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Abstract1

Graph Neural Networks (GNNs) extend the success of neural networks to graph-2

structured data by accounting for their intrinsic geometry. While extensive research3

has been done on developing GNN models with superior performance according to4

a collection of graph representation learning benchmarks, it is currently not well5

understood what aspects of a given model are probed by them. For example, to6

what extent do they test the ability of a model to leverage graph structure vs. node7

features? Here, we develop a principled approach to taxonomize benchmarking8

datasets according to a sensitivity profile that is based on how much GNN perfor-9

mance changes due to a collection of graph perturbations. Our data-driven analysis10

provides a deeper understanding of which benchmarking data characteristics are11

leveraged by GNNs. Consequently, our taxonomy can aid in selection and devel-12

opment of adequate graph benchmarks, and better informed evaluation of future13

GNN methods. Finally, our approach and implementation in GTaxoGym package1
14

are extendable to multiple graph prediction task types and future datasets.15

1 Introduction16

Machine learning for graph representation learning (GRL) has seen rapid development in recent17

years [29]. Originally inspired by the success of convolutional neural networks in regular Euclidean18

domains, thanks to their ability to leverage data-intrinsic geometries, classical graph neural network19

(GNN) models [16, 38, 60] extend those principles to irregular graph domain. Further advances in20

the field have led to a wide selection of complex and powerful GNN architectures. Some models are21

provably more expressive than others [46, 67], can leverage multi-resolution views of graphs [44],22

or can account for implicit symmetries in graph data [9]. Comprehensive surveys of graph neural23

networks can be found in Bronstein et al. [8], Wu et al. [65], Zhou et al. [71].24

Most graph-structured data encode information in graph structures and node features. The structure25

of each graph represents relationships (i.e., edges) between different nodes, while the node features26

represent quantities of interest at each node. For example, in citation networks, nodes represent27

papers, and edges represent citations between the papers. On such networks, node features often28

capture the presence or absence of certain keywords in each paper, encoded in binary feature vectors.29

In graphs modeling social networks, each node represents a user, and the corresponding node features30

often include user statistics like gender, age, or binary encodings of personal interests.31

Intuitively, the power of GNNs lies in relating local node-feature information to global graph structure32

information, typically achieved by applying a cascade of feature aggregation and transformation steps.33

In aggregation steps, information is exchanged between neighboring nodes, while transformation34

steps apply a (multi-layer) perceptron to feature vectors of each node individually. Such architectures35

are commonly referred to as Message Passing Neural Networks (MPNN) [25].36

Historically, GNN methods have been evaluated on a small collection of datasets [47], many of which37

originated from the development of graph kernels. The limited quantity, size and variety of these38

datasets have rendered them insufficient to serve as distinguishing benchmarks [18, 49]. Therefore,39

recent work has focused on compiling a set of large(r) benchmarking datasets across diverse graph40

domains [18, 33]. Despite these efforts and the introduction of new datasets, it is still not well41
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Figure 1: Overview of our pipeline to taxonomize graph learning datasets.

understood what aspects of a dataset most influence the performance of GNNs. Which is more42

important, the geometric structure of the graph or the node features? Are long-range interactions43

crucial, or are short-range interactions sufficient for most tasks? This lack of understanding of the44

dataset properties and of their similarities makes it difficult to select a benchmarking suit that would45

enable comprehensive evaluation of GNN models. Even when an array of seemingly different datasets46

is used, they may probe similar aspects of graph representation learning.47

Leveraging symmetries and other geometric priors in graph data is crucial for generalizable learn-48

ing [9]. While invariance or equivariance to some transformations is inherent, invariance to others49

may only be empirically or partially apparent. Motivated by this observation, we propose to use the50

lens of empirical transformation sensitivity to gauge how task-related information is encoded in graph51

datasets and subsequently taxonomize their use as benchmarks in graph representation learning. Our52

approach is illustrated in Figure 1. Namely, we list our contributions in this study as:53

1. We develop a graph dataset taxonomization framework that is extendable to both new datasets54

and evaluation of additional graph/task properties.55

2. Using this framework, we provide the first taxonomization of GNN (and GRL) benchmarking56

datasets, collected from TUDatasets [47], OGB [33] and other sources.57

3. Through the resulting taxonomy, we provide insights about existing datasets and guide better58

dataset selection in future benchmarking of GNN models.59

2 Methods60

As a proxy for invariance or sensitivity to graph perturbations, we study the changes in GNN61

performance on perturbed versions of each dataset. These perturbations are designed to eliminate62

or emphasize particular types of information embedded in the graphs. We define an empirical63

sensitivity profile of a dataset as a vector where each element is the performance of a GNN after a64

given perturbation, reported as a percentage of the network’s performance on the original dataset.65

In particular, we use a set of 13 perturbations, visualized in Figure 2. Of these perturbations, 6 are66

designed to perturb node features, while keeping the graph structure intact, whereas the remaining 767

keep the node attributes the same, but manipulate the graph structure.68

For the purpose of these perturbations, we consider all graphs to be undirected and unweighted, and69

assume they all have node features, but not edge features. These assumptions hold for most datasets70

we use in this study. However, if necessary, we preprocess the data by symmetrizing each graph’s71

adjacency matrix and dropping any edge attributes. Formally, let G = (V,E,X) be an undirected,72

unweighted, attributed graph with node set V of cardinality ∣V ∣ = n, edge set E ⊂ V × V , and a73

matrix of d-dimensional node features X ∈ Rn×d. We let M ∈ Rn×n denote the adjacency matrix of74

each graph, where M(u, v) = 1 if (u, v) ∈ E and zero otherwise.75

Several of our perturbations are based on spectral graph theory, which represents graph signals in a76

spectral domain analogous to classical Fourier analysis. We define the graph Laplacian L ∶=D −M77

and the symmetric normalized graph Laplacian N ∶= D−
1
2LD−

1
2 = I −D− 1

2MD−
1
2 , where D is78

the diagonal degree matrix. Both L and N are positive semi-definite and have an orthonormal79

eigendecompositions L = ΦΛΦ⊺ and N = Φ̃Λ̃Φ̃⊺. By convention, we order the eigenvalues80

and corresponding eigenvectors {(λi, ϕi)}0≤i≤n−1 of L (and similarly for N) in ascending order81
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(a) original (b) LowPass (c) MidPass (d) HighPass (e) NoNodeFtrs (f) NodeDeg (g) RandFtrs

(h) RandRewire (i) NoEdges (j) FullyConn (k) Frag. k=1 (l) Frag. k=2 (m) Frag. k=3 (n) FiedlerFrag

Figure 2: Node feature and graph structure perturbations of the first graph in ENZYMES. The color
coding of nodes illustrates their feature values, except (k-n) where the fragment assignment is shown.

0 = λ0 ≤ λ1 ≤ ⋅ ⋅ ⋅ ≤ λn−1. The eigenvectors {ϕi}0≤i≤n−1 constitute a basis of the space of graph82

signals and can be considered as generalized Fourier modes. The eigenvalues {λi}0≤i≤n−1 characterize83

the variation of these Fourier modes over the graph and can be interpreted as (squared) frequencies.84

2.1 Node Feature Perturbations85

We first consider two perturbations that alter local node features, setting them either to a fixed86

constant (w.l.o.g., one) for all nodes, or to a one-hot encoding of the degree of the node. We refer to87

these perturbations as NoNodeFtrs (as constant node features carry no additional information) and88

NodeDeg, respectively. Sensitivity to these perturbations, exhibited by a large decrease in predictive89

performance, may indicate that a task is dominated by highly informative node features. Further, we90

consider a random node feature perturbation (RandFtrs) by sampling a one-dimensional feature for91

each node from U[−1,1], which has been shown to improve the WL expressiveness of MPNNs [1, 54].92

We also develop spectral node feature perturbations. As in Euclidean settings, the Fourier decomposi-93

tion can be used to decompose graph signals into a set of canonical signals, called Fourier modes,94

which are organized according to increasing variation (or frequency). In Euclidean Fourier analysis,95

these modes are sinusoidal waves oscillating at different frequencies. A standard practice in audio96

signal processing is to remove noise from a signal by identifying and removing certain Fourier modes97

or frequency bands. We generalize this technique to graph datasets and systematically remove certain98

graph Fourier modes to probe the importance of the corresponding frequency bands.99

In this perturbation, we use the frequencies derived from the symmetric normalized graph Laplacian100

N and split them into three roughly equal-sized frequency bands (low, mid, high), i.e., bins of101

subsequent eigenvalues. To assess the importance of each of the frequency bands, we then apply102

hard band-pass filtering to the graph signals (node feature vectors), i.e., we project the signals on103

the span of the selected Fourier modes. More specifically, for each band, we let Iband be a diagonal104

matrix with diagonal elements equal to one if the corresponding eigenvalue is in the band, and zero105

otherwise. Then, the hard band-pass filtered signal is computed as106

Xband = Φ̃IbandΦ̃
⊺X. (1)

The above band-pass filtering perturbation enables a precise selection of the frequency bands. How-107
ever, it requires a full eigendecomposition of the normalized graph Laplacian, which is impractical108

for large graphs. We therefore provide an alternative approach based on wavelet bank filtering [13].109

This leverages the fact that polynomial filters h of the normalized graph Laplacian directly transform110

the spectrum via h(N) = Φ̃h(Λ̃)Φ̃⊺, yielding the frequency response h(λ) for any eigenvalue λ of111

