407

409
410
411
412
413
414
415
416
417
418

419
420
421
422
423
424

425
426
427
428
429

430

431

432

433
434
435
436
437
438

A Additional Simulation Details

In this section, we provide additional details about BiGym.

Observation Spaces. For image observations, we allow users to specify the resolution of the
images, where the default resolution is 84 x84. Higher resolution may allow learning better policies,
but we ﬁnd the default value works across tasks. In the whole-body mode, the proprioception

state 5500 € R7 = {20 s™0), arip}, Where sTP . € R37 is the joint angle positions of
the robot, sf;icl € R37 is the corresponding velocities, and sgrip € R? is the gripper opening

amount of both grippers. On the contrary, the bi-manual mode greatly simplifies the locomotion
by replacing the lower-body control with a predefined controller, i.e., a floating base. This reduces
the dimension of s%? . and si\, to st € R?? and st € R*. Furthermore, an additional state
Sbase = (2,9, 2, 9) € R* is included in spropno to indicate the position and orientation of the floating

64 _ .
base. As aresult, sp € RO = {0 0™ Spase, Sgrip }

Action Spaces. In the whole-body mode where the agent has the full control over the body, an action
space Ay, € R?3 is defined as Ay, = {Aarms; Alegs, Atorsos Agrip }» where Aams € RO controls
both arms, Ajegs € R19 controls the legs, Atorso € R' controls the main torso joints, and Agrip € R?
controls the opening amount of grippers. In bi-manual mode, the user controls the floating base
instead of the leg joints. Therefore the action space becomes Apm € RS = {Aurms, Abases Agrip }»
with Apase € R* controlling the delta actions (6, 6y, 9z, 66) of the base.

Simulation Performance. We present the simulation speed in Figure 5. The benchmark was done
on a headless server of NVIDIA L4 GPU and Intel Xeon Gold 6438Y+ CPU, in a single process.
Benefiting from the highly optimised MoJoCo engine, BiGym runs at around 400FPS to 1400FPS
depending on the number of cameras. The performance could be further improved by using parallel
environments or MuJoCo XL A, which speeds up the execution with XLA just-in-time compilation.

1000] 1600.0-
17,] wv
2 °
%) i 1]
£12000 £+1400.0
w w
£ 1000.0 E 12000 —_—
g E
S 800.0- 5
£ 90 £ 1000.0-
> >
= =
' 600.0 ? % ? M 800.0-
400.0 T T T T T T
0 1 2 3 Whole-Body Bi-Manual
No. of Cameras Control method

(a) Environment Speed with Different # Cameras (b) Environment Speed of Different Action Modes

Figure 5: The environment run speed of BiGym with (a) different number of cameras and (b) different action
modes. In (a), we use the bi-manual control method for measuring the performance.

B Details of Task Success Detectors

In this section, we detail the definitions of all task success detectors.
Reach Target Tasks.

(1) reach_target_single: The distance from the robot left wrist to the target is smaller than a
tolerance value. The default tolerance value is 0.1.

(2) reach_target_multi_modal: The distance from either the robot left wrist or the right wrist is
smaller than a tolerance value. The default tolerance value is 0.1.

(3) reach_target_dual: The distance from the left wrist and the right wrist to their corresponding
goals are smaller than a tolerance value. The default tolerance value is 0.1.

12

439

440
441
442
443
444
445
446
447
448
449

450

451
452

454
455
456
457
458
459

461
462
463
464
465

467
468
469
470
471
472
473
474
475
476
477
478
479

480

481
482
483
484
485
486
487

489
490

Table-Top Manipulation Tasks.

(4) stack_blocks: The three blocks are stacked on each other, i.e. in collision with each other, in a
target region on the table.

(5) move_plate: The following conditions must be met: (a) the orientation of the plate is upright,
(b) the plate is not colliding with the table, (c) the plate is colliding with the rack and (d) the robot
has released the plate from its gripper.

(6) move_two_plates: Transfer two plates to the target rack and meet all conditions similar to the
move_plate task.

(7) £1ip_cup: The following criteria must be met: (a) The cup is in collision with the counter. (b)
The orientation of the cup is upright. (c) The robot has released the cup from its gripper.

