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Abstract: Despite recent advances in improving the sample-efficiency of reinforce-1

ment learning (RL) algorithms, designing an RL algorithm that can be practically2

deployed in real-world environments remains a challenge. In this paper, we present3

Coarse-to-fine Reinforcement Learning (CRL), a framework that trains RL agents4

to zoom-into a continuous action space in a coarse-to-fine manner, enabling the use5

of stable, sample-efficient value-based RL algorithms for fine-grained continuous6

control tasks. Our key idea is to train agents that output actions by iterating the7

procedure of (i) discretizing the continuous action space into multiple intervals and8

(ii) selecting the interval with the highest Q-value to further discretize at the next9

level. We then introduce a concrete, value-based algorithm within the CRL frame-10

work called Coarse-to-fine Q-Network (CQN). Our experiments demonstrate that11

CQN significantly outperforms RL and behavior cloning baselines on 20 sparsely-12

rewarded RLBench manipulation tasks with a modest number of environment13

interactions and expert demonstrations. We also show that CQN robustly learns to14

solve real-world manipulation tasks within a few minutes of online training.15

Project website: cqn-rl.github.io.16

Keywords: Reinforcement Learning, Sample-Efficient, Action Discretization17
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Figure 1: Summary of results. In sparsely-rewarded visual robotic manipulation tasks from RLBench
[1] and real-world environments, CQN learns to solve the tasks with a modest number of environment
interactions and expert demonstrations, outperforming baselines such as DrQ-v2 [2], its highly
optimized variant DrQ-v2+, and ACT [3]. Real-world RL videos are available at our webpage.

1 Introduction18

Recent reinforcement learning (RL) algorithms have made significant advances in learning end-to-end19

continuous control policies from online experiences [4, 5, 6, 7, 8, 9]. However, these algorithms often20

require a large number of online samples for learning robotic skills [6, 9], making it impractical for21

real-world environments where practitioners need to deal with resetting procedures and hardware22

failures. Therefore, recent successful approaches in learning visuomotor policies for real-world tasks23
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Figure 2: Coarse-to-fine reinforcement learning. (a) We design our RL agent to zoom-into the
continuous action space in a coarse-to-fine manner by repeating the procedure of (i) discretizing the
continuous action space into multiple intervals and (ii) selecting the interval with the highest Q-value
to further discretize at the next level. We then use the centroid of the last level’s interval as an action.
(b) Our coarse-to-fine critic architecture takes input features along with one-hot level indices and
actions from the previous level, and then outputs Q-values for different action dimensions. This design
enables the critic to know the current level and which part of the continuous action space to zoom-into.

have mostly been methods that learn from static offline datasets, such as offline RL [10] or behavior24

cloning (BC) [3, 11, 12, 13]. But these offline approaches are inherently limited because they cannot25

improve through online experiences and thus their performance is constrained by offline data.26

In this paper, we argue that many challenges in applying RL to continuous control domains arise from27

using actor-critic algorithms [4, 14], which introduce a separate actor network and use it for updating28

a critic network. Despite recent advances in stabilizing actor-critic algorithms [2, 7, 15, 16], they often29

suffer from instabilities due to the complex interactions between actor and critic networks [17, 18]. In30

contrast, value-based RL algorithms are conceptually simpler and more stable, as they operate solely31

with a critic, yet have achieved remarkable successes in various domains [19, 20, 21, 22]. However,32

value-based RL algorithms are inherently designed for use in environments with discrete actions.33

To exploit the benefits of value-based RL algorithms in continuous control domains, recent efforts34

have focused on enabling their use by discretizing the continuous action space into multiple intervals35

[23, 24, 25, 26]. However, this discretization scheme encounters a trade-off between the precision of36

actions and sample-efficiency: while more intervals are needed for fine-grained robotic tasks [10], an37

increased number of actions can make RL training and exploration be more difficult [25, 26, 27].38

Contribution To enable the use of value-based RL algorithms for fine-grained continuous control39

tasks without such a trade-off, we present Coarse-to-fine Reinforcement Learning (CRL), a framework40

that trains RL agents to zoom-into the continuous action space in a coarse-to-fine manner. Our key idea41

is to train an agent that outputs actions by repeating the procedure of (i) discretizing the continuous42

action space into multiple intervals and (ii) selecting the interval with the highest Q-value to further43

discretize at the next level (see Figure 2a). Unlike prior single-level approaches that need a large44

number of bins for high-precision [23, 25], our framework enables fine-grained control with as few45

as 3 bins per level (see Figure 3). Within this new CRL framework, we introduce Coarse-to-fine Q-46

Network (CQN), a value-based RL algorithm for continuous control (see Figure 2b), and demonstrate47

that it robustly learns to solve a range of continuous control tasks in a sample-efficient manner.48

In particular, through extensive experiments in a demo-driven RL setup with access to a modest49

number of environment interactions and expert demonstrations, we demonstrate that CQN robustly50

learns to solve a variety of sparsely-rewarded visual robotic manipulation tasks from RLBench [1]51

and real-world environments. Our results are intriguing because our experiments do not use pre-52

training, motion planning, keypoint extraction, camera calibration, depth, and hand-designed rewards.53

Moreover, we show that CQN is generic and applicable to diverse benchmarks other than visual54

robotic manipulation; we demonstrate that CQN achieves competitive performance to actor-critic RL55

baselines [2, 7] in widely-used robotic tasks from DMC [28] environment with shaped rewards.56
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2 Related Work57

Actor-critic RL algorithms for continuous control Most prior applications of RL to continuous58

control have been based on actor-critic algorithms [2, 4, 5, 7, 15, 16, 29, 30, 31, 32, 33, 34] that59

introduce a separate, parameterized actor network as a policy [14]. This is because they allow for60

addressing one of the main challenges in applying Q-learning to continuous domains, i.e., finding61

continuous actions that maximize Q-values. However, in continuous control domains, actor-critic62

algorithms are known to be brittle and often suffer from instabilities due to the complex interactions63

between actor and critic networks [17, 18], despite recent efforts to stabilize them [7, 15, 16]. To64

address this limitation, several approaches proposed to discretize the continuous action space and65

learn discrete policies for continuous control. For instance, Tang and Agrawal [35] learned a policy66

in a factorized action space and Seyde et al. [36] learned a bang-bang controller with actor-critic67

RL algorithms. This paper introduces a framework that enables the use of both actor-critic and68

value-based RL algorithms for learning discrete policies that can solve fine-grained control tasks.69