N. This is usually done by taking the symmetrized diffusion matrix112

T = 1

2
(I +D−

1
2MD−

1
2 ) = 1

2
(2I −N) . (2)

By construction, T admits the same eigenbasis as N but its eigenvalues are mapped from [0,2]113
to [0,1] via the frequency response h(λ) = 1 − λ/2. As a result, large eigenvalues are mapped to114

small values (and vice versa). Next, we construct diffusion wavelets [16] that consist of differences of115

dyadic powers 2k, k ∈ N0 of T, i.e., Ψk = T2k−1 −T2k , which act as bandpass filters on the signal.116

Intuitively, this operator “compares” two neighborhoods of different sizes (radius 2k−1 and 2k) at117
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each node. Diffusion wavelets are usually maintained in a wavelet bankWK = {Ψk,ΦK}Kk=0, which118

contains additional highpass Ψ0 = I −T and lowpass ΨK = TK filters. In our experiments, we119

choose K = 1, resulting in the following low, mid, and highpass filtered node features:120

Xhigh = (I −T)X, Xmid = (T −T2)X, Xlow = T2X. (3)

These filters correspond to frequency responses hhigh(λ) = λ/2, hmid(λ) = (1 − λ/2) − (1 − λ/2)2121

and hlow(λ) = (1 − λ/2)2. Therefore, the low-pass filtering preserves low-frequency information122

while suppressing high-frequency information, whereas high-pass filtering does the opposite. The123

mid-pass filtering suppresses all frequencies. However, it preserves much more middle-frequency124

information than it does high- or low-frequency information.125

Therefore, this filtering may be interpreted as an approximation of the hard band-pass filtering126

discussed above. From the spatial message passing perspective, low-pass filtering is equivalent to127

local averaging of the node features, which has a profound implication on homophilic and heterophilic128

characteristics of the datasets (Sec. 3.2). Finally, since the computations needed in (3) can be carried129

out via sparse matrix multiplications, they scale much better to large graphs. Therefore, we utilize the130

wavelet bank filtering for the datasets with larger graphs considered in Sec. 3.2, while for the smaller131

graphs, considered in Sec. 3.1, we employ the direct band-pass filtering approach.132

2.2 Graph Structure Perturbations133

The following perturbations act on the graph structure by altering the adjacency matrix. By removing134

all edges (NoEdges) or making the graph fully-connected (FullyConn), we can eliminate the structural135

information completely and essentially turn the graph into a set. The difference between the two136

perturbations lies in whether all nodes are processed independently or together. However, FullyConn137

is only applied to inductive datasets in Sec. 3.1 due to computational limitations. Furthermore, we138

consider a degree-preserving random edge rewiring perturbation (RandRewire). In each step, we139

randomly sample a pair of edges and randomly exchange their end nodes. We then repeat this process140

without replacement until 50% of the edges have been randomly rewired.141

To inspect the importance of local vs. global graph structure, we designed the Frag-k perturbations,142

which randomly partition the graph into connected components consisting of nodes whose distance143

to a seed node is less than k. Specifically, we randomly draw one seed node at a time and extract its144

k-hop neighborhood by eliminating all edges between this new fragment and the rest of the graph; we145

repeat this process on the remaining graph until the whole graph is processed. A smaller k implies146

smaller components, and hence discards the global structure and long-range interactions.147

Graph fragmentations can also be constructed using spectral graph theory. In our taxonomization,148

we adopt one such method, which we refer to as Fiedler fragmentation (FiedlerFrag) (see [36] and149

the references therein). In the case when the graph G is connected, ϕ0, the eigenvector of the graph150

Laplacian L corresponding to λ0 = 0, is constant. The eigenvector ϕ1 corresponding to the next151

smallest eigenvalue, λ1, is known as the Fiedler vector [22]. Since ϕ0 is constant, it follows that ϕ1152

has zero average. This motivates partitioning the graph into two sets of vertices, one where ϕ1 is153

positive and the other where ϕ1 is negative. We refer to this process as binary Fiedler fragmentation.154

This heuristic is used to construct the ratio cut for a connected graph [28]. The ratio cut partitions155

a connected graph into two disjoint connected components V = U ⊍W , such that the objective156

∣E(U,W )∣/(∣U ∣ ⋅ ∣W ∣) is minimized, where E(U,W ) ∶= {(u,w) ∈ E ∶ u ∈ U,w ∈W} is the set of157

removed edges when fragmenting G accordingly. This can be seen as a combination of the min-cut158

objective (numerator), while encouraging a balanced partition (denominator).159

FiedlerFrag is based on iteratively applying binary Fiedler fragmentation. In each step, we separate the160

graph into its connected components and apply binary Fiedler fragmentation to the largest component.161

We repeat this process until either we reach 200 iterations, or the size of the largest connected162

component falls below 20. In contrast to the random fragmentation Frag-k, this perturbation preserves163

densely connected regions of the graph and eliminates connections between them. Thus, FiedlerFrag164

tests the importance of inter community message flow. Due to computational limits, we only apply165

FiedlerFrag to inductive datasets in Sec. 3.1 for which this computation is feasible.166

2.3 Data-driven Taxonomization by Hierarchical Clustering167

To study a systematic classification of the graph datasets, we use Ward’s method [62] for hierarchical168

clustering analysis on their sensitivity profiles. The sensitivity profiles are established empirically by169
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Figure 3: Visualization of (a) inductive and (b) transductive datasets based on PCA of their pertur-
bation sensitivity profiles according to a GCN model. The datasets are labeled according to their
taxonomization by hierarchical clustering, shown in Figure 4 and 6, which corroborates with the
emerging clustering in the PCA plots. In the bottom part are shown the loadings of the first two
principal components and (in parenthesis) the percentage of variance explained by each of them.

contrasting the performance of a GNN model on a perturbed dataset and on the original dataset. To170

quantify this performance change, we use log2-transformed ratio of test AUROC (area under the ROC171

curve). Thus a sensitivity profile is a 1-D vector with as many elements as we have in perturbation172

experiments. See Figure 1 and Appendix A for further details.173

In order to generate sensitivity profiles, we must select suitable GNN models based on several174

practical considerations: (i) The model has to be expressive enough to efficiently leverage aspects175

of the node features and graph structure that we perturb. Otherwise, our analysis will not be able to176

uncover reliance on these properties. (ii) The model needs to be general enough to be applicable to177

a wide variety of datasets, avoiding dataset-specific adjustments that may lead to profiling that is178

not comparable between datasets. Therefore, we did not aim for specialized models that maximize179

performance, but rather models that (i) achieve at least baseline performance comparable to published180

works over all datasets, (ii) have manageable computational complexity to facilitate large-scale181

experimentation, and (iii) use well-established and theoretically well-understood architectures.182

With these criteria in mind, we focused on two popular MPNN models in our analysis: GCN [38]183

and GIN [67]. The original GCN serves as an ideal starting point as its abilities and limitations are184

well understood. However, we also wanted to perform taxonomization through a provably more185

expressive and recent method, which motivated our selection of GIN as the second architecture.186

We emphasize that the main focus here is not to provide a benchmarking of GNN models per se,187

but rather to address the taxonomization of graph datasets (and accompanying tasks) used in such188

benchmarks. Nevertheless, we have also generated sensitivity profiles by additional models in189

order to comparatively demonstrate the robustness of our approach: 2-Layer GIN, ChebNet [16],190

GatedGCN [7] and GCN II [11]; see Figure 5.191

3 Results192

Each of the 49 datasets we consider is equipped with either a node classification or graph classification193

task. In the case of node classification, we further differentiate between the inductive setting, in which194

learning is done on a set of graphs and the generalization occurs from a training set of graphs to a test195

set, and the transductive setting, in which learning is done in one (large) graph and the generalization196
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I-1

I-2

I-3

Figure 4: Taxonomy of inductive graph learning datasets via graph perturbations. For each dataset
and perturbation combination, we show the GCN model performance relative to its performance on
the unmodified dataset.

occurs between subsets of nodes in this graph. Graph classification tasks, by contrast, always appear197

in an inductive setting. The only major difference between graph classification and inductive node198

classification is that prior to final prediction, the hidden representations of all nodes are pooled into a199

single graph-level representation. In the following two subsections, we provide an analysis of the200

sensitivity profiles for datasets with inductive and transductive tasks.201

3.1 Taxonomy of Inductive Benchmarks202

Datasets. We examine a total of 24 datasets, 21 of which are equipped with a graph-classification203

task (inductive by nature) and the other three are equipped with an inductive node-classification task.204

Of these datasets, 18 are derived from real-world data, while the other six are synthetically generated.205

For real-world data, we consider several domains. Biochemistry tasks are the most ubiquitous,206

including compound classification based on effects on cancer or HIV inhibition (NCI1 & NCI109 [61],207

ogbg-molhiv [33]), protein-protein interaction PPI [30, 72], multilabel compound classification208

based on toxicity on biological targets (ogbg-moltox21 [33]), and multiclass classification of209

enzymes (ENZYMES [33]). We also consider superpixel-based graph classification as an extension210

of image classification (MNIST & CIFAR10 [18]), collaboration datasets (IMDB-BINARY & COLLAB211

[68]), and social graphs (REDDIT-BINARY & REDDIT-MULTI-5K [68]).212

For synthetic data, we have a concrete understanding of their graph domain properties and how these213

properties relate to their respective prediction tasks. This allows us to derive a deeper understanding214

of their sensitivity profiles. The six synthetic datasets in our study make use of a varied set of graph215

generation algorithms. Small-world [69] is based on graph generation with the Watz-Strogatz216

