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Abstract

Maximising a cumulative reward function that is Markov and stationary, i.e., de-
fined over state-action pairs and independent of time, is sufficient to capture many
kinds of goals in a Markov decision process (MDP). However, not all goals can
be captured in this manner. In this paper we study convex MDPs in which goals
are expressed as convex functions of the stationary distribution and show that
they cannot be formulated using stationary reward functions. Convex MDPs gen-
eralize the standard reinforcement learning (RL) problem formulation to a larger
framework that includes many supervised and unsupervised RL problems, such as
apprenticeship learning, constrained MDPs, and so-called ‘pure exploration’. Our
approach is to reformulate the convex MDP problem as a min-max game involving
policy and cost (negative reward) ‘players’, using Fenchel duality. We propose a
meta-algorithm for solving this problem and show that it unifies many existing
algorithms in the literature.

1 Introduction

In reinforcement learning (RL), an agent learns how to map situations to actions so as to maximize
a cumulative scalar reward signal. The learner is not told which actions to take, but instead must
discover which actions lead to the most reward [64]. Mathematically, the RL problem can be written
as finding a policy whose state occupancy has the largest inner product with a reward vector [55], i.e.,
the goal of the agent is to solve

RL: max
dπ∈K

∑
s,a

r(s, a)dπ(s, a), (1)

where dπ is the state-action stationary distribution induced by policy π and K is the set of admissible
stationary distributions (see Definition 1). A significant body of work is dedicated to solving the RL
problem efficiently in challenging domains [45, 62]. However, not all decision making problems of
interest take this form. In particular we consider the more general convex MDP problem,

Convex MDP: min
dπ∈K

f(dπ), (2)

where f : K → R is a convex function. Sequential decision making problems that take this form
include Apprenticeship Learning (AL), pure exploration, and constrained MDPs, among others; see
Table 1. In this paper we prove the following claim:

We can solve Eq. (2) by using any algorithm that solves Eq. (1) as a subroutine.

In other words, any algorithm that solves the standard RL problem can be used to solve the more
general convex MDP problem. More specifically, we make the following contributions.
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Firstly, we adapt the meta-algorithm of Abernethy and Wang [3] for solving Eq. (2). The key idea is
to use Fenchel duality to convert the convex MDP problem into a two-player zero-sum game between
the agent (henceforth, policy player) and an adversary that produces rewards (henceforth, cost player)
that the agent must maximize [3, 6]. From the agent’s point of view, the game is bilinear, and so
for fixed rewards produced by the adversary the problem reduces to the standard RL problem with
non-stationary reward (Fig. 1).
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Figure 1: Convex MDP as an RL problem

Secondly, we propose a sample efficient pol-
icy player that uses a standard RL algorithm
(eg, [35, 60]), and computes an optimistic policy
with respect to the non-stationary reward at each
iteration. In other words, we use algorithms that
were developed to achieve low regret in the stan-
dard RL setup, to achieve low regret as policy
players in the min-max game we formulate to
solve the convex MDP. Our main result is that
the average of the policies produced by the pol-
icy player converges to a solution to the convex
MDP problem (Eq. (2)). Inspired by this princi-
ple, we also propose a recipe for using deep-RL
(DRL) agents to solve convex MDPs heuristically: provide the agent non-stationary rewards from the
cost player. We explore this principle in our experiments.

Finally, we show that choosing specific algorithms for the policy and cost players unifies several
disparate branches of RL problems, such as apprenticeship learning, constrained MDPs, and pure
exploration into a single framework, as we summarize in Table 1.

Convex objective f Cost player Policy player Application

λ · dπ FTL RL (Standard) RL with −λ as stationary reward function
||dπ − dE ||22 FTL Best response Apprenticeship learning (AL) [1, 75]
dπ · log(dπ) FTL Best response Pure exploration∗ [30]
||dπ − dE ||∞ OMD Best response AL [66, 65]
Ec [λc · (dπ − dE(c))]

† OMD Best response Inverse RL in contextual MDPs [10]
λ1 · dπ, s.t. λ2 · dπ ≤ c OMD RL Constrained MDPs [7, 67, 12, 68, 18, 16, 11]
dist(dπ, C)†† OMD Best response Feasibility of convex-constrained MDPs [44]
minλ1,...,λk d

k
π · λk OMD RL Adversarial Markov Decision Processes [57]

maxλ∈Λ λ · (dπ − dE) OMD RL Online AL [61],Wasserstein GAIL [73, 78]
KL(dπ||dE) FTL RL GAIL [31], state marginal matching [41],
−EzKL(dzπ||Ekdkπ)‡ FTL RL Diverse skill discovery [26, 20, 27, 21, 69, 4]

Table 1: Instances of Algorithm 1 in various convex MDPs. ∗ as well as other KL divergences. † c is
a context variable. †† C is a convex set. ‡ f is concave. See Sections 4 & 6 for more details.

2 Reinforcement Learning Preliminaries

In RL an agent interacts with an environment over a number of time steps and seeks to maximize its
cumulative reward. We consider two cases, the average reward case and the discounted case. The
Markov decision process (MDP) is defined by the tuple (S,A, P,R) for the average reward case
and by the tuple (S,A, P,R, γ, d0) for the discounted case. We assume an infinite horizon, finite
state-action problem where initially, the state of the agent is sampled according to s0 ∼ d0, then
at each time t the agent is in state st ∈ S, selects action at ∈ A according to some policy π(st, ·),
receives reward rt ∼ R(st, at) and transitions to new state st+1 ∈ S according to the probability
distribution P (·, st, at). The two performance metrics we consider are given by

Javg
π = lim

T→∞

1

T
E

T∑
t=1

rt, Jγπ = (1− γ)E
∞∑
t=1

γtrt, (3)

for the average reward case and discounted case respectively. The goal of the agent is to find a policy
that maximizes Javg

π or Jγπ . Any stationary policy π induces a state-action occupancy measure dπ,

2



which measures how often the agent visits each state-action when following π. Let Pπ(st = ·) be the
probability measure over states at time t under policy π, then

davg
π (s, a) = lim

T→∞

1

T
E

T∑
t=1

Pπ(st = s)π(s, a), dγπ(s, a) = (1− γ)E
∞∑
t=1

γtPπ(st = s)π(s, a),

for the average reward case and the discounted case respectively. With these, we can rewrite the RL
objective in Eq. (3) in terms of the occupancy measure using the following well-known result, which
for completeness we prove in Appendix B.
Proposition 1. For both the average and the discounted case, the agent objective function Eq. (3)
can be written in terms of the occupancy measure as Jπ =

∑
s,a r(s, a)dπ(s, a).

Given an occupancy measure it is possible to recover the policy by setting π(s, a) =
dπ(s, a)/

∑
a dπ(s, a) if

∑
a dπ(s, a) > 0, and π(s, a) = 1/|A| otherwise. Accordingly, in this

paper we shall formulate the RL problem using the state-action occupancy measure, and both the
standard RL problem (Eq. (1)) and the convex MDP problem (Eq. (2)) are convex optimization
problems in variable dπ. For the purposes of this manuscript we do not make a distinction between
the average and discounted settings, other than through the convex polytopes of feasible occupancy
measures, which we define next.
Definition 1 (State-action occupancy’s polytope [55]). For the average reward case the set of
admissible state-action occupancies is

Kavg = {dπ | dπ ≥ 0,
∑
s,a

dπ(s, a) = 1,
∑
a

dπ(s, a) =
∑
s′,a′

P (s, s′, a′)dπ(s′, a′) ∀s ∈ S},

and for the discounted case it is given by

Kγ = {dπ | dπ ≥ 0,
∑
a

dπ(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

P (s, s′, a′)dπ(s′, a′) ∀s ∈ S}.

