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Abstract: Despite recent advances in improving the sample-efficiency of reinforce-
ment learning (RL) algorithms, designing an RL algorithm that can be practically
deployed in real-world environments remains a challenge. In this paper, we present
Coarse-to-fine Reinforcement Learning (CRL), a framework that trains RL agents
to zoom-into a continuous action space in a coarse-to-fine manner, enabling the use
of stable, sample-efficient value-based RL algorithms for fine-grained continuous
control tasks. Our key idea is to train agents that output actions by iterating the
procedure of (i) discretizing the continuous action space into multiple intervals and
(ii) selecting the interval with the highest Q-value to further discretize at the next
level. We then introduce a concrete, value-based algorithm within the CRL frame-
work called Coarse-to-fine Q-Network (CQN). Our experiments demonstrate that
CQN significantly outperforms RL and behavior cloning baselines on 20 sparsely-
rewarded RLBench manipulation tasks with a modest number of environment
interactions and expert demonstrations. We also show that CQN robustly learns to
solve real-world manipulation tasks within a few minutes of online training.
Project website: cqn-rl.github.io.

Keywords: Reinforcement Learning, Sample-Efficient, Action Discretization
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Figure 1: Summary of results. In sparsely-rewarded visual robotic manipulation tasks from RLBench
[1] and real-world environments, CQN learns to solve the tasks with a modest number of environment
interactions and expert demonstrations, outperforming baselines such as DrQ-v2 [2], its highly
optimized variant DrQ-v2+, and ACT [3]. Real-world RL videos are available at our webpage.

1 Introduction

Recent reinforcement learning (RL) algorithms have made significant advances in learning end-to-end
continuous control policies from online experiences [4, 5, 6, 7, 8, 9]. However, these algorithms often
require a large number of online samples for learning robotic skills [6, 9], making it impractical for
real-world environments where practitioners need to deal with resetting procedures and hardware
failures. Therefore, recent successful approaches in learning visuomotor policies for real-world tasks
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(a) Coarse-to-fine inference procedure (b) Coarse-to-fine critic architecture

Figure 2: Coarse-to-fine reinforcement learning. (a) We design our RL agent to zoom-into the
continuous action space in a coarse-to-fine manner by repeating the procedure of (i) discretizing the
continuous action space into multiple intervals and (ii) selecting the interval with the highest Q-value
to further discretize at the next level. We then use the centroid of the last level’s interval as an action.
(b) Our coarse-to-fine critic architecture takes input features along with one-hot level indices and
actions from the previous level, and then outputs Q-values for different action dimensions. This design
enables the critic to know the current level and which part of the continuous action space to zoom-into.

have mostly been methods that learn from static offline datasets, such as offline RL [10] or behavior
cloning (BC) [3, 11, 12, 13]. But these offline approaches are inherently limited because they cannot
improve through online experiences and thus their performance is constrained by offline data.

In this paper, we argue that many challenges in applying RL to continuous control domains arise from
using actor-critic algorithms [4, 14], which introduce a separate actor network and use it for updating
a critic network. Despite recent advances in stabilizing actor-critic algorithms [2, 7, 15, 16], they often
suffer from instabilities due to the complex interactions between actor and critic networks [17, 18]. In
contrast, value-based RL algorithms are conceptually simpler and more stable, as they operate solely
with a critic, yet have achieved remarkable successes in various domains [19, 20, 21, 22]. However,
value-based RL algorithms are inherently designed for use in environments with discrete actions.
To exploit the benefits of value-based RL algorithms in continuous control domains, recent efforts
have focused on enabling their use by discretizing the continuous action space into multiple intervals
[23, 24, 25, 26]. However, this discretization scheme encounters a trade-off between the precision of
actions and sample-efficiency: while more intervals are needed for fine-grained robotic tasks [10], an
increased number of actions can make RL training and exploration be more difficult [25, 26, 27].

Contribution To enable the use of value-based RL algorithms for fine-grained continuous control
tasks without such a trade-off, we present Coarse-to-fine Reinforcement Learning (CRL), a framework
that trains RL agents to zoom-into the continuous action space in a coarse-to-fine manner. Our key idea
is to train an agent that outputs actions by repeating the procedure of (i) discretizing the continuous
action space into multiple intervals and (ii) selecting the interval with the highest Q-value to further
discretize at the next level (see Figure 2a). Unlike prior single-level approaches that need a large
number of bins for high-precision [23, 25], our framework enables fine-grained control with as few
as 3 bins per level (see Figure 3). Within this new CRL framework, we introduce Coarse-to-fine Q-
Network (CQN), a value-based RL algorithm for continuous control (see Figure 2b), and demonstrate
that it robustly learns to solve a range of continuous control tasks in a sample-efficient manner.

In particular, through extensive experiments in a demo-driven RL setup with access to a modest
number of environment interactions and expert demonstrations, we demonstrate that CQN robustly
learns to solve a variety of sparsely-rewarded visual robotic manipulation tasks from RLBench [1]
and real-world environments. Our results are intriguing because our experiments do not use pre-
training, motion planning, keypoint extraction, camera calibration, depth, and hand-designed rewards.
Moreover, we show that CQN is generic and applicable to diverse benchmarks other than visual
robotic manipulation; we demonstrate that CQN achieves competitive performance to actor-critic RL
baselines [2, 7] in widely-used robotic tasks from DMC [28] environment with shaped rewards.
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2 Related Work

Actor-critic RL algorithms for continuous control Most prior applications of RL to continuous
control have been based on actor-critic algorithms [2, 4, 5, 7, 15, 16, 29, 30, 31, 32, 33, 34] that
introduce a separate, parameterized actor network as a policy [14]. This is because they allow for
addressing one of the main challenges in applying Q-learning to continuous domains, i.e., finding
continuous actions that maximize Q-values. However, in continuous control domains, actor-critic
algorithms are known to be brittle and often suffer from instabilities due to the complex interactions
between actor and critic networks [17, 18], despite recent efforts to stabilize them [7, 15, 16]. To
address this limitation, several approaches proposed to discretize the continuous action space and
learn discrete policies for continuous control. For instance, Tang and Agrawal [35] learned a policy
in a factorized action space and Seyde et al. [36] learned a bang-bang controller with actor-critic
RL algorithms. This paper introduces a framework that enables the use of both actor-critic and
value-based RL algorithms for learning discrete policies that can solve fine-grained control tasks.

