
4 87.55±0.16% 83.73±0.58% 73.89±1.54% 59.08±0.48% 56.37±1.13% 45.78±1.04% 30.75±1.71% 11.99±2.85%
5 87.09±0.30% 83.56±0.52% 73.95±1.85% 59.02±0.73% 56.70±1.18% 45.88±0.97% 30.65±1.78% 11.96±2.74%

PLL 85.23±0.18% 78.63±1.05% 71.24±2.18% 58.50±1.76% 54.38±1.73% 44.31±0.50% 30.56±1.14% 11.86±3.07%

Table 31: (Details of Fig. 14b) Test accuracy of Food-101 dataset applying symmetric label corruption,
where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.46±0.03% 61.81±0.12% 58.06±0.23% 53.10±0.24% 49.50±0.13% 43.98±0.25% 35.08±0.26% 18.24±0.44%
2 63.52±0.05% 62.27±0.32% 59.86±0.50% 56.96±0.14% 53.22±2.40% 51.15±0.28% 43.47±1.81% 21.67±4.58%
3 63.28±0.08% 62.13±0.26% 59.71±0.48% 56.91±0.14% 53.21±2.41% 51.12±0.34% 43.48±1.82% 21.63±4.61%
4 63.13±0.04% 62.01±0.29% 59.59±0.51% 56.85±0.13% 53.16±2.43% 51.09±0.36% 43.49±1.82% 21.61±4.63%
5 62.98±0.08% 61.88±0.33% 59.53±0.50% 56.81±0.13% 53.12±2.45% 51.03±0.36% 43.47±1.81% 21.60±4.62%

PLL 63.36±0.14% 61.65±0.52% 59.90±0.55% 58.00±0.19% 54.21±2.77% 53.98±0.10% 47.61±2.34% 23.58±8.33%

Table 32: (Details of Fig. 14b) Test accuracy of StanfordCars dataset applying symmetric label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 42.62±0.06% 34.15±0.27% 24.50±0.43% 15.53±0.28% 11.61±0.30% 8.43±0.11% 4.86±0.13% 2.35±0.11%
2 42.97±0.15% 35.63±0.31% 27.15±0.43% 18.63±0.54% 13.95±1.44% 9.26±0.88% 5.43±0.41% 2.57±0.17%
3 43.03±0.18% 36.80±0.37% 28.37±0.75% 19.21±0.74% 14.26±1.55% 9.35±0.88% 5.62±0.50% 2.73±0.11%
4 42.92±0.09% 37.40±0.37% 28.70±0.95% 19.31±0.84% 14.29±1.59% 9.29±0.90% 5.70±0.49% 2.74±0.12%
5 42.82±0.07% 37.62±0.43% 28.79±1.16% 19.31±0.94% 14.29±1.48% 9.27±0.83% 5.74±0.42% 2.76±0.15%

PLL 41.30±0.06% 34.69±0.02% 27.86±0.69% 19.14±0.70% 14.58±2.18% 9.29±1.35% 5.43±0.40% 2.45±0.20%
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Table 33: (Details of Fig. 14c) Test accuracy of Caltech-101 dataset applying asymmetric label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.01±0.10% 93.59±0.20% 91.05±0.15% 87.69±0.41% 85.04±0.71% 80.17±1.07% 70.74±0.85% 45.16±0.94%
2 95.10±0.05% 93.66±0.34% 91.34±0.56% 88.23±0.46% 85.77±0.22% 80.57±1.08% 71.64±0.61% 46.39±1.46%
3 95.05±0.05% 93.51±0.34% 91.47±0.50% 88.33±0.44% 85.79±0.23% 80.40±1.07% 71.60±0.82% 46.43±1.44%
4 94.95±0.05% 93.51±0.30% 91.42±0.50% 88.25±0.42% 85.77±0.29% 80.26±1.13% 71.47±0.88% 46.35±1.44%
5 94.91±0.07% 93.53±0.24% 91.36±0.54% 88.23±0.45% 85.70±0.22% 80.18±1.10% 71.43±0.86% 46.37±1.51%

