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A CLOPS ALGORITHM

In this section, we outline the various components of CLOPS algorithmically. CLOPS consists of
predominantly three main functions: 1) StoreInBuffer, 2) MonteCarloSamples, and 3) AcquireFrom-
Buffer. These are shown in Algorithms [2}f4] respectively. StoreInBuffer leverages the task-instance
parameters, 3;7, and the storage function, s;7 (Eq. @, to store instances into the buffer, Dp, for
future replay. MonteCarloSamples performs several Monte Carlo forward passes through the network
to allow for the calculation of an acquisition function, c. AcquireFromBuffer implements a user-
defined acquisition function, which could be uncertainty-based, in order to determine the relative
informativeness of each instances in the buffer. This is then exploited to determine which instances to
acquire for replay when the network is training on future tasks.

Algorithm 1: CLOPS

Input: MC epochs Tasc, sample epochs 75, MC
samples 7, storage fraction b, acquisition fraction
a, task data Dr, buffer Dp, training epochs per
task 7
for (z,y) ~ Dr do
calculate £ using eq.[3]
update a;;
if epoch = 7 then
Dp = StoreInBuffer(5;7, b)
end if
if epoch in 7a/¢ then
G = MonteCarloSamples(Dg)
end if
if epoch in 75 then
Dr = AcquireFromBuffer(Dg, G, a)
end if
end for
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Algorithm 2: StoreInBuffer

Input: task-instance parameters 3;1, b
calculate s;7 using eq.[]
SortDescending(s;T)

(zv,yp) C Dr

Dp € (D U (25, yb))

Algorithm 3: MonteCarloSamples
Input: Dp
for (z,y) ~ Dp do
for MC sample in T do
obtain p(y|z, @) and store in G € RM*T*¢
end for
end for

Algorithm 4: AcquireFromBuffer

Input: D, MC posterior distributions G, a
calculate 8 using eq.[7]

SortDescending(3)

(Za,¥a) C DB

Dr € (Dr U (2a;Ya))
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B DATASETS

B.1 DATA PREPROCESSING

In this section, we describe in detail each of the datasets used in our experiments in addition to any
pre-processing that is applied to them.

Cardiology ECG, D; (Hannun et al.|[2019). Each ECG recording was originally 30 seconds with
a sampling rate of 200Hz. Each ECG frame in our setup consisted of 256 samples resampled to
2500 samples. Labels made by a group of physicians were used to assign classes to each ECG
frame depending on whether that label coincided in time with the ECG frame. These labels are:
AFIB, AVB, BIGEMINY, EAR, IVR, JUNCTIONAL, NOISE, NSR, SVT, TRIGEMINY, VT, and
WENCKEBACH. Sudden bradycardia cases were excluded from the data as they were not included
in the original formulation by the authors. The ECG frames were not normalized.

Chapman ECG, D, (Zheng et al.|2020). Each ECG recording was originally 10 seconds with a
sampling rate of 5S00Hz. We downsample the recording to 250Hz and therefore each ECG frame in
our setup consisted of 2500 samples. We follow the labelling setup suggested by Zheng et al.| (2020)
which resulted in four classes: Atrial Fibrillation, GSVT, Sudden Bradychardia, Sinus Rhythm. The
ECG frames were not normalized.

PhysioNet 2020 ECG, D3 (Perez Alday et al., 2020). Each ECG recording varied in duration from
6 seconds to 60 seconds with a sampling rate of S00Hz. Each ECG frame in our setup consisted
of 2500 samples (5 seconds). We assign multiple labels to each ECG recording as provided by the
original authors. These labels are: AF, I-AVB, LBBB, Normal, PAC, PVC, RBBB, STD, and STE.
The ECG frames were normalized in amplitude between the values of 0 and 1.

B.2 DATASET SPLIS

In this section, we outline in Table [/| the number of instances present in each of the training,
validation, and test sets of the various datasets. Data were split into these sets according to a 60, 20,
20 configuration and were always performed at the patient-level. In other words, a patient did not
appear in more than one set.

Table 4: Number of instances (number of patients) in the training, validation, and test splits for
datasets Dy to Ds. The number of instances for D3 are shown for one lead.