Value-based RL algorithms for continuous control Despite their simple critic-only architecture,70

value-based RL algorithms have achieved remarkable successes [19, 20, 21, 22]. However, because71

they require a discrete action space, there have been recent efforts to enable their use for continuous72

control by applying discretization to a continuous action space [10, 23, 26, 24, 25, 37] or by learning73

high-level discrete actions from offline data [38, 39]. For instance, some works have proposed training74

an autoregressive critic by treating each action dimension as a separate action to avoid the curse of75

dimensionality from action discretization [10, 37]. Our work is orthogonal to this, as our coarse-to-76

fine approach can be combined with this idea. On the other hand, several works have demonstrated77

that training factorized critics for each action dimension can achieve competitive performance to actor-78

critic algorithms [24, 25]. However, this single-level discretization may not be scalable to domains79

requiring high-precision actions, as such domains typically necessitate fine-grained discretization [10].80

To address this limitation, Seyde et al. [26] proposed gradually enlarging action spaces throughout81

training, but this introduces a challenge of constrained optimization. In contrast, our CRL framework82

enables us to learn discrete policies for continuous control in a stable and simple manner.83

Notably, the closest work to ours is C2F-ARM [40] that trains value-based RL agents to zoom-into a84

voxelized 3D robot workspace by predicting the voxel to further discretize. C2F-ARM is a special85

case of our CRL framework, where the agent operates as a hierarchical, next-best pose agent [34]; it86

splits the robot manipulation problem into high-level next-best-pose control and low-level control87

(usually a motion planning) problems. CQN on the other hand, is more general and can be used for88

any action mode, including joint control. We provide additional discussion in Appendix F.89

3 Method90

We present Coarse-to-fine Reinforcement Learning (CRL), a framework that trains RL agents to zoom-91

into a continuous action space in a coarse-to-fine manner (see Section 3.1). Within this framework, we92

introduce Coarse-to-fine Q-Network (CQN), a value-based RL algorithm for continuous control (see93

Section 3.2) and describe various design choices for improving CQN in visual robotic manipulation94

tasks (see Section 3.3). We provide the overview and pseudocode in Figure 2 and Appendix B.95

3.1 Framework: Coarse-to-fine Reinforcement Learning96

To enable the use of value-based RL algorithms for learning discrete policies in fine-grained con-97

tinuous control domains, we propose to formulate the continuous control problem as a multi-level98

discrete control problem via coarse-to-fine action discretization. Specifically, given a number of99

levels L and a number of bins B, we apply discretization to the continuous action space L times100

(see Figure 3), in contrast to prior approaches that discretize action space into multiple intervals in a101

single-level [25, 41]. We then train RL agents to zoom-into the continuous action space by repeating102

the procedure of (i) discretizing the continuous action space at the current level into B intervals and103

(ii) selecting the interval with the highest Q-value to further discretize at the next level (see Figure 2a).104
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Figure 3: Examples of coarse-to-fine discretization. With a pre-defined number of levels (L) and
intervals (B), e.g., L = 3 and B = 3 in this example, we apply discretization to the continuous action
space L times with different precisions. We then design our RL agents to learn a critic network with
only a few actions at each level, e.g., 3 actions in this example, conditioned on previous level’s actions.
This enables us to learn discrete policies that can output high-precision actions while avoiding the
difficulty of learning the critic network with a large number of discrete actions.

Our intuition is that, by designing our agents to learn a critic network with only a few discrete actions105

at each level (i.e., B actions), our coarse-to-fine framework can effectively allow for learning discrete106

policies that can output high-precision actions while avoiding the difficulty of learning the critic107

network with a large number of discrete actions (e.g., BL actions is required for achieving the same108

precision with a single-level discretization). Here we note that our framework is compatible with109

both actor-critic and value-based RL algorithms as they can operate with discrete actions. But this110

paper focuses on developing a value-based RL algorithm because of its simple and stable critic-only111

architecture (see Section 3.2), and leaves the development of actor-critic RL algorithm as future work.112

3.2 Algorithm: Coarse-to-fine Q-Network113

Problem setup We formulate a vision-based continuous control problem as a partially observable114

Markov decision process [42, 43], where, at each time step t, an agent encounters an observation115

ot, selects an action at, receives a reward rt+1, and encounters a new observation ot+1 from an116

environment. Our goal is to learn a policy that maximizes the expected sum of rewards through RL in117

a sample-efficient manner, i.e., by using as few online samples as possible.118

Inputs and encoder We consider an observation ot consisting of pixel observations (ov1
t , ...,ovV

t )119

captured from viewpoints (v1, ..., vV ) and low-dimensional proprioceptive states olowt . We then use a120

lightweight 4-layer convolutional neural network (CNN) encoder fenc
θ to encode pixels ovi

t into visual121

features hvi
t , i.e., hvi

t = fenc
θ (ovi

t ). To fuse information from view-wise features, we concatenate122

features from all viewpoints and project them into low-dimensional features. Then we concatenate123

fused features with proprioceptive states olowt to construct features ht.124

Coarse-to-fine critic architecture Let al,nt be an action at level l and action dimension n (e.g.,125

delta angle for n-th joint of a robotic arm) and alt = (al,1t , ..., al,Nt ) be an action at level l where a0t is126

defined as a zero action vector. By following the design of Seyde et al. [25] that introduce factorized127

Q-networks for different action dimensions, we define our coarse-to-fine critic to consist of individual128

Q-networks at level l and action dimension n as below (see Figure 2b for an illustration):129

Ql,n
θ (ht, a

l,n
t ,al−1

t ) for n ∈ {1, ..., N} and l ∈ {1, ..., L} (1)

We note that our design mainly differs from prior work with a single-level critic [24, 25] in that our130

Q-network takes al−1
t , i.e., actions from all dimensions at previous level, to enable each Q-network131

to be aware of other networks’ decisions at the previous level. We also design our critic to share most132

of parameters for all levels and dimensions by sharing linear layers except the last linear layer [41]133

and making Q-networks take one-hot level index as inputs1.134

1We omit one-hot level index from the equation for the simplicity of notation.
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Inference procedure We describe our coarse-to-fine inference procedure for selecting actions135

at time step t (see Figure 2a and Appendix B for the illustration and pseudocode of our inference136

procedure). We first introduce constants an,lowt and an,hight that are initialized with −1 and 1 for each137

action dimension n. For all action dimensions n, we repeat the following steps for l ∈ {1, ..., L}:138