(WS) model; the task is to classify graphs based on average path length. Scale-free [69] retains217

the same task definition, but the graph generation algorithm is an extension of the Barabási-Albert218

(BA) model proposed by Holme and Kim [32]. PATTERN and CLUSTER are node-level classification219

tasks generated with stochastic block models (SBM) [31]. Synthie [45] graphs are derived by first220

sampling graphs from the well-known Erdös-Rényi (ER) model, then deriving each class of graphs221

by a specific graph surgery and sampling of node features from a distinct distribution per each class.222

Similarly, SYNTHETICnew [19] graphs are generated from a random graph, where different classes223

are formed by specific modifications to the original graph structure and node features. Further details224

of dataset definitions and synthetic graph generation algorithms are provided in Appendix C.225

Insights. Here we itemize the main insights into inductive datasets. Our full taxonomy is shown in226

Figures 4 and 3a, with a detailed analysis of individual clusters given in Appendix B.1.227
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• Three distinct groups of datasets. We identify a categorization into three dataset clusters228

I-{1,2,3} that emerge from both the hierarchical clustering and PCA. The datasets in I-{1,2}229

exhibit stronger node feature dependency and do not encode crucial information in the graph230

structure. The main differentiating factor between I-1 and I-2 is their relative sensitivity to node231

feature perturbations – in particular, how well NodeDeg can substitute the original node features.232

On the other hand, datasets in I-3 rely considerably more on graph structure for correct task233

prediction. This is also reflected by the first two principal components (Figure 3a), where PC1234

approximately corresponds to structural perturbations and PC2 to node feature perturbations.235

• No clear clustering by dataset domain. While datasets that are derived in a similar fashion cluster236

together (e.g., REDDIT-* datasets), in general, each of the three clusters contains datasets from a237

variety of application domains. Not all molecular datasets behave alike; e.g., ogbg-mol* datasets238

in I-2 considerably differ from NCI* datasets in I-3.239

• Synthetic datasets do not fully represent real-world scenarios. CLUSTER, SYNTHETICnew,240

and PATTERN lie at the periphery of the PCA embeddings, suggesting that existing synthetic241

datasets do not resemble the type of complexity encountered in real-world data. Hence, one should242

use synthetic datasets in conjunction with real-world datasets to comprehensively evaluate GNN243

performance rather than solely relying on synthetic ones. We also note that the sensitivity profiles244

of all synthetic datasets are well-accounted for w.r.t. their respective design criteria which validate245

our approach; we refer the reader to Appendix B.1 for a more detailed analysis.246

• Representative set. One can now select a representative subset of all datasets to cover the observed247

heterogeneity among the datasets. Our recommendation: PCQM4Mv2-subset, CIFAR10 from I-1;248

D&D, ogbg-molpcba from I-2; NCI1, COLLAB, REDDIT-MULTI-5K, CLUSTER from I-3.249

•

GCN GIN

GIN (L=2)

ChebNet

GatedGCN
GCN II

GCN

GIN

GIN (L=2)

ChebNet

GatedGCN

GCN II

1 0.93 0.91 0.95 0.91 0.98

0.93 1 0.96 0.94 0.97 0.91

0.91 0.96 1 0.92 0.94 0.92

0.95 0.94 0.92 1 0.95 0.94

0.91 0.97 0.94 0.95 1 0.9

0.98 0.91 0.92 0.94 0.9 1
0.90

0.92

0.94

0.96

0.98

1.00

Figure 5: Pearson correlation between
profiles derived by six GNN models.

Robustness w.r.t. GNN choice. In addition to GCN,
we have performed our perturbation analysis w.r.t.
GIN [67], 2-Layer GIN, ChebNet [16], GatedGCN [7]
and GCN II [11]. These models were selected to cover
a variety of inductive model biases: GIN is provably
1-WL expressive, ChebNet uses a higher-order approx-
imation of the Laplacian, GatedGCN employs gating
akin to attention, and GCN II leverages skip connections
and identity mapping to alleviate oversmoothing. We
have also tested a 2-layer GIN to probe the robustness to
the number of message-passing layers. The taxonomies
w.r.t. other models (Figure B.1) are congruent with that
of GCN. Given the differing inductive biases and repre-
sentational capacity, some differences in the sensitivity
profiles are not only expected but desired to validate their functions in benchmarking. The resulting
profiles can be used for a detailed comparative analysis of these models, but the overall conclusions
remain consistent. This consistency is further validated by our correlation analysis amongst these
models, shown in Figure 5. The Pearson correlation coefficients of all pairs are above 90%,
implying that our taxonomy is sufficiently robust w.r.t. different GNNs and the number of layers.

250

3.2 Taxonomy of Transductive Benchmarks251

Datasets. We selected a wide variety of 25 transductive datasets with node classification tasks,252

including citation networks, social networks, and other web page derived networks (see Appendix C).253

In citation networks, such as CitationFull (CF) [5], nodes and edges correspond to papers that are254

linked via citation. In web page derived networks, like WikiNet [51], Actor [51], and WikiCS255

[43], they correspond to hyperlinks between pages. In social networks, like Deezer (DzEu) [53],256

LastFM (LFMA) [53], Twitch [52], Facebook (FBPP) [52], Github [52], and Coau [56], nodes and257

edges are based on a type of relationship, such as mutual-friendship and co-authorship. Flickr258

[70] and Amazon [56] are constructed based on other notions of similarity between entities, such as259

co-purchasing and image property similarities. WebKB [51] contains networks of university web pages260

connected via hyperlinks. It is an example of a heterophilic dataset [48], since immediate neighbor261

nodes do not necessarily share the same labels (which correspond to a user’s role, such as faculty or262

graduate student). By contrast, Cora, CiteSeer, and PubMed are known to be homophilic datasets263

where nodes within a neighborhood are likely to share the same label. In fact, no less than 60% of264

nodes in these networks have neighborhoods that share the same node label as the central node [43].265
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T-3

T-2

T-1

Figure 6: Taxonomization of transductive datasets based on sensitivity profiles w.r.t. a GCN model.

Insights. Below we list the main insights into transductive graph datasets and their taxonomy266

(Figures 6 and 3b). We refer the reader to Appendix B.2 for the analysis of individual clusters.267

• Transductive datasets are uniformly insensitive to structural perturbations. Sensitivity profiles268

of all transductive datasets show high robustness to all graph structure perturbations. This is in269

stark contrast with the inductive datasets, where the largest cluster I-3 is defined by high sensitivity270

to structural perturbations. The graph connectivity may not be vital to every dataset/task, e.g.,271

in WikiCS word embeddings of Wikipedia pages may be sufficient for categorization without272

hyperlinks. While the observation that no dataset significantly depends on structural information is273

startling, it corroborates with the reported strong performance of MLP or similar models augmented274

with label propagation to outperform GNNs in several of these transductive datasets [24, 35].275

• Three distinct groups of datasets. The transductive datasets are also categorized into three clusters276

as T-{1,2,3}. T-1 consists of heterophilic datasets, such as WebKB and Actor [42, 48]. These are277

well-separated from others, as seen in the right half of the PCA plot (Figure 3b), primarily via PC1278

and characterized by performance drop due to removal of the original node features (NoNodeFtrs,279

RandFtrs) and their replacement by node degrees (NodeDeg). T-3 is indifferent to both node and280

structure removal, implying redundancies between node features and graph structure for their tasks.281

T-2 datasets, on the other hand, experience significant performance degradation on NoNodeFtrs282

and RandFtrs, yet these drops are recovered in NodeDeg. This indicates that T-2 datasets have283

tasks for which structural summary information is sufficient, perhaps due to homophily.284

• Representative set. Many datasets have very close sensitivity profiles, thus factoring in also285

the graph size and original AUROC (avoiding saturated datasets), we make the following286

recommendation: WebKB-Wis, Actor from T-1; WikiNet-cham, WikiCS, Flickr from T-2;287

WikiNet-squir, Twitch-EN, GitHub from T-3.288

4 Discussion289

Our results quantify the extent to which graph features or structures are more important for the290

downstream tasks; a vital question brought up in classical works on graph kernels [40, 55]. We291

observed that more than half of the datasets contain rich node features. On average, excluding292

these features reduces GNN prediction performance more than excluding the entire graph structures,293

especially for transductive node-level tasks. Furthermore, low-frequency information in node features294

appears to be essential in most datasets that rely on node features. Historically, most graph data295

aimed to capture closeness among entities, which has prompted the development of local aggregation296

8



Taxonomy of Benchmarks in Graph Representation Learning

approaches, such as label propagation, personalized page rank, and diffusion kernels [14, 39], all of297

which share a common principle of low pass filtering. High-frequency information, on the other hand,298

may be important in recently emerging application areas, such as combinatorial optimization, logical299

reasoning or biochemical property prediction, which require complex non-local representations.300

Further, despite the recent interest in the development of new methods that could leverage long-301

range dependencies and heterophily, the availability of adequate benchmarking datasets remains302

lacking or less readily accessible. Meanwhile, some recent efforts, such as GraphWorld [49], aim to303

comprehensively profile a GNN’s performance using a collection of synthetic datasets that cover an304

entire parametric space. Notably, our analysis demonstrates that synthetic tasks do not fully resemble305

the complexity of real-world applications. Hence, benchmarking made purely by synthetic datasets306

should be taken with caution, as the behavior might not be representative of real-world scenarios.307

