
A Ergodic MDPs.

As alluded to in Section 3, the formulation discussed in this paper is suitable for reversible en-
vironments. For an environment to be considered reversible, we assume that the MDP ME is
ergodic, as defined in [31]. The MDP is considered ergodic if for all states a, b ∈ S,∃π, such that
Es∼π(s)|s0=a[I{s = b}] > 0, where I denotes the indicator function, and s is sampled from the
trajectory generated by following policy π starting from the state a. Any policy which assigns a
non-zero probability to all actions will ensure that all states in the environment are visited in the
infinite limit for ergodic MDPs, satisfying the condition above.

B Implementing VaPRL

VaPRL uses SAC [17] as the base RL algorithm, following the implementation in [18]. Hyperpa-
rameters follow the default values: initial collect steps: 10,000, batch size sampled from
replay buffer for updating policy and critic: 256, steps collected per iteration: 1, trained
per iteration: 1, discount factor: 0.99, learning rate: 3e− 4 (for critics, actors and dual
gradient descent used to adjust entropy temperature). The actor and critic network were parameterized
as neural networks with two hidden layers each of size 256. The output of the actor network is passed
through a tanh non-linearity to scale all action dimensions to [−1, 1]. Two key differences from
the default hyperparameters: The size of the replay buffer was large enough to ensure that none of
the collected and relabelled experience is discarded. For sawyer door closing and table-top
rearrangement, the replay buffer has a size of 10M and for hand manipulation environment,
the replay buffer had a size of 25M. While the weight for entropy is automatically adjusted using dual
gradient descent, it was helpful to have a higher initial weight on the reward for environments with
a sparse reward function. So, the initial value of temperature α = 0.1 for sawyer door closing
and table-top rearrangement (equivalent to reward being scaled 10 times), while for hand
manipulation environment, the initial value is the default α = 1.

VaPRL computes V π(s) = Ea∼π(·|s)[Qπ(s, a)] ≈ 1
L

∑L
i=1Q

π(s, ai) where ai ∼ π(· | s) for
L = 5. Note, Qπ(s, a) = E[

∑HE

t=0 γ
tr(st, at)] needs to be estimated in addition to the critic function

estimated by SAC, as the default critic adds the entropy of the policy to the reward while computing
the expected sum. Qπ (without the compounded entropy) is estimated identically to the default critic
otherwise.

As shown in Algorithm 1, there are two instances of goal relabeling: for trajectories collected online
and for demonstrations. For every trajectory collected online, VaPRL samples N goals and relabels
these trajectories to generateN new trajectories. The goals are sampled fromD∪{g ∼ pg}, that is the
set of states in the demonstrations and the goal distribution. N = 4 is fixed for all environments for
online relabeling. A similar scheme to relabel the demonstration set can be followed. However, if the
demonstration set is small, a denser of set of relabelled trajectories by using every intermediate state in
the trajectory as a goal can be more informative. For a demonstration {s0, s1, s2 . . . sT }, first generate
a relabelled trajectory with s0 as the goal, then with s1 and so on to create T new trajectories for every
trajectory in the demonstration. VaPRL follows this scheme for table-top rearrangement and
sawyer door closing as these environments only have 6 demonstrations per goal. However, for
hand manipulation environment, VaPRL reverts to N = 4 randomly sampled goals to relabel
each demonstration. As there are nearly 30 demonstrations for hand manipulation environment,
the dense relabeling scheme would produce greater than 1M samples even before any data collection.

VaPRL also uses the demonstrations to compute the distance function Xρ(s). For a trajectory
going from initial state to the goal {s0, s1, . . . sT }, Xρ(s0) = 0,Xρ(s1) = 1 and so on. Similarly,
if VaPRL has demonstrations going from goal to the initial, it can either exclude them from the
curriculum or label them Xρ(s) in the reverse order. For table-top rearrangement and sawyer
door closing, VaPRL opts for the latter. For hand manipulation, there are no demonstrations
corresponding reversing the task, so VaPRL simply excludes the trajectories corresponding to object
repositioning from the curriculum. To compute the curriculum goal C(g) in Equation 4, VaPRL
minimizes Xρ(s) over the set of states where V π(s, g) ≥ ε. If multiple states minimize Xρ(s) while
satisfying the constraint, VaPRL chooses a random state amongst the states with minimal Xρ(s). If
no state satisfies the constraint, VaPRL chooses the state which maximizes V π(s, g).