• Step 1 (Discretization): We discretize an interval [an,lowt , a
n,high
t ] into B uniform intervals, each139

of which becomes the action space for Q-network Ql,n
θ .140

• Step 2 (Bin selection): We find argmaxa′ Q
l,n
θ (ht, a

′,al−1
t ) for each n, which corresponds to141

the interval with the largest Q-value. We then set al,nt to the centroid of the selected interval and142

concatenate actions from all dimensions into alt.143

• Step 3 (Zoom-in): We set an,lowt and an,hight to the minimum and maximum value of the selected144

interval, zooming into the selected intervals within the action space.145

We use the last level’s action aLt as the action at time step t. In practice, we parallelize the procedures146

across all the action dimensions n for faster inference. We further describe a procedure for computing147

Q-values with input actions, along with its pseudocode, in Appendix B.148

Q-learning objective Q-learning objective for action dimension n at level l is defined as below:149

Ll,n
RL =

(
Ql,n

θ (ht, a
l,n
t ,al−1

t )− rt+1 − γmax
a′

Ql,n

θ̄
(ht+1, a

′, πl−1(ht+1))
)2

(2)

where θ̄ are delayed critic parameters updated with Polyak averaging [44] and πl is a policy that150

outputs the action alt at each level l via the inference steps with our critic, i.e., πl(ht) = alt.151

Implementation and training details We use the 2-layer dueling network [45] and a distributional152

critic [46] with 51 atoms. By following Hafner et al. [47], we use layer normalization [48] with SiLU153

activation [49] for every linear and convolutional layers. We use AdamW optimizer [50] with weight154

decay of 0.1 by following Schwarzer et al. [51]. Following prior work that learn from offline data155

[52, 53], we sample minibatches of size 256 each from the online replay buffer and the demonstration156

replay buffer, resulting in a total batch size of 512. More details are available in Appendix C.157

3.3 Optimizations for Visual Robotic Manipulation158

We describe various design choices for improving CQN in visual robotic manipulation tasks.159

Auxiliary behavior cloning objective Following the idea of prior work [54, 55], we introduce an160

auxiliary behavior cloning (BC) objective that encourages agents to imitate expert actions. Specifically,161

given an expert action ãt, we introduce an auxiliary margin loss [56] that encourages Q(ht, ã
l
t) to be162

higher than Q-values of non-expert actions Q(ht,a
l
t) for all levels l as below:163

Ll,n
BC = max

a′

(
Ql,n

θ (ht, a
′,al−1

t ) + fmargin(ãl,nt , a′)
)
−Ql,n

θ (ht, ã
l,n
t , ãl−1

t ) (3)

where fmargin is a function that gives 0 when a′ = ãl,nt and a margin value m otherwise. This164

objective encourages Q-values for expert actions to be at least higher than other Q-values by m. We165

describe how we modify BC objective to align better with the distributional critic in Appendix A.166

Relabeling successful online trajectories as demonstrations Inspired by the idea of self-imitation167

learning [57] that encourages agents to reproduce their own good decisions, we label the successful168

trajectories from environment interaction as demonstrations. We find that this simple scheme can be169

helpful for RL training by widening the distribution of demonstrations throughout training.170

Environment interaction Similar to prior value-based RL algorithms [51, 58], we choose actions171

using the target Q-network to improve the stability throughout environment rollouts. Moreover, as172

we find that standard exploration techniques of injecting noises [4, 59, 60] make it difficult to solve173

fine-grained control tasks, we instead add a small Gaussian noise with standard deviation of 0.01.174
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Figure 4: Simulation results on 20 sparsely-rewarded tasks from RLBench [1]. All experiments are
initialized with 100 expert demonstrations and all RL methods have an auxiliary BC objective. The
solid line and shaded regions represent the mean and confidence intervals, respectively, across 3 runs.

4 Experiments175

We design our experiments to investigate the following questions: (i) How does CQN compare to176

previous RL and BC baselines? (ii) Can CQN be sample-efficient enough to be practically used in177

real-world environments? (iii) How do various design factors of CQN affect the performance?178

4.1 RLBench Experiments179

Setup For quantiative evaluation, we mainly consider a demo-driven RL setup where we aim to180

solve visual robotic manipulation tasks from RLBench [1] environment with access to a limited181

number of environment interactions and expert demonstrations2. Unlike prior work that designed182

experiments to make RLBench tasks less challenging by using hand-designed rewards [55, 61] or183

heuristics that depend on motion planning, e.g., keypoint extraction [34, 40], we consider a sparse-184

reward setup without the use of motion planner. Specifically, we label the reward of the last timestep185

in successful episodes as 1.0 and train RL agents to output the difference of joint angles at each186

time step by using delta JointPosition mode in RLBench. We use RGB observations with 84× 84187

resolution captured from front, wrist, left-shoulder, and right-shoulder cameras. Proprioceptive states188

consist of 7-dimensional joint positions and a binary gripper state. Similar to Mnih et al. [19], we use189

a history of 8 observations as inputs. For all tasks, we use the same set of hyperparameters, e.g., 3190

levels and 5 bins, without tuning them for each task. See Appendix C for more details.191

RL baselines Because CQN is a generic value-based RL algorithm compatible with other techniques192

for improving value-based RL [51, 58] or demo-driven RL [52, 53, 62, 63], we mainly focus on193

comparing CQN against representative baselines to which comparison can highlight the benefit of our194

framework. To this end, we first consider DrQ-v2 [2], a widely-used actor-critic RL algorithm, as our195

RL baseline. Moreover, for a fair comparison, we design our strong RL baseline: DrQ-v2+, a highly196

optimized variant of DrQ-v2 that incorporates a distributional critic and our recipes for manipulation197

tasks (see Section 3.3). We also note that all RL methods have an auxiliary BC objective.198

2We provide experimental results in state- and vision-based robotic tasks from DMC [28] in Appendix E.
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Figure 5: Real-world tasks used in our real-world experiments (see Appendix D for more details).
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Figure 6: Real-world results. Learning curves on 4 real-world manipulation tasks, measured by the
success rate. We run experiments for 10 minutes and report the running mean across 5 episodes.