Dataset \ Train Validation Test

D1 4079 (180) 1131 (50) 1386 (62)
Do 76,606 (6387) 25,535 (2129) 25,555 (2130)
Ds 11,598 (4402) 3238 (1100) 4041 (1375)
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B.3 TASK SPLITS

In the main manuscript, we conduct experiments in three continual learning scenarios: 1) Class-IL, 2)
Time-IL, and 3) Domain-IL. In this section, we outline the number of instances present in each of the
tasks that define the aforementioned scenarios. Data were split across training, validation, and test
sets according to patient ID using a 60, 20, 20 configurations. In other words, a patient did not appear
in more than one set.

Table 5: Number of instances in the training, validation, and test sets of tasks in our three continual
learning scenarios, Class-IL, Time-IL, and Domain-IL.

Class-IL
0-1 23 45 6-7 8-9 10-11

Task Name

Train 781 227 463 2118 309 179
Validation | 126 141 118 587 83 82
Test 285 77 130 703 89 102
Time-IL
Task Name | Term 1 Term2 Term 3
Train 37596 12534 12552
Validation 20586 6858 6864
Test 18424 6143 6139
Domain-IL
Task Name | Leadl LeadIl LeadIll .. Lead V6
Train 11598 11598 11598 11598
Validation 3238 3238 3238 3238
Test 4041 4041 4041 4041

14



Under review as a conference paper at ICLR 2021

C IMPLEMENTATION DETAILS

In this section, we outline the architecture of the neural network used for all experiments. We chose
this architecture due to its simplicity and its simultaneous ability to learn on the datasets provided.
We also outline the batchsize and the learning rate used for training on the various datasets.

C.1 NETWORK ARCHITECTURE

Table 6: Network architecture used for all experiments. K, Cy,, and C,, represent the kernel size,
number of input channels, and number of output channels, respectively. A stride of 3 was used for all
convolutional layers.

Layer Number Layer Components Kernel Dimension

Conv 1D T7x1x4 (KX Cin x Cour)
BatchNorm
1 ReLU
MaxPool(2)
Dropout(0.1)

Conv 1D T7x4x16
BatchNorm
2 ReLLU
MaxPool(2)
Dropout(0.1)

Conv 1D 7x16x32
BatchNorm
3 ReLU
MaxPool(2)
Dropout(0.1)

Linear 320 x 100
ReLU

5 Linear 100 x C (classes)

C.2 EXPERIMENT DETAILS

Table 7: Batchsize and learning rates used for training with different datasets. The Adam optimizer
was used for all experiments.

Dataset | Batchsize Learning Rate

D1 16 10™
Do 256 10™
Ds 256 10
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C.3 BASELINE REPLAY-BASED METHODS

In this section, we outline how we have adapted two replay-based methods for application in our
continual learning scenarios. This adaptation was necessary since both of these methods were
designed for a more extreme online setting whereby instances are only seen once and never again.

GEM. At the end training on each task, we randomly select a subset of the instances and store them
in the buffer. Since our data are shuffled, this is equivalent to the strategy proposed by the original
authors which involves storing the most recent instances. On subsequent tasks, and at each iteration,
we check the gradient dot product requirement outlined by the original authors, and if that is violated,
we solve a quadratic programming problem. This implementation is exactly the same as that found in
the original MIR manuscript.

MIR. At the end of training on each, we randomly select a subset of the instances and store them
in the buffer. This is more suitable for our scenarios relative to reservoir sampling, which was
implemented by the original authors. As our approach is task-aware, our buffer is task-aware, unlike
the original MIR implementation. Such information would only strengthen the performance of our
adapted version. On subsequent tasks, and at each iteration, we randomly select a subset of the
instances from the buffer, and score them according to the metric proposed by the original authors.
We sort these instances in descending order of the scores and acquire the top scoring instances from
each task. We ensure that the total number of instances replayed is equal to the number of instances
in the mini-batch of the current task.
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D EVALUATION METRICS

Metrics used to evaluate continual learning methodologies are of utmost importance as they provide
us with a glimpse of the strengths and weaknesses of various learning strategies. In this section, we
outline the traditional metrics used within continual learning. We argue that such metrics are limited
in that they only capture the global behaviour of strategies. Consequently, we propose two more
fine-grained metrics in the main manuscript.