We note that being a polytope implies that K is a convex and compact set.

The convex MDP problem is defined for the tuple (S,A, P, f) in the average cost case and
(S,A, P, f, γ, d0) in the discounted case. This tuple is defining a state-action occupancy’s poly-
tope K (Definition 1), and the problem is to find a policy π whose state occupancy dπ is in this
polytope and minimizes the function f (Eq. (2)).

3 A Meta-Algorithm for Solving Convex MDPs via RL

To solve the convex MDP problem (Eq. (2)) we need to find an occupancy measure dπ (and associated
policy) that minimizes the function f . Since both f : K → R and the set K are convex this is a
convex optimization problem. However, it is a challenging one due to the nature of learning about the
environment through stochastic interactions. In this section we show how to reformulate the convex
MDP problem (Eq. (2)) so that standard RL algorithms can be used to solve it, allowing us to harness
decades of work on solving vanilla RL problems. To do that we will need the following definition.
Definition 2 (Fenchel conjugate). For a function f : Rn → R ∪ {−∞,∞}, its Fenchel conjugate is
denoted f∗ : Rn → R ∪ {−∞,∞} and defined as f∗(x) := supy x · y − f(y).

Remark 1. The Fenchel conjugate function f∗ is always convex (when it exists) even if f is not.
Furthermore, the biconjugate f∗∗ := (f∗)∗ equals f if and only if f is convex and lower semi-
continuous.

Using this we can rewrite the convex MDP problem (Eq. (2)) as

fOPT = min
dπ∈K

f(dπ) = min
dπ∈K

max
λ∈Λ

(λ · dπ − f∗(λ)) = max
λ∈Λ

min
dπ∈K

(λ · dπ − f∗(λ)) (4)

where Λ is the closure of (sub-)gradient space {∂f(dπ)|dπ ∈ K}, which is a convex set [3, Theorem
4]. As both sets are convex, this is a convex-concave saddle-point problem and a zero-sum two-player
game [54, 49], and we were able to swap the order of minimization and maximization using the
minimax theorem [71].
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With this we define the Lagrangian as L(dπ, λ) := λ · dπ − f∗(λ). For a fixed λ ∈ Λ, minimizing the
Lagrangian is a standard RL problem of the form of Eq. (1), i.e., equivalent to maximizing a reward
r = −λ. Thus, one might hope that by producing an optimal dual variable λ? we could simply solve
d?π = argmindπ∈K L(·, λ?) for the optimal occupancy measure. However, the next lemma states that
this is not possible in general.
Lemma 1. There exists an MDP M and convex function f for which there is no stationary reward
r ∈ RS×A such that arg maxdπ∈K dπ · r = arg mindπ∈K f(dπ).

To see this note that for any reward r there is a deterministic policy that optimizes the reward [55], but
for some choices of f no deterministic policy is optimal, eg, when f is the negative entropy function.
This result tells us that even if we have access to an optimal dual-variable we cannot simply use it to
recover the stationary distribution that solves the convex MDP problem in general.

To overcome this issue we develop an algorithm that generates a sequence of policies {πk}k∈N
such that the average converges to an optimal policy for Eq. (2), i.e., (1/K)

∑K
k=1 d

k
π →

d?π ∈ arg mindπ∈K f(dπ). The algorithm we develop is described in Algorithm 1 and
is adapted from the meta-algorithm described in Abernethy and Wang [3]. It is referred
to as a meta-algorithm since it relies on supplied sub-routine algorithms Algπ and Algλ.
The reinforcement learning algorithm Algπ takes as input a reward vector and returns a
state-action occupancy measure dπ. The cost algorithm Algλ can be a more general func-
tion of the entire history. We discuss concrete examples of Algπ and Algλ in Section 4.

Algorithm 1: meta-algorithm for convex MDPs
1: Input: convex-concave payoff L : K × Λ→ R, algorithms Algλ,Algπ , K ∈ N
2: for k = 1, . . . ,K do
3: λk = Algλ(d1

π, . . . , d
k−1
π ;L)

4: dkπ = Algπ(−λk)
5: end for
6: Return d̄Kπ = 1

K

∑K
k=1 d

k
π, λ̄

K = 1
K

∑K
k=1 λ

k

In order to analyze this algorithm we will need a small detour into online convex optimization (OCO).
In OCO, a learner is presented with a sequence of K convex loss functions `1, `2, . . . , `K : K → R
and at each round k must select a point xk ∈ K after which it suffers a loss of `k(xk). At time period
k the learner is assumed to have perfect knowledge of the loss functions `1, . . . , `k−1. The learner
wants to minimize its average regret, defined as

R̄K :=
1

K

(
K∑
k=1

`k(xk)−min
x∈K

K∑
k=1

`k(x)

)
.

In the context of convex reinforcement learning and meta-algorithm 1, the loss functions for the
cost player are `kλ = −L(·, λk), and for the policy player are `kπ = L(dkπ, ·), with associated average
regrets R̄πK and R̄λK . This brings us to the following theorem.
Theorem 1 (Theorem 2, [3]). Assume that Algπ and Algλ have guaranteed average regret bounded
as R̄πK ≤ εK and R̄λK ≤ δK , respectively. Then Algorithm 1 outputs d̄Kπ and λ̄K satisfying
mindπ∈K L(dπ, λ̄

K) ≥ fOPT − εK − δK and maxλ∈Λ L(d̄Kπ , λ) ≤ fOPT + εK + δK .

This theorem tells us that so long as the RL algorithm we employ has guaranteed low-regret, and
assuming we choose a reasonable low-regret algorithm for deciding the costs, then the meta-algorithm
will produce a solution to the convex MDP problem (Eq. (2)) to any desired tolerance, this is because
fOPT ≤ f(d̄Kπ ) = maxλ L(d̄Kπ , λ) ≤ fOPT +εK +δK . For example, we shall later present algorithms
that have regret bounded as εK = δK ≤ O(1/

√
K), in which case we have

f(d̄Kπ )− fOPT ≤ O(1/
√
K). (5)

Non-Convex f . Remark 1 implies that the game maxλ∈Λ mindπ∈K (λ · dπ − f∗(λ)) is concave-
convex for any function f , so we can solve it with Algorithm 1, even for a non-convex f . From weak
duality the value of the Lagrangian on the output of Algorithm 1, L(d̄π, λ̄), is a lower bound on the
optimal solution fOPT. In addition, since f(dπ) is always an upper bound on fOPT we have both an
upper bound and a lower bound on the optimal value: L(d̄π, λ̄) ≤ fOPT ≤ f(d̄π).
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4 Policy and Cost Players for Convex MDPs

In this section we present several algorithms for the policy and cost players that can be used in
Algorithm 1. Any combination of these algorithms is valid and will come with different practical
and theoretical performance. In Section 6 we show that several well known methods in the literature
correspond to particular choices of cost and policy players and so fall under our framework.