BC baselines To demonstrate the benefit of learning through online experiences, we consider ACT199

[3], which learns to predict a sequence of actions, as our BC baseline. We choose ACT because it200

achieves competitive performance to other methods such as DiffusionPolicy [11]. We also consider201

an additional BC baseline, i.e., Coarse-to-fine BC (CBC), which shares every detail with CQN such202

as action discretization and architecture but trained only with BC objective.203

Results In Figure 4, we find that CQN consistently outperforms actor-critic RL baselines, i.e., DrQ-204

v2 and DrQ-v2, in terms of both sample-efficiency and asymptotic performance. In particular, CQN205

significantly outperforms our highly-optimized baseline DrQ-v2+ by a large margin, highlighting the206

benefit of our CRL framework that allows the use of value-based RL algorithm for continuous control.207

Moreover, we observe that CQN can quickly match the performance of BC baselines (i.e., ACT and208

CBC) and surpass them in most of the tasks, highlighting the benefit of learning by trial and error.209

4.2 Real-world Experiments210

Setup We further demonstrate the effectiveness of CQN in real-world tasks that use a UR5 robot211

arm with 20 to 50 human-collected demonstrations (see Figure 5 for examples of real-world tasks).212

Unlike RLBench experiments that take one update step per every environment step, we take 50 or213

100 update steps between episodes to avoid jerky motions during the environment interaction. All RL214

methods have an auxiliary BC objective and we report the running mean across 5 recent episodes. For215

ACT, we report the average success rate over 20 episodes to evaluate it with the same randomization216

range used in RL experiments. We use stack of 4 observations as inputs and 4 levels with 3 bins.217

Unless otherwise specified, we use the same hyperparameters as in RLBench experiments for all218

methods, which shows the robustness of CQN to hyperparameters. See Appendix D for more details.219

Results In Figure 6, we observe intriguing results where CQN can learn to solve complex real-world220

tasks within 10 minutes of online training, while a baseline without RL objective often fails to do221

so. In particular, we find that this baseline without RL objective nearly succeeds in solving the task222

but makes a mistake in states that require high-precision actions, which demonstrates the benefit of223

RL similar to the results in simulated RLBench environment (see Table 1c). Moreover, we observe224

that the training of DrQ-v2+ is unstable especially when it encounters unseen observations during225

training. In contrast, CQN robustly learns to solve the tasks and consistently outperforms DrQ-v2+ in226

all tasks. We provide full videos of real-world RL training for all tasks in our project website.227

7



Level Bin SR
1 5 8.8%
1 17 30.7%
1 65 51.2%
1 256 39.5%
3 5 77.5%
3 17 65.5%

(a) Bins

Level SR
1 8.8%
2 55.8%
3 77.5%
4 72.8%
5 46.5%
6 37.8%

(b) Levels

LRL LBC C51 SR
✗ ✓ - 36.5%
✓ ✗ ✓ 1.8%
✓ ✓ ✗ 16.7%
✓ ✓ ✓ 77.5%

(c) Objectives

Action
Selection

Expl.
Noise SR

Online N (0, 0.01) 70.2%
Target ✗ 75.1%
Target N (0, 0.1) 50.8%
Target N (0, 0.01) 77.5%

(d) Exploration

Table 1: Analysis and ablation studies. We investigate the effect of (a) bins and (b) levels. (c) We
investigate the effect of RL objective (LRL), BC objective (LBC), and the use of distributional critic
(C51) [46]. (d) We investigate the effect of using target Q-network for action selection and small
exploration noise. SR denotes success rate and default settings are highlighted in gray .

4.3 Analysis and Ablation Studies228

We investigate the effect of hyperparameters and various design choices by running experiments on 4229

tasks from RLBench. We provide more analysis and ablation studies in Appendix A.230

Effect of levels and bins In Table 1a and Table 1b, we investigate the effect of levels and bins231

within CQN. As shown in Table 1a, we find that single-level baseline performance peaks at 65 bins232

and decreases after it, which shows the limitation of single-level action discretization that struggles233

to scale up to tasks that require high-precision actions. Moreover, we find that 3-level CQN also234

struggles with more bins, as learning Q-networks with more actions can be difficult. In Table 1b,235

we find that 3 or 4 levels are sufficient and performance keeps decreasing with more levels. We236

hypothesize this is because learning signals from levels with too fine-grained actions may confuse the237

network with limited capacity because of sharing parameters for all the levels.238

Effect of objectives and distributional critic In Table 1c, we investigate the effect of RL and239

BC objectives, along with the effect of using distributional critic (i.e., C51) [46]. To summarize, we240

find that (i) RL objective is crucial as in real-world experiments (see Section 4.2), (ii) auxiliary BC241

objective is crucial as RL agents struggle to keep close to demonstration distribution without the242

BC loss, and (iii) distributional critic is important; severe value overestimation makes RL training243

unstable in the initial phase of RL training without the distributional critic.244

Effect of exploration We further investigate the effect of how our agents do exploration, i.e., which245

network to use for selecting actions and how to add noise to actions, in Table 1d. We find that using246

target Q-network for selecting actions outperforms using online Q-network. We hypothesize this is247

because (i) Polyak averaging [44] can improve the generalization [64] and (ii) online network changes248

throughout episode. We also find that using a small Gaussian noise with N (0, 0.01) outperforms a249

variant with a strong noise because manipulation tasks require high-precision actions.250

5 Discussion251

We present CRL, a framework that enables the use of value-based RL algorithms in fine-grained252

continuous control domains, and CQN, a concrete value-based RL within this framework. Our key253

idea is to train RL agents to zoom-into a continuous action space in a coarse-to-fine manner. Extensive254

experiments demonstrate that CQN efficiently learns to solve a range of continuous control tasks.255

Limitations and future directions Overall, we are excited about the potential of our framework256

and there are many exciting future directions: supporting high update-to-data ratio [51, 58, 65], 3D257

representations [55, 66, 67, 68, 69, 70, 71, 72], tree-based search [20, 73], and bootstrapping RL from258

BC [62, 74] or offline RL [75, 76, 77], to name but a few. One particular limitation we are keen to259

address is that we still need quite a number of demonstrations. Reducing the number of demonstrations260

by incorporating pre-trained models [78, 79, 80] or augmentation techniques [81, 82, 83] would be261

an interesting future direction. We discuss more limitations and future directions in Appendix G.262
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LC51−BC Relabeling Centralized critic SR
✗ ✓ ✓ 72.3%
✓ ✗ ✓ 57.8%
✓ ✓ ✗ 76.3%
✓ ✓ ✓ 77.5%

(a) Effect of design choices and optimizations

Action mode Scaling SR
Absolute ✓ 20.5%

Delta ✗ 71.5%
Delta ✓ 77.5%

(b) Action mode and scaling

Stack SR
1 63.7%
2 75.0%
4 76.0%
8 77.5%

(c) History

Table 2: Additional analysis and ablation studies. We investigate the effect of BC objective for
C51 (LC51−BC), relabeling successful episodes as demonstrations, and using centralized critic [25].
We also investigate the effect of (b) action mode and scaling and (c) using a history of observations.
SR denotes success rate and default settings are highlighted in gray .