(8) flip_cutlery: Similar to the £1ip_cup task, but cutlery is used instead.

Dishwasher Tasks.

(9) dishwasher_open: The joint angles of the dishwasher door and both trays are close to 1 with a
tolerance value. The default value is 0.1.

(10) dishwasher_close: The joint angles of the dishwasher door and both trays are close to 0 with
a tolerance value. The default value is 0.1.

(11) dishwasher_open_trays: The joint angles of dishwasher trays are close to 1 with a tolerance
value. The default value is 0.1.

(12) dishwasher_close_trays: The joint angles of dishwasher trays are close to 0 with a tolerance
value. The default value is 0.1.

(13) dishwasher_load plates: All plates are in collision with the bottom tray of the dishwasher
and the robot has released the plates from it’s grippers.

(14) dishwasher_load_cups: All cups are in collision with the middle tray of the dishwasher and
the robot has released the cup from its gripper.

(15) dishwasher_load_cutlery: All cutlery are in collision with the dishwasher cutlery basket
and the robot has released the cutlery from its gripper.

(16) dishwasher_unload_plates: All plates are moved from the bottom tray of the dishwasher
to the drainer on the table, and placed onto the rack positioned on the counter-top.

(17) dishwasher_unload_cups: All cups are moved from the middle tray of the dishwasher to the
cabinet and in collision with the cabinet counter. Additionally, all cups are released from the robot
gripper.

(18) dishwasher unload _cutlery: All cutlery are moved from the dishwasher basket to the tray
and are in collision with the tray.

(19) dishwasher_unload_plate_long: All conditions of dishwasher_close and
dishwasher unload_plates must be met. Additionally, all plates are placed inside the
wall cabinet. Finally, all joint angles of the wall cabinet doors are close to 0 with a tolerance. The
default value is 0.1.

(20) dishwasher_unload_cup_long: Similar to dishwasher_unload_plate_long but with
cups.

(21) dishwasher_unload_cutlery_long: Similar to dishwasher_unload cutlery_long but
with cutlery and instead of the cabinet, the cutlery must be placed in a closed drawer.

Kitchen Counter Tasks.

(22) drawer_top_open: The joint angle of the top drawer is close to 1 with a tolerance value. The
default value is 0.1.

(23) drawer_top_close: The joint angle of the top drawer is close to 0 with a tolerance value. The
default value is 0.1.

(24) drawers_open_all: The joint angles of all drawers are close to 1 with a tolerance value. The
default value is 0.1.

(25) drawers_close_all: The joint angles of all drawers are close to O with a tolerance value. The
default value is 0.1.

(26) wall_cupboard_ open: The joint angle of two doors of the wall cupboard is close to 1 with a
tolerance value. The default value is 0.1.

13

491
492

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

520

521

522

523
524
525
526
527
528

529
530
531
532
533
534
535
536
537

(27) wall_cupboard_close: The joint angle of two doors of the wall cupboard is close to O with a
tolerance value. The default value is 0.1.

(28) cupboards_open_all: The joint angles of the two doors and all drawers of the kitchen set are
close to 1 with a tolerance value. The default value is 0.1.

(29) cupboards_close_all: The joint angles of the two doors and all drawers of the kitchen set
are close to 0 with a tolerance value. The default value is 0.1.

(30) take_cups: All cups are in collision with the counter on the table and the robot has released
the cups from its gripper.

(31) put_cups: All cups are in collision with the cupboard shelf and the robot has released the cups
from its gripper.

(32) pick_box: The box is in collision with the counter and the robot has released the box from its

grippers.
(33) store_box: The box is in collision with the shelf and the robot has released the box from its

grippers.

(34) saucepan_to_hob: The saucepan is in collision with the hob and the robot has released the
saucepan from its grippers.

(35) store_kitchenware: Both the saucepan and the pan are in collision with the shelf, and the
robot has released the objects from its grippers.

(36) sandwich_toast: All the following conditions must be met: (a) The sandwich is in collision
with the pan. (b) The orientation of the sandwich is either up or down. (c) The pan is in collision
with the hob.

(37) sandwich_flip: Similar to sandwich_toast. In addition the sandwich orientation must be
flipped.

