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A Omitted Proofs

A.1 Proof of Lemma 3.1

Proof. Computing a single one dimensional projection takes time O(nd) and computing a k-nearest neighbor
graph can be done in time O(nk) after sorting the points in O(nlogn) time. Note that this crucially depends
on the fact that we perform a one dimensional projection as nearest neighbors are determined by adjacent
points on the real line. It is computationally expensive to compute such a graph in arbitrary dimensions
larger than 1. Finding the sparsest prefix cut after sorting as is done in line 5 of Algorithm 1 takes linear time
once the k-nearest neighbor graph has been constructed. Overall, the runtime of each of the T procedures
is O(nd 4+ nlogn + nk). O

A.2 Proof of Lemma 3.2

Proof. The proof follows from the fact that if a cut does not respect the sorted ordering, then we can switch
two points in opposite parts of the cut to reduce the number of edges across the cut. O

A.3 Proof of Lemma 3.4

Proof. Consider the computational cost of building ClusterTree as a tree. We claim that at every level of
the tree, we do O(nd + nlogn + nk) work. To verify this, we note that cnlog(cn) + (1 — ¢)nlog((1 — c)n <
enlogn + (1 — ¢)nlogn = nlogn. Then from Assumption 3.3, there are O(logn) levels of the tree, leading
to the stated runtime. (One can also use the Akra-Bazzi method to arrive at the same conclusion, see Akra
& Bazzi (1998) or Leighton (1996)). O

A.4 Proof of Lemma 3.6
Proof. Fix the dataset X. First note that for any fixed points x,y € X, we have
E[[P(z —y)|? = ||z — y|I”

since P is independent of X. Now for any = € X, the average distance squared from Pz to its k-nearest
neighbors in PX is at most the average distance squared from Pz to the points that were originally its
k-nearest neighbors in X. This gives that apx < ax. Finally, note that that the expected value of the
sum of all pairwise distances after the projection is the same as the sum of all pairwise distances from our
observation above. This proves Spx = fx, as desired. O

A.5 Proof of Lemma 3.7

Proof. To prove Lemma 3.7, we will need the following auxiliary result.

Lemma A.1. Suppose © ~ N (u1,%1) and y ~ N (p2,%2) Then
Elllz = yl?) = 1 — p2]|? + tr(S1) + tr(Sa).

Proof. Note that z —y is distributed as N (1 — o, X1 — o) and thus, z —y ~ pu1 — s+ Az where z ~ N(0, 1)
and A satisfies AAT = ¥; + £y. Thus,

2 = yl|? = |1 — poll® + 2(p1 — p2) T Az + 2T AT Az
Since E[z] = 0, we have
Efl|z — y||2] = |l — ,u2||2 + E[ZTATAz]

nd
) E[z" AT A2] =Y Elziz](ATA)i; =Y (AT A); = tr(AT A) = tr(AAT) = (S, + Ta).

1] [

Putting together the above calculations gives the desired result. O
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Note that we can upper bound ax by the expected distance squared between two points drawn form the same
component. This is because the distance to the k-th nearest neighbor from a fixed point will always be smaller
than the distance to another point drawn from the same component (assuming our hypothesis that at least
k points are drawn from each component). From Lemma A.1, it follows that ax < 2 max(tr(3), tr(Z2)).

To lower bound fSx, note that since min(w,1 — w) = (1), the expected distance squared between two
uniformly random points is at least asymptotically the expected distance squared between two points from
separate components. Again using Lemma A.1, it follows that Bx = Q(||u1 — p2||* + tr(Z1 + X2)). O

A.6 Proof of Lemma 3.8

Proof. Lemma 3.7 tells us that
ax o (1 + %)

1
x 7l = p2f?

<
where we have used the fact that d \;(X) > tr(X) for a covariance matrix ¥ € R?*9, O

A.7 Proof of Lemma B.1

We first need the following auxiliary results from Indyk & Naor (2007).