In addition, in this section we assume that

λmax = max
λ∈Λ

max
s,a
|λ(s, a)| <∞,

which holds when the set Λ is compact. One way to guarantee that Λ is compact is to consider
functions f with Lipschitz continuous gradients (which implies bounded gradients since the set K is
compact). For simplicity, we further assume that λmax ≤ 1. By making this assumption we assure
that the non stationary rewards produced by the cost player are bounded by 1 as is usually done in
RL.

4.1 Cost Player

Follow the Leader (FTL) is a classic OCO algorithm that selects λk to be the best point in hindsight.
In the special case of convex MDPs, as defined in Eq. (4), FTL has a simpler form:

λk = arg max
λ∈Λ

∑k−1

j=1
L(djπ, λ) = arg max

λ∈Λ

(
λ ·
∑k−1

j=1
djπ −Kf∗(λ)

)
= ∇f(d̄k−1

π ), (6)

where d̄k−1
π =

∑k−1
j=1 d

j
π and the last equality follows from the fact that (∇f∗)−1 = ∇f [56]. The

average regret of FTL is guaranteed to be R̄K ≤ c/
√
K under some assumptions [29]. In some cases,

and specifically when the set K is a polytope and the function f is strongly convex, FTL can enjoy
logarithmic or even constant regret; see [32, 29] for more details.

Online Mirror Descent (OMD) uses the following update [47, 9]:

λk = arg max
λ∈Λ

(
(λ− λk−1) · ∇λL(dk−1

π , λk−1) + αkBr(λ, λ
k−1)

)
,

where αk is a learning rate and Br is a Bregman divergence [14]. For Br(x) = 0.5||x||22, we get
online gradient descent [79] and for Br(x) = x · log(x) we get multiplicative weights [23] as special
cases. We also note that OMD is equivalent to a linearized version of Follow the Regularized Leader
(FTRL) [43, 28]. The average regret of OMD is R̄K ≤ c/

√
K under some assumptions, see, for

example [28].

4.2 Policy Players

4.2.1 Best Response

In OCO, the best response is to simply ignore the history and play the best option on the current round,
which has guaranteed average regret bound of R̄K ≤ 0 (this requires knowledge of the current loss
function, which is usually not applicable but is in this case). When applied to Eq. (4), it is possible to
find the best response dkπ using standard RL techniques since

dkπ = arg min
dπ∈K

Lk(dπ, λ
k) = arg min

dπ∈K
dπ · λk − f∗(λk) = arg max

dπ∈K
dπ · (−λk),

which is an RL problem for maximizing the reward (−λk). In principle, any RL algorithm that
eventually solves the RL problem can be used to find the best response, which substantiates our
claim in the introduction. For example, tabular Q-learning executed for sufficiently long and with a
suitable exploration strategy will converge to the optimal policy [72]. In the non-tabular case we could
parameterize a deep neural network to represent the Q-values [45] and if the network has sufficient
capacity then similar guarantees might hold. We make no claims on efficiency or tractability of this
approach, just that in principle such an approach would provide the best-response at each iteration
and therefore satisfy the required conditions to solve the convex MDP problem.
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4.2.2 Approximate Best Response

The caveat in using the best response as a policy player is that in practice, it can only be found
approximately by executing an RL algorithm in the environment. This leads to defining an approximate
best response via the Probably Approximately Correct (PAC) framework. We say that a policy player
is PAC(ε, δ), if it finds an ε-optimal policy to an RL problem with probability of at least 1 − δ. In
addition, we say that a policy π′ is ε-optimal if its state occupancy d′π is such that

max
dπ∈K

dπ · (−λk)− d′π · (−λk) ≤ ε.

For example, the algorithm in [40] can find an ε-optimal policy to the discounted RL problem after
seeing O

(
SA

(1−γ)3ε2 log( 1
δ )
)

samples; and the algorithm in [36] can find an ε-optimal policy for the

average reward RL problem after seeing O
( t2mixSA

ε2 log( 1
δ )
)

samples, where tmix is the mixing time
(see, eg, [42, 76] for a formal definition). The following Lemma analyzes the sample complexity of
Algorithm 1 with an approximate best response policy player for the average reward RL problem [36].
The result can be easily extended to the discounted case using the algorithm in [40]. Other relaxations
to the best response for specific algorithms can be found in [65, 44, 33, 30].
Lemma 2 (The sample complexity of approximate best response in convex MDPs with average
occupancy measure). For a convex function f , running Algorithm 1 with an oracle cost player with
regret R̄λK = O(1/K) and an approximate best response policy player that solves the average
reward RL problem in iteration k to accuracy εk = 1/k returns an occupancy measure d̄Kπ that
satisfies f(d̄Kπ )− fOPT ≤ ε with probability 1− δ after seeing O(t2mixSA log(2K/εδ)/ε3δ3) samples.
Similarly, for R̄λK = O(1/

√
K), setting εk = 1/

√
k requires O(t2mixSA log(2K/εδ)/ε4δ4) samples.

4.2.3 Non-Stationary RL Algorithms

We now discuss a different type of policy players; instead of solving an MDP to accuracy ε, these
algorithms perform a single RL update to the policy, with cost −λk. In our setup the reward is known
and deterministic but non-stationary, while in the standard RL setup it is unknown, stochastic, and
stationary. We conjecture that any RL algorithm can be adapted to the known non-stationary reward
setup we consider here. In most cases both Bayesian [51, 48] and frequentist [8, 35] approaches to
the stochastic RL problem solve a modified (eg, by adding optimism) Bellman equation at each time
period and swapping in a known but non-stationary reward is unlikely to present a problem.

To support this conjecture we shall prove that this is exactly the case for UCRL2 [35]. UCRL2 is an
RL algorithm that was designed and analyzed in the standard RL setup, and we shall show that it
is easily adapted to the non-stationary but known reward setup that we require. To make this claim
more general, we will also discuss a similar result for the MDPO algorithm [61] that was given in a
slightly different setup.

UCRL2 is a model based algorithm that maintains an estimate of the reward and the transition
function as well as confidence sets about those estimates. In our case the reward at time k is known,
so we only need to consider uncertainty in the dynamics. UCRL2 guarantees that in any iteration k,
the true transition function is in a confidence set with high probability, i.e., P ∈ Pk for confidence
set Pk. If we denote by JP,Rπ the value of policy π in an MDP with dynamics P and reward R
then the optimistic policy is π̃k = arg maxπ maxP ′∈Pk J

P ′,−λk
π . Acting according to this policy

is guaranteed to attain low regret. In the following results for UCRL2 we will use the constant D,
which denotes the diameter of the MDP, see [35, Definition 1] for more details. In the supplementary
material (Appendix E), we provide a proof sketch that closely follows [35].
Lemma 3 (Non stationary regret of UCRL2). For an MDP with dynamics P, diameter D, an
arbitrary sequence of known and bounded rewards

{
ri : maxs,a |ri(s, a)| ≤ 1

}K
i=1

, such that the
optimal average reward at episode k, with respect to P and rk is J?k , then with probability at least
1−δ, the average regret of UCRL2 is at most R̄K = 1

K

∑K
k=1 J

?
k−J

π̃k
k ≤ O(DS

√
A log(K/δ)/K).

