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Abstract
Ranking tasks are ubiquitous, encompassing appli-1

cations such as recommendation systems, LLM rout-2

ing, and item re-ranking. We propose to unify these3

tasks using a single ranking foundation model (FM),4

as it eliminates the need for designing different mod-5

els for each specific ranking task. However, unlike6

general supervision tasks in LLMs, ranking tasks7

do not have clear labels for supervision, posing8

great challenges to developing a ranking FM. To9

overcome these challenges, we propose IRanker, a10

ranking FM framework with reinforcement learning11

(RL) and iterative decoding. Our insight is to de-12

compose the complex ranking task into an iterative13

decoding process that eliminates the worst candi-14

date from the candidate pool step by step, which15

significantly reduces the output combinatorial space16

and better utilizes the limited context length during17

RL training. We meticulously train and compre-18

hensively evaluate an IRanker-3B model on nine19

datasets across three scenarios: recommendation,20

routing, and passage ranking. The results show21

that a single IRanker-3B achieves state-of-the-art22

results on several datasets compared to models of23

similar size, and even surpasses the performance24

of larger models on certain datasets. We further25

demonstrate the effectiveness of our RL design and26

the robustness of the iterative mechanism across dif-27

ferent LLM sizes. Moreover, we conducted both28

in-domain and out-of-domain zero-shot generaliza-29

tion experiments, which showed that IRanker-3B30

achieved good generalization on in-domain rank-31

ing tasks compared to the base LLM by at least32

5% improvement. Surprisingly, on out-of-domain33

generic LLM tasks, IRanker-3B outperformed the34

base model by at least 9% on GSM8K, IFEval, and35

MathQA. In addition, the thoughts generated by36

IRanker-3B during training could further enhance37

zero-shot LLM performance. Our code for IRanker38

is released at https://github.com/ulab-uiuc/IRanker.39

1 Introduction40

Ranking tasks are ubiquitous across various domains, play-41

ing a crucial role in applications such as recommendation sys-42

tems [Cremonesi et al., 2010; He et al., 2017], large language 43

model (LLM) routing [Li et al., 2023; Zhang et al., 2023a], 44

and passage re-ranking in retrieval-based systems [Nogueira 45

and Cho, 2019; Khattab and Zaharia, 2020]. The goal of a 46

ranking task [Liu, 2009; Guo et al., 2020] is to generate an 47

ordered list of candidates that best satisfy a user’s query. Uni- 48

fying all ranking tasks using a single Ranking Foundation 49

Model (FM) is crucial, as it eliminates the need to design sep- 50

arate methods for each specific ranking task and generalizes 51

better for unseen ranking tasks. However, due to the semantic 52

differences among various ranking tasks [Lewis et al., 2020; 53

Thakur et al., 2021] and the diversity of supervision signals 54

[Gao et al., 2021; Luan et al., 2021], traditional embedding- 55

based approaches struggle to effectively address this chal- 56

lenge [Khattab and Zaharia, 2020; Xiong et al., 2021]. LLMs 57

have emerged as one of the most promising approaches for 58

unifying multiple tasks and building foundation models, as 59

they can represent diverse tasks using textual descriptions to 60

align them within a shared semantic space [Sanh et al., 2022; 61

Chung et al., 2022]. Therefore, our paper aims to raise atten- 62

tion to this pressing research question: How can we build a 63

ranking FM to unify multiple ranking tasks with LLMs? 64

Existing studies primarily leverage LLMs to address rank- 65

ing tasks in two main aspects: LLM-as-embedding meth- 66

ods and LLM-as-ranker methods. The insight of LLM-as- 67

embedding approaches is that instruction-tuned LLMs can gen- 68

erate semantically rich and generalizable representations that 69

enhance performance in various ranking tasks [Liu et al., 2024; 70

Li and Zhang, 2024; Zhang et al., 2023b; Neelakantan et al., 71

2022], e.g., LLMEmb uses contrastively fine-tuned LLMs to 72

generate item embeddings for sequential recommendation [Liu 73

et al., 2024]. However, as embedding-based methods, they still 74

struggle to unify task-specific ranking semantics, thus limiting 75

their ability to generalize across diverse real-world ranking 76

tasks [Nogueira and Cho, 2019; Khattab and Zaharia, 2020; 77

Lewis et al., 2020]. LLM-as-ranker approaches [Sun et al., 78

2023; Yoon et al., 2024; Hou et al., 2024a] leverage the rea- 79

soning and instruction-following capabilities of large language 80

models to directly generate candidate rankings in a unified 81

text-based format, e.g., RankGPT [Sun et al., 2023] explores 82

the use of generative LLMs for relevance ranking in infor- 83

mation retrieval tasks, and LLM4Ranking [Liu et al., 2025] 84

provides a framework that enables users to adopt various 85

ranking methods using open-source or API-based LLMs for 86
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document reranking tasks. Despite their promising results,87