A Additional Analysis and Ablation Studies617

Here, we provide additional analysis and ablation studies in Table 2. For results in this section and618

Section 4, we report aggregate results on 4 tasks: Turn Tap, Stack Wine, Open Drawer, Sweep619

To Dustpan, with 3 runs for each task.620

Auxiliary BC with distributional critic We find that our BC objective in Equation 3 is often not621

synergistic with distributional critic, because it leads to a shortcut of increasing Q-values (i.e., the622

mean of value distribution) by increasing the probability mass of atoms corresponding to supports623

with large values. To address this issue, given an expert action ãt, we introduce a BC objective that624

encourages a distribution with the expert action Q(s, ãt) to be preferred over Q(s, at) instead of only625

using the mean of the distribution as a metric.626

Our idea is to utilize the concept of first-order stochastic dominance [84, 85]: when a random variable627

A is first-order stochastic dominant over a random variable B, for all outcome x, FA(x) ≤ FB(x)628

holds, with strict inequality at some x. Intuitively, this means that A is preferred over B because the629

A is more likely to have a higher outcome x. Based on this, we design an auxiliary BC objective that630

encourages Q(s, ãt) to be stochastically dominant over Q(s, at), i.e., LC51−BC, which encourages RL631

agents to prefer the distribution induced by expert actions ãt to non-expert actions at. In Table 2a, we632

find that using LC51−BC achieves 77.5%, outperforming a variant that uses LBC that achieves 72.3%.633

Centralized critic Our coarse-to-fine critic architecture is based on the design of Seyde et al. [25]634

that train a factorized critic across action dimensions. However, we do not use the centralized critic635

training scheme as in the original paper, because (i) we find that using the average Q-value as an636

objective is not aligned well with the use of distributional critic and (ii) our design can already637

facilitate critics for different dimensions to share information as they are conditioned on actions from638

the previous level (see Figure 2b). Indeed, as shown in Table 2a, we find that using such an objective639

does not make a significant difference in performance; thus we do not use it for simplicity.640

Relabeling successful episodes as demonstrations We investigate the effectiveness of our relabel-641

ing scheme (see Section 3.3) in Table 2a, where we observe that performance largely drops without642

the scheme. Though this is effective in our RLBench experiments, we note that this idea depends643

on the characteristic of our manipulation tasks where successful episodes can be treated as optimal644

trajectories; investigating the effectiveness of it with noisy offline data or suboptimal demonstrations645

can be an interesting direction.646

Action mode We investigate how the choice of action mode between the absolute joint control or647

delta joint control affects the performance. We find that using the delta joint action mode significantly648

outperforms a baseline with the absolute action mode. We hypothesize this is because delta joint649

control’s action space is narrower and makes it easy to learn fine-grained control policies. Moreover,650

we observe that using the absolute joint action mode in real-world environments often leads to651

dangerous behaviors and robot failures in practice because of large movements between each step.652
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Data-driven action scaling For all experiments, we follow James and Davison [34] that compute653

the minimum and maximum actions from the demonstrations and scale actions using these values as654

the action space bounds. We investigate the effect of this scaling scheme in Table 2b, where we find655

that this makes it easy to learn to solve manipulation tasks.656

Using a history of observations Similar to prior researches that show the effectiveness of using a657

history of observations when training IL agents for robotic manipulation [11, 86], we find that using658

stacked observations [19] is also crucial when training RL agents for manipulation in Table 2c.659

B Pseudocode660

In this section, we first provide an inference procedure for computing Q-values. We then provide the661

pseudocode of inference procedures and CQN training in Algorithm 1 and Algorithm 2.662

Inference procedure for computing Q-values We describe the procedure for computing Q-values663

when actions at are given as inputs, which is similar to action selection procedure in Section 3.2.664

We first introduce constants an,lowt and a
n,high
t that are initialized with −1 and 1 for each action665

dimension n. For all action dimensions n, we repeat the following steps for l ∈ {1, ..., L}:666

• Step 1 (Discretization): We discretize an interval [an,lowt , an,hight ] into B uniform intervals, each667

of which becomes the action space for Q-network Ql,n
θ .668

• Step 2 (Bin selection): We find the interval that contains given input actions at and compute669

Q-value Ql,n
θ (ht, a

l,n
t ,al−1

t ) for the selected interval.670

• Step 3 (Zoom-in): We set an,lowt and an,hight to the minimum and maximum value of the selected671

interval, zooming into the selected intervals within the action space.672

We then obtain the set of Q-values {Ql,n
θ (ht, a

l,n
t ,al−1

t )}.673

Algorithm 1 Coarse-to-fine inference procedure

1: Inputs: Features ht, number of levels L, intervals B, and action dimensions N
2: Optional inputs: Input actions at
3: Initialize an,lowt , an,hight to -1 and 1 for all n
4: Initialize a0t to 0
5: for each level l ∈ (1, ..., L) do
6: for each dimension n ∈ (1, ..., N) do
7: // STEP 1: DISCRETIZATION
8: Discretize an interval [an,lowt , an,hight ] to B intervals
9: // STEP 2: BIN SELECTION

10: if Input actions at are given then
11: Find interval that contains at at the current level l and dimension n
12: Set al,nt as the centroid of the selected interval
13: Compute Q-value Ql,n

θ (ht, a
l,n
t ,al−1

t )
14: else
15: Find interval that satisfies: argmaxa′ Q

l,n
θ (ht, a

′,al−1
t )

16: Set al,nt as the centroid of the selected interval
17: // STEP 3: ZOOM-IN
18: Set an,lowt , an,hight to minimum and maximum of the selected interval
19: if not Input actions at are given then
20: Aggregate actions as alt = (al,1t , ..., al,Nt )
21: if Input actions at are given then
22: return Q-values {Ql,n

θ (ht, a
l,n
t ,al−1

t )} for all l and n
23: else
24: return Action from the last level aLt
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Algorithm 2 Coarse-to-fine Q-Network (CQN)

1: Inputs: Number of levels L, intervals B, and action dimensions N
2: Initialize CQN parameters θ and target parameters θ̄
3: Initialize a buffer B and a demonstration replay buffer Be

4: for each timestep t do
5: // ENVIRONMENT INTERACTION
6: Compute feature ht from ot

7: Get action at with Algorithm 1
8: Apply at to environment and observe ot+1, rt+1

9: Add transition (ot,at, rt+1,ot+1) to replay buffer B
10: // UPDATE Q-NETWORK
11: Initialize LCQN to 0
12: Sample minibatches from B and Be

13: for for each level l ∈ (1, ..., L) do
14: for for each dimension n ∈ (1, ..., N) do
15: Compute Ll,n

RL as in Equation 2 with Algorithm 1 and samples from the minibatches
16: Compute Ll,n

BC as in Equation 3 with Algorithm 1 and samples from the minibatches
17: Update LCQN = LCQN + (λRL · Ll,n

RL + λBC · Ll,n
BC )/(N · L)

18: Update θ by minimizing LCQN

19: Update θ̄ = (1− τ) · θ̄ + τ · θ

C Experimental Details: Simulation674

Simulation and tasks We use RLBench [1] simulator based on CoppeliaSim [87] and PyRep [88].675

We run experiments in 20 sparsely-rewarded visual manipulation tasks with a 7-DoF Franka Panda676

robot arm and a parallel gripper (see Table 3 for the list of tasks).677

Table 3: RLBench tasks with their maximum episode length used in our experiments.