Lemma A.2. Let x € S9! and let P be a random one-dimensional Gaussian projection. Then for all
t>0,

Pr(|[[Pz] = 1] > t) < exp(~t?/8), (1)

(2)

Pr(|Pel < 1/1) < 2.

We now proceed with the proof of Lemma B.1.

Proof. We first claim that the diameters of S and S’ don’t increase by a large factor after a random projection.
Fix z,y € S. By Eq. equation 1, the probability that |P(x — y)| increases by a factor of ¢ is at most
exp(—t2/8). Thus for a suitable constant ¢, we have that the probability || P(z—y)|| is larger by a ¢(+/log |S|+
log(1/€)) factor is at most €/(3]S|?). Union bounding across all pairs in S and usmg a similar argument
for S’ glves us that with probability at least 1 — 2¢/3, we have that diam(PS) < 4/log|S]|diam(S) and

diam(PS’) < y/log |S’| diam(S").

We now claim that the sets PS and PS’ don’t come ‘too’ close together. Indeed, take any point x € S and
y € S’. We have that ||z — y|| > d(S,S’). Thus by Eq. equation 2, the probability that |P(z — y)|| shrinks
by a factor of Q(1/e) is at most O(e).

Altogether, we know that with probability at least 1 — ¢, all three of the following events occur:

1. diam(PS) < /log|S|diam(S

2. diam(PS’) < /log|S’| diam(S"),

d(PS, PS") > ed(S, ") — diam(PS) — diam(PS").

Thus by our assumption that S and S’ are r-apart for the value of r in the lemma statement, it follows that
diam(PS) < v/log|S|diam(S) — diam(PS) — diam(PS’) < ed(S,S") < d(PS,PS")

and a similar statement holds for S’, proving the lemma. O
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A.8 Proof of Lemma B.2

Proof. The proof follows from Lemma B.1 as every point in P.S will be closer to any other point in PS than
any other point in PS’. A similar symmetric statement holds for PS’. Thus, any edges of the k-nearest
neighbor graph starting from any point in PS must have its other vertex in PS as well. This implies that
there is an empty cut between PS and PS’, as desired. O

Lemma A.3 (Follows from corollary 5 and 6 in Kushnir et al. (2019)). Consider two c-separated Gaussian
distributions in R® with means 11, 2 and covariance matrices X1 and Xo. Define T(c',d) as in Lemma 3.9.
Let v := 2d(c)*Amax /|| 111 — p2]|?, where Amax denotes the largest eigenvalue of the matriz $1 + Xa. Then

lim T'(c,d) < !

d—>o0 20(v7)
B Hierarchical Clustering

In this section, we discuss the performance of ClusterTree for hierarchical clustering. Since our tree is
designed to preserve the underlying cluster structure of the dataset, it is very natural to use it for clustering
applications, such as hierarchical clustering. In hierarchical clustering, the goal is to design a tree over the
input dataset which hopefully captures ‘multi-scale’ clustering relationships of the dataset.

To formalize this, we first define a natural hierarchical clustering model and then prove results which suggest
that ClusterTree is naturally suited to recover such a clustering. Note that traditional algorithms for hier-
archical clustering, such as computing the minimum spanning tree, require 2(n?) time, which is prohibitive
for large datasets, whereas ClusterTee construction is nearly linear time.

Definition B.1 (Hierarchical Clustering Model). Let X be our dataset and P be a parameter. We assume
there is a tree T over X such that the following is satisfied:

o The leaves of T are disjoint subsets of X of size at most some parameter P and together include all
points of X,

e Leveli>1 of T is a union of two subsets in level i — 1 of the tree where level 0 denotes the leaves.
We assume that each subset at level t — 1 contributes to exactly one subset in level i of the tree

o The largest level of the tree is the entire dataset X .

Note that the above definition naturally describes a hierarchical clustering model over the dataset X where
going up the tree indicates larger scale cluster structure over the dataset X. We further assume a separability
criteria for our hierarchical clustering model.