PLL 93.82±0.96% 92.72±0.10% 90.80±0.73% 88.82±0.61% 87.14±0.48% 81.36±0.74% 72.45±2.41% 48.69±2.46%

Table 34: (Details of Fig. 14c) Test accuracy of Caltech-256 dataset applying asymmetric label
corruption, where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.63±0.01% 81.65±0.19% 78.51±0.20% 74.34±0.18% 71.22±0.29% 66.50±0.35% 57.42±0.71% 35.12±1.09%
2 83.68±0.08% 81.86±0.10% 78.59±0.25% 74.80±0.49% 71.26±0.40% 66.74±0.28% 57.69±0.86% 35.16±1.16%
3 83.64±0.08% 81.72±0.14% 78.53±0.27% 74.77±0.52% 71.28±0.44% 66.70±0.30% 57.58±0.95% 35.10±1.20%
4 83.55±0.08% 81.68±0.12% 78.50±0.25% 74.69±0.54% 71.17±0.43% 66.64±0.30% 57.49±0.96% 35.06±1.23%
5 83.50±0.07% 81.65±0.18% 78.45±0.28% 74.65±0.53% 71.14±0.41% 66.63±0.31% 57.43±0.98% 34.99±1.23%

PLL 82.49±0.12% 80.37±0.19% 75.88±0.50% 74.06±1.28% 70.82±0.87% 68.02±0.83% 57.95±2.39% 34.70±2.49%

Table 35: (Details of Fig. 14c) Test accuracy of CIFAR-100 dataset applying asymmetric label
corruption, where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 70.35±0.02% 65.40±0.17% 61.05±0.17% 54.78±0.22% 50.68±0.29% 44.38±0.36% 34.81±0.03% 18.21±0.25%
2 71.45±0.18% 69.13±0.60% 67.27±0.31% 64.15±0.28% 62.20±0.28% 58.23±0.19% 51.96±0.13% 34.15±0.85%
3 71.59±0.24% 69.30±0.49% 67.36±0.27% 64.48±0.13% 62.26±0.27% 58.49±0.18% 52.37±0.18% 35.27±1.02%
4 71.63±0.23% 69.37±0.50% 67.36±0.25% 64.53±0.10% 62.27±0.26% 58.56±0.21% 52.47±0.22% 35.33±1.02%
5 71.62±0.18% 69.36±0.50% 67.38±0.21% 64.54±0.10% 62.28±0.28% 58.57±0.23% 52.51±0.22% 35.39±1.03%

PLL 69.30±0.20% 67.25±0.49% 67.12±0.22% 64.88±0.16% 63.10±0.02% 60.40±0.22% 55.71±0.16% 38.92±1.46%

Table 36: (Details of Fig. 14c) Test accuracy of Flowers-102 dataset applying asymmetric label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.01±0.17% 79.97±0.17% 66.83±1.09% 49.77±1.43% 42.84±1.18% 32.19±1.78% 20.62±0.12% 10.33±1.00%
2 87.75±0.29% 81.96±0.66% 72.58±0.74% 59.31±3.68% 53.43±3.19% 44.41±2.78% 28.53±3.12% 13.59±1.17%
3 87.75±0.24% 82.45±0.85% 74.02±1.56% 61.57±3.36% 54.58±2.39% 45.29±2.74% 30.03±2.58% 14.87±1.61%
4 87.55±0.16% 82.29±1.03% 74.61±2.04% 62.19±3.36% 54.97±2.05% 45.46±2.86% 30.39±2.46% 15.00±1.86%
5 87.09±0.30% 82.48±1.21% 74.58±2.17% 62.55±3.20% 55.03±1.89% 45.23±2.62% 30.49±2.47% 14.97±1.92%