14



C Experimental Setup
First, we describe the reward functions and the success metrics corresponding to each environment.

table-top rearrangement:
r(s, g) = I(‖s− g‖2 ≤ 0.2),

where I denotes the indicator function. The success metric is the same as the reward function. The
environment has 4 possible goal locations for the mug, and goal location for the gripper is in the
center.

sawyer door closing:
r(s, g) = I(‖s− g‖2 ≤ 0.1),

where I again denotes the indicator function. The success metric is the same as the reward function.
The goal for the door and the robot arm is the closed door position.

hand manipulation:
r(s, g) = 4 · d(h, o) + 10 · d(o, g) + 10 · e−d(o,g)

2/0.01 + 10 · e−d(o,g)
2/0.001

where d(h, o) = ‖(hx, hy, hz) − (ox, oy, oz)‖2 corresponds to the distance between hand and the
object and d(o, g) = ‖(ox, oy, oz) − (gx, gy, gz)‖2 corresponds to the distance between the object
and goal. The reward function encourages the hand to be close to the object and the object to be close
to the goal (with higher weight on the object being close to the goal as the coefficient is 10). The
exponential terms are bonuses which are close to 0 when the object is far from the goal and close
to 10 when the object is close to the goal. The success metric for hand manipulation is given by
I(d(o, g) ≤ 0.05). The goal for the agent is to bring the object to the center raised 0.2 meters above
the table.

For sawyer door closing and table-top rearrangement, the environment terminates when-
ever the agent reaches the goal. Therefore, the maximum return in the environment is 1. We set the
value function threshold ε = 0.1 for these environments. For hand manipulation, the environment
terminates after HE = 400 steps regardless of whether the goal has been achieved. The minimum
and maximum return are roughly −3000 and 7000. We set the threshold ε = −300.

Next, we discuss the details corresponding to demonstrations for each of the environments.

table-top rearrangement: The demonstrations were generated by a human with a discrete action
space of {up, down, right, left, grip} which were translated with into noisy continuous
actions. We collected 3 demonstrations taking the mug from the initial state to the goal, and 3
demonstrations reversing those trajectories, for a total of 24 demonstrations (as there are 4 possible
goal locations). These demonstrations were sub-optimal as the discrete actions took a smaller step
size than the environment allowed (to keep the discrete action space small while still being able to
solve the task) and also took sub-optimal route between the initial state and the goals.

sawyer door closing: The demonstrations were generated using controller trained via reinforce-
ment learning on an environment with dense rewards and episodic reset interventions. The final
demonstrations generated used a noisy version of this learned policy. All methods were provided
with 3 demonstrations closing the door from the initial position and 3 demonstrations opening the
door from the closed position.

hand manipulation: The demonstrations for this environment were particularly hard to generate
even when using reinforcement learning with episodic reset interventions. We first learned a policy to
reposition the object to the center, next we learned a separate policy to raise the object to a height of
0.2 meters above the center from the center position. We also learned a policy to move the object
to different positions on the table. We generated 10 trajectories from the first two policies, and 20
trajectories for the last policy and used this as our demonstration dataset. Note, the demonstrations
provided are again sub-optimal. In fact, we were not able to provide a single continuous demonstration
picking up the object from arbitrary positions on the table (forcing us to train separate policies and
collect disjoint demonstrations).

All the baselines use the same hyperparameters and environmental setup as those for VaPRL and
have access to same set of demonstrations.

We do not use GPUs for any of the experiments. We used an internal cluster to parallelize the run
for different seeds and baselines. The table-top rearrangement environment was run for ∼ 12

15



hours, the sawyer door closing environment was run for 18 hours and hand manipulation
environment was run for 7 days when using VaPRL and R3L, 5 days when using oracle RL, FBRL
and naive RL. We prematurely stopped oracle RL, FBRL and naive RL due to limited computational
budget and because the performance of these algorithms showed no signs of further progress (oracle
RL had converged while FBRL and naive RL were not improving at solving the task).

16