Average AUC. Let R; represent the performance of the network in terms of AUC on task j after
having been trained on task i.

N
1
Average AUC = v Z Rj»v (1
j=1

Backward Weight Transfer. BWT € [—1,1] is used to quantify the degree to which training
on subsequent tasks affects the performance on previously-seen tasks. Whereas positive BWT is
indicative of constructive interference, negative BWT is indicative of destructive interference.

N-—1
1 .
BWT = 1 E RY —R? (12)
j=1

17



Under review as a conference paper at ICLR 2021

E COMPARISON OF CLOPS TO BASELINE METHODS

In the main manuscript, we conduct experiments in three continual learning scenarios: 1) Class-IL,
2) Time-IL, and 3) Domain-IL. For each, we illustrate the learning curves during training and the
corresponding evaluation metric values. In this section, we present results that are complementary to
those found in the main manuscript. More specifically, we compare the performance of CLOPS to
that of the baseline methods implemented.

E.1 TiME-IL

In the Time-IL scenario, CLOPS performs on par with the fine-tuning strategy. This can be seen
in Fig. [8|across all evaluation metrics. As noted in the main manuscript, the utility of CLOPS in
this scenario lies in forward weight transfer, behaviour that is better observed in the learning curves
in Fig. @] of Sec.[6.2] Despite the dominance of multi-task learning with an AUC = 0.971, its
implementation is the least feasible particularly in the Time-IL setting where data are collected at
different time intervals during the year.

Table 8: Performance of CL strategies in the Time-IL scenario. Storage and acquisition fractions
are b = 0.25 and a = 0.50, respectively. Mean and standard deviation values are shown across five
seeds.

Method | Average AUC BWT BWT, BWT,

MTL 0.971 + 0.006 - - -
Fine-tuning | 0.824 £0.004  (0.020) £ 0.005 (0.007) £ 0.003  0.010 & 0.001

Replay-based Methods

GEM Could not be solved
MIR 0.856 & 0.010  (0.007) 4+ 0.006  (0.003) + 0.004  0.001 + 0.004
CLOPS 0.834 = 0.014  (0.018) &= 0.004 (0.007) = 0.003  0.007 + 0.003
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Figure 8: Mean validation AUC of MIR in the Time-IL scenario. Results are shown as a function of
storage fractions, b, and acquisition fractions, a and are an average across five seeds.
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E.2 DoOMAIN-IL

To gain a better understanding of the learning dynamics of CLOPS in the domain-IL scenario, we
plot the validation AUC in Fig.[9] Here, significant destructive interference occurs in the fine-tuning
strategy. This is shown by large drops in the AUC of one task when subsequent tasks are trained on.
For instance, when training on Lead V1 (starting at epoch 240), performance on Lead I (green) drops
from an AUC = 0.725 — 0.475, completely erasing any progress that had been made on that lead.
We hypothesize that this is due to the different representations of instances belonging to Lead V1 and
Lead I. Anatomically speaking, these two leads are projections of the same electrical signal in the
heart that are oriented approximately 180 degrees to one another. This behaviour is absent for almost
all leads when CLOPS is implemented, as shown in Fig.[0b] A notable exception is Lead aVR at
epoch 200 where performance drops from an AUC ~ 0.75 — 0.65.
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Figure 9: Mean validation AUC of a) fine-tuning and b) CLOPS (b = 0.25 and a = 0.50) strategy in
the Domain-IL scenario. Each task belongs to the same dataset yet different input modality. Coloured
blocks indicate tasks on which the learner is currently being trained. The shaded area represents one
standard deviation from the mean across 5 seeds.
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F EFFECT OF TASK ORDER

The order in which tasks are presented to a continual learner can significantly impact the degree of
destructive interference. To quantify this phenomenon and evaluate the robustness of CLOPS to task
order, we repeat the Class-IL experiment conducted in the main manuscript after having randomly
shuffled the tasks.

