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Appendix A. Proofs

A.1. Proof of Lemma 3

Lemma 3 Let G be the space of smooth invertible functions with smooth inverse (i.e., a diffeomor-
phism) (Locatello et al., 2020) that map Z to X , and h : Z −→ Z is a smooth invertible function.
Then, any function g ∈ G can be represented as g = g∗ ◦ h, where g∗ : Z −→ X is the assumed true
disentangled generative model in the function space G. Formally, we have g ∼h g∗,∀g ∈ G and the
model g is h-identifiable.

Proof By definition, g : Z −→ X and g∗ ◦ h : Z −→ X are equal if their domain and codomain are
the same and g(z) = g∗(h(z)) for any z ∈ Z . For g ∈ G and g∗ ◦ h, their domain and codomain
are defined to be the same. Then, we could let h to be a permutation function, which is invertible,
that satisfies g(z) = g∗(h(z)),∀z ∈ Z . First, we choose a z ∈ Z and let x = g(z). Then, we
can construct h(z) = z∗ such that g∗(z∗) = g∗(h(z)) = x. We can apply this procedure to every
z ∈ Z . This is because we assume the mapping between Z and X are bijective, which means there
is no conflict. As we assume h to be smooth, which is not implicitly satisfied by the permutation
function, we show the smooth assumption holds by showing the limit of h exists everywhere on Z:

lim
∆z−→0

h(z +∆z)− h(z)

∆z

= lim
∆z−→0

g∗
−1
(g(z +∆z))− g∗

−1
(g(z))

∆z

= g∗
−1

′

(g(z))× g
′
(z)

(5)

As we know that both g and g∗
−1

are smooth, their composition, g∗
−1 ◦g, are also smooth. Thus,

the limit above exist for any z ∈ Z . By definition, h is a smooth function. Thus, we can always
find a smooth invertible permutation function h for any g ∈ G such that g = g∗ ◦ h,∀g ∈ G. As the
valid output x for g and g∗ ◦h identical, we have g ∼h g∗ by definition. As the equivalence relation
holds between any g ∈ G and g∗ that admits the same marginal distribution, g is h-identifiable.

A.2. Proof of Theorem 4

Theorem 4 Let i ∈ {1, 2, ...,KG} be the index of data generating mechanisms. We assume each
zGi ∈ ZGi , zT ∈ ZT , and z ∈ Z = ZG0 × ZG1 × ... × ZT . We let ẑ = h(z), ẑ ∈ Ẑ , and
g∗ : Z −→ X be the true disentangled model. Then, if there exists a smooth invertible function
h : Z −→ Z such that g = g∗ ◦ h maps Z to X , then h maps each ZGi to ẐGi , disjoint from
ẐGj ,∀j ̸= i, as well as ẐT , and maps ZT to ẐT , which is disjoint from ẐGi ,∀i ∈ {1, ...,KG}.

Proof By the definition of degenerate mixture prior, we have: if zGi ̸= 0, zGj = 0 for all j ̸= i. We
name this condition as the structure constraint. As we know that h : Z −→ Z and g∗ : Z −→ X , we
have Z = Ẑ because the valid inputs for g∗ are fixed. The structure constraint is enforced on both
Z and Ẑ . If h entangles ẑGi and ẑGj for any i ̸= j, which means the change of one ground-truth
latent variable zGk

affects two learned latent variables ẑGi and ẑGj . Then, there exist a z such that
h(z)Gi = ẑGi ̸= 0 and h(z)Gj = ẑGi ̸= 0 hold simultaneously, violating the structural constraint.
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IDENTIFYING COARSE-GRAINED INDEPENDENT CAUSAL MECHANISMS WITH SELF-SUPERVISION

To see the violation, we can let [zGi , zGj ] = [[1.0, 0.0]⊤, [0.0, 0.0]⊤] and construct [ẑGi , ẑGj ] =

h([zGi , zGj ]) = [[0.7, 0.0]⊤, [0.5, 0.0]⊤]. We can also let [zGi , zGj ] = [[1.0, 1.0]⊤, [0.0, 0.0]⊤] and
construct [ẑGi , ẑGj ] = h([zGi , zGj ]) = [[0.0, 1.0]⊤, [1.0, 0.0]⊤]. The existence of such ẑGi and ẑGj

violates the structure constraint. Thus, h need to map each ZGi to ẐGi , disjoint from ẐGj ,∀i ̸= j,
to make the structure constraint hold.