Next, we give a PAC(ε, δ) sample complexity result for the mixed policy π̄K , that is produced by
running Algorithm 1 with UCRL2 as a policy player.
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Lemma 4 (The sample complexity of non-stationary RL algorithms in convex MDPs). For a convex
function f, running Algorithm 1 with an oracle cost player with regret R̄λK ≤ c0/

√
K and UCRL2 as

a policy player returns an occupancy measure d̄Kπ that satisfies f(d̄Kπ )− fOPT ≤ ε with probability

1− δ after K = O
(
D2S2A
δ2ε2 log( 2DSA

δε )
)

steps.

MDPO. Another optimistic algorithm is Mirror Descent Policy Optimization [60, MDPO]. MDPO
is a model free RL algorithm that is very similar to popular DRL algorithms like TRPO [58] and
MPO [2]. In [24, 59, 5], the authors established the global convergence of MDPO and in [15, 60], the
authors showed that MDPO with optimistic exploration enjoys low regret.

The analysis for MDPO is given in a finite horizon MDP with horizon H , which is not the focus of
our paper. Nevertheless, to support our conjecture that any stochastic RL algorithm can be adapted
to the known non-stationary reward setup, we quickly discuss the regret of MDPO in this setup.
We also note that MDPO is closer to practical DRL algorithms [70]. In a finite horizon MDP with
horizon H and known, non-stationary and bounded rewards, the regret of MDPO is bounded by
R̄K ≤ O(H2S

√
A/K) [61, Lemma 4] with high probability.

To compare this result with UCRL2, we refer to a result from [57], which analyzed UCRL2 in the
adversarial setup, that includes our setup as a special case. In a finite horizon MDP with horizon
H it was shown that setting δ = SA/K with probability 1 − δ its regret is bounded by R̄K ≤
O(HS

√
A log(K)/K) [57, Corollary 5], which is better by a factor of H than MDPO.

Discussion. Comparing the results in Lemma 4 with Lemma 2 suggests that using an RL algorithm
with non stationary reward as a policy player requires O(1/ε2) samples to find an ε−optimal policy,
while using an approximate best response requires O(1/ε3). In first glance, this results also improves
the previously best known result of Hazan et al. [30] for approximate Frank-Wolfe (FW) that requires
O(1/ε3) samples. However, there are more details that have to be considered as we now discuss.

Firstly, Lemma 4 and Lemma 2 assume access to an oracle cost player with some regret and do not
consider how to implement such a cost player. The main challenge is that the cost player does not
have access to the true state occupancy and must estimate it from samples. If we do not reuse samples
from previous policies to estimate the state occupancy of the current policy we will require O(1/ε3)
trajectories overall [30]. A better approach would use the samples from previous episodes to learn the
transition function. Then, given the estimated transition function and the policy, we can compute an
approximation of the state occupancy. We conjecture that such an approach would lead to a O(1/ε2)
sample complexity, closing the gap with standard RL.

Secondly, while our focus is on the dependence in ε, our bound Lemma 4 is not tight in δ, i.e., it
scales with 1/δ2 where it should be possible to achieve a log(1/δ) scaling. Again we conjecture an
improvement in the bound is possible; see, eg, [38, Appendix F.].

5 Convex Constraints

We have restricted the presentation so far to unconstrained convex problems, in this section we extend
the above results to the constrained case. The problem we consider is

min
dπ∈K

f(dπ) subject to gi(dπ) ≤ 0, i = 1, . . .m,

where f and the constraint functions gi are convex. Previous work focused on the case where both
f and gi are linear [7, 67, 12, 68, 18, 16, 11]. We can use the same Fenchel dual machinery we
developed before, but now taking into account the constraints. Consider the Lagrangian

L(dπ, µ) = f(dπ) +
∑m

i=1
µigi(dπ) = max

ν
(ν · dπ − f∗(ν)) +

∑m

i=1
µi max

vi
(dπvi − g∗i (vi)) .

over dual variables µ ≥ 0, with new variables vi and ν. At first glance this does not look convex-
concave, however we can introduce new variables ζi = µivi to obtain

L(dπ, µ, ν, ζ1, . . . , ζm) = ν · dπ − f∗(ν) +
∑m

i=1
(dπζi − µig∗i (ζi/µi)) . (7)

This is convex (indeed affine) in dπ and concave in (ν, µ, ζ1, . . . , ζm), since it includes the perspective
transform of the functions gi [13]. The Lagrangian involves a cost vector, ν +

∑m
i=1 ζi, linearly
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interacting with dπ, and therefore we can use the same policy players as before to minimize this
cost. For the cost player, it is possible to use OMD on Eq. (7) jointly for the variables ν, µ and ζ.
It is more challenging to use best-response and FTL for the cost-player variables as the maximum
value of the Lagrangian is unbounded for some values of dπ. Another option is to treat the problem
as a three-player game. In this case the policy player controls dπ as before, one cost player chooses
(ν, ζ1, . . . , ζm) and can use the algorithms we have previously discussed, and the other cost player
chooses µ with some restrictions on their choice of algorithm. Analyzing the regret in that case is
outside the scope of this paper.

6 Examples

In this section we explain how existing algorithms can be seen as instances of the meta-algorithm for
various choices of the objective function f and the cost and policy player algorithms Algλ and Algπ .
We summarized the relationships in Table 1.

6.1 Apprenticeship Learning

In apprenticeship learning (AL), we have an MDP without an explicit reward function. Instead, an
expert provides demonstrations which are used to estimate the expert state occupancy measure dE .
Abbeel and Ng [1] formalized the AL problem as finding a policy π whose state occupancy is close
to that of the expert by minimizing the convex function f(dπ) = ||dπ − dE ||. The convex conjugate
of f is given by f∗(y) = y · dE if ||y||∗ ≤ 1 and∞ otherwise, where || · ||∗ denotes the dual norm.
Plugging f∗ into Eq. (4) results in the following game:

min
dπ∈K

||dπ − dE || = min
dπ∈K

max
||λ||∗≤1

λ · dπ − λ · dE . (8)

Inspecting Eq. (8), we can see that the norm in the function f that is used to measure the distance
from the expert induces a constraint set for the cost variable, which is a unit ball in the dual norm.

Algλ=OMD, Algπ=Best Response/RL. The Multiplicative Weights AL algorithms [65, MWAL]
was proposed to solve the AL problem with f(dπ) = ||dπ − dE ||∞. It uses the best response as the
policy player and multiplicative weights as the cost player (a special case of OMD). MWAL has also
been used to solve AL in contextual MDPs [10] and to find feasible solutions to convex-constrained
MDPs [44]. We note that in practice the best response can only be solved approximately, as we
discussed in Section 4. Instead, in online AL [61] the authors proposed to use MDPO as the policy
player, which guarantees a regret bound of R̄K ≤ c/

√
K. They showed that their algorithm is

equivalent to Wasserstein GAIL [73, 78] and in practice tends to perform similarly to GAIL.

Algλ=FTL, Algπ=Best Response. When the policy player plays the best response and the cost
player plays FTL, Algorithm 1 is equivalent to the Frank-Wolfe algorithm [22, 3] for minimizing f
(Eq. (2)). Pseudo-code for this is included in the appendix (Algorithm 3). The algorithm finds a point
dkπ ∈ K that has the largest inner-product (best response) with the negative gradient (i.e., FTL).