PLL 85.23±0.18% 78.37±0.72% 70.23±1.09% 59.77±3.86% 54.71±2.20% 44.80±1.85% 28.76±1.96% 15.59±1.45%

Table 37: (Details of Fig. 14c) Test accuracy of Food-101 dataset applying asymmetric label corrup-
tion, where weight decay value λ = 2× 10−5.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.46±0.03% 61.74±0.16% 58.06±0.10% 52.97±0.10% 49.49±0.12% 43.97±0.21% 34.79±0.11% 18.46±0.38%
2 63.52±0.05% 62.31±0.06% 60.00±0.22% 55.85±1.39% 53.86±0.54% 50.90±0.41% 41.82±3.47% 22.22±3.52%
3 63.28±0.08% 62.19±0.08% 59.95±0.19% 55.79±1.41% 53.85±0.56% 50.86±0.44% 41.80±3.47% 22.21±3.49%
4 63.13±0.04% 62.07±0.01% 59.89±0.15% 55.74±1.42% 53.80±0.53% 50.82±0.45% 41.78±3.49% 22.20±3.49%
5 62.98±0.08% 61.93±0.01% 59.84±0.16% 55.71±1.42% 53.79±0.54% 50.83±0.45% 41.77±3.51% 22.20±3.49%

PLL 63.36±0.14% 61.74±0.21% 59.97±0.25% 56.55±1.52% 55.59±0.68% 53.78±0.23% 45.67±4.76% 24.38±5.95%

Table 38: (Details of Fig. 14c) Test accuracy of StanfordCars dataset applying asymmetric label
corruption, where weight decay value λ = 2× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 42.62±0.06% 33.97±0.12% 24.35±0.31% 15.23±0.26% 11.51±0.25% 8.59±0.09% 5.07±0.20% 2.36±0.08%
2 42.97±0.15% 35.63±0.24% 27.24±0.50% 18.65±0.66% 12.42±0.67% 9.16±0.78% 5.19±0.35% 2.55±0.16%
3 43.03±0.18% 36.78±0.37% 27.97±0.68% 19.12±1.01% 12.50±0.74% 9.29±1.11% 5.29±0.42% 2.55±0.22%
4 42.92±0.09% 37.33±0.27% 28.25±0.82% 19.19±1.07% 12.56±0.79% 9.45±1.38% 5.29±0.43% 2.55±0.21%
5 42.82±0.07% 37.62±0.38% 28.34±1.02% 19.07±1.07% 12.55±0.81% 9.52±1.37% 5.30±0.42% 2.55±0.18%

PLL 41.30±0.06% 34.85±0.40% 28.30±0.38% 19.00±0.60% 12.33±0.93% 8.49±1.35% 5.22±0.62% 2.47±0.25%
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Table 39: (Details of Fig. 15a) Test accuracy of Caltech-101 dataset applying superclass label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.08±0.03% 93.49±0.25% 90.46±0.30% 84.37±0.83% 78.80±0.87% 67.78±1.17% 47.45±1.78% 16.44±0.99%
2 95.14±0.05% 93.91±0.32% 90.98±0.24% 85.56±0.78% 80.01±0.71% 68.80±1.17% 49.65±1.76% 18.43±1.48%
3 95.14±0.03% 93.89±0.25% 90.84±0.22% 85.81±1.07% 80.40±0.72% 69.26±1.21% 49.85±1.89% 18.74±1.60%
4 95.05±0.05% 93.91±0.31% 90.78±0.22% 85.93±1.02% 80.45±0.83% 69.45±0.96% 50.10±1.87% 18.84±1.96%
5 94.93±0.08% 93.80±0.24% 90.75±0.19% 86.00±1.04% 80.59±0.85% 69.64±0.77% 50.12±1.85% 18.84±1.91%

PLL 94.35±0.16% 92.68±0.50% 89.73±0.52% 85.52±2.40% 81.20±0.65% 70.91±1.00% 51.50±2.92% 20.01±1.66%

Table 40: (Details of Fig. 15a) Test accuracy of Caltech-256 dataset applying superclass label
corruption, where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.65±0.03% 81.73±0.22% 77.97±0.24% 72.64±0.30% 69.58±0.07% 63.71±0.58% 52.62±0.75% 28.39±1.56%
2 83.69±0.06% 82.01±0.17% 78.17±0.18% 72.92±0.11% 69.85±0.14% 64.04±0.64% 53.04±0.92% 28.73±1.81%
3 83.59±0.09% 81.93±0.23% 78.13±0.19% 72.96±0.14% 69.91±0.18% 64.09±0.64% 53.05±1.00% 28.75±1.80%
4 83.59±0.06% 81.84±0.24% 78.05±0.14% 72.96±0.13% 69.91±0.22% 64.09±0.61% 53.08±0.91% 28.78±1.79%
5 83.55±0.04% 81.81±0.22% 78.02±0.12% 72.93±0.17% 69.94±0.26% 64.03±0.62% 53.07±0.86% 28.65±1.81%