(38) sandwich_remove: All the following conditions must be met: (a) The sandwich is in collision
with the board. (b) The orientation of the sandwich is either up or down.

(39) store_groceries_lower: All items are in collision with the shelf of the cabinet below the
counter. Additionally, all items are released from the robot gripper.

(40) store_groceries_upper: All items are in collision with the shelf of the cabinet on the wall.
Additionally, all items are released from the robot gripper.

C Experiments

C.1 Implementation Details

We implemented all algorithms using PyTorch [50].

ACT. Following the official implementation*, we train a ResNet-18 encoder [51] to extract visual
features and a transformer model to predict a sequence of actions. Inputs to the transformer model
are multi-view image features and proprioceptive features from a conditional variational autoencoder
(CVAE) [52]. During execution, we use receding horizon control for all tasks by training the policy
to output an action sequence of length 16 and executing only the first step in the sequence. Following
the official implementation, we enable temporal ensembling to improve the smoothness of the policy.

Diffusion Policy. Our implementation of Diffusion Policy closely follows the official release®. To be
consistent with ACT, we use ResNet-18 as vision encoders for all camera observations. As discussed
in Chi et al. [8], the Diffusion Policy is susceptible to the choice of backbones and their parameters:
the UNet-1D backbone might outperform the causal transformer backbone in certain tasks and vice
versa. Thus, we benchmark both the UNet-1D backbone and the causal Transformer backbone,
and report the highest achieved performance between them in our main results. In addition, for all
Diffusion Policy variants, we use action sequence length of 16 and execution length of 1, which we
find to achieve strong performance in general. Following ACT, we also enable temporal ensembling
for Diffusion Policies, which we find to be crucial for stabilising the inference.

“https://github.com/tonyzhaozh/aloha
Shttps://github.com/real-stanford/diffusion_policy

14

538
539
540
541
542
543
544
545

546
547
548
549
550
551
552

553

554
555
556

557
558
559
560
561
562
563
564
565
566
567
568

569
570
571
572
573
574

575
576
577
578
579
580
581
582
583

584
585
586
587

Other Baselines. For BC and demo-driven RL baselines, we adopt the same network architectures
which consist of an CNN-based image encoder and a fully-connected output head. The image encoder
encodes each camera image with 3 layers of CNNs, each has kernel size 3 and 32 channels. In
between the layers, we use SiLU activation function [53] and layer normalisation [54]. We flatten the
CNN features and concatenate with the proprioception states to form the final observation feature
vector. The head has 2 fully connected layers of dimension 512, and bottlenecks the output to
dimension 64. After the bottleneck layer, we normalise the output with layer normalisation followed
by tanh activation.

Training Details. We use a frame stack of 4, Adam optimiser [55] with a learning rate of 0.0001,
and batch size of 256 for all IL and demo-driven RL algorithms. In addition, specifically for all RL
algorithms, we follow AW-Opt [56] and keep the demonstration ratio for each batch to be 50% by
using a separate demonstration replay buffer. This helps the exploration of the agent during sparse
reward settings. We run 150K training steps for IL algorithms and 100K steps for demo-driven RL
methods. We observe that all algorithms converge after 100K steps and longer training does not give
additional performance boost. All results are averaged over the last 3 checkpoints.

C.2 Results and Discussions

In Table 2, we provide the performance of IL and demo-driven RL methods on 40 BiGym tasks.
Overall, we observe that BiGym tasks are challenging and pose a variety of unique and interesting
challenges for future researches. We outline our observations as below:

The mobile manipulation of articulated or rigid-body objects is challenging for the state-of-
the-art algorithms. BiGym has presented a series of tasks that involve interactions with articulated
or rigid-body objects, which typically require high-precision manipulation, e.g., move_two_plates,
cupboards_open_all, and stack_blocks. When coupled with the mobile base, these tasks become
more challenging because (i) accurately measuring the grasping poses while moving is hard, and
(i) correctly estimating the posterior distribution of the states given partial history information of
a POMDP is difficult. For instance, while we observe that ACT and Diffusion Policy achieve the
overall best performance across all tasks, they still struggle in the seemingly simple tasks, e.g.,
stack_blocks, which requires the agent to pick 3 cubes, and stack them to a target region located
on the other side of the table. We believe a more robust system with stronger memory mechanisms to
track the “beliefs”, i.e., estimating the posterior distributions of the states, is necessary to solve such
challenging BiGym tasks.