LLMs-as-ranker methods often suffer from limited ability to88

incorporate downstream feedback for iterative improvement89

and the lack of explicit supervision signals [Liu et al., 2023;90

Shi et al., 2023]. These challenges significantly hinder the91

development of a unified and ranking FM with LLMs.92

To overcome these challenges, we propose IRanker, a rank-93

ing FM framework with reinforcement learning (RL) and iter-94

ative decoding. Two major insights contribute to the success95

of IRanker – RL and iterative decoding. We propose to train96

a ranking FM with RL, treating the performance feedback of97

ranking tasks as rewards and incorporating the long-thought98

ability of LLMs to enhance RL optimization. Here, we consid-99

ered a simpler approach that directly asks the LLM to generate100

the candidate rankings and optimizes the rankings according101

to the rewards with RL, named DRanker. However, since the102

DRanker needs to compare and rank multiple candidates, it103

faces challenges such as an excessively large output space104

and limited context length for thinking. Instead, our proposed105

IRanker decomposes the complex ranking task into an iterative106

decoding process that eliminates the worst candidate from the107

candidate pool step by step, which significantly reduces the108

output combinatorial space and better utilizes the limited con-109

text length of LLMs during LLM training, leading to a more110

efficient and effective ranking procedure. To optimize IRanker,111

we further design a step-wise reward to guide IRanker to first112

exclude lower-ranked candidates; candidates excluded later113

receive higher ranks, and the final ranking is constructed by114

reversing the exclusion order.115

We meticulously train and evaluate a unified 3B ranking116

foundation model, IRanker-3B, on nine representative datasets117

spanning three scenarios: recommendation, routing, and pas-118

sage ranking. Our results show that a single IRanker-3B119

matches or surpasses the domain-specific methods for each120

task, achieves state-of-the-art (SOTA) performance compared121

to general ranker baselines, and even surpasses larger 7B LLM122

models on some tasks and achieves a 15.7% relative improve-123

ment on average. We also perform extensive ablation studies,124

confirming the effectiveness of our RL design and the robust-125

ness of the iterative mechanism across different LLM sizes.126

Additionally, both in-domain and out-of-domain zero-shot127

generalization experiments demonstrate strong performance:128

IRanker-3B improves over the base model by at least 5% on129

in-domain ranking tasks, and by over 9% on out-of-domain130

tasks such as GSM8K, IFEval, and MathQA. Notably, we131

show that the intermediate thoughts generated during training132

further enhance the zero-shot ranking capabilities of other133

LLMs. For example, based on the 3B backbone model, inter-134

mediate thoughts can lead to a 22.87% relative improvement135

in zero-shot performance for the base model.136

2 Preliminaries137

Ranking tasks. Given a query q, a ranking task [Liu, 2009;138

Li, 2011; Cao et al., 2007] is to learn a ranker f that ranks139

a set of candidates D = {c1, c2, . . . , cn} with n elements.140

The candidate set is typically divided into a positive can-141

didate set Dp and a negative candidate set Dn. The pos-142

itive candidate set refers to the items actually selected by143

the user, for example, the items a user really purchased in144

a recommendation system. To evaluate how well the ranker 145

recovers these positive candidates, the performance of the 146

ranking task is measured by an evaluator E, which is usu- 147

ally a ranking metric such as Normalized Discounted Cu- 148

mulative Gain (nDCG) [Järvelin and Kekäläinen, 2002] or 149

Mean Reciprocal Rank (MRR) [Voorhees and others, 1999; 150

Cremonesi et al., 2010]. The goal of the ranker π is to learn a 151

function that maps a query q and its candidate set D to a rank- 152

ing order O = {cr11 , cr22 , . . . , crnn } ∈ Sn with ri as the rank of 153

candidate ci, such that the evaluation metric E is maximized: 154

π : (q,D) → O, O ∈ Sn, (1)

where Sn denotes the set of all possible permutations over 155

n = |D| elements. 156

Formally, the optimal ranker π∗ is learned by solving: 157

π∗ = argmax
f∈F

E(q,D)∼Z [E(π(q,D))] , (2)

where F is the function class and Z is the data distribution 158

over queries and candidate sets. 159

Examples. As shown in Figure 1, we have listed some rep- 160

resentative instantiations that can be unified into a ranking 161

foundation model from three aspects. (a) Recommenda- 162

tion, shown in Figure 1(a), the goal of the recommenda- 163

tion [Ricci et al., 2010; Adomavicius and Tuzhilin, 2005; 164

Covington et al., 2016] is to capture user preferences by 165

analyzing their histories, rank the current set of candidate 166

items, and predict those that the user is most likely to fa- 167

vor. Here, the user history is modeled as query q, each ele- 168

ment of the candidates is an item, and positive candidate set 169

Dp contains the real items that the user would choose. (b) 170

Routing, routing task [Ong et al., 2024; Feng et al., 2024; 171

Huang et al., 2025; Hu et al., 2024] aims to recommend ap- 172

propriate LLMs for handling diverse user queries by ranking 173

them based on both effectiveness and response cost, shown in 174

Figure 1(b). The final LLM recommendation list is generated 175

through a ranking process that balances performance with effi- 176

ciency. Specifically, a user query is regarded as query q, each 177

element of the candidates is a LLM name or LLM description 178

[Feng et al., 2024], and the positive candidate set Dp means 179

the ground truth LLMs for the query. (c) Passage ranking, 180

passage ranking [Guu et al., 2020; Karpukhin et al., 2020; 181

Lewis et al., 2020] aims to identify and reorder the most rel- 182

evant passages from a set of candidates given a user query, 183

often arises in retrieval-augmented generation, shown in Fig- 184

ure 1(c). This is achieved by modeling the relevance between 185

the query and each passage to produce a final ranking list. For 186

this task, the user query is regarded as query q, each element 187

of the candidates is a passage, and the positive candidate set 188

Dp contains the ground truth passages. 189

3 DRanker: A Basic Ranking FM with 190

Reinforcement Learning 191

3.1 Unify ranking tasks with LLM 192

Due to the significant semantic differences among vari- 193

ous ranking tasks and the varying supervised signals, tradi- 194

tional embedding-based methods struggle to unify all rank- 195

ing tasks [Lewis et al., 2020; Nogueira and Cho, 2019; 196

Khattab and Zaharia, 2020]. To address this issue, we 197
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Figure 1: Example ranking tasks that a proposed ranking FM can solve. (a) The recommendation task aims to model the user’s preferences
based on their historical behaviors. It will rank the current item candidates and predict which items the user is most likely to prefer. (b)
The routing task is to recommend suitable LLMs to respond to different user queries. The recommendation process takes into account the
effectiveness and cost of each LLM’s response, and performs ranking to generate the final recommendation list. (c) Passage ranking involves
retrieving a set of passages from candidate passages based on a given user query for retrieval-augmented generation. It ranks the passages by
modeling the relevance between the query and the passages to produce the final list of passages.