Additionally, if h entangles ẑT and ẑGi for any valid i, there exist two cases: 1) h maps ZT

to ẐT and ẐGi or 2) h maps ZGi to ẐT and ẐGi . For the first case, there exist a j ̸= i such that
zGi = 0 and zGj ̸= 0 but h(z)Gi = ẑGi ̸= 0 and h(z)Gj = ẑGj ̸= 0. This is because zT
is independent from all the zGi , zGj and can push ẑGi to arbitrary value when other variables are
fixed. Thus, the structure constraint is violated. For the second case, we can apply the proof of
the first case in the opposite direction using the assumption that h is smooth and invertible. we
can find a ẑT such that h−1(ẑ)Gi = zGi ̸= 0. In the meanwhile, we can again find a ẑGj which
makes h−1(ẑ)Gj = zGj ̸= 0. This contradicts the structure constraint. Thus, to keep the structure
constraint hold, h needs to map ZT to ẐT , which is disjoint from all the ẐGi and avoids mapping
ẐGi for any valid i to ẐT .

Furthermore, if h entangles multiple mechanisms, we can find two variables among the entan-
gled latent variables to show that the structure constraint is violated.

Appendix B. Implementation Details

B.1. Network Architecture

We report the network architectures for 1x28x28, and 3x64x64 images in Table 2, and 3, respec-
tively. We use the same generator/decoder and encoder (with modified output layer) for VAEs. For
the colored dataset Sprites, we use a separate encoder, which takes the gray-scale image is input and
predicts ẑC and ẑG. Such configuration would avoid identifying mechanisms by color.

Table 2: Generator, Discriminator, and Encoder Architectures for 1× 28× 28 Inputs
Generator Discriminator Encoder

Input: Rdim(z) Input: R1×28×28 Input: R1×28×28

FC 1024 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
FC 128×7×7 BN ReLU 4×4 conv, 128 LReLU, stride 2 4×4 conv, 128 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU FC 1024 LReLU FC 1024 LReLU
4×4 upconv, stride 2, 1 Sigmoid FC 1 FC dim(z)

Table 3: Generator, Discriminator, and Encoder Architectures for 3× 64× 64 Inputs
Generator Discriminator Encoder

Input: Rdim(z) Input: R3×64×64 Input: R3×64×64

FC 1024 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
FC 128×8×8 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU 4×4 conv, 128 LReLU, stride 2 4×4 conv, 128 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU FC 1024 LReLU FC 1024 LReLU
4×4 upconv, stride 2, 3 Sigmoid FC 1 FC dim(z)
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B.2. Hyper-parameters

We set [λG, λT , λCλR] to [10.0, 10.0, 30.0, 0.05] on all the datasets and change λT to 50 for Sprites
dataset. We train our ICM model for 200 epochs. For each β-VAE and Ada-GVAE model, we train
the model for 200 epochs with β = [1, 2, 4, 8, 16]. We train each generative model three times and
report the best result. We use Adam optimizer with learning rate = 0.001 and batch size = 64 across
the experiments. We set (β1, β2) = (0.5, 0.9) for ICM and set (β1, β2) = (0.9, 0.999) for VAEs
as Gulrajani et al. (2017) suggest. We train the VAEs with dimension [10, 20, 30, 50]. We find the
VAEs with 20 dimensions have the best robustness when β is optimal. For the ICM model, we set
the dimension of each zGi to 1, 2, and 1 on MNIST, FashionMNIST, and Sprites, respectively. The
dimension of zT is 4, 5, and 3 on MNIST and FashionMNIST, and Sprites, respectively.

B.3. Disentangled Representations Datasets

The disentangled representations datasets, such as 3DShapes, assume the latent explanatory factors
are independent of each other. Such an assumption is not compatible with the class of system that
we study. We tried to create a dataset that correlates one type of variation (e.g. floor hue) with one
shape. However, such a configuration will make the data too small to use.