Task Length Task Length
Take Lid Off Saucepan 100 Put Books On Bookshelf 175
Open Drawer 100 Sweep To Dustpan 100
Stack Wine 150 Pick Up Cup 100
Toilet Seat Up 150 Open Door 125
Open Microwave 125 Meat On Grill 150
Open Oven 225 Basketball In Hoop 125
Take Plate Off
Colored Dish Rack 150 Lamp On 100

Turn Tap 125 Press Switch 100
Put Money In Safe 150 Put Rubbish In Bin 150
Phone on Base 175 Insert Usb In Computer 100

Data collection For demonstration collection, we modify the maximum velocity of a Franka Panda678

robot arm by 2 times in PyRep, which shortens the length of demonstrations without largely degrading679

the quality of demonstrations. We use RLBench’s dataset generator for collecting 100 demonstrations.680

Computing hardware For all RLBench experiments, we use a single 72W NVIDIA L4 GPU681

with 24GB VRAM and it takes 6.5 hours for training both CQN and DrQ-v2+. We find that major682

bottleneck is slow simulation because our model consists of lightweight CNN and MLP architectures.683

Hyperparameters We use the same set of hyperparameters for all the RLBench tasks. We provide684

detailed hyperparameters of CQN in Table 4 and DrQ-v2/DrQ-v2+ in Table 5.685
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D Experimental Details: Real-world686

Tasks We design 4 real-world visual robotic manipulation tasks with different characteristics. We687

do not provide partial reward during the episode and only provide reward 1 at the end of fully688

successful episode. See Figure 7 for pictures that show how we randomize the initial position of the689

objects between each episode. We describe the tasks in more detail as below:690

• Open Drawer and Put Teddy in Drawer. The goal of this task is to (i) fully open the drawer,691

which is slightly open at the start of each episode, (ii) pick up the teddy bear, and (iii) put the692

teddy bear in the drawer. We use 50 demonstrations for this task. We randomize the initial693

position of the teddy bear between every episode in a 10cm radius circle.694

• Flip Cup. The goal of this task is to (i) grasp the handle of a plastic wine glass and (ii) flip695

the cup in a upright position. We use 20 demonstrations for this task. We randomize the initial696

position of the cup between every episode in a 15×30cm rectangular region.697

• Click Button. The goal of this task is to click the button with the closed gripper. We use 21698

demonstrations for this task. We randomize the initial position of the button between every699

episode in a 38×38cm squared region.700

• Take Lid Off Saucepan. The goal of this task is to (i) grasp the lid of the saucepan and (ii)701

lift the lid up. We use 24 demonstrations for this task. We randomize the initial position of the702

saucepan between every episode in a 38×38cm squared region.703

(a) Open Drawer and Put Teddy in Drawer (b) Flip Cup

(c) Click Button (d) Take Lid Off Saucepan

Figure 7: Randomization for real-world tasks. We provide pictures that show how we randomize
the initial position of the objects in our real-world experiments.
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Robot and computing hardware We use a 6-DoF UR5e robot arm with a Robotiq-2F-140 gripper704

for our real-world experiments. For cameras, we use left-shoulder, right-shoulder, upper-wrist, lower-705

wrist RealSense D435 cameras, without camera calibration and depth, to capture RGB observations706

with 640× 480× 3 resolution. We use a single 230W NVIDIA RTX A5500 GPU with 24GB VRAM.707

Each action inference takes 0.008s in average, thus our model operates at ∼125Hz in execution time.708

Data collection We use teleoperation with a joint mirroring system, where a human controls709

a leader robot and a follower robot mirrors the movement in the joint space. We record RGB710

observations and 6-DoF joint positions during the demonstration collection phase, and downsize711

RGB pixels to 84 × 84 × 3 resolution. We also preprocess demonstrations by filtering out some712

timesteps where the robot pauses, which happens when a human operator stops controlling the713

robot. Specifically, we remove timesteps when the difference in joint positions between between714

two consecutive timesteps is smaller than the pre-specified threshold. We use smaller thresholds for715

Click Button and Take Lid Off Saucepan as we find that preprocessing with large thresholds716

often removes timesteps corresponding to clicking button or grasping the lid.717

Real-world RL pipeline For all the tasks and methods, we train the model for 10 minutes of718

wall time that includes time for training models and robot execution time. We implement a human719

reward user interface system (see Figure 8), which supports pause/unpause of the robot, labelling the720

episode as success or failure, and resetting the robot failure cases. We use binary reward (i.e., 1 for721

success and 0 for failure) for all experiments. We also do not use success detector or automated reset722

procedures. Instead, human practitioners label the episodes and reset the scene.723

Figure 8: Human Reward user interface used in our real-world experiments.

Hyperparameters As we previously mentioned in Section 4.2, we do episodic training where724

we take a fixed number of update steps between each episode. We take 100 update steps for Open725

Drawer and Put Teddy in Drawer task and 50 update steps for all the other tasks, as the former726

task is a long-horizon task compared to other tasks and thus has larger demonstration sizes. We727

provide detailed hyperparameters of CQN in Table 4 and DrQ-v2/DrQ-v2+ in Table 5.728
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Table 4: CQN hyperparameters used in RLBench and Real-world experiments.