As a comprehensive benchmarking framework, our work provides several potential use cases beyond308

the taxonomy analysis presented here. One such usage is understanding the characteristics of any new309

datasets and how they are related to existing ones. For example, DeezerEurope (DzEu) is a relatively310

new dataset [53] that is less commonly benchmarked and studied than the other datasets we consider.311

The inclusion of DzEu in T-1 suggested its heterophilic nature, which indeed has been recently312

demonstrated [41]. On the other hand, since the sensitivity profiles naturally suggest the invariances313

that are important for different datasets from a practical standpoint, they could provide valuable314

guidance to the development of self-supervised learning and data augmentations for GNNs [66].315

Finally, we observed that overall patterns in sensitivity profiles remain similar regardless of whether316

we used GCN, GIN, or the other 4 models to derive them. Subtle differences in sensitivity profiles317

w.r.t. different GNN models are not only expected but also desired when comparing models that have318

distinct levels of expressivity. While we expect overall patterns to be similar, more expressive models319

should provide enhanced resolution. One could then contrast taxonomization w.r.t. first-order GNNs320

(such as those we used) with more expressive higher-order GNNs, Transformer-based models with321

global attention, and others. We hope our work will also inspire future work to empirically validate322

the expressivity of new graph learning methods in this vein beyond classical benchmarking.323

Limitations and Future Work. Our perturbation-based approach is fundamentally limited in that324

we cannot test the significance of a property that we cannot perturb or that the reference GNN model325

cannot capture. Therefore, designing more sophisticated perturbation strategies to gauge specific326

relations could bring further insight into the datasets and GNN models alike. New perturbations may327

gauge the usefulness of geometric substructures such as cycles [3] or the effects of graph bottlenecks,328

e.g., by rewiring graphs to modify their “curvatures” [59]. Other perturbations could include graph329

sparsification (edge removal) [57] and graph coarsening (edge contraction) [4, 10].330

A number of OGB node-level datasets are not included in this study due to the memory cost of typical331

MPNNs. Conducting an analysis based on recent scalable GNN models [21] would be an interesting332

avenue of future research. Further, we only considered classification tasks, omitting regression tasks,333

as their evaluation metrics are not easily comparable. One way to circumvent this issue would be to334

quantize regression tasks into classification tasks by binning their continuous targets. Additionally,335

we disregarded edge features in two OGB molecular datasets we used. In a future work, edge336

features could be leveraged by an edge-feature-aware generalization of MPNNs. The importance of337

edge features can then be analyzed by introducing new edge-feature perturbations. We also limited338

our analysis to node-level and graph-level tasks, but this framework could be further extended to339

link-prediction or edge-level tasks. While our perturbations could be used in this new scenario as well,340

new perturbations, such as graph sparsification, would need to be considered. Similarly, hallmark341

models for link and relation predictions, outside MPNNs, should be considered.342

5 Conclusion343

We provide a systematic data-driven approach for taxonomizing a large collection of graph datasets –344

the first study of its kind. The core principle of our approach is to gauge the essential characteristics of345

a given dataset with respect to its accompanying prediction task by inspecting the downstream effects346

caused by perturbing its graph data. The resulting sensitivities to the diverse set of perturbations347

serve as “fingerprints” that allow identifying datasets with similar characteristics. We derive several348

insights into the current common benchmarks used in the field of graph representation learning and349

make recommendations on the selection of representative benchmarking suits. Our analysis also puts350

forward a foundation for evaluating new benchmarking datasets that will likely emerge in the field.351
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Groups, Graphs, Geodesics, and Gauges, 2021. 1, 2370

[10] N. Brugnone, A. Gonopolskiy, M.W. Moyle, M. Kuchroo, D. Dijk, K.R. Moon, D. Colon-371

Ramos, G. Wolf, M.J. Hirn, and S. Krishnaswamy. Coarse graining of data via inhomogeneous372

diffusion condensation. IEEE Big Data, Dec 2019. 9373

[11] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph convolutional networks.374

In Proceedings of the 37th International Conference on Machine Learning, 2020. 5, 7375

[12] W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. Hsieh. Cluster-gcn. Proc. of 25th SIGKDD,376

2019. 19377

[13] R.R. Coifman and M. Maggioni. Diffusion wavelets. Applied and computational harmonic378

analysis, 21(1):53–94, 2006. 3379

[14] L. Cowen, T. Ideker, B.J. Raphael, and R. Sharan. Network propagation: a universal amplifier380

of genetic associations. Nat. Rev. Gene., 18(9):551–562, 2017. 9381

[15] A.K. Debnath, R.L. Lopez de Compadre, G. Debnath, A.J. Shusterman, and C. Hansch.382

Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.383

correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry,384

34(2):786–797, 1991. 21, 22385

[16] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs386

with fast localized spectral filtering. In Advances in NeurIPS, volume 29, pages 3844–3852,387

2016. 1, 3, 5, 7388

[17] P.D. Dobson and A.J. Doig. Distinguishing enzyme structures from non-enzymes without389

alignments. J. of Mol. Bio., 330(4):771–783, 2003. 20, 22390

[18] V.P. Dwivedi, C.K. Joshi, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking Graph Neural391

Networks. arXiv:2003.00982, 2020. 1, 6, 20, 22392

[19] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borgwardt. Scalable kernels for393

graphs with continuous attributes. In Adv. in NeurIPS, volume 26, 2013. 6, 21, 22394

[20] M. Fey and J.E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR395

Workshop on Repr. Learning on Graphs and Manifolds, 2019. 14396

[21] M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec. GNNAutoScale: Scalable and expressive397

graph neural networks via historical embeddings, 2021. 9, 19398

[22] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to399

graph theory. Czechoslovak mathematical journal, 25(4):619–633, 1975. 4400

[23] S. Freitas, Y. Dong, J. Neil, and D.H. Chau. A large-scale database for graph representation401

learning. In Adv. in NeurIPS, 2021. 21, 22402

10



Taxonomy of Benchmarks in Graph Representation Learning

[24] J. Gasteiger, A. Bojchevski, and S. Günnemann. Predict then propagate: Graph neural networks403

meet personalized pagerank. In International Conference on Learning Representations, 2018. 8404

[25] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, and G.E. Dahl. Neural message passing for405

quantum chemistry, 2017. 1406

[26] C.S. Greene, A. Krishnan, A.K. Wong, E. Ricciotti, R.A. Zelaya, D.S. Himmelstein, R. Zhang,407

B.M. Hartmann, E. Zaslavsky, S.C. Sealfon, et al. Understanding multicellular function and408

disease with human tissue-specific networks. Nature genetics, 47(6):569–576, 2015. 21409

[27] A. Hagberg, P. Swart, and s.D. Chult. Exploring network structure, dynamics, and function410

using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United411

States), 2008. 24412

[28] L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE413

transactions on computer-aided design of integrated circuits and systems, 11(9):1074–1085,414

1992. 4415

[29] W.L. Hamilton. Graph Representation Learning. Morgan & Claypool, 2020. 1416

[30] W.L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In417

Proceedings of the 31st International Conference on Neural Information Processing Systems,418

pages 1025–1035, 2017. 6, 21419

[31] P.W. Holland, K.B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social420

Networks, 5(2):109–137, 1983. ISSN 0378-8733. 6, 20421

[32] P. Holme and B.J. Kim. Growing scale-free networks with tunable clustering. Physical Review422

E, 65(2), Jan 2002. ISSN 1095-3787. doi: 10.1103/physreve.65.026107. 6, 22423

[33] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open Graph424

Benchmark: Datasets for Machine Learning on Graphs. Adv. in NeurIPS 33, 2020. 1, 2, 6, 21,425

22426

[34] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec. OGB-LSC: A large-scale427

challenge for machine learning on graphs. In 35th Conference on Neural Information Processing428

Systems: Datasets and Benchmarks Track, 2021. 21, 22429

[35] Q. Huang, H. He, A. Singh, S. Lim, and A. Benson. Combining label propagation and430

simple models out-performs graph neural networks. In International Conference on Learning431

Representations, 2020. 8432

[36] J. Irion and N. Saito. Efficient approximation and denoising of graph signals using the multiscale433

basis dictionaries. IEEE Transactions on Signal and Information Processing over Networks, 3434

(3):607–616, 2016. 4435

[37] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International436

Conference on Learning Representations, 2015. 14437

[38] T.N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.438

In Proc. of ICLR, 2017. 1, 5439

[39] S. Köhler, S. Bauer, D. Horn, and P.N. Robinson. Walking the interactome for prioritization440

of candidate disease genes. The American Journal of Human Genetics, 82(4):949–958, April441

2008. 9442

[40] N.M. Kriege, F.D. Johansson, and C. Morris. A survey on graph kernels. Applied Network443

Science, 5(1):1–42, 2020. 8444

[41] D. Lim, F. Hohne, X. Li, S. Linda H., V. Gupta, O. Bhalerao, and S. Lim. Large scale learning445

on non-homophilous graphs: New benchmarks and strong simple methods, 2021. 9446

[42] Y. Ma, X. Liu, N. Shah, and J. Tang. Is homophily a necessity for graph neural networks?, 2021.447

8, 19448

[43] P. Mernyei and C. Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural networks,449