Definition B.2. Let diam(S) denote the diameter of the subset S C X and d(S,S") denote the distance
between two subsets S, S’ :

d(s.8) = min |z —yl.

zeS,yes’

We say that subsets S, S’ are r-apart if
Crmax(diam(S), diamS’) < d(S, S")
for some constant C.

If we assume the above definition applies to a pair of subsets of the tree 7 at any some fixed level, then
intuitively we are requiring the two subsets constitute well separated clusters.

Given such an assumption, we want to argue that repeated application of Algorithm 1 can successfully
recover the underlying tree 7. The intuition behind this is that if the subsets are projected, they will also
be separated after a random projection with high probability. The following lemma shows that it is indeed
the case.
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Lemma B.1. Suppose subsets S and S’ satisfy Definition B.2 with r > +/log(|S|+ |S"|)/e. Let PS and
PS’ respectively denote a random one-dimensional projection of the two subsets. Then with probability at
least 1 — €, we have

cmax(diam(PS), diam(PS")) < d(PS, PS")

for some constant ¢ > 1.

Lemma B.1 hints that with a sufficient separability assumption, the k-nearest neighbor graph in one-
dimension will mostly have edges within a given cluster which leads to sparse cuts between different subsets.
Thus, we can reasonably expect Algorithm 1 to separate the distinct clusters in 7 since it optimizes for
sparse cuts. Formally, we can prove the following statement.

Lemma B.2. Let S and S’ be two r-apart subsets of dataset X for the value of v in Lemma B.1 and P be
a random one-dimensional projection. If min(|S|,|S’|) > k, then the k nearest neighbor graph of PS U PS’
will have a cut that separates PS and PS’ with probability 1 — .

Now consider the hierarchical clustering model given in Definition B.1 and let 7 denote the implicit tree
over a dataset X. Consider a node of v of 7 and at some level i let S and S’ denote the subsets at level
1 — 1 that comprise v. If S and S’ are r-apart for a sufficiently large value of r, then Lemma B.2 states that
S and S’ will have an empty cut between them after a random one-dimensional projection. If we further
assume that each of the two pieces of the k-nearest neighbor graph is connected, Algorithm 1 will exactly
split apart S and S’, as intended in the tree 7.

Preserving Cluster Structure of the Dataset. We empirically validate the hypothesis that
ClusterTree is superior to RP trees in finding partitions that preserve the underlying cluster structure
of the dataset. We designed two related experiments to demonstrate this. For the first set of experiments,
we measured the diameter of the leaves (weighted by the leaf sizes) of each class of trees as the parameter
P increases. Again the intuition here is that if the diameter of the leaves are small, then it mostly contains
points that are well-clustered together while conversely, if the diameter is large, then the tree has bucketed
together points that belong to different clusters. Our results are shown in Figure 8. Indeed, we see that
for most datasets ClusterTree results in leaves that are much more tightly clustered than RP Trees, which
again demonstrates that ClusterTree is adaptive to the underlying cluster structure of the dataset.

We present additional experiments on how the weighted radius of leaves of various tree-based algorithms
varies as a function size in Figure 9. See Section 4 for more details on experimental setting. Overall, we see
that ClusterTree has a smaller radius as a function of cluster size for the Gaussian Mixture, Spam, RNA,
and KDD Cup datasets. Note that for Spam, 2-means tree was too costly to run and for Gaussian Mixture,
the 2-means tree and ClusterTree have very identical curves for weighted radius as a function of candidate
size.

C Omitted Experimental Results
We give additional experimental results in this section.

