
A Additional Simulation Details407

In this section, we provide additional details about BiGym.408

Observation Spaces. For image observations, we allow users to specify the resolution of the409

images, where the default resolution is 84×84. Higher resolution may allow learning better policies,410

but we find the default value works across tasks. In the whole-body mode, the proprioception411

state sfbproprio ∈ R76 = {srbqpos, srbqvel, sgrip}, where srbqpos ∈ R37 is the joint angle positions of412

the robot, srbqvel ∈ R37 is the corresponding velocities, and sgrip ∈ R2 is the gripper opening413

amount of both grippers. On the contrary, the bi-manual mode greatly simplifies the locomotion414

by replacing the lower-body control with a predefined controller, i.e., a floating base. This reduces415

the dimension of srbqpos and srbqvel to sbmqpos ∈ R29 and sbmqvel ∈ R29. Furthermore, an additional state416

sbase = (x, y, z, θ) ∈ R4 is included in sproprio to indicate the position and orientation of the floating417

base. As a result, sbmproprio ∈ R64 = {sbmqpos, sbmqvel, sbase, sgrip}418

Action Spaces. In the whole-body mode where the agent has the full control over the body, an action419

space Awb ∈ R23 is defined as Awb = {Aarms,Alegs,Atorso,Agrip}, where Aarms ∈ R10 controls420

both arms, Alegs ∈ R10 controls the legs, Atorso ∈ R1 controls the main torso joints, and Agrip ∈ R2421

controls the opening amount of grippers. In bi-manual mode, the user controls the floating base422

instead of the leg joints. Therefore the action space becomes Abm ∈ R16 = {Aarms,Abase,Agrip},423

with Abase ∈ R4 controlling the delta actions (δx, δy, δz, δθ) of the base.424

Simulation Performance. We present the simulation speed in Figure 5. The benchmark was done425

on a headless server of NVIDIA L4 GPU and Intel Xeon Gold 6438Y+ CPU, in a single process.426

Benefiting from the highly optimised MoJoCo engine, BiGym runs at around 400FPS to 1400FPS427

depending on the number of cameras. The performance could be further improved by using parallel428

environments or MuJoCo XLA, which speeds up the execution with XLA just-in-time compilation.429
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(a) Environment Speed with Different # Cameras (b) Environment Speed of Different Action Modes

Figure 5: The environment run speed of BiGym with (a) different number of cameras and (b) different action
modes. In (a), we use the bi-manual control method for measuring the performance.

B Details of Task Success Detectors430

In this section, we detail the definitions of all task success detectors.431

Reach Target Tasks.432

(1) reach target single: The distance from the robot left wrist to the target is smaller than a433

tolerance value. The default tolerance value is 0.1.434

(2) reach target multi modal: The distance from either the robot left wrist or the right wrist is435

smaller than a tolerance value. The default tolerance value is 0.1.436

(3) reach target dual: The distance from the left wrist and the right wrist to their corresponding437

goals are smaller than a tolerance value. The default tolerance value is 0.1.438
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Table-Top Manipulation Tasks.439

(4) stack blocks: The three blocks are stacked on each other, i.e. in collision with each other, in a440

target region on the table.441

(5) move plate: The following conditions must be met: (a) the orientation of the plate is upright,442

(b) the plate is not colliding with the table, (c) the plate is colliding with the rack and (d) the robot443

has released the plate from its gripper.444

(6) move two plates: Transfer two plates to the target rack and meet all conditions similar to the445

move plate task.446

(7) flip cup: The following criteria must be met: (a) The cup is in collision with the counter. (b)447

The orientation of the cup is upright. (c) The robot has released the cup from its gripper.448

(8) flip cutlery: Similar to the flip cup task, but cutlery is used instead.449

Dishwasher Tasks.450

(9) dishwasher open: The joint angles of the dishwasher door and both trays are close to 1 with a451

tolerance value. The default value is 0.1.452

(10) dishwasher close: The joint angles of the dishwasher door and both trays are close to 0 with453

a tolerance value. The default value is 0.1.454

(11) dishwasher open trays: The joint angles of dishwasher trays are close to 1 with a tolerance455

value. The default value is 0.1.456

(12) dishwasher close trays: The joint angles of dishwasher trays are close to 0 with a tolerance457

value. The default value is 0.1.458

(13) dishwasher load plates: All plates are in collision with the bottom tray of the dishwasher459

and the robot has released the plates from it’s grippers.460

(14) dishwasher load cups: All cups are in collision with the middle tray of the dishwasher and461

the robot has released the cup from its gripper.462

(15) dishwasher load cutlery: All cutlery are in collision with the dishwasher cutlery basket463

and the robot has released the cutlery from its gripper.464

(16) dishwasher unload plates: All plates are moved from the bottom tray of the dishwasher465

to the drainer on the table, and placed onto the rack positioned on the counter-top.466