propose DRanker as shown in the upper part of Figure 2,198

which maps diverse ranking tasks into a unified text space.199

DRanker leverages LLMs to prompt both the task query and200

its candidates, and directly outputs the ranking of the can-201

didates. Specifically, we use a prompt P to convert the202

task query q and its candidates D into a textual descrip-203

tion P (q,D). Motivated by the strong reasoning capabilities204

of LLMs in enhancing generation quality [Wei et al., 2022;205

Kojima et al., 2022; Chung et al., 2022; Guo et al., 2025],206

we follow [Guo et al., 2025] and augment P (q,D) with a207

system prompt Pt to encourage reasoning. The final prompt208

is then fed into the DRanker πθ to produce the ranked out-209

put: Od = πθ(Pt(q,D)). The detailed prompts for different210

ranking tasks can be seen in Appendix A.211

3.2 Training and inference via RL212

Since ranking tasks do not have explicit ground truth, it is213

difficult to perform supervised learning directly. However, as214

we explained in Section 2, the performance of the ranking215

task is measured by an evaluator E. Considering that the216

evaluator E serves as a non-differentiable feedback signal217

for the DRanker πθ, we introduce reinforcement learning to218

address this problem.219

Ranking reward. We first model the evaluator E as a rank-220

ing reward ra = E(Od), with the objective of maximizing221

E. Specifically, since the number of candidates varies across222

different ranking tasks, we choose MRR as the evaluator E.223

However, due to the limited instruction-following ability of224

LLMs, the output candidate rankings often miss or add can-225

didates, which violates the standard requirements of a valid226

ranking. To regularize the output of the DRanker, we introduce227

a format reward as a penalty term rg = Ω(Od, D)− 1, where228

Ω calculates the F1 score measuring the overlap between Od229

and D. Thus, the final reward is defined as rd = ra + rg .230

Training and inference via PPO. To optimize the DRanker231

πθ for maximizing the final reward rd, we adopt the Proximal232

Policy Optimization (PPO) algorithm [Schulman et al., 2017],233

a widely used actor-critic RL method for LLMs. PPO trains234

the policy by maximizing the following objective: 235

JPPO(θ) = E(q,D)∼Q, y∼πold
θ (·|Pt(q,D))

[ |y|∑
t=1

min

(
πθ(yt | Pt(q,D), y<t)

πold
θ (yt | Pt(q,D), y<t)

At,

clip
(

πθ(yt | Pt(q,D), y<t)

πold
θ (yt | Pt(q,D), y<t)

, 1− ϵ, 1 + ϵ

)
At

)]
(3)

where πθ and πold
θ denote the current and previous policies, re- 236

spectively. The pair (q,D) ∼ Q is sampled from the training 237

distribution, where q denotes the input query and D the associ- 238

ated candidate set. y = {y1, y2, . . . , y|y|} is the token-level se- 239

quence generated by the policy model. This sequence is parsed 240

into a ranking candidate list Od = Parse(y,D) using a 241

matching function based on string similarity or identifier align- 242

ment with D. The advantage estimate At is computed using 243

Generalized Advantage Estimation (GAE) [Schulman et al., 244

2015], based on future rewards {r≥t} and a learned value func- 245

tion Vϕ. The clipping parameter ϵ is used to ensure stable pol- 246

icy updates. After obtaining the optimal π∗
θ , we can obtain the 247

final ranking candidate list Od = Parse(π∗
θ(Pt(q,D)), D). 248

4 IRanker: Advanced Ranking FM with RL 249

and Iterative Decoding 250

4.1 Decompose candidates ranking into single 251

candidate selections 252

Although DRanker can rank candidates in a simple and 253

direct manner, it is limited by the large action space and the 254

constrained context length for reasoning. To address this 255

problem, we propose IRanker, as shown in the lower part 256

of Figure 2. The insight of IRanker is to decompose the 257

complex ranking task into an iterative process that excludes 258

a candidate from the candidate pool step by step, making the 259

ranking procedure more efficient and effective. Similar to 260

the method introduced in section 3.1, we design a prompt 261

Pd (details in Appendix A) that encodes the query q and the 262

current candidate set D(k), and instructs the IRanker πω to 263

exclude one candidate ck ∈ D(k) at each iteration k. The 264

process is defined as: 265

ck = πω(Pd(q,D
(k))), D(k−1) = D(k)\{ck}, rk = |D|−k+1

(4)
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Figure 2: Framework of our proposed ranking FMs. Both DRanker and IRanker are RL-enhanced LLM frameworks. They take as input the
candidate information in text form, along with user information (such as user history or a query), and utilize the LLM’s reasoning capabilities
to produce a final candidate ranking. This ranking is then evaluated by an evaluator to generate a corresponding reward function, which is used
to optimize the decision-making of both rankers. The key distinctions are: 1) DRanker generates the full ranking in a single step, whereas
IRanker iteratively excludes the least likely item from the candidates to arrive at the final ranking. 2) The reward in DRanker is a ranking
reward based on the final candidate ranking, while the reward in IRanker is an exclusion reward given for each individual exclusion decision. 3)
DRanker always receives the full set of candidates as input with a fixed size, whereas IRanker’s input candidates are dynamically updated
based on the excluded items.

After |D| iterations, we obtain the complete ranking list:266

Od = [cr11 , cr22 , . . . , c
r|D|
|D| ] (5)

Here, candidates excluded later receive higher ranks, and the267

final ranking Od is constructed by reversing the exclusion268

order.269

4.2 Training and inference with via iterative RL270

Exclusion reward. To train this iterative process, we first271

define the exclusion reward rke for each exclusion step k:272

rke =

{
1, if ck ∈ Dn

0, otherwise
(6)

where Dn is the negative candidate set illustrated in section 2.273

The exclusion reward is designed to guide the IRanker πω to274

prioritize excluding negative candidates, thereby encouraging275

positive candidates to be ranked as early as possible.276

Training and inference via iterative PPO. Similar to section277

3.2, we utilize PPO to optimize the IRanker πω by maximizing278

the following objective:279

JPPO(ω) = E(q,D(k))∼B, y∼πold
ω (·|Pd(q,D(k)))

[ |y|∑
t=1

min

(
πω(yt | Pd(q,D

(k)), y<t)

πold
ω (yt | Pd(q,D(k)), y<t)

At,

clip
(

πω(yt | Pd(q,D
(k)), y<t)