Distance to k-th Nearest Neighbors. We created instances of ClusterTree and RP trees for all of
our datasets where we set the leaf size, the parameter P in Algorithm 2, to be equal to 10% of n. We then
computed the distance from a query to the k-th nearest neighbor among the candidates returned by a tree
for various values of k and averaged this across all queries. The intuition here is that if a leaf node of a
tree contains points from multiple distinct clusters, then there will be a substantial increase in this metric
at some intermediate value of k. Indeed, this is what we observe in Figure 10. For example in the Gaussian
Mixture, KDD Cup, and Spam datasets, there is a noticeable ‘jump’ in the plots for RP trees as it is ‘mixing’
multiple clusters in the leaf nodes while for ClusterTree, the relationship is much smoother.

To recap, the intuition here is that if a leaf node of a tree contains points from multiple distinct clusters,
then there will be a substantial increase in this metric at some intermediate value of k. For example, suppose
that the leaf of a node contains points from two distinct well-separated clusters and consider a query that

20



Published in Transactions on Machine Learning Research (03/2025)

Gaussian Mixture Spam News
5.5
100 201 —— Cluster Tree
—— Cluster Tree 5.0 pr—
90 RP Tree ' RP Tree /
9 80 345 319 =
2 5 o°
g 70 24.0 8
ﬂé 60 S35 —— Cluster Tree -
g g> RP Tree £18
< 50 ©3.0 2
2 ] [T}
z 40 225 217
30 2.0
20| froreore———————— 15 16
0 2000 4000 6000 8000 10000 2000 2500 3000 3500 4000 4500 5000 250 500 750 1000 1250 1500 1750 2000
Candidate Size Candidate Size Candidate Size
RNA
710 SIFT 35 KDD Cup
luster T —— Cluster Tree 7000
—— Cluster Tree — —— Cluster Tree
700 RP Tree 30 RP Tree
690 ﬁ— @ 6000 RP Tree
S d = 0
3 /\ S 25 3 5000
5 680 -4 S
- 20 o
©670 9 5 4000
S 515 £
9660 2 3000
g g ]
= 650 10 = 2000
640 5 1000
630 250 500 750 1000 1250 1500 1750 2000 500 1000 1500 2000 1000 2000 3000 4000 5000
Candidate Size Candidate Size Candidate Size
Figure 8: The leaves of ClusterTree have a smaller diameter than those of RP Trees.
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Figure 9: Expanded version of Figure 8 using all tree-based algorithms.

lands in this leaf but is closer to only one of the clusters. Then for a large enough value of k, the k-th
nearest neighbor for this query would come from the far away cluster, leading to a significant increase in the
distance to the k-th nearest neighbor in comparison to the (k — 1)-th nearest neighbor. In contrast, if the
leaf mostly contained points from one cluster, the distance would smoothly increase. To summarize, this is
exactly the behaviour observed in Figure 10: in the Gaussian Mixture, KDD Cup, and Spam datasets, there
is a noticeable ‘jump’ in the plots for RP trees as it is ‘mixing’ multiple clusters in the leaf nodes while for
ClusterTree, the relationship is much smoother.
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Figure 10: ClusterTree has a smoother trade-off curve for distance to the k-th neighbor as k increases.

Additional Parameter Selection Details. If there are multiple cuts that have conductance 0, i.e.,
multiple separated pieces in the k-nearest neighbor graph constructed in Algorithm 1, we pick the cut that is
the most balanced. This is because any choice of the cuts would have been good with respect to preserving
near neighbors so we should optimize for keeping the tree balanced.

Note that there have been recent works on improving RP trees using additional techniques such as sparse
random projections (Sinha & Keivani, 2017), using auxiliary information when performing search over the
tree (Keivani & Sinha, 2021), and other methods (Hyvénen et al., 2016). For simplicity, we did not use these
techniques as they can be used identically for ClusterTree as for RP trees.