PLL 82.64±0.25% 80.20±0.29% 76.08±1.16% 71.65±0.97% 69.61±1.70% 65.36±1.49% 54.24±1.23% 28.67±2.73%

Table 41: (Details of Fig. 15a) Test accuracy of CIFAR-100 dataset applying superclass label
corruption, where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 71.20±0.02% 66.72±0.19% 61.01±0.16% 53.95±0.22% 48.46±0.06% 41.28±0.10% 29.81±0.36% 13.89±0.27%
2 72.25±0.06% 69.67±0.19% 66.36±0.29% 62.48±0.15% 59.26±0.60% 53.96±0.31% 43.38±0.28% 22.69±0.81%
3 72.44±0.03% 69.84±0.18% 66.68±0.14% 62.68±0.08% 59.45±0.62% 54.12±0.36% 44.06±0.62% 23.33±0.67%
4 72.47±0.11% 69.98±0.26% 66.77±0.14% 62.78±0.09% 59.60±0.62% 54.27±0.32% 44.30±0.63% 23.60±0.72%
5 72.45±0.14% 70.04±0.22% 66.85±0.11% 62.85±0.17% 59.68±0.59% 54.40±0.32% 44.55±0.69% 23.74±0.77%

PLL 69.90±0.12% 68.57±0.21% 67.50±0.27% 64.65±0.30% 62.26±0.38% 58.38±0.35% 49.89±0.71% 28.20±1.41%

Table 42: (Details of Fig. 15a) Test accuracy of Flowers-102 dataset applying superclass label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.24±0.16% 81.83±0.41% 70.20±0.42% 55.36±1.00% 46.60±1.77% 35.72±1.45% 24.97±0.28% 10.07±0.18%
2 87.97±0.09% 83.82±0.35% 75.75±0.37% 64.31±0.63% 55.78±2.44% 45.72±2.78% 32.25±1.00% 12.39±1.09%
3 87.61±0.23% 84.54±0.51% 77.81±0.33% 67.39±1.04% 57.42±2.13% 48.24±2.20% 33.59±0.93% 13.33±1.47%
4 87.25±0.14% 84.61±0.35% 78.24±0.56% 68.14±1.39% 58.20±1.80% 49.05±1.51% 33.76±1.01% 13.86±1.74%
5 86.60±0.12% 84.61±0.42% 78.59±0.73% 68.43±1.27% 58.37±1.85% 48.95±1.48% 33.66±0.86% 14.12±1.69%

PLL 85.56±0.44% 81.11±0.53% 79.02±0.94% 72.48±2.64% 64.87±2.76% 54.31±1.04% 41.47±1.25% 15.23±2.53%

Table 43: (Details of Fig. 15a) Test accuracy of Food-101 dataset applying superclass label corruption,
where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.60±0.03% 61.95±0.12% 58.22±0.25% 52.88±0.24% 48.83±0.11% 43.01±0.13% 33.23±0.75% 15.88±0.22%
2 63.66±0.05% 62.41±0.19% 59.86±0.31% 56.24±0.18% 53.45±0.21% 49.62±0.28% 39.57±3.93% 21.95±3.54%
3 63.38±0.06% 62.27±0.15% 59.79±0.29% 56.25±0.21% 53.47±0.23% 49.70±0.31% 39.74±3.96% 22.18±3.64%
4 63.27±0.04% 62.14±0.17% 59.70±0.28% 56.26±0.21% 53.49±0.22% 49.76±0.29% 39.85±4.04% 22.33±3.74%
5 63.12±0.04% 62.08±0.12% 59.65±0.26% 56.26±0.19% 53.51±0.22% 49.83±0.28% 39.95±4.08% 22.45±3.81%