πold
ω (yt | Pd(q,D(k)), y<t)

, 1− ϵ, 1 + ϵ

)
At

)]
(7)

where (q,D(k)) ∼ B is sampled from the training distribu-280

tion; Pd(q,D
(k)) is the prompt encoding the query q and281

current candidate pool D(k); πω and πold
ω denote the current 282

and previous policies, respectively; At is the estimated ad- 283

vantage at decoding step t; ϵ is the PPO clipping threshold; 284

y = (y1, y2, . . . , yT ) is the response sequence generated by 285

the policy; ck = Parse(y,D(k)) is the excluded candidate 286

parsed from y. Once the optimal π∗
ω is obtained, we can get the 287

final ranking candidate list Od with equation (5) by repeating 288

the equation (4) with π∗
ω . 289

5 Experiments 290

We conduct comprehensive training and evaluation of the 291

proposed ranking FMs, DRanker and IRanker. Notably, the 292

same ranking FM is being evaluated across diverse 9 inter- 293

disciplinary tasks, which is compared against general ranking 294

methods and domain-specific methods. First, we introduce the 295

tasks within the ranking FM framework. 296

Task description. The details of the tasks are summarized 297

across three aspects in Table 1. (1) Recommendation (Rec): 298

For the recommendation ranking task, we utilize three widely- 299

used sequential recommendation datasets: MovieLens ml-1m 300

[Hou et al., 2024b], Amazon’s CD and Vinyl dataset [McAuley 301

et al., 2015; Ni et al., 2019], and Amazon’s Video Game 302

dataset [McAuley et al., 2015; Ni et al., 2019]. For each 303

user across all datasets, following the settings of [Hou et al., 304

2024b], we extracted 20 consecutive interactions as the histori- 305

cal sequence and designated the 21st interaction as the ground 306



Table 1: Detailed summarization of tasks used in our ranking tasks. We summarize the task names, scenarios, candidate sizes, training/test
case counts, and positive/negative ratios.

Dataset Scenario Candidate Size # Train Cases # Test Cases Positive/Negative Ratio
Movie Recommendation 20 9975 2508 1:19
Music Recommendation 20 9975 2508 1:19
Game Recommendation 20 9424 2337 1:19

Performance Routing 10 1467 153 1:9
Cost Routing 10 1467 153 1:9
Balance Routing 10 1467 153 1:9

5 Passage Passage ranking 5 10000 1448 1:4
7 Passage Passage ranking 7 9996 3894 1:6
9 Passage Passage ranking 9 10000 1792 1:8

Table 2: Model performance comparison with general baselines across nine ranking tasks of three scenarios on MRR. Bold and underline
denote the best and second-best results. We can observe the following: 1) Compared to the baselines, IRanker-3B achieves state-of-the-art
performance in almost all tasks. 2) The comparison between methods with and without RL validates the enhancement effect of RL on ranking
tasks. 3) The comparison between iterative-based ranking and direct ranking demonstrates the suitability of the iterative design for models of
different sizes.

Recommendation Routing Passage Ranking

Model Movie Music Game Performance Cost Balance 5 Passages 7 Passages 9 Passages

Retrieval-based Models

BM25 17.56 18.09 14.96 18.41 13.52 13.39 53.63 44.95 39.69
Contriever 18.29 17.04 23.98 20.75 16.29 16.74 41.91 36.41 33.10

Direct-Rank LLMs without RL

Qwen2.5-3B-Instruct-direct 16.92 16.68 13.17 10.00 10.00 10.00 38.08 22.47 15.94
Qwen2.5-7B-Instruct-direct 16.59 17.29 18.63 13.38 13.51 18.41 44.57 23.69 17.79

Iterative LLMs without RL

Qwen2.5-3B-Instruct-iter 22.01 21.97 29.49 20.87 20.22 12.42 57.74 43.47 39.40
Qwen2.5-7B-Instruct-iter 22.11 23.36 33.14 19.13 21.06 26.09 62.01 50.94 48.74