2020. 7, 22, 23450

[44] Y. Min, F. Wenkel, and G. Wolf. Scattering GCN: Overcoming Oversmoothness in Graph451

Convolutional Networks. In Adv. in NeurIPS 33, pages 14498–14508, 2020. 1452

11



Taxonomy of Benchmarks in Graph Representation Learning

[45] C. Morris, N.M. Kriege, K. Kersting, and P. Mutzel. Faster kernels for graphs with continuous453

attributes via hashing. In 2016 IEEE 16th International Conference on Data Mining (ICDM),454

pages 1095–1100, 2016. 6, 21, 22455

[46] C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler456

and leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI457

Conference on AI, volume 33, pages 4602–4609, 2019. 1458

[47] C. Morris, N.M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. TUDataset: A459

collection of benchmark datasets for learning with graphs. In ICML 2020 GRL+ Workshop,460

2020. 1, 2461

[48] H. Mostafa, M. Nassar, and S. Majumdar. On local aggregation in heterophilic graphs.462

arXiv:2106.03213, 2021. 7, 8, 19463

[49] J. Palowitch, A. Tsitsulin, B. Mayer, and B. Perozzi. GraphWorld: Fake graphs bring real464

insights for GNNs. ACM SIGKDD Conference on Knowledge Discovery and Data Mining,465

2022. 1, 9466

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,467

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,468

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style,469

high-performance deep learning library. In Advances in Neural Information Processing Systems470

32, pages 8024–8035, 2019. 14471

[51] H. Pei, B. Wei, K.C. Chang, Y. Lei, and B. Yang. Geom-GCN: Geometric graph convolutional472

networks. In Proc. of ICLR, 2020. 7, 22, 23473

[52] B. Rozemberczki and R. Sarkar. Characteristic functions on graphs: Birds of a feather, from474

statistical descriptors to parametric models. In Proc. of 29th ACM Int’l Conf. on Information &475

Knowledge Management, pages 1325–1334, 2020. 7, 23476

[53] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding. Journal of477

Complex Networks, 9(2):cnab014, 2021. 7, 9, 22, 23478

[54] R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks.479

In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pages480

333–341. SIAM, 2021. 3481

[55] T. Schulz and P. Welke. On the necessity of graph kernel baselines. In ECML-PKDD, GEM482

workshop, volume 1, page 6, 2019. 8483

[56] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of graph neural network484

evaluation. NeurIPS 2018 R2L workshop, 2018. 7, 23485

[57] D.A. Spielman and S. Teng. Spectral sparsification of graphs, 2010. 9486

[58] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. Si-487

monovic, A. Roth, A. Santos, K.P. Tsafou, et al. STRING v10: protein–protein interaction488

networks, integrated over the tree of life. Nucleic acids research, 43(D1):D447–D452, 2015. 21489

[59] J. Topping, F.D. Giovanni, B.P. Chamberlain, X. Dong, and M.M. Bronstein. Understanding490

over-squashing and bottlenecks on graphs via curvature, 2021. 9, 19491
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Figure A.1: MPNN model blueprint used for all datasets.

A.1 Taxonomization by Hierarchical Clustering522

To study a systematic classification of the graph datasets, we use Ward’s method [62] for hierarchical523

clustering analysis on their sensitivity profiles. Specifically, we first construct a perturbation sensitivity524

matrix where each row represents a dataset and each column represents a perturbation. An entry525

in this matrix is computed by taking the ratio between the test score achieved with the perturbed526

dataset and the test score achieved with the original dataset. As our performance metric we use the527

area under the receiver operating characteristic (AUROC) averaged over 10 random seed runs or 10528

cross-validation folds, depending on whether a dataset has predefined data splits or not. Row-wise529

hierarchical clustering provides us a data-driven taxonomization of the datasets.530

Using AUROC as our metric, the values of the perturbation sensitivity matrix range from 0.5 to531

1 when a perturbation causes a loss in predictive performance, and from 1 to 2 when it improves532

it. Therefore we element-wise log2-transform the matrix to balance the two ranges and map the533

values onto [−1,1] before hierarchical clustering. Yet, for a more intuitive presentation, we show the534

original ratio values as percentages throughout this paper.535

A.2 MPNN Hyperparameter Selection536

We keep the model hyperparameters, illustrated in Figure A.1, identical for each dataset and per-537

turbation combination. We use a linear node embedding layer, 5 graph convolutional layers with538

residual connections and batch normalization (only for inductive datasets), followed by global mean539

pooling (in case of graph-level prediction tasks), and finally a 2-layer MLP classifier. For training we540

use Adam optimizer [37] with learning rate reduction by 0.5 factor upon reaching a validation loss541

plateau. Early stopping is done based on validation split performance.542

Implementation. Our pipeline is built using PyTorch [50] and PyG [20] with GraphGym [69]543

(provided under MIT License). Its modular & scalable design facilitated here one of the most544

extensive experimental evaluations of graph datasets to date.545

Computing environment and used resources. All experiments were run in a shared computing546

cluster environment with varying CPU and GPU architectures. These involved a mix of NVidia V100547

(32GB), RTX8000 (48GB), and A100 (40GB) GPUs. The resource budget for each experiment was 1548

GPU, 4 CPUs, and up to 32GB system RAM.549
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B Extended Results550

B.1 Taxonomy of Inductive Benchmarks551

I-1: Node-feature reliance. The top-most cluster I-1, while mostly indifferent to structural552

perturbations, is highly sensitive to node feature perturbations that comprise the left-hand-side553

columns in Figure 4. The presence of image-based datasets MNIST and CIFAR10 in this cluster is not554

surprising, as for superpixel graphs the structure loosely follows a grid layout for all classes, meaning555

determining class solely based on structure is difficult. Additionally, the coordinate information of556

superpixels is encoded also in the node features, together with average pixel intensities. A model557

with powerful enough classifier component is then sufficient for achieving high accuracy using these558

node features alone. Furthermore, the sensitivity of these datasets to MidPass and HighPass indicates559

that the overall shape of the signals encoded by low-frequencies is more informative for classifying560

the image content than sharp superpixel transitions encoded by high-frequencies. The presence561

of ENZYMES in I-1 is likely due to the fact that some of the node features are precomputed using562

graph kernels, and therefore are sufficient to distinguish the enzyme classes in the dataset when563

structural information is removed. Last but not least, PCQM4Mv2-subset dataset appears to have564

a complex task that is dominated by the node feature information, yet the graph structure encodes565

non-negligible information as well. Out of all datasets in the I-1 cluster, PCQM4Mv2-subset is the566

most sensitive one to structural perturbations. This corroborates with the expectation that predicting567

the HOMO-LUMO gap, which is the energy difference between the highest occupied molecular568

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is a complex task that heavily569

depends on atom types, their bonds, and relative distances.570

I-2: Node features contain majority of necessary structural information. For datasets in I-2,571

the graph structural information is again not necessary for achieving the baseline performance if572

the original node features are present, while the performance deteriorates noticably if NoNodeFtrs573

is applied. However, unlike I-1, these datasets are much less affected overall by the perturbations574

on node features. Many of the node features on these datasets are themselves derived from the575

graph’s geometry, and it seems MPNNs are able to use either the graph structure or the node features576

to compensate for the absence of the other when encountering perturbed graphs. It appears that577

the low/mid/high-pass filterings in particular are able to retain a significant amount of geometric578

information.579

The synthetic graphs of Scale-Free and Small-world (both I-2 datasets) are generated through580

different algorithms (WS and BA, respectively), but the node features and tasks are equivalent: The581

features are the local clustering coefficient and PageRank score of each node and the task is to classify582

graphs based on average path length. Since the encoded features are derived from graph structure583

itself, MPNNs are still able to exploit them when the original graph structure is perturbed. When584

the MPNNs are forced to rely on graph structure instead, they are still able to attain AUROCs above585

random despite some decrease.586

For many of the I-2 datasets, NodeDeg allows one to replace geometric information of original587

node features with new geometric information, the degree of each vertex, to large success – for some588

of them the original AUROC scores are recovered and even surpassed, possibly due to NodeDeg589

reinforcing the existing structural signal. This trend is not as pronounced when the GIN-based590

model is used, since GIN achieves a comparatively high level of performance even in the face of591

NoNodeFtrs, likely due to the higher expressiveness of GIN compared to GCN in distinguishing of592

structural patterns.593

On the other hand, there are datasets of biochemical origin in this cluster, whose node features encode594

chemical and physical attributes, such as atom or amino acid type. Except MUTAG, there appears to595

be some information encoded in these node features that is irreplaceable by graph structure or node596

degree information.597

I-3: Graph-structure reliance. The I-3 cluster is characterized by strong structural dependencies,598

and can be further divided into two subgroups based on their sensitivities to node feature perturbations.599

The first subgroup, which consists of PATTERN, COLLAB, IMDB-BINARY and REDDIT, is not affected600

by node feature perturbations. These datasets do not have any original informative node features601

and their tasks appear to be purely structure-based. Indeed, in the case of PATTERN the task is to602

detect structural patterns in graphs, rendering node features irrelevant for the task. On the other603
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hand, structural perturbations such as NoEdges and FullyConn cause drastic performance drops604

in this group, since most of its task signals are sourced from graph structures. This group also605

exhibits limited to no sensitivity towards Frag-k2 and Frag-k3 perturbations, which test for degrees606

of reliance on longer range interactions by limiting information propagation to {2,3} hops. We607

still see prominent sensitivity to Frag-k1, though, implying reliance on information from immediate608

neighbors. We can attribute the insensitivity for k > 1 to inherent graph properties for some of these609

datasets: For dense networks like PATTERN or ego-nets such as IMDB-BINARY and COLLAB, just 1 or610