PLL 63.41±0.03% 61.82±0.15% 60.10±0.41% 57.85±0.11% 55.89±0.33% 53.26±0.04% 43.58±6.13% 27.06±7.03%

Table 44: (Details of Fig. 15a) Test accuracy of StanfordCars dataset applying superclass label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 43.30±0.00% 37.62±0.23% 29.05±0.04% 19.77±0.22% 15.44±0.29% 11.40±0.19% 6.77±0.13% 3.16±0.27%
2 42.87±0.10% 39.05±0.09% 32.19±0.25% 23.10±0.25% 18.71±0.36% 13.75±0.09% 8.31±0.18% 3.47±0.43%
3 41.74±0.12% 38.54±0.36% 32.83±0.54% 24.28±0.26% 19.20±0.60% 14.58±0.05% 8.64±0.18% 3.57±0.53%
4 40.37±0.13% 37.44±0.34% 32.49±0.55% 24.34±0.27% 19.21±0.87% 14.70±0.16% 8.69±0.20% 3.54±0.54%
5 39.03±0.19% 36.20±0.27% 31.76±0.58% 23.91±0.37% 19.05±0.77% 14.61±0.20% 8.59±0.29% 3.46±0.53%

PLL 40.60±0.36% 35.96±0.20% 30.32±0.45% 23.65±0.45% 19.43±0.75% 15.18±0.95% 8.80±0.12% 3.26±0.62%
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Table 45: (Details of Fig. 15b) Test accuracy of Caltech-101 dataset applying symmetric label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.08±0.03% 93.49±0.16% 91.13±0.42% 87.96±0.19% 84.60±0.56% 80.80±0.55% 69.74±0.41% 46.04±0.60%
2 95.14±0.05% 93.74±0.23% 91.78±0.42% 88.56±0.47% 85.60±0.68% 81.45±0.36% 71.31±0.69% 47.77±1.18%
3 95.14±0.03% 93.63±0.32% 91.92±0.31% 88.69±0.65% 85.81±0.90% 81.36±0.35% 71.58±0.85% 48.23±1.51%
4 95.05±0.05% 93.53±0.26% 91.97±0.29% 88.75±0.67% 86.06±0.88% 81.57±0.38% 71.66±0.76% 48.43±1.48%
5 94.93±0.08% 93.49±0.12% 91.97±0.14% 88.79±0.62% 86.06±1.04% 81.55±0.27% 71.68±0.67% 48.48±1.41%

PLL 94.35±0.16% 92.72±0.57% 91.51±0.57% 88.61±0.71% 85.62±2.28% 82.53±0.28% 73.64±1.58% 51.69±3.19%

Table 46: (Details of Fig. 15b) Test accuracy of Caltech-256 dataset applying symmetric label
corruption, where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.65±0.03% 81.77±0.13% 78.60±0.39% 74.50±0.29% 71.48±0.13% 66.48±0.74% 57.47±0.44% 34.42±0.16%
2 83.69±0.06% 82.03±0.34% 78.79±0.41% 74.75±0.26% 71.68±0.11% 66.81±0.73% 57.53±0.33% 34.39±0.13%
3 83.59±0.09% 81.91±0.31% 78.77±0.40% 74.75±0.27% 71.70±0.16% 66.78±0.70% 57.45±0.28% 34.36±0.14%
4 83.59±0.06% 81.90±0.30% 78.76±0.37% 74.70±0.31% 71.63±0.19% 66.80±0.65% 57.43±0.32% 34.32±0.16%
5 83.55±0.04% 81.82±0.32% 78.71±0.39% 74.64±0.27% 71.57±0.20% 66.87±0.69% 57.43±0.33% 34.25±0.18%