Direct-Rank LLMs with RL

DRanker-3B 18.71 15.70 15.77 20.63 9.06 13.38 43.85 22.86 16.11

Iterative LLMs with RL

IRanker-3B 34.69 29.18 42.49 23.62 30.39 24.44 60.98 53.22 49.96

truth item. To create a balanced candidate set, we randomly307

sampled 19 items from the complete item catalog (excluding308

items in the user’s history and the ground truth item) and com-309

bined them with the ground truth item to form a candidate list310

of 20 items. This approach creates a realistic recommendation311

scenario with a 5% chance of randomly selecting the relevant312

item, while maintaining a manageable evaluation space. (2)313

Routing (Router): For the LLM routing task, following the314

setting of [Feng et al., 2024], we selected four datasets from315

[Feng et al., 2024] and ten large language models (LLMs).316

Based on different weights of LLM response effectiveness and317

cost, we followed three settings in [Feng et al., 2024]: Per-318

formance First (Performance), Balance, and Cost First (Cost),319

corresponding to scenarios where users prioritize high perfor-320

mance, value both high performance and low cost equally, or321

prioritize low cost, respectively. For each query, we computed322

the reward based on the weighted sum of effectiveness and323

cost, and selected the LLM with the highest reward as the324

ground-truth LLM. The remaining nine LLMs were treated 325

as negative LLMs. (3) Passage Ranking (Passage): For the 326

passage ranking task, we employ the MS MARCO passage 327

dataset [Nguyen et al., 2016], a large-scale information re- 328

trieval benchmark derived from Bing search logs. To evaluate 329

models under different retrieval complexity scenarios, we cre- 330

ated three distinct settings with varying candidate passage 331

sizes: 5, 7, and 9 passages per query. For each query, these 332

candidate sets include one relevant passage (as judged by hu- 333

man annotators in the dataset) and 4, 6, or 8 irrelevant passages 334

respectively. This configuration allows us to assess how model 335

performance scales with increasing candidate pool sizes and 336

how effectively models can identify the single relevant passage 337

among varying numbers of distractors. 338

Baselines and metrics. We evaluate a variety of baseline 339

methods across three scenarios. The baselines are catego- 340

rized into two groups: (a) General baselines that apply across 341

tasks, and (b) Task-specific baselines tailored to each sce- 342



nario. For all methods, we primarily use Mean Reciprocal343

Rank (MRR) [Voorhees and others, 1999; Cremonesi et al.,344

2010] to evaluate ranking performance in the main text. A345

full evaluation with additional metrics and generation cases346

are provided in Appendix E and B for details. The imple-347

mentation details and computational analysis can be seen in348

Appendix F and D. (a) General baselines: We implemented349

two types of general baselines: retrieval-based methods and350

LLM-based methods. For the retrieval-based methods, the351

user queries or user history are regarded as query and candi-352

dates are modelled as corpus. We introduced a probabilistic353

retrieval model and a dense retrieval model: 1) BM25 [Robert-354

son et al., 2009]: A classical probabilistic retrieval function355

based on term frequency, inverse document frequency, and356

document length normalization. BM25 is utilized for keyword357

matching and retrieval between the query and the candidates.358

2) Contriever [Izacard et al., 2021]: A state-of-the-art dense359

retrieval model that learns representations through contrastive360

learning with hard negatives. We adapted Contriever to han-361

dle all three ranking tasks by encoding queries/user histories362

and candidate items/LLM descriptions/passages into the same363

embedding space. As for the LLM-based methods, they will364

prompt the user query/history and candidates using text and365

output the ranking or the choice of the candidates via zero-shot366

generation. Specifically, we select Qwen2.5-3B-Instruct and367

Qwen2.5-7B-Instruct [Yang et al., 2024] as the backbone mod-368

els for the LLM-based baselines. Furthermore, inspired by369

the designs of DRanker and IRanker, we explore two variants,370

LLM-direct and LLM-iter, based on these backbone models371

to represent direct ranking and iterative ranking, respectively.372

(b) Task-specific baselines: For the recommendation task, we373

implemented three sequential recommendation baselines: 1)374

SASRec [Kang and McAuley, 2018]: A self-attention based375

sequential recommendation model that captures users’ sequen-376

tial behavioral patterns using a transformer-based architec-377

ture. 2) BPR [Rendle et al., 2012]: It performs sequential378

recommendation ranking by optimizing pairwise preferences379

between items, encouraging the model to rank a user’s previ-380

ously interacted item higher than unobserved ones based on381

their interaction order. 3) R1-Rec [Lin et al., 2025]: It is a re-382

inforcement learning-based framework that directly optimizes383

retrieval-augmented LLMs for recommendation tasks using384

feedback from downstream tasks. As for the routing task, we385

compared three representative routers: 1) RouterKNN [Hu386

et al., 2024]: It is a simple yet effective routing baseline that387

assigns queries to the most suitable model by retrieving sim-388

ilar examples from training data and selecting the majority389

route among their labels. 2) RouterBERT [Ong et al., 2024]:390

A lightweight BERT model fine-tuned for routing decisions391

using classification over task labels. 3) GraphRouter [Feng392

et al., 2024]: A SOTA graph-based router that can trade off be-393

tween performance and cost. Finally, for the passage ranking394

task, we implemented three specialized baselines that were pre-395

trained on the MS MARCO passage dataset: 1) RankBERT396

[Nogueira and Cho, 2019]: A BERT-based passage reranker397

that fine-tunes the BERT model on MS MARCO relevance398

judgments, treating ranking as a binary classification problem.399

It is pretrained on 503k query-passage pairs. 2) MonoT5400

[Nogueira et al., 2020]: A T5-based reranker that formulates401

passage ranking as a sequence-to-sequence task, generating 402

relevant or irrelevant tokens for each query-passage pair. It 403

is pretrained on 503k examples. 3) RankLLama-8B [Ma 404

et al., 2024]: A ranking-specialized version of Llama-2-8B 405

that has been fine-tuned specifically for passage ranking tasks 406

using pairwise and listwise ranking objectives. The model is 407

pretrained on 503k ranking examples. 408

5.1 IRanker achieves SOTA performance 409

compared with general ranking methods 410

We train a unified IRanker-3B on all tasks and test it across 411

all tasks without further fine-tuning, compared with general 412

ranking methods. We report the comparison results in Table 413

??. We can observe that: (1) IRanker-3B surpasses all base- 414

line models in the majority of ranking tasks. Notably, it even 415

outperforms the larger Qwen2.5-7B-Instruct-iter model in 7 416

out of 9 tasks, despite having fewer parameters. On average, 417

IRanker-3B achieves a 15.7% relative improvement in MRR 418

over Qwen2.5-7B-Instruct-iter across the nine evaluated tasks. 419

(2) The performance gap between models with and without 420

reinforcement learning (RL), particularly when comparing 421