The long-horizon tasks in BiGym requires both task and motion planning of the agent. BiGym
introduces a series of long-horizon tasks, e.g., dishwasher_unload _cups_long and put_cups. All
algorithms fail on these tasks. Intuitively, these tasks are composed of multiple sub-tasks, and the
difficulty level of achieving these long-horizon tasks grows exponentially at the same time. As
model-free agents, our baselines are not capable of performing task-level reasoning. Hierarchical
methods [12] could work as a better policy representation for these tasks. We leave it for future study.

The complex policy space of BiGym requires carefully designed agent architectures. We observe
that almost on all tasks, ACT and Diffusion Policy achieves superior performance to BC and demo-
driven RL baselines. We hypothesize this is because both ACT and Diffusion Policy utilise powerful
policy classes based on generative representation learning, i.e., CVAE and Diffusion models, and
they also use expressive network architecture such as transformers or UNets. In contrast, BC and
all demo-driven RL approaches use simple CNN + MLP architectures. It is likely that these weaker
architectures struggle to deal with the complex multi-modal noisy demonstrations introduced in
BiGym. We believe this can motivate future research on finding appropriate policy representations
for mobile bi-manual manipulation.

Demo-driven RL approaches struggle with the complex task space and sparse reward in BiGym.
We observe that demo-driven RL algorithms fail on most of the BiGym tasks. For instance, CQN [49],
which exhibits strong performance on fixed single-arm demo-driven RL setups, fails to solve most of
the BiGym tasks. It is notable that all RL algorithms only achieve non-zero success rates on simple

15

588
589
590
591
592

593

594
595
596

597
598
599

600
601

602
603

Table 2: Success rates (%) of IL and demo-driven RL algorithms on 40 BiGym tasks, evaluated on 50
episodes. We report the results aggregated over the last three checkpoints.