Value-based RL algorithms for continuous control Despite their simple critic-only architecture,
value-based RL algorithms have achieved remarkable successes [19, 20, 21, 22]. However, because
they require a discrete action space, there have been recent efforts to enable their use for continuous
control by applying discretization to a continuous action space [10, 23, 26, 24, 25, 37] or by learning
high-level discrete actions from offline data [38, 39]. For instance, some works have proposed training
an autoregressive critic by treating each action dimension as a separate action to avoid the curse of
dimensionality from action discretization [10, 37]. Our work is orthogonal to this, as our coarse-to-
fine approach can be combined with this idea. On the other hand, several works have demonstrated
that training factorized critics for each action dimension can achieve competitive performance to actor-
critic algorithms [24, 25]. However, this single-level discretization may not be scalable to domains
requiring high-precision actions, as such domains typically necessitate fine-grained discretization [10].
To address this limitation, Seyde et al. [26] proposed gradually enlarging action spaces throughout
training, but this introduces a challenge of constrained optimization. In contrast, our CRL framework
enables us to learn discrete policies for continuous control in a stable and simple manner.

Notably, the closest work to ours is C2F-ARM [40] that trains value-based RL agents to zoom-into a
voxelized 3D robot workspace by predicting the voxel to further discretize. C2F-ARM is a special
case of our CRL framework, where the agent operates as a hierarchical, next-best pose agent [34]; it
splits the robot manipulation problem into high-level next-best-pose control and low-level control
(usually a motion planning) problems. CQN on the other hand, is more general and can be used for
any action mode, including joint control. We provide additional discussion in Appendix F.

3 Method

We present Coarse-to-fine Reinforcement Learning (CRL), a framework that trains RL agents to zoom-
into a continuous action space in a coarse-to-fine manner (see Section 3.1). Within this framework, we
introduce Coarse-to-fine Q-Network (CQN), a value-based RL algorithm for continuous control (see
Section 3.2) and describe various design choices for improving CQN in visual robotic manipulation
tasks (see Section 3.3). We provide the overview and pseudocode in Figure 2 and Appendix B.

3.1 Framework: Coarse-to-fine Reinforcement Learning

To enable the use of value-based RL algorithms for learning discrete policies in fine-grained con-
tinuous control domains, we propose to formulate the continuous control problem as a multi-level
discrete control problem via coarse-to-fine action discretization. Specifically, given a number of
levels L and a number of bins B, we apply discretization to the continuous action space L times
(see Figure 3), in contrast to prior approaches that discretize action space into multiple intervals in a
single-level [25, 41]. We then train RL agents to zoom-into the continuous action space by repeating
the procedure of (i) discretizing the continuous action space at the current level into B intervals and
(ii) selecting the interval with the highest Q-value to further discretize at the next level (see Figure 2a).
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Figure 3: Examples of coarse-to-fine discretization. With a pre-defined number of levels (L) and
intervals (B), e.g., L = 3 and B = 3 in this example, we apply discretization to the continuous action
space L times with different precisions. We then design our RL agents to learn a critic network with
only a few actions at each level, e.g., 3 actions in this example, conditioned on previous level’s actions.
This enables us to learn discrete policies that can output high-precision actions while avoiding the
difficulty of learning the critic network with a large number of discrete actions.

Our intuition is that, by designing our agents to learn a critic network with only a few discrete actions
at each level (i.e., B actions), our coarse-to-fine framework can effectively allow for learning discrete
policies that can output high-precision actions while avoiding the difficulty of learning the critic
network with a large number of discrete actions (e.g., B” actions is required for achieving the same
precision with a single-level discretization). Here we note that our framework is compatible with
both actor-critic and value-based RL algorithms as they can operate with discrete actions. But this
paper focuses on developing a value-based RL algorithm because of its simple and stable critic-only
architecture (see Section 3.2), and leaves the development of actor-critic RL algorithm as future work.

3.2 Algorithm: Coarse-to-fine Q-Network

Problem setup We formulate a vision-based continuous control problem as a partially observable
Markov decision process [42, 43], where, at each time step ¢, an agent encounters an observation
o,, selects an action a;, receives a reward .11, and encounters a new observation 0,11 from an
environment. Our goal is to learn a policy that maximizes the expected sum of rewards through RL in
a sample-efficient manner, i.e., by using as few online samples as possible.

Inputs and encoder We consider an observation o; consisting of pixel observations (o}, ..., 0;")
captured from viewpoints (v1, ..., vy ) and low-dimensional proprioceptive states 0;°". We then use a
lightweight 4-layer convolutional neural network (CNN) encoder f§™° to encode pixels o} into visual
features h;", i.e., hi" = f§"°(0}*). To fuse information from view-wise features, we concatenate
features from all viewpoints and project them into low-dimensional features. Then we concatenate
fused features with proprioceptive states 0}°" to construct features h;.

Coarse-to-fine critic architecture Let a?” be an action at level [ and action dimension n (e.g.,
delta angle for n-th joint of a robotic arm) and al = (af;1 ai’N) be an action at level [ where a is
defined as a zero action vector. By following the design of Seyde et al. [25] that introduce factorized
Q-networks for different action dimensions, we define our coarse-to-fine critic to consist of individual

Q-networks at level [ and action dimension n as below (see Figure 2b for an illustration):
L (hy,al™ al ™) forn € {1,..,N}and [ € {1,..., L} (1)

We note that our design mainly differs from prior work with a single-level critic [24, 25] in that our
Q-network takes ai_l, i.e., actions from all dimensions at previous level, to enable each Q-network
to be aware of other networks’ decisions at the previous level. We also design our critic to share most
of parameters for all levels and dimensions by sharing linear layers except the last linear layer [41]
and making Q-networks take one-hot level index as inputs'.

g eeey

'We omit one-hot level index from the equation for the simplicity of notation.
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Inference procedure We describe our coarse-to-fine inference procedure for selecting actions
at time step t (see Figure 2a and Appendix B for the illustration and pseudocode of our inference
procedure). We first introduce constants a}"*°" and a}"*#" that are initialized with —1 and 1 for each
action dimension n. For all action dimensions n, we repeat the following steps for [ € {1, ..., L}:

e Step 1 (Discretization): We discretize an interval [a]"*°", a]""*¢"] into B uniform intervals, each

of which becomes the action space for Q-network Qfg’".

e Step 2 (Bin selection): We find argmax,, Qle’n(ht, a’,al™1) for each n, which corresponds to
the interval with the largest Q-value. We then set afg" to the centroid of the selected interval and
concatenate actions from all dimensions into a’.

e Step 3 (Zoom-in): We set a}"**" and a]"**#" to the minimum and maximum value of the selected

interval, zooming into the selected intervals within the action space.