IRanker-3B to its counterparts without RL, confirms the posi- 422

tive impact of RL on ranking quality. For example, IRanker-3B 423

significantly improves over Qwen2.5-3B-Instruct-iter in rout- 424

ing tasks (e.g., Cost: 30.39 vs. 20.22) and recommendation 425

tasks (e.g., Game: 42.49 vs. 29.49), highlighting the effec- 426

tiveness of RL-enhanced optimization. (3) When comparing 427

direct ranking models to their iterative counterparts, iterative 428

designs (e.g., Qwen2.5-7B-Instruct-iter and IRanker-3B) gen- 429

erally outperform direct methods across all task domains. This 430

trend is consistent across both small and large model sizes, sug- 431

gesting that the iterative inference mechanism better captures 432

task-specific alignment and enables more robust generalization 433

across tasks of varying complexity. 434

5.2 IRanker matches the performance of 435

domain-specific methods across multiple tasks 436

We further compared IRanker-3B with domain-specific 437

methods as shown in Figure 3. Specifically, we compared 438

IRanker-3B with three representative SOTA methods (denoted 439

as SOTA-1, SOTA-2, and SOTA-3) and Qwen2.5-3B-Instruct- 440

iter across three domains. In the recommendation scenario, 441

SOTA-1, SOTA-2, and SOTA-3 refer to SASRec, BPR, and R1- 442

Rec, respectively; in routing, they correspond to GraphRouter, 443

RouterBert, and RouterKNN; and in passage ranking, they 444

denote RankLLama-8B, RankBERT, and MonoT5. We can 445

observe that: (1) IRanker-3B matches the performance of 446

domain-specific methods across multiple tasks. (2) In the 447

recommendation scenario, IRanker-3B outperforms all base- 448

lines and achieves state-of-the-art results. (3) Even in the 449

passage ranking scenario, IRanker-3B performs on par with 450

models that have significantly larger parameter sizes (e.g., 451

RankLLama-8B) or were trained with much more data sam- 452

ples (e.g., RankBERT and MonoT5) as illustrated in the part 453

of task-specific baselines. 454

5.3 IRanker boosts zero-shot performance 455

To further investigate the generalization ability of IRanker 456

as a foundation model, we conduct analyses from the following 457

three aspects. 458
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Figure 3: IRanker-3B matches the performance of domain-specific methods across multiple tasks with fewer training samples and
smaller model size. We compared the performance of IRanker-3B against three representative SOTA methods and Qwen2.5-3B-Instruct-iter
across three scenarios. SOTA-1, SOTA-2, and SOTA-3 correspond to SASRec, BPR, and R1-Rec in the recommendation (Rec) scenario;
GraphRouter, RouterBert, and RouterKNN in the routing (Router) scenario; RankLLama-8B, RankBERT, and MonoT5 in the passage ranking
(Passage) scenario.

Table 3: Zero-shot performance comparison across different ranking tasks on MRR. Bold and underline denote the best and second-best
results. The results for each ranking scenario were obtained by training on the data from the other two ranking scenarios and then performing
zero-shot testing on the target scenario.

Recommendation Routing Passage Ranking

Model Movie Music Game Performance Cost Balance 5 Passages 7 Passages 9 Passages

Qwen2.5-3B-Instruct-iter 22.01 21.97 29.49 20.87 20.22 12.42 57.74 43.47 39.40
IRanker-3B 34.69 29.18 42.49 23.62 30.39 24.44 60.98 53.22 49.96

IRanker-3B (zero-shot) 25.95 23.21 31.16 20.41 23.10 21.89 56.42 51.19 42.45

IRanker achieved good generalization on in-domain rank-459

ing tasks compared to the base model. We first investigate460

the in-domain generalization capability of IRanker on rank-461

ing tasks, by training it on two different ranking tasks and462

then conducting zero-shot testing on the target ranking task,463

reported in Table 3. It can be observed that IRanker-3B (zero-464

shot) outperforms Qwen2.5-3B-Instruct-iter on nearly all tasks465

and even approaches the performance of IRanker on the Per-466

formance and 7 Passages tasks. This demonstrates the strong467

in-domain generalization ability of IRanker.468

Thoughts emerged from IRanker could enhance zero-shot469

performance of the base model. To investigate whether470

the emergent thoughts generated during IRanker training can471

enhance the zero-shot performance of the base model, we pro-472

pose IRanker-COT-3B. This model adopts an iterative frame-473

work that, for each test query, retrieves semantically similar474

queries along with their corresponding thoughts produced475

during IRanker training. These retrieved thoughts are used476

as templates (details in Appendix C) to guide zero-shot in-477

ference. We evaluate IRanker-COT-3B on nine benchmark478

tasks and compare its performance against IRanker-3B and479

Qwen2.5-3B-Instruct-iter. As shown in Figure 4, IRanker-480

COT-3B consistently outperforms Qwen2.5-3B-Instruct-iter481

and even exceeds the performance of IRanker-3B on the Rec-482

Game task.483

IRanker outperformed the base model on five out-of-484

domain generic LLM tasks. Finally, we investigate the out-485

of-domain generalization capability of IRanker on non-ranking486

tasks. To this end, we evaluate IRanker-3B and Qwen2.5-3B- 487

Instruct on eight widely used LLM benchmarks shown in 488

Table 4. IRanker-3B outperforms Qwen2.5-3B-Instruct on 489

five of the eight tasks, with notable improvements on math 490

and reasoning-intensive datasets such as GSM8K, IFEval, and 491

MathQA. Conversely, Qwen2.5-3B-Instruct shows stronger 492

performance on code generation tasks, including MBPP and 493

HumanEval. On general QA tasks like OpenBookQA and 494

HellaSwag, the two models achieve comparable results. These 495

findings demonstrate that IRanker-3B is particularly effective 496

at structured reasoning, while Qwen2.5-3B-Instruct retains a 497

marginal advantage in programming-related scenarios. 498

6 Conclusion 499

In this work, we address the challenge of unifying diverse 500

ranking tasks by introducing IRanker, an iterative ranking 501

FM optimized via reinforcement learning. By decomposing 502

ranking into a step-wise exclusion process and leveraging the 503

reasoning capabilities of large language models, IRanker over- 504

comes limitations of traditional embedding-based and direct- 505

ranking methods. Our proposed IRanker-3B achieves com- 506

petitive or state-of-the-art performance across nine datasets 507

from recommendation, routing, and passage ranking scenarios. 508

Extensive experiments demonstrate its strong generalization 509

abilities, achieving over 5% improvement in in-domain zero- 510

shot settings and over 9% gains in out-of-domain LLM tasks. 511

These results highlight IRanker’s effectiveness as a unified 512

and scalable ranking FM framework, setting a foundation for 513
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Figure 4: Thoughts emerged by IRanker during training can enhance zero-shot performance of the base model. IRanker-COT-3B is an
iterative framework that, for each test query, retrieves similar queries and their corresponding thoughts that emerged during the training of
IRanker, using them as thought templates to guide zero-shot responses. We evaluate IRanker-COT-3B on nine tasks and compare its performance
with IRanker-3B and Qwen2.5-3B-Instruct-iter. The results show that IRanker-COT-3B consistently outperforms Qwen2.5-3B-Instruct-iter and
even surpasses IRanker-3B in the Rec-Game task.