Abbeel and Ng [1] proposed two algorithms for AL, the projection algorithm and the max mar-
gin algorithm. The projection algorithm is essentially a FW algorithm, as was suggested in the
supplementary [1] and was later shown formally in [75]. Thus, it is a projection free algorithm in
the sense that it avoids projecting dπ into K, despite the name. In their case the gradient is given
by ∇f (dπ) = dπ − dE . Thus, finding the best response is equivalent to solving an MDP whose
reward is dE − dπ . In a similar fashion, FW can be used to solve convex MDPs more generally [30].
Specifically, in [30], the authors considered the problem of pure exploration, which they defined as
finding a policy that maximizes entropy.

Fully Corrective FW. The FW algorithm has many variants (see [33] for a survey) some of which
enjoy faster rates of convergence in special cases. Concretely, when the constraint set is a polytope,
which is the case for convex MDPs (Definition 1), some variants achieve a linear rate of convergence
[34, 75]. One such variant is the Fully corrective FW, which replaces the learning rate update (see
line 4 of Algorithm 3 in the supplementary), with a minimization problem over the convex hull of
occupancy measures at the previous time-step. This is guaranteed to be at least as good as the learning
rate update. Interestingly, the second algorithm of Abbeel and Ng [1], the max margin algorithm, is
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exactly equivalent to this fully corrective FW variant. This implies that the max-margin algorithm
enjoys a better theoretical convergence rate than the ‘projection’ variant, as was observed empirically
in [1].

6.2 GAIL and DIAYN: Algλ=FTL, Algπ=RL

We now discuss the objectives of two popular algorithms, GAIL [31] and DIAYN [20], which perform
AL and diverse skill discovery respectively. Our analysis suggests that GAIL and DIAYN share the
same objective function. In GAIL, this objective function is minimized, which is a convex MDP,
however, in DIAYN it is maximized, which is therefore not a convex MDP. We start the discussion
with DIAYN and follow with a simple construction showing the equivalence to GAIL.

DIAYN. Discriminative approaches [26, 20] rely on the intuition that skills are diverse when they are
entropic and easily discriminated by observing the states that they visit. Given a probability space
(Ω,F ,P), state random variables S : Ω→ S and latent skills Z : Ω→ Z with prior p, the key term
of interest being maximized in DIAYN [20] is the mutual information:

I(S;Z) = Ez∼p;s∼dzπ [log p(z|s)− log p(z)], (9)

where dzπ is the stationary distribution induced by the policy π(a | s, z). For each skill z, this
corresponds to a standard RL problem with (conditional) policy π(a | s, z) and reward function
r(s|z) = log p(z|s) − log p(z). The first term encourages the policy to visit states for which the
underlying skill has high-probability under the posterior p(z | s), while the second term ensures a
high entropy distribution over skills. In practice, the full DIAYN objective further regularizes the
learnt policy by including entropy terms − log π(a | s, z). For large state spaces, p(z|s) is typically
intractable and Eq. 9 is replaced with a variational lower-bound, where the true posterior is replaced
with a learned discriminator qφ(z|s). Here, we focus on the simple setting where z is a categorical
distribution over |Z| outcomes, yielding |Z| policies πz , and qφ is a classifier over these |Z| skills
with parameters φ.

We now show that a similar intrinsic reward can be derived using the framework of convex MDPs.
We start by writing the true posterior as a function of the per-skill state occupancy dzπ = p(s | z), and
using Bayes rules, p(z|s) =

dzπ(s)p(z)∑
k d

k
π(s)p(k)

. Combing this with Eq. (9) yields:

Ez∼p(z),s∼dzπ [log p(z|s)− p(z)] =
∑
z

p(z)
∑
s

dzπ(s)

[
log

(
dzπ(s)p(z)∑
k d

k
π(s)p(k)

)
− log p(z)

]
=
∑
z

p(z)KL(dzπ||
∑
k

p(k)dkπ) = EzKL(dzπ||Ekdkπ), (10)

where KL denotes the Kullback–Leibler divergence [39].

Intuitively, finding a set of policies π1, . . . , πz that minimize Eq. (10) will result in finding policies
that visit similar states, measured using the KL distance between their respective state occupancies
d1
π, . . . , d

z
π. This is a convex MDP because the KL-divergence is jointly convex in both arguments

[13, Example 3.19]. We will soon show that this is the objective of GAIL. On the other hand, a set of
policies that maximize Eq. (10) is diverse, as the policies visit different states, measured using the KL
distance between their respective state occupancies d1

π, . . . , d
z
π .

We follow on with deriving the FTL player for the convex MDP in Eq. (10). We will then show that
this FTL player is producing an intrinsic reward that is equivalent to the intrinsic reward used in
GAIL and DIAYN (despite the fact that DIAYN is not a convex MDP). According to Eq. (6), the FTL
cost player will produce a cost λk at iteration k given by

∇dzπKL(dzπ||
∑
k

p(k)dkπ) = E
z∼p(z)

[
log

dzπ∑
k d

k
πp(k)

+ 1− dzπp(z)∑
k d

k
πp(k)

]
= E
z∼p(z)

[
log(p(z|s))− log(p(z))︸ ︷︷ ︸

Mutual Information

+1− p(z|s)︸ ︷︷ ︸
Gradient correction

]
, (11)

where the equality follows from writing the posterior as a function of the per-skill state occupancy
dzπ = p(s | z), and using Bayes rules, p(z|s) =

dzπ(s)p(z)∑
k d

k
π(s)p(k)

. Replacing the posterior p(z|s) with
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a learnt discriminator qφ(z|s) recovers the mutual-information rewards of DIAYN, with additional
terms 1− p(z | s) which we refer to as “gradient correction” terms. Inspecting the common scenario
of a uniform prior over the latent variables, p(z) = 1/|Z|, we get that the expectation of the gradient
correction term

∑
z p(z)(1− p(z|s)) = 1− 1/|Z| in each state. From the perspective of the policy

player, adding a constant to the reward does not change the best response policy, nor the optimistic
policy. Therefore, the gradient correction term does not have an effect on the optimization under a
uniform prior, and we retrieved the reward of DIAYN. These algorithms differ however for more
general priors p(z), which we explore empirically in Appendix F.

GAIL. We further show how Eq. (10) extends to GAIL [31] via a simple construction. Consider a
binary latent space of size |Z| = 2, where z = 1 corresponds to the policy of the agent and z = 2
corresponds to the policy of the expert which is fixed. In addition, consider a uniform prior over
the latent variables, i.e., p(z = 1) = 1

2 . By removing the constant terms in Eq. (11), one retrieves
the GAIL [31] algorithm. The cost log(p(z|s)) is the probability of the discriminator to identify the
agent, and the policy player is MDPO (which is similar to TRPO in GAIL).

7 Discussion

In this work we reformulated the convex MDP problem as a convex-concave game between the agent
and another player that is producing costs (negative rewards) and proposed a meta-algorithm for
solving it.