F.1 CrLassIL

Task order does have an effect on destructive interference. By comparing the evaluation metric values
shown in Table [§]and Table|[T)of Sec.[6.1} we show that poorer generalization performance is achieved
when learning sequentially on tasks that have been randomly shuffled. Given that one has limited
control over the order in which data is streamed, continual learning approaches must be robust to task
order. Indeed, we claim that CLOPS is robust to such changes. This can be seen by its achievement
of an AUC = 0.796 regardless of task order (in Tables [T] and [9).
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Figure 10: Mean validation AUC of a) fine-tuning strategy and b) CLOPS (b = 0.25 and @ = 0.50) in
the Class-IL scenario with 6 tasks after being randomly re-ordered. Each task belongs to a mutually-
exclusive pair of classes from D;. Coloured blocks indicate tasks on which the learner is currently
being trained. The shaded area represents one standard deviation from the mean across 5 seeds.

Table 9: Performance of CL strategies in the Class-IL scenario. Storage and acquisition fractions
are b = 0.25 and a = 0.50, respectively. Results are shown across five seeds. Values enclosed in
parentheses are negative.

Method | Average AUC BWT BWT, BWT,

Fine-tuning | 0.672 £0.022 (0.081) £0.049 0.014 +£0.034 (0.055) & 0.025
CLOPS 0.796 £ 0.006 0.110 = 0.021  0.096 = 0.025  0.095 + 0.036
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Distribution of Task-Instance Parameters. We also illustrate the distribution of the tracked task-
instance parameters in Fig.[TT] These distributions differ in terms of overlap compared to those in
Fig.[6 of Sec.[6.1] They both, however, follow a Gaussian distribution and roughly maintain their
relative locations to one another. For instance, task [6, 7] and [10, 11] consistently generate the lowest
and highest s values, respectively, regardless of task order. Such a finding illustrates that task-instance
parameters are agnostic to task-order, which is a desirable trait when attempting to quantify task
difficulty.
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Figure 11: Distribution of the tracked task-instance parameter values, s, corresponding to our
proposed strategy in the Class-IL scenario with 6 tasks. Storage and acquisition fractions are b = 0.25
and a = 0.50, respectively. Each colour corresponds to a different task. Results are shown for one
seed.
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G QUALITATIVE EVALUATION OF TASK-INSTANCE PARAMETERS, [

In this section, we aim to qualitatively evaluate the interpretation of task-instance parameters as
proxies for task-difficulty. To do so for the various CL scenarios, we plot two ECG tracings that
correspond to the highest and lowest s values (see eq.[6). As instances with low s values should be
more difficult to classify, these ECG tracings might be expected to exhibit abnormalities that make it
difficult for a cardiologist to correctly diagnose. Conversely, ECG tracings with high s values should
be easy to classify from an expert’s perspective. We illustrate these tracings, which are coloured
based on the task to which they belong, for the Time-IL and Domain-IL scenarios.

G.1 TIME-IL

In Fig.[12] we see that the network had a difficult time classifying the ECG tracing that corresponds to
the lowest s value with a ground truth label of GSVT (Supra-ventricular Tachycardia). On the other
end of the spectrum, the network was able to comfortably classify the ECG tracing that corresponds
to the highest s value with a ground truth label of SB (Sudden Bradycardia).
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Figure 12: Distribution of the tracked task-instance parameter values, s, corresponding to our
proposed strategy in the Time-IL scenario. Each colour corresponds to a different task. Results are
shown for one seed. The ECG tracings correspond to the lowest and highest s values.

G.2 DoOMAIN-IL

In Fig.[T3] we see that the network had a difficult time classifying the ECG tracing that corresponds
to the lowest s value with a ground truth label of AF (Atrial Fibrillation). This could be due to the
amount of noise present in the tracing. On the other end of the spectrum, the network was able to
comfortably classify the ECG tracing that corresponds to the highest s value with a ground truth label
of AF also.
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Figure 13: Distribution of the tracked task-instance parameter values corresponding to our proposed
strategy in the Domain-IL scenario. Each colour corresponds to a different task. Results are shown
for one seed. The ECG tracings correspond to the lowest and highest s values.
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H EFFECT OF STORAGE FUNCTION FORM