2 hops recover the original graph – for these graphs, the notion of long-range information does not611

exist.612

The second I-3 subgroup, formed by NCI datasets and Synthie, are the datasets that are notably613

affected by all perturbations. For Synthie, this sensitivity stems from its construction. The four614

synthetic classes in Synthie are formed by combinations of two distributions of graph structures615

and two distributions of node features – elimination of either leads to a partial collapse in the616

distinguishability of two classes. The NCI classification tasks, similarly to related bioinformatics617

datasets in I-2, show a degree of reliance on the high-dimensional node features, but additionally,618

they are also dependent on non-local structure as they are among the datasets most adversely affected619

by Frag-k2 and Frag-k3.620

Synthetic datasets CLUSTER and SYNTHETICnew are also adversely affected by both structural and621

node feature perturbations. However, they stand out due to the magnitude of this effect. Many622

of the perturbations lead to a major decrease in AUROC and close-to-random performance. A623

closer inspection can provide an explanation. The task of CLUSTER is semi-supervised clustering624

of unlabeled nodes into six clusters, and the true cluster labels are given as node features in only625

a single node per cluster. NoEdges and FullyConn remove the cluster structure altogether, while626

NoNodeFtrs and NodeDeg remove the given cluster labels, rendering the task unsolvable in either case.627

In SYNTHETICnew, the two classes are derived from a “base” graph by a class-specific edge rewiring628

and node feature permutation, hence either graph structure or node features should differentiate the629

classes. Despite such expectation, we observe that the original node features alone are not sufficient,630

as structure perturbations have detrimental impact on the prediction performance. On the other hand631

GIN and GCN with NodeDeg can learn to distinguish the two classes even without the original node632

features. Thus, the original node features appear to be unnecessary, while after bandpass-filtering633

even provide misleading signal.634
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(b) Sensitivity profiles by GIN model; annotated by cluster assignment w.r.t. GCN model.
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(c) Sensitivity profiles by 2-Layer GIN model; annotated by cluster assignment w.r.t. GCN model.
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(d) Sensitivity profiles by ChebNet model; annotated by cluster assignment w.r.t. GCN model.
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(e) Sensitivity profiles by GatedGCN model; annotated by cluster assignment w.r.t. GCN model.
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(f) Sensitivity profiles by GCNII model; annotated by cluster assignment w.r.t. GCN model.

Figure B.1: Taxonomy of inductive graph learning datasets via graph perturbations. The categorization into 3
dataset clusters is stable across the following models with only minor deviations: (a) GCN, (b) GIN, (c) 2-Layer
GIN, (d) ChebNet, (e) GatedGCN, (f) GCNII. Panel (a) left and right is as shown in Figure 3a and 4, respectively,
shown here for ease of comparison. Missing performance ratios (due to out-of-memory error) are shown in gray.
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B.2 Taxonomy of Transductive Benchmarks635

All transductive datasets are relatively insensitive to structural perturbations. Unlike many of the636

inductive datasets that show significant reliance on the graph structure (I-3), the lowest performance637

achieved for a transductive dataset due to graph structure removal is still as high as 92% (Flickr),638

suggesting a weak dependence on the full graph structure. Furthermore, on average, considering only639

the neighborhoods of up to 3-hops (Frag-k3) nearly retains the full potential of the model (99% ±640

1.6%), revealing the lack of long-range dependencies in these node-level datasets. Such negligence of641

the full graph structure might be attributed to the limitations of the GCN expressivity and issues such642

as oversquashing [59]. While these limitations are fundamentally true, our observation of long-range643

dependencies on some graph-level tasks like NCI, coupled with our architecture being 5 layers deep644

with residual connections, indicate that our GCN model is capable of capturing non-local information645

in the 3-hop neighborhoods. Furthermore, our observed long-range independence in transductive646

node-level datasets is consistent with the promising results presented by recent development of647

scalable GNNs that operate on subgraphs [12, 21, 70], breaking or limiting long-range connections.648

T-3: Indifference to node and structure removal. The datasets in T-3 are relatively insensitive to649

perturbations of graph structure and also to the removal of node features (NoNodeFtrs and NodeDeg).650

For example, the Amazon datasets (Am-Phot and Am-Comp) always achieve near perfect classification651

performance regardless of the perturbations applied, suggesting redundancy between node features652

and graph structure for the corresponding tasks. For these datasets, in particular, GitHub, Am, and653

Twitch, more sophisticated, or combinations of, perturbations might be needed to gauge their654

essential characteristics.655

T-2: Rich node features but substitutable for structural (summary) information. T-2 contains656

a broad spectrum of datasets from citation networks (CF), social networks (Coau, FBPP, LFMA), to657

web pages (WikiNet, WikiCS). The considerable performance decrease due to node feature removal658

suggests the relevance of the node features for their tasks. For example, it is not surprising that659

the binary bag-of-words features of CF datasets provide relevant information to classify papers into660

different fields of research, as one might expect some keywords to appear more likely in one field661

than in another. Furthermore, using the one-hot encoded node degrees (NodeDeg) always results in662

better performance over NoNodeFtrs. And in many cases such as Facebook (FBPP), NodeDeg nearly663

retains the baseline performance, suggesting the relevance of node degree information, as a form of664

structural summary, for the respective tasks.665

WebKB-Tex, although clustered into T-2 is more of an outlier that does not clearly fit into any of the666

existing clusters. As we will discuss more in T-1, WebKB-Tex considerably benefits from HighPass,667

while LowPass and MidPass severely decrease its performance.668

T-1: Heterophilic datasets. Three of the four datasets in T-1 (Actor, WebKB-Cor, and WebKB-Wis)669

are commonly referred to as heterophilic datasets [42, 48]. While WebKB-Tex (T-2) is also known670

to be heterophilic, it is isolated from T-1 mainly due to its insensitivity to node feature removal,671

suggesting the structure alone is sufficient for its prediction task.672

Our results show that in heterophilic datasets such as T-1 and WebKB-Tex, LowPass node feature673

filtering, realized by local aggregation (Eq. 3), significantly degrades the performance, unlike other674

homophilic datasets. By contrast, HighPass results in better performance than LowPass. In the case of675

WekbKB-Tex, HighPass significantly improves the performance over the baseline. This observation676

is related to recent findings [42] that in the case of extreme heterophily, local information, this time677

in form of the neighborhood patterns, may suffice to infer the correct node labels.678

Finally, despite heterophilic datasets [2, 42, 48, 59] attracting much recent attention, this type of679

datasets (T-1 and WebKB-Tex) is lacking in availability compared to the others (T-{2,3}), which680

exhibit homophily but with different levels of reliance on node features. Thus, there is a need to681

collect and generate more real-world heterophilic datasets.682
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B.3 Correlations of Perturbations683
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Figure B.2: Pearson correlation coefficients of the log2 performance fold change between different
perturbations (w.r.t. a GCN model).

We compute the Pearson correlation between all pairs of perturbations based on the log2 performance684

fold change. The results in Figure B.2 indicate that many perturbations correlate with each other to685

some extend. For both transductive and inductive benchmarks, the perturbations roughly cluster into686

two groups, separating node feature perturbations (see Section 2.1) and graph structure perturbations687

(see Section 2.2). In particular, perturbations that replace the original node features with other less688

informative features, including RandFtrs, NoNodeFtrs, and NodeDeg, highly correlate with one689

another (Pearson r ≥ 0.6). Similarly, perturbations that severely break the graphs apart, including690

NoEdges, Frag-k1, and FiedlerFrag, are highly correlated (Pearson r ≥ 0.8).691

C Graph Learning Benchmarks692

C.1 Inductive Datasets693

MNIST and CIFAR10 [18] are derived from the well-known image classification datasets. The images694

are converted to graphs by SLIC superpixelization; node features are the average pixel coordinates695

and intensities; edges are constructed based on kNN criterion.696

PATTERN and CLUSTER [18] are node-level inductive datasets generated from SBMs [31]. In PAT-697

TERN, the task is to identify nodes of a structurally specific subgraph; CLUSTER has a semi-698

supervised clustering task of predicting the true cluster assignment of nodes while observing only699

one labelled node per cluster.700

IMDB-BINARY [68] is a dataset of ego-networks, where nodes represent actors/actresses and an edge701

between two nodes means that the two artists played in a movie together. The task is to determine702

which genre (action or romance) each ego-network belongs to.703

D&D [17] is a protein dataset where each protein is represented by a graph with rich node feature set.704

The task is to classify proteins as enzymes or non-enzymes.705

ENZYMES [6] is a dataset of tertiary structures from six enzymatic classes (determined by Enzyme706

Commission numbers). Each node represents a secondary structure element (SSE), and has an edge707

between its three spatially closest nodes. Node features are the type of SSE, and the physical and708

chemical information.709

PROTEINS [6] is a modification of the D&D [17]; the task is the same but the protein graphs are710

generated as in ENZYMES.711
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NCI1 and NCI109 [61] consist of graph representations of chemical compounds; each graph repre-712

sents a molecule in which nodes represent atoms and edges represent atomic bonds. Atom types are713

one-hot encoded as node features. The tasks are to determine whether a given compound is active or714

inactive in inhibiting non-small cell lung cancer (NCI1) or ovarian cancer (NCI109).715