We use the last level’s action a” as the action at time step ¢. In practice, we parallelize the procedures
across all the action dimensions n for faster inference. We further describe a procedure for computing
Q-values with input actions, along with its pseudocode, in Appendix B.

Q-learning objective Q-learning objective for action dimension n at level [ is defined as below:
2
£ = (@5 ()™ al™) = ey — ymax Q5" (e, ' 7 (i) @

where 6 are delayed critic parameters updated with Polyak averaging [44] and 7! is a policy that

outputs the action a/ at each level [ via the inference steps with our critic, i.e., 7' (h;) = al.

Implementation and training details We use the 2-layer dueling network [45] and a distributional
critic [46] with 51 atoms. By following Hafner et al. [47], we use layer normalization [48] with SiLU
activation [49] for every linear and convolutional layers. We use AdamW optimizer [50] with weight
decay of 0.1 by following Schwarzer et al. [S1]. Following prior work that learn from offline data
[52, 53], we sample minibatches of size 256 each from the online replay buffer and the demonstration
replay buffer, resulting in a total batch size of 512. More details are available in Appendix C.

3.3 Optimizations for Visual Robotic Manipulation

We describe various design choices for improving CQN in visual robotic manipulation tasks.

Aucxiliary behavior cloning objective Following the idea of prior work [54, 55], we introduce an
auxiliary behavior cloning (BC) objective that encourages agents to imitate expert actions. Specifically,
given an expert action &;, we introduce an auxiliary margin loss [56] that encourages Q (h;, éi) to be
higher than Q-values of non-expert actions Q(hy, a!) for all levels [ as below:

l, L, l— in/~1l, L, ~1, ~l—
Esgzmaa}x (an(ht,a’,at 1)Jrf‘““gm(at”,a’)) — Q5" (hy,ay™, &l 3)

where fm@81" is a function that gives 0 when a’ = di’" and a margin value m otherwise. This
objective encourages Q-values for expert actions to be at least higher than other Q-values by m. We
describe how we modify BC objective to align better with the distributional critic in Appendix A.

Relabeling successful online trajectories as demonstrations Inspired by the idea of self-imitation
learning [57] that encourages agents to reproduce their own good decisions, we label the successful
trajectories from environment interaction as demonstrations. We find that this simple scheme can be
helpful for RL training by widening the distribution of demonstrations throughout training.

Environment interaction Similar to prior value-based RL algorithms [51, 58], we choose actions
using the target Q-network to improve the stability throughout environment rollouts. Moreover, as
we find that standard exploration techniques of injecting noises [4, 59, 60] make it difficult to solve
fine-grained control tasks, we instead add a small Gaussian noise with standard deviation of 0.01.
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Figure 4: Simulation results on 20 sparsely-rewarded tasks from RLBench [1]. All experiments are
initialized with 100 expert demonstrations and all RL methods have an auxiliary BC objective. The
solid line and shaded regions represent the mean and confidence intervals, respectively, across 3 runs.

4 Experiments

We design our experiments to investigate the following questions: (i) How does CQN compare to
previous RL and BC baselines? (ii) Can CQN be sample-efficient enough to be practically used in
real-world environments? (iii) How do various design factors of CQN affect the performance?

4.1 RLBench Experiments

Setup For quantiative evaluation, we mainly consider a demo-driven RL setup where we aim to
solve visual robotic manipulation tasks from RLBench [1] environment with access to a limited
number of environment interactions and expert demonstrations>. Unlike prior work that designed
experiments to make RLBench tasks less challenging by using hand-designed rewards [55, 61] or
heuristics that depend on motion planning, e.g., keypoint extraction [34, 40], we consider a sparse-
reward setup without the use of motion planner. Specifically, we label the reward of the last timestep
in successful episodes as 1.0 and train RL agents to output the difference of joint angles at each
time step by using delta JointPosition mode in RLBench. We use RGB observations with 84 x 84
resolution captured from front, wrist, left-shoulder, and right-shoulder cameras. Proprioceptive states
consist of 7-dimensional joint positions and a binary gripper state. Similar to Mnih et al. [19], we use
a history of 8 observations as inputs. For all tasks, we use the same set of hyperparameters, e.g., 3
levels and 5 bins, without tuning them for each task. See Appendix C for more details.

RL baselines Because CQN is a generic value-based RL algorithm compatible with other techniques
for improving value-based RL [51, 58] or demo-driven RL [52, 53, 62, 63], we mainly focus on
comparing CQN against representative baselines to which comparison can highlight the benefit of our
framework. To this end, we first consider DrQ-v2 [2], a widely-used actor-critic RL algorithm, as our
RL baseline. Moreover, for a fair comparison, we design our strong RL baseline: DrQ-v2+, a highly
optimized variant of DrQ-v2 that incorporates a distributional critic and our recipes for manipulation
tasks (see Section 3.3). We also note that all RL methods have an auxiliary BC objective.

We provide experimental results in state- and vision-based robotic tasks from DMC [28] in Appendix E.
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Figure 5: Real-world tasks used in our real-world experiments (see Appendix D for more details).
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Figure 6: Real-world results. Learning curves on 4 real-world manipulation tasks, measured by the
success rate. We run experiments for 10 minutes and report the running mean across 5 episodes.

BC baselines To demonstrate the benefit of learning through online experiences, we consider ACT
[3], which learns to predict a sequence of actions, as our BC baseline. We choose ACT because it
achieves competitive performance to other methods such as DiffusionPolicy [11]. We also consider
an additional BC baseline, i.e., Coarse-to-fine BC (CBC), which shares every detail with CQN such
as action discretization and architecture but trained only with BC objective.