In the main manuscript, we proposed the following storage function as a way to guide the storage of
instances into the replay buffer. This function is dependent upon the task-instance parameters, 3, as
they have been tracked throughout the training process.

s | (i~ S (5”“ A+ &T(t)) Al (13)

2
t=0

In this section, we aim to quantify the effect of the form of the storage function on the generaliz-
ation performance of our network. More specifically, we explore a different form of the storage
function where the task-instance parameters, (3, are squared before the trapezoidal rule is applied.
Mathematically, the storage function now takes on the following form.

t=0

To compare these two storage functions, we conduct experiments in the Class-IL scenario as we vary
the storage fraction, b, and acquisition fraction, a. In Fig.|14] we present the validation AUC of these
two experiments conducted across five seeds. We find that our proposed storage function, and the one
used throughout the manuscript (Eq. [I3)), is more advantageous than that shown in Eq.[T4] This is
evident by the consistently higher Average AUC scores. A possible explanation for this observation
is the following. Recall that task-instance parameters, 3, are a rough proxy for the difficulty of
an instance to be classified. Therefore, when ranking such instances based on Eq. [T3]for storage
purposes, we are effectively storing the relatively “easiest-to-classify’ instances into the buffer. We
hypothesize that upon squaring the task-instance parameters, as is done in Eq.[I4] this interpretation
no longer holds. As a result, the discrepancy between instances diminishes and thus hinders the
storage process.
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Figure 14: Effect of form of storage function on the generalization performance of the network.
Mean validation AUC when buffer storage is based on (Left) Eq.[I3]and (Right) Eq. We show
that our proposed storage function, and the one used throughout the manuscript (Eq.[13), is more
advantageous than that shown in Eq. @
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I EFFECT OF STORAGE FRACTION, b, AND ACQUISITION FRACTION, a, ON
PERFORMANCE

Replay-based continual learning strategies can be computationally expensive and resource-hungry
due to the presence of a buffer and the need to acquire instances from it. To map out the performance
of CLOPS under various resource constraints, we set out to investigate the effect of changes in the
storage and acquisition fractions on the various evaluation metrics.

To simultaneously validate our decision of storing the top b instances from each task into the buffer,
we conduct the aforementioned experiments in two scenarios: 1) The first scenario involves sorting
the instances according to their s value (eq.[6) and storing the top b fraction of instances into the
buffer (Storing top b fraction). 2) The second scenario involves storing the bottom b fraction of
instances (Storing bottom b fraction). By conducting this specific experiment, we look to determine
the relative benefit of replaying either relatively easy or difficult instances.

1.1 AVERAGE AUC

Larger storage and acquisition fractions should further alleviate destructive interference and improve
generalization performance. The intuition is that large fractions will expose the learner to a more
representative distribution of data from previous tasks. We quantify this graded response in Fig. [I3]
where the AUC = 0.758 — 0.832 as b,a = 0.1 — 1. We also claim that a performance bottleneck
lies at the storage phase. This can be seen by the larger improvement in performance as a result of an
increased storage fraction compared to that observed for a similar increase in acquisition fraction.
Despite this, a strategy with fractions as low as b = 0.25 and a = 0.1 is sufficient to outperform the
fine-tuning strategy.

In addition to exploring the graded effect of fraction values, we wanted to explore the effect of storing
the bottom, most difficult, b fraction of instances in a buffer. The intuition is that if a learner can
perform well on these difficult replayed instances, then strong performance should be expected on
the remaining relatively easier instances. We show in Fig. [I5] (right) that although the performance
seems to be on par with that in Fig. [L5|(left) for b = (0.5, 1), the most notable differences arise at
fractions b < 0.5, a < 0.5 (red box). We believe this is due to the extreme ’hard-to-classify’ nature
of instances with low s values. These findings justify our storing of the top b fraction of instances.
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Figure 15: Mean validation AUC of CLOPS in the Class-IL scenario implemented while either
storing b instances with the highest s value (left) or lowest s value (right). Please refer to eq.[f for the
definition of s. Results are shown as a function of storage fractions, b, and acquisition fractions, a and
are an average across five seeds. Darker coloured cells indicate higher generalization performance.
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1.2 BACKWARD WEIGHT TRANSFER