B.4. Choosing the Number of Mechanisms

Our method does not require users to know the precise number of mechanisms in advance because
our ICM model can tolerate the discrepancy between the learned mechanisms and the true mecha-
nisms if the number of learned mechanisms is greater or equal to the number of true mechanisms.
For example, we use 15 mechanisms in the MNIST experiment. The users can easily choose the
number of mechanisms by applying the following procedure: 1) Pick a random number and train
the ICM model. 2) Do a latent space traversal and observe the type of variations. 3) If the data sam-
ples from the same data generating mechanism share the same type of variations, the ICM model is
ready to use. Otherwise, increase the number of mechanisms and repeat steps 1)&2).

B.5. Training Setting for Sprites

If the environment shift that affects both the ICM model and the downstream GBT model is caused
by color, we do not find disentanglement improves the accuracy of the GBT model. Dittadi et al.
(2021) report similar results. The possible reason is that the color shift in our experiment is not
continuous, differing from width and brightness shifts. If the ICM model has never seen any blue
color, it is difficult to “imagine” a blue object based on the red or green. Therefore, we let the
environment shift affect the GBT model only. Such a setting is also helpful for showing the benefit
of disentanglement and is called “out-of-distribution 1 setting” in a recent work (Dittadi et al., 2021).

Appendix C. More Experimental Results

C.1. Ablation Study

We conduct qualitative ablation study using a non-degenerate mixture prior p(zG) =
∑KG

i=1
1

KG
·

N (zG | µi, σi) in the ICM model. We find that if we want to reduce the overlap between mixture
components by letting µi be far away from each other and letting each σi be small, the samples from
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(a) Latent Space Traversal of ICM Model
with Non-degenerate Mixture Prior.

(b) GBT Accuracy Decrease (y-axis) under
Different Environment Shift Distance (x-
axis).

Figure 8: (a) shows that circle size factor and circle number factor are entangled. (b) shows that
ICM model with degenerate mixture prior slows down the accuracy decrease under envi-
ronment shift.

clusters with large |µi| makes the GAN training unstable, and the small σi reduces the model ca-
pacity for each mixture component. Therefore, we choose a smaller KG=3, let µ = [−1.0, 0.0, 1.0]
and σ = [0.5, 0.5, 0.5], and report the visualization result in Figure 8(a). We can see that (1) the
data variability is limited, (2) the two types of variations, circle size and circle number, are entan-
gled, and (3) interventions could change the label of the digit. (2) and (3) support our discussion in
Section 2.2.

Quantitatively, we consider a binary classification task using digits 4 and 9 from the MNIST
dataset. The shifted conditions are the styles of digits 4 and 9 (e.g., the circle size of digit 9).
For the train set, we collect {x | x ∈ X , ẑ4 = E(x)4 ∈ [Clower, Cupper) ∨ ẑ9 = E(x)9 ∈
[Clower, Cupper)}, where [Clower, Cupper) is [−1.0, 1.0). We collect a union of two subsets for each
test set by letting [Clower, Cupper) be [−1.1,−1.0), [−1.2,−1.1), ..., [−3.0,−2.9) and [1.0, 1.1),
[1.1, 1.2), ..., [2.9, 3.0), respectively. We use the GBT model as the classifier. Figure 8(b) shows that
as the environment shifts, the accuracy decreases faster if we use the encoder from the ICM model
with a non-degenerate mixture prior. Additionally, using degenerate mixture prior yields 90.72% av-
erage accuracy, contrasting the 78.44% average accuracy from using non-degenerate mixture prior.
This result complements our discussion in Section 2.2.

C.2. Qualitative Evaluation

MNIST We visualize the data transforming mechanism subspace traversal in Figure 11.

FashionMNIST We visualize the traversal for each data generating mechanism subspace and the
data transforming mechanism subspace in Figure 12.

Sprites We visualize the traversal for each data generating mechanism subspace and the data
transforming mechanism subspace in Figure 13.