Results In Figure 4, we find that CQN consistently outperforms actor-critic RL baselines, i.e., DrQ-
v2 and DrQ-v2, in terms of both sample-efficiency and asymptotic performance. In particular, CQN
significantly outperforms our highly-optimized baseline DrQ-v2+ by a large margin, highlighting the
benefit of our CRL framework that allows the use of value-based RL algorithm for continuous control.
Moreover, we observe that CQN can quickly match the performance of BC baselines (i.e., ACT and
CBC) and surpass them in most of the tasks, highlighting the benefit of learning by trial and error.

4.2 Real-world Experiments

Setup We further demonstrate the effectiveness of CQN in real-world tasks that use a URS robot
arm with 20 to 50 human-collected demonstrations (see Figure 5 for examples of real-world tasks).
Unlike RLBench experiments that take one update step per every environment step, we take 50 or
100 update steps between episodes to avoid jerky motions during the environment interaction. All RL
methods have an auxiliary BC objective and we report the running mean across 5 recent episodes. For
ACT, we report the average success rate over 20 episodes to evaluate it with the same randomization
range used in RL experiments. We use stack of 4 observations as inputs and 4 levels with 3 bins.
Unless otherwise specified, we use the same hyperparameters as in RLBench experiments for all
methods, which shows the robustness of CQN to hyperparameters. See Appendix D for more details.

Results In Figure 6, we observe intriguing results where CQN can learn to solve complex real-world
tasks within 10 minutes of online training, while a baseline without RL objective often fails to do
so. In particular, we find that this baseline without RL objective nearly succeeds in solving the task
but makes a mistake in states that require high-precision actions, which demonstrates the benefit of
RL similar to the results in simulated RLBench environment (see Table 1c). Moreover, we observe
that the training of DrQ-v2+ is unstable especially when it encounters unseen observations during
training. In contrast, CQN robustly learns to solve the tasks and consistently outperforms DrQ-v2+ in
all tasks. We provide full videos of real-world RL training for all tasks in our project website.
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117 307% 2 558%  Lm Lsc C51 SR Selection  Noise R

1 65 51.2% 3 77.5% X vV - 365% Online  AN(0,0.01) 70.2%

1 256 39.5% 4  72.8% v X v 18% Target X 75.1%
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(a) Bins (b) Levels (c) Objectives (d) Exploration

Table 1: Analysis and ablation studies. We investigate the effect of (a) bins and (b) levels. (c) We
investigate the effect of RL objective (Lgr), BC objective (Lgc), and the use of distributional critic
(C51) [46]. (d) We investigate the effect of using target Q-network for action selection and small
exploration noise. SR denotes success rate and default settings are highlighted in gray .

4.3 Analysis and Ablation Studies

We investigate the effect of hyperparameters and various design choices by running experiments on 4
tasks from RLBench. We provide more analysis and ablation studies in Appendix A.

Effect of levels and bins In Table 1a and Table 1b, we investigate the effect of levels and bins
within CQN. As shown in Table 1a, we find that single-level baseline performance peaks at 65 bins
and decreases after it, which shows the limitation of single-level action discretization that struggles
to scale up to tasks that require high-precision actions. Moreover, we find that 3-level CQN also
struggles with more bins, as learning Q-networks with more actions can be difficult. In Table 1b,
we find that 3 or 4 levels are sufficient and performance keeps decreasing with more levels. We
hypothesize this is because learning signals from levels with too fine-grained actions may confuse the
network with limited capacity because of sharing parameters for all the levels.

Effect of objectives and distributional critic In Table 1c, we investigate the effect of RL and
BC objectives, along with the effect of using distributional critic (i.e., C51) [46]. To summarize, we
find that (i) RL objective is crucial as in real-world experiments (see Section 4.2), (ii) auxiliary BC
objective is crucial as RL agents struggle to keep close to demonstration distribution without the
BC loss, and (iii) distributional critic is important; severe value overestimation makes RL training
unstable in the initial phase of RL training without the distributional critic.

Effect of exploration We further investigate the effect of how our agents do exploration, i.e., which
network to use for selecting actions and how to add noise to actions, in Table 1d. We find that using
target Q-network for selecting actions outperforms using online Q-network. We hypothesize this is
because (i) Polyak averaging [44] can improve the generalization [64] and (ii) online network changes
throughout episode. We also find that using a small Gaussian noise with N (0, 0.01) outperforms a
variant with a strong noise because manipulation tasks require high-precision actions.

5 Discussion

We present CRL, a framework that enables the use of value-based RL algorithms in fine-grained
continuous control domains, and CQN, a concrete value-based RL within this framework. Our key
idea is to train RL agents to zoom-into a continuous action space in a coarse-to-fine manner. Extensive
experiments demonstrate that CQN efficiently learns to solve a range of continuous control tasks.

Limitations and future directions Overall, we are excited about the potential of our framework
and there are many exciting future directions: supporting high update-to-data ratio [51, 58, 65], 3D
representations [55, 66, 67, 68, 69, 70, 71, 72], tree-based search [20, 73], and bootstrapping RL from
BC [62, 74] or offline RL [75, 76, 77], to name but a few. One particular limitation we are keen to
address is that we still need quite a number of demonstrations. Reducing the number of demonstrations
by incorporating pre-trained models [78, 79, 80] or augmentation techniques [81, 82, 83] would be
an interesting future direction. We discuss more limitations and future directions in Appendix G.
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Lcsi—pc Relabeling Centralized critic SR Stack SR

X v v 72.3% Action mode Scaling SR 1 63.7%
v X v 57.8% Absolute v 20.5% 2 75.0%
v v X 76.3% Delta X 71.5% 4 76.0%
v v v 77.5% Delta v 77.5% 8 77.5%
(a) Effect of design choices and optimizations (b) Action mode and scaling (c) History

Table 2: Additional analysis and ablation studies. We investigate the effect of BC objective for
C51 (L¢s1-nc), relabeling successful episodes as demonstrations, and using centralized critic [25].
We also investigate the effect of (b) action mode and scaling and (c) using a history of observations.
SR denotes success rate and default settings are highlighted in gray .

A Additional Analysis and Ablation Studies

Here, we provide additional analysis and ablation studies in Table 2. For results in this section and
Section 4, we report aggregate results on 4 tasks: Turn Tap, Stack Wine, Open Drawer, Sweep
To Dustpan, with 3 runs for each task.