Table 4: IRanker outperformed the base model on three out-of-domain generic LLM tasks. Bolded values indicate higher performance.
This table compares the performance of IRanker-3B and Qwen2.5-3B-Instruct across eight widely-used benchmarks. IRanker-3B leads in five
out of eight tasks, especially on math and reasoning-heavy datasets like GSM8K, IFEval, and MathQA. Qwen2.5-3B-Instruct performs better
on code generation tasks, including MBPP and HumanEval. The models are nearly tied on general QA tasks like OpenBookQA and HellaSwag.
These results highlight IRanker-3B’s strength in structured reasoning, while Qwen2.5-3B-Instruct maintains a slight edge in coding ability.

Model GSM8K IFEval MMLU MBPP HumanEval OpenBookQA HellaSwag MathQA
Metric Exact Match Acc. Loose Acc. Acc. Pass@1 Pass@1 Acc. Acc. Acc.

Qwen2.5-3B-Instruct 0.6353 0.6799 0.6537 0.5280 0.4756 0.3280 0.5633 0.3538
IRanker-3B 0.7369 0.7122 0.6510 0.4560 0.4573 0.3300 0.5634 0.3856

future advances in LLM-based ranking systems with wide ap-514

plications in recommendation, retrieval, and decision making.515
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Kekäläinen. Cumulated gain-based evaluation of ir tech-596