PLL 82.64±0.25% 80.41±0.71% 76.47±0.44% 73.29±0.65% 70.59±0.18% 67.80±1.06% 58.23±0.31% 32.47±1.37%

Table 47: (Details of Fig. 15b) Test accuracy of CIFAR-100 dataset applying symmetric label
corruption, where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 71.20±0.02% 67.18±0.06% 62.92±0.37% 57.28±0.14% 53.12±0.17% 47.33±0.03% 37.33±0.28% 19.89±0.13%
2 72.25±0.06% 70.21±0.12% 67.52±0.09% 64.52±0.11% 62.35±0.25% 58.50±0.30% 51.96±0.68% 34.94±0.47%
3 72.44±0.03% 70.45±0.10% 67.72±0.06% 64.69±0.12% 62.53±0.23% 58.73±0.24% 52.29±0.60% 35.99±0.53%
4 72.47±0.11% 70.56±0.17% 67.73±0.08% 64.82±0.18% 62.60±0.24% 58.88±0.23% 52.51±0.58% 36.39±0.51%
5 72.45±0.14% 70.63±0.17% 67.72±0.13% 64.87±0.19% 62.67±0.24% 58.95±0.27% 52.66±0.55% 36.58±0.54%

PLL 69.90±0.12% 69.13±0.18% 67.93±0.10% 65.76±0.19% 64.08±0.11% 61.41±0.17% 57.02±0.19% 41.18±1.27%

Table 48: (Details of Fig. 15b) Test accuracy of Flowers-102 dataset applying symmetric label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.24±0.16% 81.57±0.58% 69.77±1.04% 55.42±2.00% 48.04±1.45% 37.97±0.23% 25.29±0.21% 11.60±1.53%
2 87.97±0.09% 83.95±1.07% 76.80±0.26% 66.37±2.47% 58.33±2.16% 48.66±1.08% 34.28±0.68% 14.97±2.28%
3 87.61±0.23% 84.77±0.76% 78.20±0.40% 67.35±2.00% 61.27±2.60% 51.60±1.35% 35.62±1.23% 15.52±1.85%
4 87.25±0.14% 84.80±0.49% 78.69±0.73% 67.58±2.04% 62.81±2.76% 52.39±1.90% 36.14±1.17% 15.78±1.74%
5 86.60±0.12% 84.67±0.46% 78.66±0.70% 67.91±1.62% 63.24±2.94% 52.48±2.19% 36.34±1.13% 15.78±1.74%

PLL 85.56±0.44% 81.41±0.41% 79.74±0.32% 73.56±1.51% 66.73±2.47% 59.67±1.68% 42.71±2.37% 17.97±4.24%

Table 49: (Details of Fig. 15b) Test accuracy of Food-101 dataset applying symmetric label corruption,
where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.60±0.03% 62.08±0.09% 58.54±0.22% 53.82±0.21% 50.21±0.09% 44.87±0.19% 36.15±0.25% 18.91±0.23%
2 63.66±0.05% 62.61±0.09% 60.20±0.03% 56.98±0.09% 54.72±0.25% 51.24±0.31% 44.59±0.04% 28.08±0.19%
3 63.38±0.06% 62.48±0.07% 60.09±0.04% 57.01±0.08% 54.75±0.18% 51.31±0.35% 44.82±0.01% 28.30±0.20%
4 63.27±0.04% 62.39±0.03% 59.98±0.07% 56.98±0.08% 54.75±0.21% 51.32±0.35% 44.90±0.06% 28.48±0.19%
5 63.12±0.04% 62.31±0.09% 59.94±0.06% 56.98±0.09% 54.78±0.20% 51.33±0.36% 45.00±0.06% 28.56±0.19%

PLL 63.41±0.03% 61.98±0.18% 60.16±0.07% 57.98±0.25% 56.22±0.07% 54.04±0.14% 49.17±0.10% 34.73±0.58%

Table 50: (Details of Fig. 15b) Test accuracy of StanfordCars dataset applying symmetric label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 43.30±0.00% 37.53±0.40% 28.93±0.27% 19.92±0.11% 15.40±0.24% 10.75±0.22% 6.30±0.29% 2.79±0.17%
2 42.87±0.10% 39.15±0.11% 31.79±0.21% 23.35±0.21% 18.36±0.18% 13.52±0.23% 7.74±0.40% 3.20±0.25%
3 41.74±0.12% 38.87±0.02% 32.24±0.23% 24.20±0.14% 19.25±0.25% 14.16±0.50% 8.09±0.53% 3.34±0.32%
4 40.37±0.13% 38.07±0.02% 31.96±0.46% 24.11±0.07% 19.47±0.34% 14.31±0.52% 8.24±0.67% 3.35±0.36%
5 39.03±0.19% 36.91±0.15% 31.12±0.21% 23.72±0.12% 19.24±0.14% 14.15±0.68% 8.20±0.80% 3.39±0.41%