Auxiliary BC with distributional critic We find that our BC objective in Equation 3 is often not
synergistic with distributional critic, because it leads to a shortcut of increasing Q-values (i.e., the
mean of value distribution) by increasing the probability mass of atoms corresponding to supports
with large values. To address this issue, given an expert action a;, we introduce a BC objective that
encourages a distribution with the expert action Q(s, a;) to be preferred over Q(s, a;) instead of only
using the mean of the distribution as a metric.

Our idea is to utilize the concept of first-order stochastic dominance [84, 85]: when a random variable
A is first-order stochastic dominant over a random variable B, for all outcome z, F4(z) < Fp(x)
holds, with strict inequality at some x. Intuitively, this means that A is preferred over B because the
A is more likely to have a higher outcome x. Based on this, we design an auxiliary BC objective that
encourages (s, a;) to be stochastically dominant over Q(s, a;), i.e., Lcs1—pe, Which encourages RL
agents to prefer the distribution induced by expert actions a; to non-expert actions a;. In Table 2a, we
find that using L¢s1_pc achieves 77.5%, outperforming a variant that uses Lgc that achieves 72.3%.

Centralized critic Our coarse-to-fine critic architecture is based on the design of Seyde et al. [25]
that train a factorized critic across action dimensions. However, we do not use the centralized critic
training scheme as in the original paper, because (i) we find that using the average Q-value as an
objective is not aligned well with the use of distributional critic and (ii) our design can already
facilitate critics for different dimensions to share information as they are conditioned on actions from
the previous level (see Figure 2b). Indeed, as shown in Table 2a, we find that using such an objective
does not make a significant difference in performance; thus we do not use it for simplicity.

Relabeling successful episodes as demonstrations We investigate the effectiveness of our relabel-
ing scheme (see Section 3.3) in Table 2a, where we observe that performance largely drops without
the scheme. Though this is effective in our RLBench experiments, we note that this idea depends
on the characteristic of our manipulation tasks where successful episodes can be treated as optimal
trajectories; investigating the effectiveness of it with noisy offline data or suboptimal demonstrations
can be an interesting direction.

Action mode We investigate how the choice of action mode between the absolute joint control or
delta joint control affects the performance. We find that using the delta joint action mode significantly
outperforms a baseline with the absolute action mode. We hypothesize this is because delta joint
control’s action space is narrower and makes it easy to learn fine-grained control policies. Moreover,
we observe that using the absolute joint action mode in real-world environments often leads to
dangerous behaviors and robot failures in practice because of large movements between each step.
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Data-driven action scaling For all experiments, we follow James and Davison [34] that compute
the minimum and maximum actions from the demonstrations and scale actions using these values as
the action space bounds. We investigate the effect of this scaling scheme in Table 2b, where we find
that this makes it easy to learn to solve manipulation tasks.

Using a history of observations Similar to prior researches that show the effectiveness of using a
history of observations when training IL agents for robotic manipulation [11, 86], we find that using
stacked observations [19] is also crucial when training RL agents for manipulation in Table 2c.

B Pseudocode

In this section, we first provide an inference procedure for computing Q-values. We then provide the
pseudocode of inference procedures and CQN training in Algorithm 1 and Algorithm 2.

Inference procedure for computing Q-values We describe the procedure for computing Q-values
when actions a, are given as inputs, which is similar to action selection procedure in Section 3.2.
We first introduce constants a;"*°" and a}"**#" that are initialized with —1 and 1 for each action
dimension n. For all action dimensions n, we repeat the following steps for [ € {1, ..., L}:

o L . 1 high
e Step 1 (Discretization): We discretize an interval [a; """, a;""®

of which becomes the action space for Q-network Qfg’”.

] into B uniform intervals, each

e Step 2 (Bin selection): We find the interval that contains given input actions a; and compute
Q-value Q5" (hy, al™, al™") for the selected interval.

e Step 3 (Zoom-in): We set a]"*** and a]"™*€" to the minimum and maximum value of the selected

interval, zooming into the selected intervals within the action space.

We then obtain the set of Q-values {Q4" (h;,ay"™, al1)}.

Algorithm 1 Coarse-to-fine inference procedure

1: Inmputs: Features h;, number of levels L, intervals B, and action dimensions NV

2: Optional inputs: Input actions a;
3: Initialize a}"**", a]"™* to -1 and 1 for all n
4: Initialize a) to 0
5: for each level I € (1,...,L) do
6:  for each dimensionn € (1,...,N) do
7: // STEP 1: DISCRETIZATION )
8: Discretize an interval [a]"**", a}""*¢"] to B intervals
9: // STEP 2: BIN SELECTION
10: if Input actions a; are given then
11: Find interval that contains a; at the current level [ and dimension n
12: Set ai’" as the centroid of the selected interval
13: Compute Q-value Q4" (hy, al™, al 1)
14: else
15: Find interval that satisfies: argmax,, Q5" (h;,a’,al™!)
16: Set /"™ as the centroid of the selected interval
17: // STEP 3: ZOOM-IN
18: Set a}*%", a;"**® to minimum and maximum of the selected interval
19:  if not Input actions a; are given then
20: Aggregate actions as al = (ab*, ..., a"™)

21: if Input actions a, are given then

22:  return Q-values {Q}" (h;,al™ al™*)} forall l and n
23: else

24:  return Action from the last level a”
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Algorithm 2 Coarse-to-fine Q-Network (CQN)

1: Inputs: Number of levels L, intervals B, and action dimensions N
2: Initialize CQN parameters 6 and target parameters 6

3: Initialize a buffer 3 and a demonstration replay buffer 3¢

4: for each timestep ¢ do

/I ENVIRONMENT INTERACTION

Compute feature h; from oy

Get action a; with Algorithm 1

Apply a; to environment and observe 0,1, 7441

9:  Add transition (o, as, 7411, 0¢41) to replay buffer B

10:  // UPDATE Q-NETWORK

11:  Initialize Logy to O

12:  Sample minibatches from B and B°®
13:  for for each level [ € (1,..., L) do

14: for for each dimension n € (1,..., N) do

15: Compute £} as in Equation 2 with Algorithm 1 and samples from the minibatches
16: Compute Eé’c” as in Equation 3 with Algorithm 1 and samples from the minibatches
17: Update Logn = Logn + (Maw - L7 + Asc - Log) /(N - L)

18:  Update 6 by minimizing Lcqy
190 Update =(1—71)-0+7-6

e« C Experimental Details: Simulation

675 Simulation and tasks We use RLBench [1] simulator based on CoppeliaSim [87] and PyRep [88].
676 We run experiments in 20 sparsely-rewarded visual manipulation tasks with a 7-DoF Franka Panda
677 robot arm and a parallel gripper (see Table 3 for the list of tasks).