In this section, we illustrate the results of the two scenarios 1) Storing top b fraction and 2) Storing
bottom b fraction on backward weight transfer. In the top left heatmap, we show that as the storage
fraction b = 0.1 — 1 at an acquisition fraction, ¢ = 0.1, is associated with improved constructive
interference (BW'T = 0.034 — 0.066). Although this is also true for the scenario in the second
column, we show that performance is worse in this case. Such a finding corroborates our claim in the
main manuscript that storing the top instances, which correspond to the ‘easiest-to-classify’ instances,
is more beneficial in the context of CL. This provides further evidence that supports our use of the
buffer-storage strategy represented by the first column for all experiments conducted in the main
manuscript.
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Figure 16: Backward weight transfer on the validation set using CLOPS while storing top b fraction
of instances (left column) and bottom b fraction of instances (right column) in the Class-IL scenario.
Results are shown as a function of storage fractions, b, and acquisition fractions, a and are an average
across five seeds.
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J EFFECT OF TASK-INSTANCE PARAMETERS, (3, AND ACQUISITION
FUNCTION, «

In this section, we illustrate the effect of two ablation studies on backward weight transfer. Random
Storage (RS) is a training procedure that stores instances randomly into a buffer yet acquires them
using an acquisition function. Random Acquisition (RA), on the other hand, employs task-instance
parameters for buffer-storage yet acquires instances randomly from the buffer.

When comparing the BWT , heatmaps, we show that the random storage scenario leads to greater
destructive interference compared to random acquisition. This can be seen at low storage and
acquisition fractions (b < 0.5 and a < 0.5). Since RA and RS can be thought of as ‘smart’ storage
and ‘smart’ acquisition, respectively, the superiority of the former implies that a storage strategy is
more important than an acquisition strategy in this context and when evaluated from the perspective
of backward weight transfer. With most recent CL replay strategies solely focusing on acquisition,
our finding suggests that further research into storage functions could be of value.
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Figure 17: Backward weight transfer on the validation set using a Random Storage (left column)
and Random Acquisition (right column) strategy in the Class-IL scenario. Results are shown as a
function of storage fractions, b, and acquisition fractions, a and are an average across five seeds.
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K EFFECT OF WEIGHTING REPLAYED INSTANCES

In the main manuscript, we stated that replayed instances are not weighted with task-instance
parameters. Our hypothesis was that this would negatively interfere with the learning process on
subsequent tasks. To quantify the effect of such a weighting, we perform several experiments in
which replayed instances are weighted according to their corresponding task-instance parameters.
Notably, we freeze these parameters and no longer update them on subsequent tasks. In other words,
their previous dual role as a weighting and buffer-storage mechanism now collapses to the former
only. In Table[I0] we illustrate the performance of CLOPS with and without the weighting of replayed
instances using the task-instance parameters.

We find that weighting replayed instances with frozen task-instance parameters is a detriment to
backward weight transfer. For example, in the Class-IL scenario, BWT = 0.053 and 0.042 for
CLOPS without and with the weighting coefficient, respectively. This can be seen across the continual
learning scenarios. We hypothesize that this behaviour is due to the ’down-weighting’ of replayed
instances. More specifically, since task-instance parameters, 8 < 1, networks end up learning less
from replayed instances.

Table 10: Performance of CL strategies in the three continual learning scenarios with and without
weighted replayed instances. Storage and acquisition fractions are b = 0.25 and a = 0.50, respect-
ively. Mean and standard deviation are shown across five seeds.