We observed that many algorithms in the literature can be interpreted as instances of the meta-
algorithm by selecting different pairs of subroutines employed by the policy and cost players. The
Frank-Wolfe algorithm, which combines best response with FTL, was originally proposed for AL
[1, 75] but can be used for any convex MDP problem as was suggested in [30]. Zhang et al. [77],
unified the problems of RL, AL, constrained MDPs with linear constraints and maximum entropy
exploration under the framework of convex MDPs. We extended the framework to allow convex
constraints (Section 5) and explained the objective of GAIL as a convex MDP (Section 6.2). We
also discussed non convex objectives (Section 3) and analyzed unsupervised skill discovery via the
maximization of mutual information (Section 6.2) as a special case. Finally, we would like to point
out a recent work by Geist et al. [25], which was published concurrently to ours, and studies the
convex MDP problem from the viewpoint of mean field games.

There are also algorithms for convex MDPs that cannot be explained as instances of Algorithm 1. In
particular, Zhang et al. [77] proposed a policy gradient algorithm for convex MDPs in which each
step of policy gradient involves solving a new saddle point problem (formulated using the Fenchel
dual). This is different from our approach since we solve a single saddle point problem iteratively,
and furthermore we have much more flexibility about which algorithms the policy player can use.
Moreover, for the convergence guarantee [77, Theorem 4.5] to hold, the saddle point problem has to
be solved exactly, while in practice it is only solved approximately [77, Algorithm 1], which hinders
its sample efficiency. Fenchel duality has also been used in off policy evaluation (OPE) in [46, 74].
The difference between these works and ours is that we train a policy to minimize an objective, while
in OPE a target policy is fixed and its value is estimated from data produced by a behaviour policy.

In order to solve a practical convex MDP problem in a given domain it would be prudent to use an
RL algorithm that is known to be high performing for the vanilla RL problem as the policy player.
From the theoretical point of view this could be MDPO or UCRL2, which we have shown come with
strong guarantees. From the practical point of view using a high performing DRL algorithm, which
may be specific to the domain, will usually yield the best results. For the cost player using FTL, i.e.,
using the gradient of the objective function, is typically the best choice.
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B Proposition 1

Proposition 1. For both the average and the discounted case, the agent objective function Eq. (3)
can be written in terms of the occupancy measure as Jπ =

∑
s,a r(s, a)dπ(s, a).

Proof. Beginning with the discounted case, the average cost is given by

Jγπ = (1− γ)E
∞∑
t=1

γtrt

= (1− γ)

∞∑
t=1

∑
s

Pπ(st = s)
∑
a

π(s, a)γtr(s, a)

= (1− γ)
∑
s,a

( ∞∑
t=1

γtPπ(st = s)π(s, a)

)
r(s, a)

=
∑
s,a

dγπ(s, a)r(s, a).

Similarly, for the average reward case

Javg
π = lim

T→∞

1

T
E

T∑
t=1

rt

= lim
T→∞

1

T

T∑
t=1

∑
s

Pπ(st = s)
∑
a

π(s, a)r(s, a)

=
∑
s,a

(
lim
T→∞

1

T

T∑
t=1

Pπ(st = s)π(s, a)

)
r(s, a)

=
∑
s,a

davg
π (s, a)r(s, a).

�
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C FW algorithms

C.1 Pseudo code

Algorithm 3: Frank-Wolfe algorithm
Input: a convex and smooth function f

2: Initialize: Pick a random element d1
π ∈ K.

for i = 1, . . . , T do
4: dk+1

π = arg maxπ∈Π dπ · −∇f(d̄kπ)
d̄k+1
π = (1− αi)d̄kπ + αid

k+1
π

6: end for

C.2 Linear convergence

Theorem 2 (Linear Convergence [34]). Suppose that f has L-Lipschitz gradient and is µ-strongly
convex. Let D = {dπ,∀π ∈ Π} be the set of all the state occupancy’s of deterministic policies in
the MDP and let K = Co(D) be its Convex Hull. Such that K a polytope with vertices D, and let
M = diam(K). Also, denote the Pyramidal Width of D, δ = PWidth(D) as in [34, Equation 9 1].

Then the suboptimality ht of the iterates of all the fully corrective FW algorithm decreases geometri-
cally at each step, that is

f(d̄k+1
π ) ≤ (1− ρ)f(d̄kπ) , where ρ =

µδ2

4LM2

D Sample complexity proofs

Lemma (The sample complexity of non-stationary RL algorithms in convex MDPs). For a convex
function f, running Algorithm 1 with an oracle cost player with regret R̄λK ≤ c0/

√
K and UCRL2 as

a policy player returns a mixed policy π̄K that satisfies f(d̄Kπ ) − fOPT ≤ ε with probability 1 − δ
after K = O

(
D2S2A
δ2ε2 log( 2DSA

δε )
)

steps.

Proof. In Theorem 1 and the discussion below it, we showed that f(d̄Kπ )− fOPT ≤ R̄λK + R̄πK . From
Lemma 3, we have that with probability 1 − δ′, a "positive event" happens, and the regret of the
UCRL2 player, εK , is upper bounded by R̄πK = 1

K

∑K
k=1 J

?
k − J

π̃k
k ≤ c1DS

√
A log(K/δ′)/K) for

some constant c1. Recall that the function f has bounded gradients and therefore, the non stationary
reward is upper bounded by 1. Thus, when the "positive event" does not happen (with probability δ′),
we can always upper bound the regret by R̄πK = 1

K

∑K
k=1 J

?
k − J

π̃k
k ≤ 1. Using Markov’s inequality,

we have that

Pr(f(d̄Kπ )− fOPT ≥ ε) ≤ Ef(d̄Kπ )− fOPT

ε
≤ E(R̄πK + R̄λK)

ε

≤ 1

ε

(
(1− δ′)c1DS

√
A log(K/δ′)/K) + δ′ + c0

√
1/K

)
≤ 1

ε

(
(c2DS

√
A log(K/δ′)/K) + δ′

)
,

thus, if we choose δ′ = εδ
2 , we have that in order for Pr(f(d̄Kπ ) − fOPT ≥ ε) to be smaller than δ

after K steps, it is enough to find a value for K such that 1
ε c2DS

√
A log(2K/εδ)/K ≤ δ/2, which

is achieved for K = cD2S2A
δ2ε2 log( 2DSA

δε ) �.

Lemma (The sample complexity of approximate best response in convex MDPs with average
occupancy measure). For a convex function f , running Algorithm 1 with an oracle cost player with
regret R̄λK = O(1/K) and an approximate best response policy player that solves the average
reward RL problem in iteration k to accuracy εk = 1/k returns an occupancy measure d̄Kπ that
satisfies f(d̄Kπ )− fOPT ≤ ε with probability 1− δ after seeing O(t2mixSA log(2K/εδ)/ε3δ3) samples.
Similarly, for R̄λK = O(1/

√
K), setting εk = 1/

√
k requires O(t2mixSA log(2K/εδ)/ε4δ4) samples.
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To solve an MDP to accuracy εk, it is sufficient to run an RL algorithm for O(1/ε2k) iterations.
This is a lower bound and an upper bound in ε, see, for example [36] for an upper bound of
O
(
t2mixSA
ε2 log(1/δ)

)
and a lower bound [37] of O

(
tmixSA
ε2 log(1/δ)

)
for the average reward case.