Table 3: RLBench tasks with their maximum episode length used in our experiments.

Task Length Task Length
Take Lid Off Saucepan 100 Put Books On Bookshelf 175
Open Drawer 100 Sweep To Dustpan 100
Stack Wine 150 Pick Up Cup 100
Toilet Seat Up 150 Open Door 125
Open Microwave 125 Meat On Grill 150
Open Oven 225 Basketball In Hoop 125
Take Plate Off

Colored Dish Rack 150 Lamp On 100
Turn Tap 125 Press Switch 100
Put Money In Safe 150 Put Rubbish In Bin 150
Phone on Base 175 Insert Usb In Computer 100

676 Data collection For demonstration collection, we modify the maximum velocity of a Franka Panda
679 robot arm by 2 times in PyRep, which shortens the length of demonstrations without largely degrading
680 the quality of demonstrations. We use RLBench’s dataset generator for collecting 100 demonstrations.

68t Computing hardware For all RLBench experiments, we use a single 72W NVIDIA L4 GPU
682 with 24GB VRAM and it takes 6.5 hours for training both CQN and DrQ-v2+. We find that major

683 bottleneck is slow simulation because our model consists of lightweight CNN and MLP architectures.

e84 Hyperparameters We use the same set of hyperparameters for all the RLBench tasks. We provide
685 detailed hyperparameters of CQN in Table 4 and DrQ-v2/DrQ-v2+ in Table 5.
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ess D Experimental Details: Real-world

687 Tasks We design 4 real-world visual robotic manipulation tasks with different characteristics. We
688 do not provide partial reward during the episode and only provide reward 1 at the end of fully
689 successful episode. See Figure 7 for pictures that show how we randomize the initial position of the
690 objects between each episode. We describe the tasks in more detail as below:

691 e Open Drawer and Put Teddy in Drawer. The goal of this task is to (i) fully open the drawer,

692 which is slightly open at the start of each episode, (ii) pick up the teddy bear, and (iii) put the
693 teddy bear in the drawer. We use 50 demonstrations for this task. We randomize the initial
694 position of the teddy bear between every episode in a 10cm radius circle.

695 e Flip Cup. The goal of this task is to (i) grasp the handle of a plastic wine glass and (ii) flip
696 the cup in a upright position. We use 20 demonstrations for this task. We randomize the initial
697 position of the cup between every episode in a 15x30cm rectangular region.

698 e Click Button. The goal of this task is to click the button with the closed gripper. We use 21
699 demonstrations for this task. We randomize the initial position of the button between every
700 episode in a 38 x38cm squared region.

701 o Take Lid Off Saucepan. The goal of this task is to (i) grasp the lid of the saucepan and (ii)
702 lift the lid up. We use 24 demonstrations for this task. We randomize the initial position of the
703 saucepan between every episode in a 38 x38cm squared region.

(c) Click Button (d) Take Lid Off Saucepan

Figure 7: Randomization for real-world tasks. We provide pictures that show how we randomize
the initial position of the objects in our real-world experiments.
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Robot and computing hardware We use a 6-DoF URS5e robot arm with a Robotig-2F-140 gripper
for our real-world experiments. For cameras, we use left-shoulder, right-shoulder, upper-wrist, lower-
wrist RealSense D435 cameras, without camera calibration and depth, to capture RGB observations
with 640 x 480 x 3 resolution. We use a single 230W NVIDIA RTX A5500 GPU with 24GB VRAM.
Each action inference takes 0.008s in average, thus our model operates at ~125Hz in execution time.

Data collection We use teleoperation with a joint mirroring system, where a human controls
a leader robot and a follower robot mirrors the movement in the joint space. We record RGB
observations and 6-DoF joint positions during the demonstration collection phase, and downsize
RGB pixels to 84 x 84 x 3 resolution. We also preprocess demonstrations by filtering out some
timesteps where the robot pauses, which happens when a human operator stops controlling the
robot. Specifically, we remove timesteps when the difference in joint positions between between
two consecutive timesteps is smaller than the pre-specified threshold. We use smaller thresholds for
Click Button and Take Lid 0ff Saucepan as we find that preprocessing with large thresholds
often removes timesteps corresponding to clicking button or grasping the lid.

Real-world RL pipeline For all the tasks and methods, we train the model for 10 minutes of
wall time that includes time for training models and robot execution time. We implement a human
reward user interface system (see Figure 8), which supports pause/unpause of the robot, labelling the
episode as success or failure, and resetting the robot failure cases. We use binary reward (i.e., 1 for
success and O for failure) for all experiments. We also do not use success detector or automated reset
procedures. Instead, human practitioners label the episodes and reset the scene.

¥ Human Reward
Unpause robot

Su olo S Reward

1.0
Failure 0. 00F - + Failure Reward

Reset robot fault

Figure 8: Human Reward user interface used in our real-world experiments.

Hyperparameters As we previously mentioned in Section 4.2, we do episodic training where
we take a fixed number of update steps between each episode. We take 100 update steps for Open
Drawer and Put Teddy in Drawer task and 50 update steps for all the other tasks, as the former
task is a long-horizon task compared to other tasks and thus has larger demonstration sizes. We
provide detailed hyperparameters of CQN in Table 4 and DrQ-v2/DrQ-v2+ in Table 5.

22



Table 4: CQN hyperparameters used in RLBench and Real-world experiments.