(17) dishwasher unload cups: All cups are moved from the middle tray of the dishwasher to the467

cabinet and in collision with the cabinet counter. Additionally, all cups are released from the robot468

gripper.469

(18) dishwasher unload cutlery: All cutlery are moved from the dishwasher basket to the tray470

and are in collision with the tray.471

(19) dishwasher unload plate long: All conditions of dishwasher close and472

dishwasher unload plates must be met. Additionally, all plates are placed inside the473

wall cabinet. Finally, all joint angles of the wall cabinet doors are close to 0 with a tolerance. The474

default value is 0.1.475

(20) dishwasher unload cup long: Similar to dishwasher unload plate long but with476

cups.477

(21) dishwasher unload cutlery long: Similar to dishwasher unload cutlery long but478

with cutlery and instead of the cabinet, the cutlery must be placed in a closed drawer.479

Kitchen Counter Tasks.480

(22) drawer top open: The joint angle of the top drawer is close to 1 with a tolerance value. The481

default value is 0.1.482

(23) drawer top close: The joint angle of the top drawer is close to 0 with a tolerance value. The483

default value is 0.1.484

(24) drawers open all: The joint angles of all drawers are close to 1 with a tolerance value. The485

default value is 0.1.486

(25) drawers close all: The joint angles of all drawers are close to 0 with a tolerance value. The487

default value is 0.1.488

(26) wall cupboard open: The joint angle of two doors of the wall cupboard is close to 1 with a489

tolerance value. The default value is 0.1.490
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(27) wall cupboard close: The joint angle of two doors of the wall cupboard is close to 0 with a491

tolerance value. The default value is 0.1.492

(28) cupboards open all: The joint angles of the two doors and all drawers of the kitchen set are493

close to 1 with a tolerance value. The default value is 0.1.494

(29) cupboards close all: The joint angles of the two doors and all drawers of the kitchen set495

are close to 0 with a tolerance value. The default value is 0.1.496

(30) take cups: All cups are in collision with the counter on the table and the robot has released497

the cups from its gripper.498

(31) put cups: All cups are in collision with the cupboard shelf and the robot has released the cups499

from its gripper.500

(32) pick box: The box is in collision with the counter and the robot has released the box from its501

grippers.502

(33) store box: The box is in collision with the shelf and the robot has released the box from its503

grippers.504

(34) saucepan to hob: The saucepan is in collision with the hob and the robot has released the505

saucepan from its grippers.506

(35) store kitchenware: Both the saucepan and the pan are in collision with the shelf, and the507

robot has released the objects from its grippers.508

(36) sandwich toast: All the following conditions must be met: (a) The sandwich is in collision509

with the pan. (b) The orientation of the sandwich is either up or down. (c) The pan is in collision510

with the hob.511

(37) sandwich flip: Similar to sandwich toast. In addition the sandwich orientation must be512

flipped.513

(38) sandwich remove: All the following conditions must be met: (a) The sandwich is in collision514

with the board. (b) The orientation of the sandwich is either up or down.515

(39) store groceries lower: All items are in collision with the shelf of the cabinet below the516

counter. Additionally, all items are released from the robot gripper.517

(40) store groceries upper: All items are in collision with the shelf of the cabinet on the wall.518

Additionally, all items are released from the robot gripper.519

C Experiments520

C.1 Implementation Details521

We implemented all algorithms using PyTorch [50].522

ACT. Following the official implementation4, we train a ResNet-18 encoder [51] to extract visual523

features and a transformer model to predict a sequence of actions. Inputs to the transformer model524

are multi-view image features and proprioceptive features from a conditional variational autoencoder525

(CVAE) [52]. During execution, we use receding horizon control for all tasks by training the policy526

to output an action sequence of length 16 and executing only the first step in the sequence. Following527

the official implementation, we enable temporal ensembling to improve the smoothness of the policy.528