Method ‘ Average AUC BWT BWT, BWT,
Class-IL

CLOPS 0.796 £ 0.013 0.053 £ 0.023 0.018 £ 0.010 0.008 £ 0.016
CLOPS weighted | 0.800 + 0.006 0.042 £ 0.020 0.005 +0.014  (0.014) 4+ 0.016
Time-IL

CLOPS 0.834 = 0.014  (0.018) &= 0.004 (0.007) = 0.003  0.007 £ 0.003
CLOPS weighted | 0.818 +0.012  (0.024) £0.012 (0.011) £0.006  0.007 £ 0.002
Domain-IL

CLOPS 0.731 £0.001  (0.011) £ 0.002  (0.020) 4+ 0.004 (0.019) + 0.009
CLOPS weighted | 0.741 + 0.007  (0.016) £ 0.007  (0.024) £ 0.001  (0.024) 4 0.003
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L  EFFECT OF NUMBER OF MONTE CARLO SAMPLES, T

The functionality of uncertainty-based acquisition functions such as BALDy¢cp is dependent upon a
reasonable approximation of the region of uncertainty in the hypothesis space. Improved approxima-
tions are usually associated with an increased number of Monte Carlo samples. In all experiments so
far, T' = 20 MC samples were used. In this section, we repeat a subset of these experiments with
T = (5,10,50) and illustrate their results in Table |11}

As expected, there exists a proportional relationship between the number of MC samples, 7, and the
performance of the network in terms of average AUC and backward weight transfer. For instance, as
T =5 — 50,the BWT = 0.045 — 0.061. This observation implies that an improved approximation
of the region of uncertainty can lead to the acquisition of instances from the buffer that increase the
magnitude of constructive interference.

Table 11: Performance of our strategy in the Class-IL scenario with different numbers of MC samples,
T. Storage and acquisition fractions are b = 0.25 and a = 0.50, respectively. Results are shown
across five seeds.

MC Samples T | Average AUC BWT BWT; BWT,
5 0.765 £ 0.013  0.045 £ 0.019 0.011 £ 0.016  0.002 £ 0.024
10 0.781 £ 0.016  0.051 £0.020 0.014 £ 0.018 0.002 £ 0.024
20 0.796 = 0.013  0.053 £ 0.023 0.018 £ 0.010 0.008 £ 0.016
50 0.785 £0.023  0.061 £ 0.009 0.023 + 0.008 0.008 £ 0.012
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M EFFECT OF TYPE OF ACQUISITION FUNCTION, «

Our modular buffer-acquisition strategy provides researchers with the flexibility to choose their
acquisition function of interest. Beyond BALDy;cp, we repeat a subset of our experiments using
two recently-introduced acquisition functions, BALDy;cp and BALCky,p, which acquire instances
based on how sensitive a network is to their perturbed counterpart (Kiyasseh et al.,[2020). We define
these functions below and illustrate the results in Table[12]

M.1 DEFINITIONS OF ACQUISITION FUNCTIONS

BALDMCP = JSD(p17p27 s 7pT)

— Hp(y|2)) - Epuimrun Hp(yle, 2)) ()

H(p(y|z)) = H (/P(yz)p(zx)dz)
—H ( / p(yz)q¢(z|x)dz) 6
~H (; zf;p(ym))

where z represents the perturbed input, T is the number of Monte Carlo samples, and 2; ~ ¢, (2|z) is
a sample from some perturbation generator.

Ep(z\Dtmm) [H(p(y|$, Z))] = qus(z\r) [H(p(y\x,z))]

[H(p(y|2:))]
1 (17

Q
N[ =
[M]=

t

I
N =
(]~

c
— Y py = clz) logply = cl4)
c=1

t=1

BALCkrp = D (N (u(x), E(z) [| N (p(2), £(2))) (18)

where 11 = Zthl p(y|@¢, ©) is the empirical mean of the posterior distributions across T MC
samples and @ ~ gp(w) represents parameters sampled from the MC distribution as in |Gal et al.
(2017). ¥ = (Y — )T (Y — p) is the empirical covariance matrix of the posterior distributions where
Y € R™*C is the matrix of posterior distributions for all MC samples.

M.2 RESULTS

We show that the type of acquisition function can have a large effect on the final performance of a CL
algorithm and the degree of constructive interference that is experienced. Such a finding justifies our
use of BALDy¢p for all experiments conducted in the main manuscript.

Table 12: Performance of CLOPS (b = 0.25 and a = 0.5) in the Class-IL scenario with different
acquisition functions. Mean and standard deviation values are shown across five seeds.