Hyperparameter

Value

Image resolution

Image augmentation (RLBench)
Image augmentation (Real-world)
Frame stack

84 x 84 x 3

RandomShift [2] (RLBench)
RandomShift [2], Brightness, Contrast
8 (RLBench) / 4 (Real-world)

CNN - Architecture
MLP - Architecture
CNN & MLP - Activation

Conv (c=[32, 64, 128, 256], s=2, p=1)
Linear (c=[64, 512, 512], bias=False)
SiLU [49] and LayerNorm [48]

C51 - Atoms 51

C51 - Vimin, Vmax -1,1

CQN - Levels 3 (RLBench) / 4 (Real-world)
CQN - Bins 5 (RLBench) / 3 (Real-world)

BC loss (Lgc) scale

RL loss (Lg) scale
Relabeling as demonstrations
Data-driven action scaling
Action mode

Exploration noise

Target critic update ratio (7)
N-step return

Training interval

Training steps

Batch size

Demo batch size

Optimizer

Learning rate

Weight decay

1.0

0.1

True

True

Delta Joint

e ~ N(0,0.01)

0.02

3

Every step (RLBench) / Every episode (Real-world)
1 (RLBench) / 100 (Teddy), 50 (Otherwise)
256

256

AdamW [50]

5e-5

0.1

Table 5: DrQ-v2 [2] and DrQ-v2+ hyperparameters used in RLBench and Real-world experiments.

Hyperparameter

Value

Image resolution

Image augmentation (RLBench)
Image augmentation (Real-world)
Frame stack

84 x 84 x 3

RandomShift [2]

RandomShift [2], Brightness, Contrast
8 (RLBench) / 4 (Real-world)

CNN - Architecture
MLP - Architecture
CNN & MLP - Activation

Conv (c=[32, 64, 128, 256], s=2, p=1)
Linear (c=[64, 512, 512], bias=True)
ReLU

C51 - Atoms
Cs1 - Vmin, Vmax

101 (DrQ-v2+) / Not used (DrQ-v2)
-1, 1 (DrQ-v2+) / Not used (DrQ-v2)

BC loss (Lgc) scale

RL loss (Lgy) scale
Relabeling as demonstrations
Data-driven action scaling
Action mode

Exploration noise

Target critic update ratio (7)
N-step return

Training interval

Training steps

Batch size

Demo batch size

Optimizer

Learning rate

Weight decay

1.0

1.0

True (DrQ-v2+) / False (DrQ-v2)

True (DrQ-v2+) / False (DrQ-v2)

Delta joint

e ~ N(0,0.01) (DrQ-v2+) / ¢ ~ N(0,0.2) (DrQ-v2)
0.01

3

Every step (RLBench) / Every episode (Real-world)
1 (RLBench) / 100 (Teddy), 50 (Otherwise)

256 (DrQ-v2+) /512 (DrQ-v2)

256 (DrQ-v2+) / 0 (DrQ-v2)

AdamW [50]

le-4

0.1 (DrQ-v2+) /0.0 (DrQ-v2)
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E DeepMind Control Experiments

Setup To demonstrate that CQN can achieve competitive performance in widely-used, shaped-
rewarded RL benchmarks, we provide experimental results in a variety of continuous control tasks
from DeepMind Control Suite (DMC) [28]. We also note that DMC benchmark consists of a variety
of low-dimensional and high-dimensional control tasks, enabling us to evaluate the scalability of
CQN on environments with high-dimensional action spaces. For baselines, we compare CQN to
RL algorithms that learn continuous policies, whose performances in DMC are publicly available®*.
For state-based control tasks, we consider soft actor-critic (SAC) [7] as our baseline. For vision-
based control tasks, we compare CQN to DrQ-v2 [2]. For hyperparameters, we follow the original
hyperparameters used in the publicly available results. For instance, we use the action repeat of
1 for state-based control tasks and action repeat of 2 for vision-based control tasks. For CQN
hyperparameters, we set minimum and maximum value bounds to 0 and 200 for distributional critic
and use 3 levels with 5 intervals for coarse-to-fine action discretization.

Results Figure 9 and Figure 10 show that CQN achieves competitive or superior performance to
RL baselines that learn continuous policies in most of the tasks. This result demonstrates that our
framework is generic, i.e., it can be used for state-based, vision-based, sparsely-rewarded, and densely-
rewarded environments. One trend we observe in pixel-based DMC tasks is that the performance
of CQN often stagnates early in locomotion tasks (e.g., Quadruped, Hopper, and Walker), unlike in
manipulation tasks where CQN achieves superior performance to the baseline. We hypothesize this is
because we use a naive exploration scheme: we use the exploration noise of € ~ N(0,0.1). It would
be an interesting future direction to investigate how to design exploration schedule that can exploit a
discrete action space from our coarse-to-fine discretization scheme.
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Figure 9: State-based DMC results. Learning curves on 12 state-based robotic locomotion tasks
from DeepMind Control Suite [28], measured by the episode return. The solid line and shaded
regions represent the mean and confidence intervals, respectively, across 4 runs.

3DrQ-v2: https://github.com/facebookresearch/drqv2/
*SAC:https://github.com/denisyarats/pytorch_sac
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Figure 10: Pixel-based DMC results. Learning curves on 12 pixel-based robotic locomotion tasks
from DeepMind Control Suite [28], measured by the episode return. The solid line and shaded
regions represent the mean and confidence intervals, respectively, across 4 runs.

F Additional Related Work

Real-world RL for continuous control Obviously, our work is not the first application of RL
to real-world continuous control domains. In particular, in the context of learning locomotion
behaviors, there have been impressive successes in demonstrating the capability of RL controllers
trained in simulation and then transferred to real-world environments [89, 90, 91, 92, 93, 94]. More
closely related to our work are approaches that have demonstrated RL can be used to learn robotic
skills directly in real-world environments, with state inputs [95, 96, 97, 98, 99], visual inputs
[29, 33, 100, 101, 102], and offline data [77, 103, 104], addressing challenges such as exploration,
state estimation, camera calibration, robot failure, and the cost of resetting procedures. Moreover,
there has also been a progress in developing benchmarks that can serve as a proxy for real-world
experiments [1, 105] and developing a software package for easily deploying RL algorithms to
real-world RL [106]. Investigating the effectiveness of our framework on such various benchmarks
and real-world domains would be an exciting future direction we are keen to explore.