Finally, we highlight that both RP tree and ClusterTree are randomized algorithms. Therefore, they have
the following additional benefit: in order to boost accuracy, we can initialize multiple instances of the data
structure to create an ensemble of trees while keeping the overall number of candidates fixed. For example,
instead of creating one tree with leaf size P, we can create two trees with leaf sizes P/2 each. In general, if we
make a constant number of trees, this can be thought of as significantly boosting accuracy by increasing the
amount of space used by only a constant factor. Note that 2-means trees and PCA trees are deterministic
so they do not have this additional benefit. For simplicity however, we only compare single instantiation of
each algorithm.

D Justifications for Assumption 3.3

We provide justification for Assumption 3.3 as its conditions hold true for one-dimensional datasets with
very different structural properties: both uniform and clustered inputs.

e Uniform Points: Suppose the input to Algorithm 1 is a set of uniformly spaced points in one-
dimensions. Then it is clear that the cut with the lowest conductance will split the dataset exactly
in half due to symmetry.

e Clustered Points: Suppose the input consists of two well-separated clusters, with each cluster
consisting of at least c-fraction of the total input size. Then the k-nearest neighbor graph for this
input will be such that the edges of each cluster will be mostly to other points of the same cluster.
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Thus, the cut separating the two clusters will be extremely sparse and hence have low conductance
as well. See Figure 1 for an example.

Average Split Ratio. We now empirically validate Assumption 3.3. To do so, we compute ClusterTree
for all of our datasets setting P = 5% of the size of the dataset in each case. The results across one run of
Algorithm 2 are shown in Table 3. We observe that on average, each node of the tree splits the dataset into
two approximately balanced parts.

Dataset ~ Avg. Split Ratio Dataset Avg. Split Ratio
KDD Cup 0.49(0.26) Spam 0.50(0.27)
News 0.50(0.00) SIFT 0.49(0.18)
RNA 0.45(0.29) Gaussian Mixture 0.53(0.12)

Table 3: The average split ratio across all nodes in the tree with standard deviation in the parenthesis using
5% of the number of points as the parameter P (leaf size).

E Additional Datasets

We provide additional experiments for comparison between RP-trees and ClusterTree on a set of additional
data sets: two clustering benchmark data sets from (Franti & Sieranoja, 2018), 8776x13, 10126x15, Gas
sensor data set 120kx128 (Fonollosa), stocks 94701x6 (Kaggle, 2023), mediamill 43907x120 (Repository),
skyserver (Ahumada et al., 2020) 500Kx11.
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Figure 11: Candidate Size vs 1-NN Error for ClusterTree and RP tree.
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Figure 12: Candidate Size vs 10-NN Error for ClusterTree and RP tree.

F Additional Running-Time Accleration Analysis

Dataset iAccel. factor CI.JTree bucket size Cl.Tree Acc. diff PQATree Acc. diff | Comments
min max min max min max min max
GMM x1.12 x1.35 | 11180 17676 0.55 0.69 0.52 0.56
SPAM x1.15 x2.7 3x10% | 5x10% 0.9980 | 0.9985 | 0.9968 | 0.9975
News NA NA NA NA 1.0 1.0 0.9 0.95 no shared y values
RNA 2.45 2.49 379 92 0.99 0.99 0.12 0.17
KDD Cup x 0.53 x0.33 1965 200 0.90 0.61 0.57 0.93

Table 4: ClusterTree vs. PCATree query running-time acceleration min and max values for 10-NN.

Dataset A.mel. factor CI:JTree bucket size Cl.Tree Acc. diff KMsTree Acc. diff | Comments
min max | min max min max min max
GMM NA NA NA NA NA NA NA NA no shared y and x values
SPAM x1.15 | x2.7 | 3x 10T | 5x 107 0.9980 | 0.9985 | 0.9968 | 0.9975
News NA NA NA NA 1.0 1.0 0.44 0.15 no shared y values
RNA NA NA NA NA 0.98 0.96 0.15 0.05 no shared y values
KDD Cup | NA NA NA NA 0.60 0.86 0.07 0.18 no shared y values

Table 5: ClusterTree vs. KMEANsTree query running-time acceleration min and max values for 10-NN.
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