We continue the proof using the algorithm of [17] as the approximate best response player, i.e., we
invoke their algorithm at iteration k to find an εk−optimal solution with probability 1−δk = 1−δ′/K.
Applying the union bound over the iterations gives us that with probability of 1− δ′, the regret of the
policy player is R̄πK = 1

K

∑
εk.

1

We consider two cases for the cost player. In the first, we will consider average regret of R̄λK = c/
√
K,

which is feasible for any of the cost players we considered in this paper. In this case, we will set the
per-iteration ε to be εk = c/

√
k. We have that

R̄K = R̄πK + R̄λK ≤
1

K

K∑
k=1

c2/
√
k + c1/

√
K ≤ 1

K
c3
√
k + c1/

√
K ≤ c4/

√
K.

Then, via Markov inequality we get that

Pr(f(d̄Kπ )− fOPT ≤ ε) ≤ Ef(d̄Kπ )− fOPT

ε
≤ ER̄πK + R̄λK

ε
≤ 1

ε

(
c4√
K

+ δ′
)
.

Setting δ′ = εδ/2 implies that it is enough to run the algorithm for K = c5/ε
2δ2 iterations to find an

ε−optimal solution with probability of 1− δ.

In each iteration k, in order to find an εk = c1/
√
k optimal solution w.p 1− δ′/K, we need to collect

c2kt
2
mixSA log(K/δ′) samples. Thus, the total number of samples is

c5/ε
2δ′2∑

k=1

c2kt
2
mixSA log(K/δ′) = c2t

2
mixSA log(K/δ′)

c5/ε
2δ2∑

k=1

k ≤ c3t2mixSA log(2K/εδ)/ε4δ4.

In the second scenario we have a cost player with constant regret, and therefore average regret of
R̄λK ≤ c1/K, which is possible to achieve under some assumptions [32]. We set εk = c/k and get
that

R̄K = R̄πK + R̄λK ≤
1

K

K∑
k=1

c2/k + c1/K ≤
log(K)

K
c3
√
k + c1/K ≤ c4

log(K)

K
.

Then, via Markov inequality we get that

Pr(f(d̄Kπ )− fOPT ≤ ε) ≤ Ef(d̄Kπ )− fOPT

ε
≤ ER̄πK + R̄λK

ε
≤ 1

ε

(
c4 log(K)

K
+ δ′

)
.

Setting δ′ = εδ/2 implies that it is enough to run the algorithm for K = c5/εδ iterations to find an
ε−optimal solution with probability of 1− δ.

In each iteration k, in order to find an εk = c1/k optimal solution w.p 1− δ′/K, we need to collect
c2k

2t2mixSA log(K/δ′) samples, which leads to a total number of samples of

c5/εδ∑
k=1

c2k
2t2mixSA log(K/δ′) = c2t

2
mixSA log(K/δ′)

c5/εδ∑
k=1

k2 ≤ c3t2mixSA log(2K/εδ)/ε3δ3. �

Discussion on how to choose the schedule for εk
The overall regret of the game is the sum of the regret of the policy player and the cost player, and the
regret of the game is asymptotically

R̄K = R̄πK + R̄λK = O
(
max(R̄πK , R̄

λ
K)
)

(12)

1Note that the iterations are independent from each other from the perspective of the approximate best
response player so it is possible to apply the union bound. This is because each iteration involves solving a new
MDP, and the upper bound does not make any assumptions about the structure of the reward in this MDP.
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Consider the general case of εk = 1/kp. Note that for the average regret 1
K

∑K
k=1 1/kp to go to

zero as K grows, the sum 1
K

∑K
k=1 1/kp must be smaller than K, so p must be positive. In addition,

for larger values of p, εk is smaller. Thus the regret is smaller, but at the same time, it requires
more samples to solve each RL problem. Inspecting the maximum in Eq. (12), we observe that
it does not make sense to choose a value for p for which 1

K

∑K
k=1 1/kp < R̄λK , since it will not

improve the overall regret and will require more samples, than, for example, setting p such that
1
K

∑K
k=1 1/kp = R̄λK .

Thus, in the case that the cost player has constant regret, R̄λK = O(1/K), we set p ∈ (0, 1], and in
the case that the cost player has regret of R̄λK = O(1/

√
K), we set p ∈ (0, 0.5].

We now continue and further inspect the regret. We have that 1
K

∑K
k=1 εk = 1

K

∑K
k=1 1/kp =

O(k−p) for p ∈ (0, 1), and log(K)/K for p = 1. Neglecting logarithmic terms, we continued with
O(k−p) for both cases. In other words, it is sufficient to run the meta-algorithm for K = 1/εp

iterations to guarantee an error of at most ε for the convex MDP problem.

Thus, to solve an MDP to accuracy εk = 1/kp it requires k2p iterations, and the overall sample
complexity is therefore

∑1/εp

k=1 k
2p = O(1/ε

2p+1
p ).

The function 1/ε
2p+1
p is monotonically increasing in p, so it attains minimum for the highest value of

p which is 0.5 or 1, depending on the cost player. We conclude that the optimal sample complexity
with approximate best response is O(1/ε3) for the cost player that has constant regret and O(1/ε4)

for a cost player with average regret of R̄λK = O(1/
√
K).

E Proof sketch for Lemma 3

We denote by r∗k the optimal average reward at time k in an MDP with dynamics P and reward
rk = −λk. We want to show that

Rk =
∑
k

r∗k − rk(sk, ak) ≤ c/
√
K,

that is, that the total reward that the agent collects has low regret compared to the sum of optimal
average rewards.

To show that, we make two minor adaptations to the UCRL2 algorithm and then verify that its original
analysis also applies to this non-stationary setup. The first modification is that the nonstatioanry
version of UCRL2 uses the known reward rk at time k (which in our case is the output of the cost
player) instead of estimating the unknown, stochastic, stationary, extrinsic reward. Since the current
reward rk is known and deterministic, there is no uncertainty about it, and we only have to deal
with uncertainty with respect to to the dynamics. The second modification is that we compute a new
optimistic policy (using extended value iteration) in each iteration. This optimistic policy is computed
with the current reward rk, and the current uncertainty set about the dynamics Pk. This also means
that all of our episodes are of length 1.

After making these two clarifications, we follow the proof of UCRL2 and make changes when
appropriate. We note that the analysis, basically, does not require any modifications, but we repeat
the relevant parts for completeness. We begin with the definition of the regret at episode k, which is
now just the regret at time k :

∆k =
∑
s,a

vk(s, a)(r∗k − rk(s, a)),

where vk(s, a) in our case is an indicator on the state action pair sk, ak, and Rk =
∑
k ∆k.

The instantaneous regret ∆k measures the difference between the optimal average reward r∗k, with
respect to reward rk, and the reward rk(s, a) that the agent collected at time k by visiting state s and
taking action k from the reward that is produced by the cost player.