Hierarchical RL. Our work is loosely related to approaches that learn hierarchical RL agents
[107, 108] that trains high-level RL agents that provides goals (options or skills) and low-level RL
agents that learn to follow goals or behave conditioned on goals [109, 110, 111, 112, 113, 114]. This
is because our approach also introduces a multi-level, hierarchical structure in the action space. But
our work is different in that we introduce a hierarchy by splitting the fixed, general continuous action
space but hierarchical RL approaches typically introduce a temporally or behaviorally abstracted
action as a high-level action (goal, option, or skill). Nevertheless, it would be an interesting future
direction to incorporate such abstract high-level actions into our coarse-to-fine critic architecture, as
it is straightforward to condition our critic on such abstract actions by introducing an additional level.
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G Limitations and Future Directions

Data augmentation In this work, we applied very simple data augmentations: RandomShift [2]
that shifts pixels by 4 pixels, brightness augmentation, and contrast augmentation. However, as shown
in recent works that investigated the effectiveness of augmentations for learning visuomotor policies
[115, 116], applying more strong augmentations can also be helpful for improving the generalization
capability of RL agents. Moreover, applying augmentation to images with generative models [117]
can further enhance the generalization capability of RL agents to unseen environments. Incorporating
such strong augmentations potentially with techniques for stabilizing RL training [82, 83] can be an
interesting future direction.

Advanced vision encoder and representation learning CQN uses a simple, light-weight visual
encoder, i.e., 4-layer CNN encoder, and also a naive way of fusing view-wise features that concate-
nates image features. While this has an advantage of having a simple architecture and thus a very
fast inference speed, incorporating an advanced vision encoder architectures such as ResNet [118] or
Vision Transformer [119] may improve the performance in tasks that require fine-grained control.
Moreover, given the recent improvements in learning multi-view representations [55, 66, 120] or
generating 3D models [121, 122, 123, 124, 125], incorporating such improvements and 3D prior
into encoder design can be helpful for improving the sample-efficiency of CQN, especially in tasks
that require multi-view information as already shown in recent several behavior cloning approaches
[67, 68, 69, 70, 71, 72]. Learning such representations by pre-training the visual encoder on large
multi-view datasets [126, 127, 128] would also be an interesting direction.

Handling a history of observations For taking a history of observations as inputs, we follow a
very simple scheme of Mnih et al. [19] that stacks observations. However, this might not be scalable
to long-horizon tasks where such a stacking of 4 or 8 observations may not provide a sufficient
information required for solving the target tasks. In that sense, designing a model-based RL algorithm
within our CRL framework based on recent works [61, 47, 129] or incorporating architectures that
can handle a sequence of observations, such as RNNs [130, 131], Transformers [132], and state-space
models [133], can be a natural future direction to our work.

Training with high update-to-data ratio Recent work have demonstrated the effectiveness of
using high update-to-data (UTD) ratio (i.e., number of update steps per every environment step) for
improving the sample-efficiency of RL algorithms [51, 58, 65]. In this work, we used 1 UTD ratio
in RLBench experiments for faster experimentation as using higher UTD ratio slows down training.
This slow-down in training speed can be an issue in real-world experiments where practitioners often
need to be physically around the robot and monitor the progress of training for labelling the episode
or safety reason. Thus, investigating the performance of CQN with high UTD by utilizing a design or
software that supports asynchronous training [33, 106] would be an interesting future direction we are
keen to explore. Furthermore, we note that recent approaches typically depend on resetting technique
for supporting high-UTD but such resetting can be problematic in that it may lead to dangerous
behaviors with real robots. Investigating how to support high UTD without such a resetting technique
can be also an interesting future direction especially in the context of real-world RL.

Search-based action selection CQN uses a simple inference scheme that greedily selects an
interval with the highest Q-value from the first level. However, there is a room for improvement in
action selection by incorporating search algorithms that exploit the discrete action space [73].

Bootstrapping from offline data with BC or offline RL.  While our experiments show that CQN
can quickly match and outperform the performance of BC baseline such as ACT [3], there is a
room for improvement by investigating how to bootstrap RL training from offline RL [75, 76, 77]
or BC policies [62, 74]. For instance, pre-training CQN agents with offline RL techniques on robot
learning dataset [134, 135] or utilizing a separate BC policy pre-trained on demonstrations would be
interesting and straightforward future directions.
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Human-in-the-loop learning One critical limitation of applying RL to real-world applications is
that practitioners need to be physically around the robot in most cases; otherwise it involves a huge
engineering to automate resetting procedures and designing a success detection system. However,
this can lead to another interesting and promising future direction of leveraging human guidance
in the training pipeline in the form of human-in-the-loop learning. For instance, incorporating a
DAgger-like system that provides human-guided trajectory for RL agents [136], investigating a way
to utilize human-labelled reward but address the subjectivity of such human labels throughout training
via preference learning [137, 138] can be interesting future directions.

H Things that did not work

We describe the methods and techniques that did not work in our RLBench experiments when we use
default hyperparameters and setups from the original work.

Small batch RL and prioritized sampling We tried using small batch size [139] but find that large
batch size performs better in RLBench experiments. This aligns with the original observation of
Obando Ceron et al. [139] where large batch size performs better with fewer number of environment
interactions. We also tried using prioritized experience replay [140] but we find that it slows down
training without a significant performance gain.

Exploration with NoisyNet Instead of manually setting a small Gaussian noise N (0,0.01), we
tried using NoisyNet [59] with varying magnitudes of initial noise scale. But we find that it perturbs
action too much regardless of noise scales, making it not possible to solve the manipulation tasks.

Learning critic with classification loss We tried the idea of Farebrother et al. [141] that proposed
to train value functions with categorical cross-entropy loss. But we find that using a distributional
critic [46] works better when value bounds are set to -1 and 1 for sparsely-rewarded tasks.

Different distributional RL algorithms We tried distributional RL algorithms other than C51,
i.e.,,QR-DQN [142] and IQN [143], but find no difference between them in our experiments.

L2 feature normalization We tried normalizing every feature vectors to have a unit norm following
Hussing et al. [144] but this significantly degraded the performance in our experiments.

RL with action chunking Motivated by recent BC approaches that demonstrated the effectiveness
of predicting a sequence of actions (i.e., action chunk) [3, 11], we also tried incorporating action
chunking into RL. Specifically, we expand the action space by treating actions from multiple timesteps
as a single action. But we find that this naive approach does not work well; investigating how to
incorporate such an idea into RL would be an interesting future direction.
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