Hyperparameter Value

Image resolution 84× 84× 3
Image augmentation (RLBench) RandomShift [2] (RLBench)
Image augmentation (Real-world) RandomShift [2], Brightness, Contrast
Frame stack 8 (RLBench) / 4 (Real-world)

CNN - Architecture Conv (c=[32, 64, 128, 256], s=2, p=1)
MLP - Architecture Linear (c=[64, 512, 512], bias=False)
CNN & MLP - Activation SiLU [49] and LayerNorm [48]

C51 - Atoms 51
C51 - vmin, vmax -1, 1

CQN - Levels 3 (RLBench) / 4 (Real-world)
CQN - Bins 5 (RLBench) / 3 (Real-world)

BC loss (LBC) scale 1.0
RL loss (LRL) scale 0.1
Relabeling as demonstrations True
Data-driven action scaling True
Action mode Delta Joint
Exploration noise ϵ ∼ N (0, 0.01)
Target critic update ratio (τ ) 0.02
N-step return 3
Training interval Every step (RLBench) / Every episode (Real-world)
Training steps 1 (RLBench) / 100 (Teddy), 50 (Otherwise)
Batch size 256
Demo batch size 256
Optimizer AdamW [50]
Learning rate 5e-5
Weight decay 0.1

Table 5: DrQ-v2 [2] and DrQ-v2+ hyperparameters used in RLBench and Real-world experiments.

Hyperparameter Value

Image resolution 84× 84× 3
Image augmentation (RLBench) RandomShift [2]
Image augmentation (Real-world) RandomShift [2], Brightness, Contrast
Frame stack 8 (RLBench) / 4 (Real-world)

CNN - Architecture Conv (c=[32, 64, 128, 256], s=2, p=1)
MLP - Architecture Linear (c=[64, 512, 512], bias=True)
CNN & MLP - Activation ReLU

C51 - Atoms 101 (DrQ-v2+) / Not used (DrQ-v2)
C51 - vmin, vmax -1, 1 (DrQ-v2+) / Not used (DrQ-v2)

BC loss (LBC) scale 1.0
RL loss (LRL) scale 1.0
Relabeling as demonstrations True (DrQ-v2+) / False (DrQ-v2)
Data-driven action scaling True (DrQ-v2+) / False (DrQ-v2)
Action mode Delta joint
Exploration noise ϵ ∼ N (0, 0.01) (DrQ-v2+) / ϵ ∼ N (0, 0.2) (DrQ-v2)
Target critic update ratio (τ) 0.01
N-step return 3
Training interval Every step (RLBench) / Every episode (Real-world)
Training steps 1 (RLBench) / 100 (Teddy), 50 (Otherwise)
Batch size 256 (DrQ-v2+) / 512 (DrQ-v2)
Demo batch size 256 (DrQ-v2+) / 0 (DrQ-v2)
Optimizer AdamW [50]
Learning rate 1e-4
Weight decay 0.1 (DrQ-v2+) / 0.0 (DrQ-v2)
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E DeepMind Control Experiments729

Setup To demonstrate that CQN can achieve competitive performance in widely-used, shaped-730

rewarded RL benchmarks, we provide experimental results in a variety of continuous control tasks731

from DeepMind Control Suite (DMC) [28]. We also note that DMC benchmark consists of a variety732

of low-dimensional and high-dimensional control tasks, enabling us to evaluate the scalability of733

CQN on environments with high-dimensional action spaces. For baselines, we compare CQN to734

RL algorithms that learn continuous policies, whose performances in DMC are publicly available34.735

For state-based control tasks, we consider soft actor-critic (SAC) [7] as our baseline. For vision-736

based control tasks, we compare CQN to DrQ-v2 [2]. For hyperparameters, we follow the original737

hyperparameters used in the publicly available results. For instance, we use the action repeat of738

1 for state-based control tasks and action repeat of 2 for vision-based control tasks. For CQN739

hyperparameters, we set minimum and maximum value bounds to 0 and 200 for distributional critic740

and use 3 levels with 5 intervals for coarse-to-fine action discretization.741

Results Figure 9 and Figure 10 show that CQN achieves competitive or superior performance to742

RL baselines that learn continuous policies in most of the tasks. This result demonstrates that our743

framework is generic, i.e., it can be used for state-based, vision-based, sparsely-rewarded, and densely-744

rewarded environments. One trend we observe in pixel-based DMC tasks is that the performance745

of CQN often stagnates early in locomotion tasks (e.g., Quadruped, Hopper, and Walker), unlike in746

manipulation tasks where CQN achieves superior performance to the baseline. We hypothesize this is747

because we use a naı̈ve exploration scheme: we use the exploration noise of ϵ ∼ N (0, 0.1). It would748

be an interesting future direction to investigate how to design exploration schedule that can exploit a749

discrete action space from our coarse-to-fine discretization scheme.750

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Reacher Hard

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Finger Turn Easy

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Finger Turn Hard

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

200

400

600

800

1000
Ep

is
od

e 
R

et
ur

n

Cartpole Swingup Sparse

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

50

100

150

200

Ep
is

od
e 

R
et

ur
n

Acrobot Swingup

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Pendulum Swingup

0 2e5 4e5 6e5 8e5 10e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Quadruped Walk

0 2e5 4e5 6e5 8e5 10e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Quadruped Run

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Hopper Stand

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

50

100

150

200

Ep
is

od
e 

R
et

ur
n

Hopper Hop

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Walker Run

0 1e5 2e5 3e5 4e5 5e5
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Cheetah Run

SAC CQN

Figure 9: State-based DMC results. Learning curves on 12 state-based robotic locomotion tasks
from DeepMind Control Suite [28], measured by the episode return. The solid line and shaded
regions represent the mean and confidence intervals, respectively, across 4 runs.

3DrQ-v2: https://github.com/facebookresearch/drqv2/
4SAC:https://github.com/denisyarats/pytorch_sac
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Figure 10: Pixel-based DMC results. Learning curves on 12 pixel-based robotic locomotion tasks
from DeepMind Control Suite [28], measured by the episode return. The solid line and shaded
regions represent the mean and confidence intervals, respectively, across 4 runs.

F Additional Related Work751

Real-world RL for continuous control Obviously, our work is not the first application of RL752

to real-world continuous control domains. In particular, in the context of learning locomotion753

behaviors, there have been impressive successes in demonstrating the capability of RL controllers754

trained in simulation and then transferred to real-world environments [89, 90, 91, 92, 93, 94]. More755

closely related to our work are approaches that have demonstrated RL can be used to learn robotic756

skills directly in real-world environments, with state inputs [95, 96, 97, 98, 99], visual inputs757

[29, 33, 100, 101, 102], and offline data [77, 103, 104], addressing challenges such as exploration,758

state estimation, camera calibration, robot failure, and the cost of resetting procedures. Moreover,759

there has also been a progress in developing benchmarks that can serve as a proxy for real-world760

experiments [1, 105] and developing a software package for easily deploying RL algorithms to761

real-world RL [106]. Investigating the effectiveness of our framework on such various benchmarks762

and real-world domains would be an exciting future direction we are keen to explore.763

Hierarchical RL Our work is loosely related to approaches that learn hierarchical RL agents764