Task IL Algorithms RL Algorithms
BC ACT DiffPolicy DrQVv2 AWAC IQL CQN

reach_target_single 66.0+£0.0 100.0+£0.0 61.3+5.8 100.0£0.0 94.0+£2.0 82.0+53 92.7+1.2
reach_target multi modal 753423 98.7+£1.2 63.3+3.1 100.0£0.0 100.0+0.0 53.3+8.1 69.3+2.3
reach_target_dual 233423 90.7+1.2 19.3+3.1 24.0+£2.0 77.3£6.1 48.7£20.2 40.0+10.6
stack_blocks 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
move_plate 2.7+1.2 30.0+£3.5 20.0£2.0 0.0+0.0 0.0+0.0 0.0+0.0 0.7+1.2
move_two_plates 73423 11.3£7.0 12.0+4.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
flip_cup 0.0+0.0 21.3+1.2 6.0£2.0 0.0£0.0 0.0£0.0 1.3£1.2 0.0£0.0
flip_cutlery 0.7+1.2 22.0+2.0 1.3+1.2 0.0+0.0 0.7£1.2 1.3£1.2 1.3+1.2
dishwasher_open 6.0£5.3 72.0+£45.0 4.0+£4.0 0.0£0.0 0.040.0 0.00.0 0.0£0.0
dishwasher_close 84.7420.0 100.0+0.0 99.3%+1.2 0.0£0.0 0.040.0 0.0+0.0 0.0+0.0
dishwasher_open_trays 16.7£5.8 100.0£0.0 0.0+0.0 0.0£0.0 0.040.0 0.0+0.0 0.0£0.0
dishwasher_close_trays 0.0+£0.0 100.0+£0.0 52.0+18.3 2.0+2.0 0.04+0.0 0.0+0.0 0.0+0.0
dishwasher_load_plates 0.040.0 34.0+8.7 0.0+0.0 0.0+0.0 0.040.0 0.0+0.0 0.0+0.0
dishwasher_load_cups 0.04+0.0 46.0+0.0 8.7+5.0 0.0+0.0 0.040.0 0.0+0.0 0.0+0.0
dishwasher_load_cutlery 8.7+2.3 42.0+8.7 33423 0.04+0.0 0.0£0.0 0.0£0.0 0.0£+0.0
dishwasher_unload_plates 53+1.2 2.0+3.5 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
dishwasher_unload_cups 9.3+42 153+10.1 0.7+1.2 0.7+1.2 0.7£1.2 0.0£0.0 0.04+0.0
dishwasher unload _cutlery 33+23 18.0+3.5 1.3£1.2 0.04+0.0 0.0£0.0 0.0£0.0 0.0£0.0
dishwasher_unload_plates_long 0.0+0.0 0.7+1.2 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
dishwasher_unload_cups_long 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
dishwasher_unload_cutlery_long 1.3+2.3 14.748.3 5.3+5.8 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
drawer_top_open 9.3+£16.2 100.0+0.0 3.3£3.1 0.0+0.0 8.7+15.0 2.0+2.0 0.0+0.0
drawer_top_close 100.0+£0.0 100.0+0.0 100.0£0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0
drawers_open_all 10.7+10.1 100.0+0.0 16.7+8.3 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
drawers_close_all 0.0+£0.0 100.0+0.0 27.3+18.6 100.0+0.0 100.0+£0.0 100.0+0.0 44.0+£10.4
wall_cupboard_open 22.0+31.2 97.3+1.2 100.0£0.0 27.3+50 12.0£17.3 9.3+23 0.0+0.0
wall_cupboard_close 100.0£0.0 100.0+0.0 100.0£0.0 100.0+0.0 26.0+41.6 97.3+4.6 70.0+£2.0
cupboards_open_all 53+42 17.3£214 0.0+0.0 0.0£0.0 0.0+0.0 0.00.0 0.0£0.0
cupboards_close_all 63.3+7.0 0.7£1.2 1.3£2.3 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
take_cups 0.0£0.0 26.0+2.0 53423 0.0£0.0 0.040.0 0.00.0 0.0£0.0
put_cups 3.3+23 30.0+7.2 0.7£1.2 0.0£0.0 0.00.0 0.00.0 0.0£0.0
pick-box 20.7£1.2 40.7£1.2 22.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0£0.0
store_box 8.7+3.1 13.3£3.1 0.0+0.0 0.0£0.0 0.040.0 0.0+0.0 0.0+0.0
saucepan_to_hob 21.3+4.6 88.0+2.0 34.7£3.1 0.0£0.0 0.040.0 0.0+0.0 0.0+0.0
store_kitchenware 0.040.0 27423 0.7£1.2 0.0£0.0 0.040.0 0.0+0.0 0.0+0.0
sandwich_toast 53%+1.2 30.7+6.1 10.0£0.0 0.0+0.0 0.04+0.0 0.0+0.0 0.0+0.0
sandwich_flip 0.040.0 32.0+2.0 47+1.2 0.7£1.2 0.040.0 0.0+0.0 0.0+0.0
sandwich_remove 40.7+£8.3 55.3£7.0 48.0+0.0 0.7£1.2 0.040.0 0.0+0.0 0.0+0.0
store_groceries_lower 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
store_groceries_upper 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Average 18.0+1.1 46.3+1.4 20.8+0.8 13.9+0.2 13.0£1.2 12.440.0 10.5+0.4

tasks with little interaction with the objects, e.g., reach_target_single and top_drawer_close,
and completely fail to solve all the other tasks. We hypothesise this is because (i) the presence of
mobile base makes it more difficult for agents to explore meaningful state. e.g. an erroneous base
turning action can easily cause robot to lose view of the objects. and (ii) RL agents struggle to learn
value-functions on long-horizon BiGym tasks with sparse reward.

References for Appendix

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[51] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770—
778, 2016.

[52] D.P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[53] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

16

604 [54] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
605 2016.

606 [55] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
607 arXiv:1412.6980, 2014.

e08 [56] Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog, T. Xiao, A. Irpan, M. Khansari,
609 D. Kalashnikov, et al. Aw-opt: Learning robotic skills with imitation and reinforcement at scale.
610 arXiv preprint arXiv:2111.05424, 2021.

17