PLL 40.60±0.36% 36.20±0.09% 30.18±0.31% 24.00±0.18% 20.25±0.31% 15.37±0.31% 8.93±1.12% 3.73±0.61%
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Table 51: (Details of Fig. 15c) Test accuracy of Caltech-101 dataset applying asymmetric label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 95.08±0.03% 93.64±0.23% 91.13±0.24% 87.69±0.41% 85.08±0.71% 80.32±1.11% 70.97±0.95% 45.18±0.94%
2 95.14±0.05% 93.74±0.27% 91.65±0.61% 88.33±0.42% 86.04±0.36% 80.91±0.96% 72.04±0.60% 46.74±1.32%
3 95.14±0.03% 93.57±0.34% 91.67±0.61% 88.56±0.59% 86.16±0.26% 80.89±0.88% 72.24±0.70% 47.02±1.08%
4 95.05±0.05% 93.55±0.24% 91.67±0.63% 88.61±0.49% 86.39±0.19% 80.86±0.87% 72.35±0.78% 47.41±1.21%
5 94.93±0.08% 93.57±0.27% 91.61±0.69% 88.61±0.40% 86.44±0.28% 80.84±0.93% 72.20±0.95% 47.48±1.26%

PLL 94.35±0.16% 92.70±0.12% 90.78±0.71% 88.67±0.76% 87.23±0.62% 81.32±0.72% 72.47±2.65% 48.68±2.60%

Table 52: (Details of Fig. 15c) Test accuracy of Caltech-256 dataset applying asymmetric label
corruption, where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 83.65±0.03% 81.65±0.17% 78.50±0.20% 74.38±0.18% 71.22±0.28% 66.54±0.33% 57.43±0.73% 35.15±1.09%
2 83.69±0.06% 81.88±0.10% 78.69±0.21% 74.87±0.47% 71.33±0.41% 66.83±0.27% 57.79±0.89% 35.28±1.16%
3 83.59±0.09% 81.74±0.14% 78.63±0.27% 74.86±0.55% 71.41±0.44% 66.80±0.23% 57.70±1.05% 35.27±1.30%
4 83.59±0.06% 81.72±0.14% 78.57±0.27% 74.88±0.51% 71.45±0.42% 66.78±0.23% 57.72±1.09% 35.27±1.31%
5 83.55±0.04% 81.71±0.11% 78.54±0.29% 74.88±0.51% 71.50±0.40% 66.79±0.23% 57.71±1.09% 35.27±1.25%

PLL 82.64±0.25% 80.41±0.21% 75.86±0.49% 73.98±1.23% 70.80±0.94% 68.01±0.90% 57.83±2.36% 34.60±2.41%

Table 53: (Details of Fig. 15c) Test accuracy of CIFAR-100 dataset applying asymmetric label
corruption, where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 71.20±0.02% 67.28±0.17% 63.12±0.16% 57.15±0.11% 53.07±0.16% 46.98±0.24% 37.39±0.11% 19.93±0.31%
2 72.25±0.06% 70.38±0.16% 67.68±0.40% 64.52±0.18% 62.22±0.08% 58.61±0.54% 52.52±0.42% 34.98±0.37%
3 72.44±0.03% 70.74±0.19% 67.76±0.40% 64.66±0.13% 62.36±0.05% 58.86±0.51% 53.07±0.28% 36.28±0.17%
4 72.47±0.11% 70.85±0.16% 67.78±0.34% 64.75±0.17% 62.44±0.10% 58.92±0.48% 53.28±0.22% 36.58±0.11%
5 72.45±0.14% 70.89±0.15% 67.75±0.36% 64.81±0.13% 62.52±0.12% 58.98±0.51% 53.37±0.18% 36.83±0.10%