Diffusion Policy. Our implementation of Diffusion Policy closely follows the official release5. To be529

consistent with ACT, we use ResNet-18 as vision encoders for all camera observations. As discussed530

in Chi et al. [8], the Diffusion Policy is susceptible to the choice of backbones and their parameters:531

the UNet-1D backbone might outperform the causal transformer backbone in certain tasks and vice532

versa. Thus, we benchmark both the UNet-1D backbone and the causal Transformer backbone,533

and report the highest achieved performance between them in our main results. In addition, for all534

Diffusion Policy variants, we use action sequence length of 16 and execution length of 1, which we535

find to achieve strong performance in general. Following ACT, we also enable temporal ensembling536

for Diffusion Policies, which we find to be crucial for stabilising the inference.537

4https://github.com/tonyzhaozh/aloha
5https://github.com/real-stanford/diffusion_policy
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Other Baselines. For BC and demo-driven RL baselines, we adopt the same network architectures538

which consist of an CNN-based image encoder and a fully-connected output head. The image encoder539

encodes each camera image with 3 layers of CNNs, each has kernel size 3 and 32 channels. In540

between the layers, we use SiLU activation function [53] and layer normalisation [54]. We flatten the541

CNN features and concatenate with the proprioception states to form the final observation feature542

vector. The head has 2 fully connected layers of dimension 512, and bottlenecks the output to543

dimension 64. After the bottleneck layer, we normalise the output with layer normalisation followed544

by tanh activation.545

Training Details. We use a frame stack of 4, Adam optimiser [55] with a learning rate of 0.0001,546

and batch size of 256 for all IL and demo-driven RL algorithms. In addition, specifically for all RL547

algorithms, we follow AW-Opt [56] and keep the demonstration ratio for each batch to be 50% by548

using a separate demonstration replay buffer. This helps the exploration of the agent during sparse549

reward settings. We run 150K training steps for IL algorithms and 100K steps for demo-driven RL550

methods. We observe that all algorithms converge after 100K steps and longer training does not give551

additional performance boost. All results are averaged over the last 3 checkpoints.552

C.2 Results and Discussions553

In Table 2, we provide the performance of IL and demo-driven RL methods on 40 BiGym tasks.554

Overall, we observe that BiGym tasks are challenging and pose a variety of unique and interesting555

challenges for future researches. We outline our observations as below:556

The mobile manipulation of articulated or rigid-body objects is challenging for the state-of-557

the-art algorithms. BiGym has presented a series of tasks that involve interactions with articulated558

or rigid-body objects, which typically require high-precision manipulation, e.g., move two plates,559

cupboards open all, and stack blocks. When coupled with the mobile base, these tasks become560

more challenging because (i) accurately measuring the grasping poses while moving is hard, and561

(ii) correctly estimating the posterior distribution of the states given partial history information of562

a POMDP is difficult. For instance, while we observe that ACT and Diffusion Policy achieve the563

overall best performance across all tasks, they still struggle in the seemingly simple tasks, e.g.,564

stack blocks, which requires the agent to pick 3 cubes, and stack them to a target region located565

on the other side of the table. We believe a more robust system with stronger memory mechanisms to566

track the “beliefs”, i.e., estimating the posterior distributions of the states, is necessary to solve such567

challenging BiGym tasks.568

The long-horizon tasks in BiGym requires both task and motion planning of the agent. BiGym569

introduces a series of long-horizon tasks, e.g., dishwasher unload cups long and put cups. All570

algorithms fail on these tasks. Intuitively, these tasks are composed of multiple sub-tasks, and the571

difficulty level of achieving these long-horizon tasks grows exponentially at the same time. As572

model-free agents, our baselines are not capable of performing task-level reasoning. Hierarchical573

methods [12] could work as a better policy representation for these tasks. We leave it for future study.574

The complex policy space of BiGym requires carefully designed agent architectures. We observe575

that almost on all tasks, ACT and Diffusion Policy achieves superior performance to BC and demo-576

driven RL baselines. We hypothesize this is because both ACT and Diffusion Policy utilise powerful577

policy classes based on generative representation learning, i.e., CVAE and Diffusion models, and578

they also use expressive network architecture such as transformers or UNets. In contrast, BC and579

all demo-driven RL approaches use simple CNN + MLP architectures. It is likely that these weaker580

architectures struggle to deal with the complex multi-modal noisy demonstrations introduced in581

BiGym. We believe this can motivate future research on finding appropriate policy representations582

for mobile bi-manual manipulation.583

Demo-driven RL approaches struggle with the complex task space and sparse reward in BiGym.584

We observe that demo-driven RL algorithms fail on most of the BiGym tasks. For instance, CQN [49],585

which exhibits strong performance on fixed single-arm demo-driven RL setups, fails to solve most of586

the BiGym tasks. It is notable that all RL algorithms only achieve non-zero success rates on simple587

15



Table 2: Success rates (%) of IL and demo-driven RL algorithms on 40 BiGym tasks, evaluated on 50
episodes. We report the results aggregated over the last three checkpoints.