[107, 108] that trains high-level RL agents that provides goals (options or skills) and low-level RL765

agents that learn to follow goals or behave conditioned on goals [109, 110, 111, 112, 113, 114]. This766

is because our approach also introduces a multi-level, hierarchical structure in the action space. But767

our work is different in that we introduce a hierarchy by splitting the fixed, general continuous action768

space but hierarchical RL approaches typically introduce a temporally or behaviorally abstracted769

action as a high-level action (goal, option, or skill). Nevertheless, it would be an interesting future770

direction to incorporate such abstract high-level actions into our coarse-to-fine critic architecture, as771

it is straightforward to condition our critic on such abstract actions by introducing an additional level.772
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G Limitations and Future Directions773

Data augmentation In this work, we applied very simple data augmentations: RandomShift [2]774

that shifts pixels by 4 pixels, brightness augmentation, and contrast augmentation. However, as shown775

in recent works that investigated the effectiveness of augmentations for learning visuomotor policies776

[115, 116], applying more strong augmentations can also be helpful for improving the generalization777

capability of RL agents. Moreover, applying augmentation to images with generative models [117]778

can further enhance the generalization capability of RL agents to unseen environments. Incorporating779

such strong augmentations potentially with techniques for stabilizing RL training [82, 83] can be an780

interesting future direction.781

Advanced vision encoder and representation learning CQN uses a simple, light-weight visual782

encoder, i.e., 4-layer CNN encoder, and also a naı̈ve way of fusing view-wise features that concate-783

nates image features. While this has an advantage of having a simple architecture and thus a very784

fast inference speed, incorporating an advanced vision encoder architectures such as ResNet [118] or785

Vision Transformer [119] may improve the performance in tasks that require fine-grained control.786

Moreover, given the recent improvements in learning multi-view representations [55, 66, 120] or787

generating 3D models [121, 122, 123, 124, 125], incorporating such improvements and 3D prior788

into encoder design can be helpful for improving the sample-efficiency of CQN, especially in tasks789

that require multi-view information as already shown in recent several behavior cloning approaches790

[67, 68, 69, 70, 71, 72]. Learning such representations by pre-training the visual encoder on large791

multi-view datasets [126, 127, 128] would also be an interesting direction.792

Handling a history of observations For taking a history of observations as inputs, we follow a793

very simple scheme of Mnih et al. [19] that stacks observations. However, this might not be scalable794

to long-horizon tasks where such a stacking of 4 or 8 observations may not provide a sufficient795

information required for solving the target tasks. In that sense, designing a model-based RL algorithm796

within our CRL framework based on recent works [61, 47, 129] or incorporating architectures that797

can handle a sequence of observations, such as RNNs [130, 131], Transformers [132], and state-space798

models [133], can be a natural future direction to our work.799

Training with high update-to-data ratio Recent work have demonstrated the effectiveness of800

using high update-to-data (UTD) ratio (i.e., number of update steps per every environment step) for801

improving the sample-efficiency of RL algorithms [51, 58, 65]. In this work, we used 1 UTD ratio802

in RLBench experiments for faster experimentation as using higher UTD ratio slows down training.803

This slow-down in training speed can be an issue in real-world experiments where practitioners often804

need to be physically around the robot and monitor the progress of training for labelling the episode805

or safety reason. Thus, investigating the performance of CQN with high UTD by utilizing a design or806

software that supports asynchronous training [33, 106] would be an interesting future direction we are807

keen to explore. Furthermore, we note that recent approaches typically depend on resetting technique808

for supporting high-UTD but such resetting can be problematic in that it may lead to dangerous809

behaviors with real robots. Investigating how to support high UTD without such a resetting technique810

can be also an interesting future direction especially in the context of real-world RL.811

Search-based action selection CQN uses a simple inference scheme that greedily selects an812

interval with the highest Q-value from the first level. However, there is a room for improvement in813

action selection by incorporating search algorithms that exploit the discrete action space [73].814

Bootstrapping from offline data with BC or offline RL While our experiments show that CQN815

can quickly match and outperform the performance of BC baseline such as ACT [3], there is a816

room for improvement by investigating how to bootstrap RL training from offline RL [75, 76, 77]817

or BC policies [62, 74]. For instance, pre-training CQN agents with offline RL techniques on robot818

learning dataset [134, 135] or utilizing a separate BC policy pre-trained on demonstrations would be819

interesting and straightforward future directions.820
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Human-in-the-loop learning One critical limitation of applying RL to real-world applications is821

that practitioners need to be physically around the robot in most cases; otherwise it involves a huge822

engineering to automate resetting procedures and designing a success detection system. However,823

this can lead to another interesting and promising future direction of leveraging human guidance824

in the training pipeline in the form of human-in-the-loop learning. For instance, incorporating a825

DAgger-like system that provides human-guided trajectory for RL agents [136], investigating a way826

to utilize human-labelled reward but address the subjectivity of such human labels throughout training827

via preference learning [137, 138] can be interesting future directions.828

H Things that did not work829

We describe the methods and techniques that did not work in our RLBench experiments when we use830

default hyperparameters and setups from the original work.831

Small batch RL and prioritized sampling We tried using small batch size [139] but find that large832

batch size performs better in RLBench experiments. This aligns with the original observation of833

Obando Ceron et al. [139] where large batch size performs better with fewer number of environment834

interactions. We also tried using prioritized experience replay [140] but we find that it slows down835

training without a significant performance gain.836

Exploration with NoisyNet Instead of manually setting a small Gaussian noise N (0, 0.01), we837

tried using NoisyNet [59] with varying magnitudes of initial noise scale. But we find that it perturbs838

action too much regardless of noise scales, making it not possible to solve the manipulation tasks.839

Learning critic with classification loss We tried the idea of Farebrother et al. [141] that proposed840

to train value functions with categorical cross-entropy loss. But we find that using a distributional841

critic [46] works better when value bounds are set to -1 and 1 for sparsely-rewarded tasks.842

Different distributional RL algorithms We tried distributional RL algorithms other than C51,843

i.e.,QR-DQN [142] and IQN [143], but find no difference between them in our experiments.844

L2 feature normalization We tried normalizing every feature vectors to have a unit norm following845

Hussing et al. [144] but this significantly degraded the performance in our experiments.846

RL with action chunking Motivated by recent BC approaches that demonstrated the effectiveness847

of predicting a sequence of actions (i.e., action chunk) [3, 11], we also tried incorporating action848

chunking into RL. Specifically, we expand the action space by treating actions from multiple timesteps849

as a single action. But we find that this naı̈ve approach does not work well; investigating how to850

incorporate such an idea into RL would be an interesting future direction.851
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