COLLAB [68] is an ego-network dataset of researchers in three different fields of physics. Each graph716

is a researcher’s ego-network, where nodes are researchers and an edge between two nodes means the717

two researchers have collaborated on a paper. The task is to determine which field a given researcher718

ego-network belongs to.719

REDDIT-BINARY and REDDIT-MULTI-5K [68] graphs are derived from Reddit communities (sub-720

reddits). These subreddits are Q&A based or discussion-based. Each graph represents a set of721

interactions between users through posts and comments; nodes represent users while an edge implies722

an interaction between two users. The task for REDDIT-BINARY is to determine whether the given723

interaction graph belongs to a Q&A or discussion subreddit. In REDDIT-MULTI-5K, the graphs are724

drawn from 5 specific subreddits instead, and the task is to predict the subreddit a graph belongs to.725

MUTAG [15] is a dataset of Nitroaromatic compounds. Each compound is represented by a graph726

in which nodes represent atoms with their types one-hot encoded as node features, and edges727

represent atomic bonds. The task is to determine whether a given compound has mutagenic effects728

on Salmonella typhimurium bacteria.729

MalNet-Tiny [23] is a smaller version of MalNet dataset, consisting of function call graphs of730

various malware on Android systems using Local Degree Profiles as node features. In MalNet-Tiny,731

the task is constrained to classification into 5 different types of malware.732

ogbg-molhiv, ogbg-molpcba, ogbg-moltox21 [33] datasets, adopted from MoleculeNet [64], are733

composed of molecular graphs, where nodes represent atoms and edges represent atomic bonds734

in-between. Node features include atom type and physical/chemical information such chirality and735

charge. The task is to classify molecules on whether they inhibit HIV replication (ogbg-molhiv) or736

their toxicity on on 12 different targets such as receptors and stress response pathways in a multilabel737

classification setting (ogbg-moltox21). In ogbg-molpcba the task is 128-way multi-task binary738

classification derived from 128 bioassays from PubChem BioAssay.739

PCQM4Mv2-subset is our derivative of the OGB-LSC PCQM4Mv2 [34] molecular dataset. The orig-740

inal task is a regression of a quantum physical property – the HOMO-LUMO gap. For compatibility741

with our analysis, we quantized the regression task into 20-way classification task based on quantils742

of the training set. As true labels of the original “test-dev” and “test-challange” dataset splits are743

kept private by the OGB-LSC challenge organizers, and for efficiency of our analysis, we created744

a custom reduced splits as follows: train set: random 10% of the original train set; validation set:745

another random 50,000 graphs from the original train set; test set: the original validation set. The746

molecular graphs are featurized the same way as in ogbg-mol* datasets.747

PPI [30, 72] dataset contains a collection of 24 tissue-specific protein-protein interaction networks748

derived from the STRING database [58] using tissue-specific gold-standards from [26]. 20 of the749

networks are used for training, 2 used for validation, and 2 used for testing. In each network, each750

protein (node) is associated with 50 different gene signatures as node features. The multi-label node751

classification task was to classify each gene (node) in a graph based on its gene ontology terms.752

SYNTHETICnew [19] is a dataset where each graph is based on a random graph G with scalar node753

features drawn from the normal distribution. Two classes of graphs are generated from G by randomly754

rewiring edges and permuting node attributes; the number of rewirings and permuted attributes are755

distinct for the two classes. Noise is added to the node features to make the tasks more difficult. The756

task is to determine which class a given graph belongs to.757

Synthie [45] dataset is generated from two Erdös-Rényi graphs G1,2: Two sets of graphs S1,2 are758

then generated by randomly adding and removing edges from G1,2. Then, 10 graphs were sampled759

from these sets and connected by randomly adding edges, resulting in a single graph. Two classes of760

these graphs, C1,2 are generated by using distinct sampling probabilities for the two sets. The two761

classes are then in turn split into two by generating two sets of vectors A and B; nodes from a given762

graph were appended a vector from A as node features if they were sampled from S1, and B for S2763

for one class, and vice versa for the other. The task is to classify which of these four classes a given764

graph belongs to.765
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Table C.1: Inductive benchmarks. All datasets are equipped with graph-level classification tasks,
except PATTERN and CLUSTER that are equipped with inductive node-level classification tasks.

Dataset # Graphs Avg # Nodes Avg # Edges # Features # Classes Predef. split Ref.

MNIST 70,000 70.57 564.53 3 10 Yes [18]
CIFAR10 60,000 117.63 941.07 5 10 Yes [18]
PATTERN 14,000 118.89 6,078.57 3 2 Yes [18]
CLUSTER 12,000 117.20 4,301.72 7 6 Yes [18]
IMDB-BINARY 1,000 19.77 96.53 – 2 No [68]
D&D 1,178 284.32 715.66 89 2 No [17]
ENZYMES 600 32.63 62.14 21 6 No [6]
PROTEINS 1,113 39.06 72.82 4 2 No [6]
NCI1 4,110 29.87 32.3 37 2 No [61]
NCI109 4,127 29.68 32.13 38 2 No [61]
COLLAB 5,000 74.49 2,457.78 – 3 No [68]
REDDIT-BINARY 2,000 429.63 497.75 – 2 No [68]
REDDIT-MULTI-5K 4,999 508.52 594.87 – 5 No [68]
MUTAG 188 17.93 19.79 7 2 No [15]
MalNet-Tiny 5,000 1,410.3 2,859.94 5 5 No [23]
ogbg-molhiv 41,127 25.5 27.5 9 sets 2 Yes [33]
ogbg-molpcba 437,929 26.0 28.1 9 sets 128x binary Yes [33]
ogbg-moltox21 7,831 18.6 19.3 9 sets 12x binary Yes [33]
PCQM4Mv2-subset 446,405 14.1 14.6 9 sets quantized to 20 Custom [34]
PPI 24 2,372.67 66,136 50 121 Yes [72]
SYNTHETICnew 300 100 196 1 2 No [19]
Synthie 400 95 196.25 15 4 No [45]
Small-world 256 64 694 2 10 No [69]
Scale-free 256 64 501.56 2 10 No [69]

Small-world and Scale-free [69] datasets are generated by tweaking graph generation parameters766

for the real-world-derived small-world [63] and scale-free [32] graphs. Graphs are generated using a767

range of Averaging Clustering Coefficient and Average Path Length parameters. In our experiments,768

clustering coefficients and PageRank scores constitute node features while the task is to classify769

graphs based on average path length, where the continuous path length variable is rendered discrete770

by 10-way binning.771

C.2 Transductive Node-level Datasets772

WikiNet [51] contains two networks of Wikipedia pages, where edges indicate mutual links between773

pages, and node features are bag-of-words (BOW) of informative nouns. The task is to classify the774

web pages based on their average monthly traffic bins.775

WebKB [51] contains networks of web pages from different universities, where an (directed) edge is a776

hyperlink between two web pages, with BOW node features. The task is to classify the web pages777

into five categories: student, project, course, staff, and faculty.778

Actor [51] is a network of actors, where an edge indicate co-occurrence of two actors on a same779

Wikipedia page, with node features represented by keywords about the actor on Wikipedia. The task780

is to classify the actor into one of five categories.781

WikiCS [43] is a network of Wikipedia articles related to Computer Science, where edges represent782

hyperlinks between them, with 300-dimensional word embeddings of the articles. The task is to783

classify the articles into one of ten branches of the field.784

Flickr [70] is a network of images, where the edges represent common properties between images,785

such as locations, gallery, and comments by the same users. The node features are BOW of image786

descriptions, and the task is to predict one of 7 tags for an image.787

CF (CitationFull) [5] contains citation networks where nodes are papers and edges represent citations,788

with node features as BOW of papers. The task is to classify the papers based on their topics.789

DzEu (DeezerEurope) [53] is a network of Deezer users from European countries where nodes are790

the users and edges are mutual follower relationships. The task is to predict the gender of users.791
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Table C.2: Transductive benchmarks with node-level classification tasks.