Section 4.1 in the UCRL2 paper is the first step in the analysis. It bounds possible fluctuations in the
random reward. This step is not required in our case since our reward at time k is the output of the
cost player, which is known in all the states and deterministic.
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Section 4.2 considers the regret that is caused by failing confidence regions, that is, the event that the
true dynamics and true reward are not in the confidence region. In our case there is only confidence
region for the dynamics (since the reward is known), which we denote by Pk. Summing the expected
regret from episodes in which P /∈ Pk results in a

√
K term in the regret,

∆k ≤
∑
s,a

vk(s, a)(r∗k − rk(s, a)) +
√
K,

where from now on, we continue with the event that P ∈ Pk.
Next, we denote the optimistic policy and optimistic MDP as the solution of the following problem
π̃k, P̃k = arg maxπ∈Π,P ′∈Pk J

P ′,rk
π . In addition, we denote by r̃k the optimstic average reward, that

is, the average reward of the policy π̃k in the MDP with the optimstic dynamics P̃k and reward rk.
We also note that π̃k is the optimal average reward policy in this MDP by its definition.

We now continue with the case that P ∈ Pk. The next step is to bound the difference between the
optimal average reward r∗k and the optimistic average reward r̃k. We note that both r̃k and r∗k are
average rewards that correspond to rk. The difference between them is that r∗k is the optimal average
reward in an MDP with the true dynamics P and r̃k is the optimal average reward in an MDP with
the optimistic dynamics P̃k. Thus, the fact that the reward is known, in our case, does not change the
fact that that the optimstic reward is a function of the dynamics uncertainty set Pk.

To compute the optimstic policy and dynamics, UCRL2 uses the extended value iteration procedure
of [63] to efficiently compute the following iterations:

u0(s) = 0 (13)

ui+1(s) = max
a∈A

{
rk(s, a) + max

P∈P̃k

∑
s′∈S

P (s′|s, a)ui(s
′)

}
,

Using Theorem 7 from [35] we have that running extended value iteration to find the optimistic policy
in the optimistic MDP for tk iterations guarantees that r̃k ≥ r∗k − 1/

√
tk. Thus, we have that:

∆k ≤
∑
s,a

vk(s, a)(r∗k − rk(s, a)) +
√
K ≤

∑
s,a

vk(s, a)(r̃k − rk(s, a)) + 1/
√
tk +

√
K

Using Eq. (13), we write the last iteration of the extended value iteration procedure as:

ui+1(s) = rk(sk, π̃k(s)) +
∑
s′∈S

P̃k(s′|s, (π̃k(s)))ui(s
′) (14)

Theorem 7 from [35] guarantees that after running extended value iteration for tk we have that
‖ui+1(s)− ui(s)− r̃k‖ ≤ 1/

√
tk. (15)

Plugging Eq. (14) in Eq. (15) we have that:

‖rk(sk, π̃k(s))− r̃k +
∑
s′∈S

P̃k(s′|s, (π̃k))ui(s
′)− ui(s)‖ ≤ 1/

√
tk, (16)

and therefore
r̃k − rk(sk, ak) = r̃k − rk(sk, π̃k(s)) ≤ vk(P̃k − I)ui + 1/

√
tk.

In the next step in the proof, the vector ui is replaced with wk, which is later upper bounded by the
diameter of the MDP D. To conclude, we have that

∆k ≤
∑
s,a

vk(s, a)(r̃k − rk(s, a)) + 1/
√
tk +

√
K ≤ vk(P̃k − I)wk + 2/

√
tk +

√
K.

From this point on, the proof follows by bounding the term vk(P̃k − I)wk, which is only related
to the dynamics, and combines all of the previous results into the final result, thus, it is possible to
follow the original proof without any modification. Since the leading terms in the original proof come
from uncertainty about the dynamics, we obtain the same bound as in the original paper.
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F Experiments

Above, we presented a principled approach to using standard RL algorithms to solve convex MDPs.
We also suggested that DRL agents can use this principle and solve convex MDPs by optimizing the
reward from the cost player. We now demonstrate this by performing experiments with Impala [19], a
distributed actor-critic DRL algorithm. Our main message is that in domains where Impala can solve
RL problems (eg, problems without hard exploration), it can also solve convex MDPs.
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Figure 2: DIAYN, non uniform prior.

F.1 DIAYN.

In our first experiment, we focus on the convex MDP formulation of DIAYN as we defined in
Eq. (10). We compare the intrinsic reward that results from an FTL cost player in Eq. (11) and the
original mutual-information based reward in DIAYN by performing ablative analysis on the gradient
correction terms in Eq. (11). In both cases, we also include the standard action entropy regularizer.
Since the two intrinsic rewards were shown to be equivalent under a uniform prior, we consider a
fixed but non-uniform prior.2 The environment is a simple 9 × 9 gridworld, where the agent can
move along the four cardinal directions. We maximize undiscounted rewards over episodes of length
32. Given trajectories generated by the distributed actors, a central learner computes the gradients
and updates the parameters for the policy, critic and the (variational) reverse predictor. Fig. 2 plots
the average (per timestep) mutual information I(z, s), between code z and states s ∼ dzπ, which
is equivalent to the objective in Eq. (10). Performance is averaged over 10 seeds, with the shaded
area representing the standard error on the mean. Inspecting Fig. 2 we can see that DIAYN reaches
around 4.5 bits. We can also see that using the full gradient correction term in Eq. (11) (“DIAYN w/
gc”) degrades performance both in terms of convergence and final performance. On the other hand,
removing the constant from the gradient correction (“DIAYN w/ gc (no const)”), which does not
affect the optimal policy, recovers the performance of DIAYN.

F.2 Entropy constrained RL.

Here we focus on an MDP with a convex constraint, where the goal is to maximize the extrinsic
reward provided by the environment with the constraint that the entropy of the state-action occupancy
measure must be bounded below. In other words, the agent must solve maxdπ∈K

∑
s,a r(s, a)dπ(s, a)

subject to H(dπ) ≥ C, where H denotes entropy and C > 0 is a constant. The policy that maximizes
the entropy over the MDP acts to visit each state as close to uniformly often as is feasible. So, a
solution to this convex MDP is a policy that, loosely speaking, maximizes the extrinsic reward under
the constraint that it explores the state space sufficiently. The presence of the constraint means that
this is not a standard RL problem in the form of Eq. (1). However, the agent can solve this problem
using the techniques developed in this paper, in particular those discussed in Section 5.

We evaluated the approach on the bsuite environment ‘Deep Sea’, which is a hard exploration problem
where the agent must take the exact right sequence of actions to discover the sole positive reward
in the environment; more details can be found in [53]. In this domain, the features are one-hot state

2p(z) is a Categorical distribution over n = 25 outcomes, with p(z = i) = ui/
∑n

j=1 uj , ui ∼ U(0, 1).
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features, and we estimate dπ by counting the state visitations. For these experiments we chose C to
be half the maximum possible entropy for the environment, which we can compute at the start of
the experiment and hold fixed thereafter. We equipped the agent with the (non-stationary) Impala
algorithm, and the cost-player used FTL. We present the results in Figure 3 where we compare the
basic Impala agent, the entropy-constrained Impala agent and bootstrapped DQN [52]. As made
clear in [50] algorithms that do not properly account for uncertainty cannot in general solve hard
exploration problems. This explains why vanilla Impala, considered a strong baseline, has such poor
performance on this problem. Bootstrapped DQN accounts for uncertainty via an ensemble, and
consequently has good performance. Surprisingly, the entropy regularized Impala agent performs
approximately as well as bootstrapped DQN, despite not handling uncertainty. This suggests that the
entropy constrained approach, solved using Algorithm 1, can be a reasonably good heuristic in hard
exploration problems.

Figure 3: Entropy constrained RL
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