Task IL Algorithms RL Algorithms

BC ACT DiffPolicy DrQV2 AWAC IQL CQN

reach target single 66.0±0.0 100.0±0.0 61.3±5.8 100.0±0.0 94.0±2.0 82.0±5.3 92.7±1.2
reach target multi modal 75.3±2.3 98.7±1.2 63.3±3.1 100.0±0.0 100.0±0.0 53.3±8.1 69.3±2.3
reach target dual 23.3±2.3 90.7±1.2 19.3±3.1 24.0±2.0 77.3±6.1 48.7±20.2 40.0±10.6
stack blocks 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
move plate 2.7±1.2 30.0±3.5 20.0±2.0 0.0±0.0 0.0±0.0 0.0±0.0 0.7±1.2
move two plates 7.3±2.3 11.3±7.0 12.0±4.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
flip cup 0.0±0.0 21.3±1.2 6.0±2.0 0.0±0.0 0.0±0.0 1.3±1.2 0.0±0.0
flip cutlery 0.7±1.2 22.0±2.0 1.3±1.2 0.0±0.0 0.7±1.2 1.3±1.2 1.3±1.2
dishwasher open 6.0±5.3 72.0±45.0 4.0±4.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher close 84.7±20.0 100.0±0.0 99.3±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher open trays 16.7±5.8 100.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher close trays 0.0±0.0 100.0±0.0 52.0±18.3 2.0±2.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher load plates 0.0±0.0 34.0±8.7 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher load cups 0.0±0.0 46.0±0.0 8.7±5.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher load cutlery 8.7±2.3 42.0±8.7 3.3±2.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload plates 5.3±1.2 2.0±3.5 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload cups 9.3±4.2 15.3±10.1 0.7±1.2 0.7±1.2 0.7±1.2 0.0±0.0 0.0±0.0
dishwasher unload cutlery 3.3±2.3 18.0±3.5 1.3±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload plates long 0.0±0.0 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload cups long 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload cutlery long 1.3±2.3 14.7±8.3 5.3±5.8 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

drawer top open 9.3±16.2 100.0±0.0 3.3±3.1 0.0±0.0 8.7±15.0 2.0±2.0 0.0±0.0
drawer top close 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
drawers open all 10.7±10.1 100.0±0.0 16.7±8.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
drawers close all 0.0±0.0 100.0±0.0 27.3±18.6 100.0±0.0 100.0±0.0 100.0±0.0 44.0±10.4
wall cupboard open 22.0±31.2 97.3±1.2 100.0±0.0 27.3±5.0 12.0±17.3 9.3±2.3 0.0±0.0
wall cupboard close 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 26.0±41.6 97.3±4.6 70.0±2.0
cupboards open all 5.3±4.2 17.3±21.4 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
cupboards close all 63.3±7.0 0.7±1.2 1.3±2.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
take cups 0.0±0.0 26.0±2.0 5.3±2.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
put cups 3.3±2.3 30.0±7.2 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
pick box 20.7±1.2 40.7±1.2 22.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
store box 8.7±3.1 13.3±3.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
saucepan to hob 21.3±4.6 88.0±2.0 34.7±3.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
store kitchenware 0.0±0.0 2.7±2.3 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
sandwich toast 5.3±1.2 30.7±6.1 10.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
sandwich flip 0.0±0.0 32.0±2.0 4.7±1.2 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0
sandwich remove 40.7±8.3 55.3±7.0 48.0±0.0 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0
store groceries lower 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
store groceries upper 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Average 18.0±1.1 46.3±1.4 20.8±0.8 13.9±0.2 13.0±1.2 12.4±0.0 10.5±0.4

tasks with little interaction with the objects, e.g., reach target single and top drawer close,588

and completely fail to solve all the other tasks. We hypothesise this is because (i) the presence of589

mobile base makes it more difficult for agents to explore meaningful state. e.g. an erroneous base590

turning action can easily cause robot to lose view of the objects. and (ii) RL agents struggle to learn591

value-functions on long-horizon BiGym tasks with sparse reward.592
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