Dataset # Nodes # Edges # Node # Pred. Predef. Ref.feat. classes split

WikiNet-cham 2,277 72,202 128 5 Yes [51]
WikiNet-squir 5,201 434,146 128 5 Yes [51]
WebKB-Cor 183 298 1,703 10 Yes [51]
WebKB-Wis 251 515 1,703 10 Yes [51]
WebKB-Tex 183 325 1,703 10 Yes [51]
Actor 7,600 30,019 932 10 Yes [51]
WikiCS 11,701 297,110 300 10 Yes [43]
Flickr 89,250 899,756 500 7 Yes [70]
CF-Cora 19,793 126,842 8,710 70 No [5]
CF-CoraML 2,995 16,316 2,879 7 No [5]
CF-CiteSeer 4,230 10,674 602 6 No [5]
CF-DBLP 17,716 105,734 1,639 4 No [5]
CF-PubMed 19,717 88,648 500 3 No [5]
DzEu 28,281 185,504 128 2 No [53]
LFMA 7,624 55,612 128 18 No [53]
Am-Comp 13,752 491,722 767 10 No [56]
Am-Phot 7,650 238,162 745 8 No [56]
Coau-CS 18,333 163,788 6,805 15 No [56]
Coau-Phy 34,493 495,924 8,415 5 No [56]
Twitch-EN 7,126 77,774 128 2 No [52]
Twitch-ES 4,648 123,412 128 2 No [52]
Twitch-DE 9,498 315,774 128 2 No [52]
Twitch-PT 1,912 64,510 128 2 No [52]
Github 37,700 578,006 128 2 No [52]
FBPP 22,470 342,004 128 4 No [52]

LFMA (LastFMAsia) [53] is a network of LastFM users from Asian countries where edges are mutual792

follower relationships between them. The task is to predict the location of users.793

Amazon [56] contains Amazon Computers and Amazon Photo. They are segments of the Amazon794

co-purchase graph, where nodes represent goods, edges indicate that two goods are frequently bought795

together, node features are bag-of-words encoded product reviews, and class labels are given by the796

product category.797

Coau (Coauthor) [56] contains Coauthor CS and Coauthor Physics. They are co-authorship graphs798

based on the Microsoft Academic Graph from the KDD Cup 2016 challenge 3. Nodes are authors,799

and are connected by an edge if they co-authored a paper; node features represent paper keywords for800

each author’s papers, and class labels indicate most active fields of study for each author.801

Twitch [52] contains Twitch user-user networks of gamers who stream in a certain language where802

nodes are the users themselves and the edges are mutual friendships between them. The task is to803

to predict whether a streamer uses explicit language. Due to low baseline performance even after a804

thorough hyperparameter search, we excluded Twitch-RU and Twitch-FR from our main analysis.805

Github [52] is a network of GitHub developers where nodes are developers who have starred at least806

10 repositories and edges are mutual follower relationships between them. The task is to predict807

whether the user is a web or a machine learning developer.808

FBPP (FacebookPagePage) [52] is a network of verified Facebook pages that liked each other, where809

nodes correspond to official Facebook pages, edges to mutual likes between sites. The task is810

multi-class classification of the site category.811

D Distribution of Classical Graph Properties in Benchmarking Datasets812

In this work we use perturbation sensitivity profiles derived from a GNN’s prediction performance813

in order to gauge how task-related information is encoded in the graph datasets. In this section we814

explore an alternative approach. We analyze classical graph properties in multiple datasets and their815

classes to investigate whether we can establish a meaningful taxonomy without a dependence on a816

particular GNN method, while using well-established graph properties.817
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Table D.1: Classical graph properties among positive and negative classes of 9 graph-classification
datasets. The difference between datasets dominates within-dataset differences between classes.

Num. Num. Density Connectivity Diameter Approx. Centrality Cluster. Num.
nodes edges max clique coeff. triangles

IMDB-BINARY (class=0) 20.11 96.78 0.559 3.828 1.838 10.30 0.559 0.943 307.73
IMDB-BINARY (class=1) 19.43 96.29 0.482 3.388 1.884 10.01 0.482 0.951 476.25
REDDIT-BINARY (class=0) 641.25 735.95 0.012 0.556 5.646 3.22 0.012 0.054 35.96
REDDIT-BINARY (class=1) 218.00 259.56 0.032 0.423 3.778 2.95 0.032 0.041 13.71
D&D (class=0) 341.88 870.23 0.019 1.110 20.843 4.95 0.019 0.479 617.07
D&D (class=1) 183.72 449.43 0.040 1.140 17.460 4.79 0.040 0.480 302.55
PROTEINS (class=0) 50.00 94.06 0.142 1.196 13.837 3.85 0.142 0.473 34.30
PROTEINS (class=1) 22.94 41.52 0.315 1.420 7.278 3.80 0.315 0.575 17.24
NCI1 (class=0) 25.65 27.65 0.100 0.924 11.265 2.02 0.100 0.002 0.03
NCI1 (class=1) 34.07 36.94 0.078 0.796 11.917 2.05 0.078 0.004 0.07
NCI109 (class=0) 25.61 27.61 0.100 0.913 11.061 2.02 0.100 0.002 0.02
NCI109 (class=1) 33.69 36.59 0.079 0.794 11.644 2.05 0.079 0.004 0.07
MUTAG (class=0) 13.94 14.62 0.169 1.000 7.016 2.00 0.169 0.000 0.00
MUTAG (class=1) 19.94 22.40 0.123 1.000 8.824 2.00 0.123 0.000 0.00
SYNTHETICnew (class=0) 100.00 196.42 0.040 0.993 7.333 3.00 0.040 0.024 5.39
SYNTHETICnew (class=1) 100.00 196.08 0.040 0.993 7.213 3.00 0.040 0.022 4.54
ogbg-molhiv (class=0) 25.20 27.13 0.104 0.931 11.016 2.02 0.104 0.002 0.03
ogbg-molhiv (class=1) 34.18 36.69 0.084 0.824 12.183 2.01 0.084 0.001 0.01

A static analysis of the graph properties alone is insufficient without taking into account the prediction818

task as well. The graph domain that a dataset X is sampled from (e.g., drug-like molecules, proteins,819

ego networks, citation networks) may exhibit varying range of properties (e.g., density, node degree820

distribution, local/global clustering coefficients, number of triangles, graph diameter, girth, maximum821

clique, etc.), however these do not take into account node features in attributed graphs, and could be822

irrelevant to the prediction task Y . Therefore, we look at the difference in graph properties compared823

among the individual classes of Y .824
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Figure D.1: PCA plot of 9 binary graph-level
classification datasets represented by their per-
class graph properties. In the bottom, the
loadings of the first two principal components
are shown.

Particularly, we look at all 9 inductive binary-825

classification datasets from our dataset selection (Ta-826

ble C.1). Within each class (the negative and positive827

label) of these 9 datasets we computed the average828

value of 9 graph properties computed by the Net-829

workX package [27]. The results are presented in830

Table D.1 and Figure D.1. Primarily, the computed831

graph properties vary more between datasets than be-832

tween classes. The marginal graph properties of the833

positive and negative class are very similar to each834

other, especially for the SYNTHETICnew dataset.835

The largest difference between the classes appears to836

be the average size of the graphs, which is captured837

by the average number of nodes and edges. There-838

fore we argue that basing a taxonomy on dataset or839

class-level marginal graph properties is grossly insuf-840

ficient as it completely fails to capture the nature of841

the prediction task.842

Alternatively, one could conduct a correlation anal-843

ysis between classical graph properties (averaged per844

class) and the outcome Y . However, that would again845

only take into account the marginal properties, as-846

sume linear relationship (as correlation captures only847

a linear relationship), and would rely on a fixed set848

of computable graph properties. These appear to be849

fundamental limitations compared to the perturbation850

analysis presented in the main text, that would result851

in a grossly skewed taxonomy.852
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E Impact of random initialization on Frag-k perturbations853

Our Frag-k perturbation is potentially sensitive to the random initializations of the initial seed nodes854

used in the fragmentation procedure. To measure this sensitivity of Frag-k perturbations to node855

initializations, we computed the variance of AUROC results across ten experiments with different856

random seeds for both GCN and GIN models. Here, we analysed five datasets, the performance on857

which was significantly altered by Frag-k in the original analysis, namely, CLUSTER, PATTERN,858

PPI, Synthie, and SYNTHETICnew. The variances are within 5%, with the only exception being859

SYNTHETICnew. We hypothesize that this is due to the randomness of the constructions of the860

SYNTHETICnew dataset. Thus, overall, the Frag-k approach is sufficiently stable for datasets whose861

constructions involve little randomness.862

Table E.1: Variances of AUROC across ten different random seeds for Frag-k for GCN.

Dataset Perturbation AUROC Avg. AUROC Std. AUC Std./Avg. (%)

CLUSTER Frag-k1 0.637 0.001 0.165
CLUSTER Frag-k2 0.913 0.000 0.039
CLUSTER Frag-k3 0.913 0.000 0.037
PATTERN Frag-k1 0.769 0.001 0.095
PATTERN Frag-k2 0.933 0.000 0.016
PATTERN Frag-k3 0.933 0.000 0.021
PPI Frag-k1 0.620 0.003 0.529
PPI Frag-k2 0.647 0.012 1.807
PPI Frag-k3 0.720 0.011 1.519
SYNTHETICnew Frag-k1 0.704 0.126 17.908
SYNTHETICnew Frag-k2 0.533 0.078 14.701
SYNTHETICnew Frag-k3 0.715 0.089 12.492
Synthie Frag-k1 0.962 0.015 1.581
Synthie Frag-k2 0.870 0.029 3.334
Synthie Frag-k3 0.876 0.036 4.164

Table E.2: Variances of AUROC across ten different random seeds for Frag-k for GIN.

Dataset Perturbation AUROC Avg. AUROC Std. AUC Std./Avg. (%)

CLUSTER Frag-k1 0.643 0.001 0.162
CLUSTER Frag-k2 0.910 0.001 0.101
CLUSTER Frag-k3 0.910 0.001 0.130
PATTERN Frag-k1 0.780 0.001 0.091
PATTERN Frag-k2 0.934 0.000 0.013
PATTERN Frag-k3 0.934 0.000 0.019
PPI Frag-k1 0.617 0.002 0.376
PPI Frag-k2 0.644 0.009 1.476
PPI Frag-k3 0.704 0.013 1.843
SYNTHETICnew Frag-k1 0.708 0.081 11.407
SYNTHETICnew Frag-k2 0.532 0.071 13.276
SYNTHETICnew Frag-k3 0.757 0.064 8.411
Synthie Frag-k1 0.985 0.008 0.810
Synthie Frag-k2 0.945 0.011 1.213
Synthie Frag-k3 0.920 0.025 2.677
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