Acquisition Function ‘ Average AUC BWT BWT,; BWT
BALDwmcp 0.796 £ 0.013 0.053 4+ 0.023 0.018 & 0.010 0.008 £ 0.016
BALDycp 0.674 4+ 0.042 0.068 - 0.052  (0.107 & 0.035)  (0.091 + 0.034)
BALCkLp 0.716 20.039  (0.036 £ 0.035) (0.104 = 0.039) (0.104 & 0.051)
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N QUANTIFYING TASK SIMILARITY VIA TASK-INSTANCE PARAMETERS, /3

In this section, we quantify task-similarity and illustrate the similarity matrices between each pair
of tasks in our three continual learning scenarios. Given two Gaussians fit to the task-specific
distributions of s associated with task j and k (see Fig. EI) parameterized by pg, 03 and ju1, 03,
respectively, we calculate their pairwise similarity as follows:

o [20001 —1lmoze®
S(j,k) =1- 1-— 0‘80’% e 071 (19)

Dy = Hellinger Distance

We apply eq. [I0[to all pairs of tasks in each of the continual learning scenarios. This results in the
similarity matrices in Fig. In Fig.[7] for instance, we show that task [8, 9] is most similar to
task [10, 11]. From a clinical perspective and with the appropriate know-how, this information can
be used to identify differences between medical conditions, patient cohorts, etc. From a machine
learning perspective, such an outcome may prompt further investigation as to why the network views
these tasks as being similar. Consequently, we believe these similarity matrices can offer a form of
interpretability for both medical and machine learning practitioners.
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Figure 18: Task similarity matrix in the three continual learning scenario: a) Class-IL, b) Domain-IL,
and 3) Time-IL using CLOPS (b = 0.25 and a = 0.50). Pairwise task-similarity is calculated using
eq. Results are averaged across five seeds.
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O EFFECT OF HYPERPARAMETERS ON MIR

In this section, we aim to provide a more holistic evaluation of our adaptation of MIR. To do so,
we vary the two hyper-parameters involved in the implementation and observe their impact on the
performance of the models in the Class-IL scenario. These hyper-parameters include the number of
instances acquired from the buffer to perform the MIR search (Acquisition Fraction) and the ratio of
replayed to current-task instances in each mini-batch (Ratio). In Fig.[14] we present the performance
of MIR as a function of the acquisition fraction. In Fig.[I3] we present the performance of MIR as a
function of the ratio of replayed to current-task instances in each mini-batch.

0.1 ACQUISITION FRACTION

Table 13: Performance of MIR in the Class-IL scenario with different acquisition fractions. Larger
acquisition fractions mean that a larger subset of the buffer is searched for maximally-interfered
instances. The ratio of replayed to current-task instances is fixed at 1. Mean and standard deviation
values are shown across five seeds.

Acquisition Fraction | Average AUC BWT BWT, BWT,
0.1 0.799 £ 0.006  0.046 +0.022  (0.005) = 0.031  (0.026) £ 0.028
0.25 0.807 £ 0.010 0.043 £0.017 0.013 +£0.016  (0.007) & 0.022
0.5 0.753 £ 0.014  0.009 £+ 0.018 0.001 £ 0.025 (0.046) &+ 0.022
1 0.800 £ 0.013  0.063 £ 0.023  0.039 & 0.024 0.021 £ 0.023

0.2 RATIO OF REPLAYED TO CURRENT-TASK INSTANCES

Table 14: Performance of MIR in the Class-IL scenario with different ratios of replayed instances
to current-task instances in the mini-batch. Larger ratios mean that greater emphasis is placed on
replayed instances than on current-task instances. The acquisition fraction is fixed at 0.5. Mean and
standard deviation values are shown across five seeds.

Ratio | Average AUC BWT BWT, BWT
1:2 0.801 £0.013 0.065 £0.025 0.011 £0.043 (0.012) 4 0.030
1:1 0.753 £0.014  0.009 £0.018 0.001 £ 0.025 (0.046) & 0.022
2:1 0.763 £0.012 0.016 £0.010 0.024 £ 0.017 (0.020) £ 0.021
4:1 0.752 £0.016  0.020 £ 0.021 0.030 £ 0.016  (0.013) £ 0.021
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