PLL 69.90±0.12% 69.20±0.05% 68.00±0.23% 65.71±0.19% 63.85±0.23% 61.62±0.45% 57.10±0.10% 41.51±0.53%

Table 54: (Details of Fig. 15c) Test accuracy of Flowers-102 dataset applying asymmetric label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 88.24±0.16% 81.14±0.12% 70.62±1.32% 56.08±2.00% 49.08±1.38% 38.24±1.94% 24.93±0.44% 12.09±1.12%
2 87.97±0.09% 83.66±0.17% 76.60±0.57% 66.80±3.26% 60.33±2.80% 49.97±3.47% 36.08±1.81% 17.03±1.42%
3 87.61±0.23% 84.15±0.26% 78.04±0.49% 68.07±2.88% 62.06±1.72% 51.14±3.14% 36.67±1.74% 17.75±1.20%
4 87.25±0.14% 84.28±0.32% 78.56±0.65% 68.66±2.66% 62.09±1.37% 51.37±3.17% 36.70±1.63% 18.07±1.09%
5 86.60±0.12% 84.22±0.52% 78.95±1.07% 68.79±2.42% 62.06±1.10% 51.47±3.47% 36.73±1.64% 18.17±1.19%

PLL 85.56±0.44% 81.27±0.21% 79.67±0.30% 74.93±2.52% 69.48±1.30% 59.93±1.54% 45.29±1.47% 20.59±2.17%

Table 55: (Details of Fig. 15c) Test accuracy of Food-101 dataset applying asymmetric label corrup-
tion, where weight decay value λ = 1× 10−4.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 63.60±0.03% 62.02±0.16% 58.53±0.11% 53.60±0.12% 50.25±0.15% 44.94±0.20% 35.84±0.20% 19.06±0.39%
2 63.66±0.05% 62.58±0.01% 60.07±0.19% 57.03±0.14% 54.64±0.24% 51.08±0.44% 44.21±0.20% 28.16±0.77%
3 63.38±0.06% 62.47±0.05% 59.98±0.24% 56.98±0.11% 54.68±0.22% 51.13±0.47% 44.36±0.27% 28.46±0.80%
4 63.27±0.04% 62.34±0.04% 59.92±0.30% 56.96±0.12% 54.67±0.17% 51.15±0.42% 44.49±0.28% 28.59±0.81%
5 63.12±0.04% 62.27±0.06% 59.89±0.29% 56.95±0.12% 54.68±0.18% 51.16±0.39% 44.56±0.32% 28.73±0.87%

PLL 63.41±0.03% 61.95±0.12% 59.93±0.21% 57.94±0.12% 56.34±0.13% 53.97±0.29% 49.18±0.23% 35.36±1.76%

Table 56: (Details of Fig. 15c) Test accuracy of StanfordCars dataset applying asymmetric label
corruption, where weight decay value λ = 1× 10−3.

Distillation Step 0.0 0.1 0.3 0.5 0.6 0.7 0.8 0.9

1 (Teacher) 43.30±0.00% 37.32±0.16% 28.72±0.26% 19.63±0.21% 15.18±0.32% 11.01±0.13% 6.18±0.20% 2.71±0.04%
2 42.87±0.10% 39.03±0.06% 31.85±0.22% 23.23±0.20% 18.32±0.47% 13.75±0.28% 7.71±0.25% 3.27±0.16%
3 41.74±0.12% 38.66±0.08% 32.29±0.28% 24.12±0.32% 19.12±0.62% 14.66±0.14% 7.95±0.20% 3.30±0.23%
4 40.37±0.13% 37.75±0.12% 31.99±0.14% 24.08±0.21% 19.06±0.72% 14.90±0.10% 7.91±0.28% 3.32±0.26%
5 39.03±0.19% 36.62±0.10% 31.24±0.20% 23.82±0.25% 18.78±0.72% 14.69±0.08% 7.84±0.40% 3.33±0.27%

PLL 40.60±0.36% 36.02±0.19% 30.40±0.42% 24.64±0.29% 19.52±0.66% 15.30±0.44% 8.68±0.33% 3.36±0.32%
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