C.3. Quantitative Evaluation

We further investigate our model under MNIST (R) environment shift. Figure 9 shows the accuracy
changes as the shift strength increases. Our method yields higher accuracy and slower accuracy de-
creases in both experiments when the shift strength is moderate. However, after a passing threshold,
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(a) Accuracy under
Width&Rotation
Shift

(b) Accuracy Differ-
ences between ICM
and Others

(c) Accuracy under Ro-
tation Shift

(d) Accuracy Differ-
ences between ICM
and Others

Figure 9: Accuracy and accuracy differences of downstream classifiers under environment shift
on the MNIST dataset. If ICM outperforms another method, the accuracy difference is
positive. Note that our proposed ICM outperforms all the baselines in most settings.
Exceptions include when the environment shifts too far for any model to tolerate.

our method begins to lose its advantage. Our analysis suggests two reasons: 1) The test data shifts
too far from the training data, and the base generative model can not generalize to the test sets. After
the test set shifts too far away, none of the methods perform well. Thus, it is hard to conclude that
a model with ∼ 40% accuracy is better than a model with ∼ 35% accuracy. 2) The test set contains
too few samples, just around tens or hundreds, making the evaluation inaccurate. As we can see
from Figure 9, the larger the shift, the bigger the accuracy variations.

To eliminate this interference, we measure how much environment shift is needed to decrease
the accuracy by a relative percentage. Such evaluation will put more weight on the test set that has
more samples and yields reasonable accuracy. Tables 4, 5, and 6 show our method can tolerate more
environment shift before the test sets shift too far away and decrease the accuracy by 10%, 20%, and
40%, relatively.

Table 4: Shift Distance Needed for 10% Relative Accuracy Drop under Environment Shift
MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 1.4 0.8 0.6 0.4
VAE 0.6 0.4 0.4 0.2
β-VAE 1.1 0.5 0.4 0.3
ADA 1.1 0.5 0.4 0.3

Table 5: Shift Distance Needed for 20% Relative Accuracy Drop under Environment Shift
MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 2.0 1.2 0.8 0.7
VAE 1.2 0.7 0.7 0.4
β-VAE 1.7 0.8 0.7 0.5
ADA-GVAE 1.6 0.9 0.7 0.5
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Table 6: Shift Distance Needed for 40% Relative Accuracy Drop under Environment Shift
MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 2.6 1.6 1.1 1.2
VAE 1.9 1.3 1.1 0.8
β-VAE 2.4 1.5 1.3 1.1
ADA-GVAE 2.2 1.5 1.2 1.0

(a) MNIST: Stroke Thickness (T) (b) MNIST: Width&Rotation (W&R)

(c) MNIST: Rotation (R) (d) FashionMNIST: Darkness&Width
(D&W)

Figure 10: Conditions (Latent Variables) Used in the Environment Shift Experiment.
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(a) Data Transforming Mechanism
Subspace, Dimension #0

(b) Data Transforming Mechanism
Subspace, Dimension #1

(c) Data Transforming Mechanism
Subspace, Dimension #2

(d) Data Transforming Mechanism
Subspace, Dimension #3

Figure 11: Data Transforming Mechanism Subspace Traversal of ICM model on MNIST

22



IDENTIFYING COARSE-GRAINED INDEPENDENT CAUSAL MECHANISMS WITH SELF-SUPERVISION

(a) Data Generating Mechanisms
Subspaces

(b) Data Transforming Mechanism
Subspace, Dimension #0

(c) Data Transforming Mechanism
Subspace, Dimension #1

(d) Data Transforming Mechanism
Subspace, Dimension #2

(e) Data Transforming Mechanism
Subspace, Dimension #3

(f ) Data Transforming Mechanism
Subspace, Dimension #4

Figure 12: Latent Space Traversal of ICM model on FashionMNIST
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(a) Data Transforming Mechanism Subspace,
Distinct Action for Each Subspace/Row

(b) Data Transforming Mechanism Subspace,
z0, Color Change

(c) Data Transforming Mechanism Subspace,
z1, Color Change

(d) Data Transforming Mechanism Subspace,
z2, Color Change

Figure 13: Latent Space Traversal of ICM model on Sprites
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