niques. ACM Transactions on Information Systems (TOIS),597

20(4):422–446, 2002.598

[Kang and McAuley, 2018] Wang-Cheng Kang and Julian599

McAuley. Self-attentive sequential recommendation. In600

2018 IEEE international conference on data mining601

(ICDM), pages 197–206. IEEE, 2018.602

[Karpukhin et al., 2020] Vladimir Karpukhin, Barlas Oguz,603

Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov,604

Danqi Chen, and Wen-tau Yih. Dense passage retrieval for605

open-domain question answering. In EMNLP (1), pages606

6769–6781, 2020.607

[Khattab and Zaharia, 2020] Omar Khattab and Matei Za-608

haria. Colbert: Efficient and effective passage search via609

contextualized late interaction over bert. In Proceedings of610

the 43rd International ACM SIGIR Conference on Research611

and Development in Information Retrieval, pages 39–48,612

2020.613

[Kojima et al., 2022] Takeshi Kojima, Shixiang Shane Gu,614

Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large615

language models are zero-shot reasoners. arXiv preprint616

arXiv:2205.11916, 2022.617

[Lewis et al., 2020] Patrick Lewis, Ethan Perez, Aleksan-618

dra Piktus, et al. Retrieval-augmented generation for619

knowledge-intensive nlp tasks. In Advances in Neural 620

Information Processing Systems, 2020. 621

[Li and Zhang, 2024] Zheng Li and Kai Zhang. Personal- 622

ized news recommendation via llm embedding and co- 623

occurrence patterns. arXiv preprint arXiv:2411.06046, 624

2024. 625

[Li et al., 2023] Yining Li, Wenhao Ma, Yizhe Wang, et al. 626

Llmrouter: Enhancing large language model inference via 627

expert selection. In Proceedings of the 2023 Conference 628

on Empirical Methods in Natural Language Processing 629

(EMNLP), 2023. 630

[Li, 2011] Hang Li. A short introduction to learning to 631

rank. IEICE TRANSACTIONS on Information and Sys- 632

tems, 94(10):1854–1862, 2011. 633

[Lin et al., 2025] Jiacheng Lin, Tian Wang, and Kun Qian. 634

Rec-r1: Bridging generative large language models and 635

user-centric recommendation systems via reinforcement 636

learning. arXiv preprint arXiv:2503.24289, 2025. 637

[Liu et al., 2023] Yuning Liu, Kaiwen Jiang, Shizhuo Liu, 638

Yikai Li, Bo Liu, and Wayne Xin Zhang. Llm4co: 639

Large language models for combinatorial optimization. 640

In Advances in Neural Information Processing Systems 641

(NeurIPS), 2023. 642

[Liu et al., 2024] Qidong Liu, Xian Wu, Wanyu Wang, et al. 643

Llmemb: Large language model can be a good embedding 644

generator for sequential recommendation. arXiv preprint 645

arXiv:2409.19925, 2024. 646

[Liu et al., 2025] Qi Liu, Haozhe Duan, Yiqun Chen, Quan- 647

feng Lu, Weiwei Sun, and Jiaxin Mao. Llm4ranking: An 648

easy-to-use framework of utilizing large language models 649

for document reranking. arXiv preprint arXiv:2504.07439, 650

2025. 651

[Liu, 2009] Tie-Yan Liu. Learning to rank for information 652

retrieval. Foundations and Trends in Information Retrieval, 653

3(3):225–331, 2009. 654

[Luan et al., 2021] Yi Luan, Kevyn Collins-Thompson, Sean 655

MacAvaney, Partha Talukdar, and Benjamin Van Durme. 656

Sparse representations for retrieval: Theory and practice. 657

In Transactions of the Association for Computational Lin- 658

guistics, 2021. 659

[Ma et al., 2024] Xueguang Ma, Liang Wang, Nan Yang, 660

Furu Wei, and Jimmy Lin. Fine-tuning llama for multi- 661

stage text retrieval. In Proceedings of the 47th International 662

ACM SIGIR Conference on Research and Development in 663

Information Retrieval, pages 2421–2425, 2024. 664

[McAuley et al., 2015] Julian McAuley, Christopher Targett, 665

Qinfeng Shi, and Anton Van Den Hengel. Image-based 666

recommendations on styles and substitutes. In Proceed- 667

ings of the 38th international ACM SIGIR conference on 668

research and development in information retrieval, pages 669

43–52, 2015. 670

[Neelakantan et al., 2022] Arvind Neelakantan, Kenneth O. 671

Stanley, Jacob Hilton, Christopher Hesse, Luke S. Zettle- 672

moyer, and John Schulman. Text and code embeddings by 673

contrastive pre-training. OpenAI Technical Report, 2022. 674



[Nguyen et al., 2016] Tri Nguyen, Mir Rosenberg, Xia Song,675

Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and676

Li Deng. Ms marco: A human-generated machine reading677

comprehension dataset. 2016.678

[Ni et al., 2019] Jianmo Ni, Jiacheng Li, and Julian McAuley.679

Justifying recommendations using distantly-labeled re-680

views and fine-grained aspects. In Proceedings of the681

2019 conference on empirical methods in natural language682

processing and the 9th international joint conference on683

natural language processing (EMNLP-IJCNLP), pages 188–684

197, 2019.685

[Nogueira and Cho, 2019] Rodrigo Nogueira and686

Kyunghyun Cho. Passage re-ranking with bert. In687

arXiv preprint arXiv:1901.04085, 2019.688

[Nogueira et al., 2020] Rodrigo Nogueira, Zhiying Jiang, and689

Jimmy Lin. Document ranking with a pretrained sequence-690

to-sequence model. arXiv preprint arXiv:2003.06713,691

2020.692

[Ong et al., 2024] Isaac Ong, Amjad Almahairi, Vincent693

Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,694

M Waleed Kadous, and Ion Stoica. Routellm: Learning to695

route llms from preference data. In The Thirteenth Interna-696

tional Conference on Learning Representations, 2024.697

[Rendle et al., 2012] Steffen Rendle, Christoph Freuden-698

thaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:699

Bayesian personalized ranking from implicit feedback.700

arXiv preprint arXiv:1205.2618, 2012.701

[Ricci et al., 2010] Francesco Ricci, Lior Rokach, and702

Bracha Shapira. Introduction to recommender systems703

handbook. In Recommender systems handbook, pages 1–704

35. Springer, 2010.705

[Robertson et al., 2009] Stephen Robertson, Hugo Zaragoza,706

et al. The probabilistic relevance framework: Bm25 and707

beyond. Foundations and Trends® in Information Retrieval,708

3(4):333–389, 2009.709

[Sanh et al., 2022] Victor Sanh, Albert Webson, Colin Raffel,710

et al. Multitask prompted training enables zero-shot task711

generalization. In International Conference on Learning712

Representations (ICLR), 2022.713

[Schulman et al., 2015] John Schulman, Philipp Moritz,714

Sergey Levine, Michael Jordan, and Pieter Abbeel. High-715

dimensional continuous control using generalized advan-716

tage estimation. arXiv preprint arXiv:1506.02438, 2015.717

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-718

fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-719

imal policy optimization algorithms. arXiv preprint720

arXiv:1707.06347, 2017.721

[Sheng et al., 2024] Guangming Sheng, Chi Zhang, Zil-722

ingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua723

Peng, Haibin Lin, and Chuan Wu. Hybridflow: A724

flexible and efficient rlhf framework. arXiv preprint725

arXiv:2409.19256, 2024.726

[Shi et al., 2023] Weijia Shi, Nora Kassner, Rajarshi Das,727

Patrick Lewis, Wen-tau Yih, Daniel Khashabi, and Dan728

Roth. Promptagator: Few-shot tuning of llms for domain729

adaptation. In International Conference on Learning Rep- 730

resentations (ICLR), 2023. 731

[Sun et al., 2023] Yixin Sun, Yiqun Zhang, Jiaxin Ma, 732

Yanyan Liu, Yanyan Shao, and Shaoping Zhou. Rankgpt: 733

Enhancing zero-shot ranking with instruction-finetuned 734

large language models. arXiv preprint arXiv:2304.09542, 735

2023. 736

[Thakur et al., 2021] Nandan Thakur, Nils Reimers, Andreas 737

Saini, and Iryna Gurevych. Beir: A heterogeneous bench- 738

mark for zero-shot evaluation of information retrieval mod- 739

els. In Proceedings of the 2021 Conference on Neural 740

Information Processing Systems (NeurIPS), 2021. 741

[Voorhees and others, 1999] Ellen M Voorhees et al. The trec- 742

8 question answering track report. In Trec, volume 99, 743

pages 77–82, 1999. 744

[Wei et al., 2022] Jason Wei, Xuezhi Wang, Dale Schuur- 745

mans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny 746

Zhou, et al. Chain-of-thought prompting elicits reasoning 747

in large language models. Advances in neural information 748

processing systems, 35:24824–24837, 2022. 749

[Xiong et al., 2021] Lee Xiong, Chenyan Wu, Mingyan Ma, 750

et al. Approximate nearest neighbor negative contrastive 751

learning for dense text retrieval. In International Confer- 752

ence on Learning Representations (ICLR), 2021. 753

[Yang et al., 2024] An Yang, Baosong Yang, Beichen Zhang, 754

Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi- 755

heng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical 756

report. arXiv preprint arXiv:2412.15115, 2024. 757

[Yoon et al., 2024] Jinhyuk Yoon, Minbyul Jeong, Chan Kim, 758

and Minjoon Seo. Listt5: Listwise reranking with fusion- 759

in-decoder. arXiv preprint arXiv:2402.15838, 2024. 760

[Zhang et al., 2023a] Boxin Zhang, Han Zhang, Jindou Liu, 761

et al. Llm as a judge: Revisiting llm-augmented evaluation 762

for instruction tuning. arXiv preprint arXiv:2306.05685, 763

2023. 764

[Zhang et al., 2023b] Yang Zhang, Fuli Feng, Jizhi Zhang, 765

et al. Collm: Integrating collaborative embeddings into 766

large language models for recommendation. arXiv preprint 767

arXiv:2310.19488, 2023. 768

A Prompt usage 769

This section provides a detailed overview of the prompt tem- 770

plates used for each task scenario, corresponding to DRanker 771

and IRanker. Specifically, Pt denotes the prompt template used 772

for DRanker, and Pd refers to the template used for IRanker. 773

Each prompt is carefully designed with explicit formatting 774

instructions and consistently requires the model to articulate 775

its reasoning process before producing a final answer, which 776

is enclosed within <answer > and </answer > tags for 777

ease of parsing. Illustrative examples of the Pt templates are 778

shown in Tables 5, 6, and 7, while representative Pd templates 779

are presented in Tables 8, 9, and 10. 780

B Case studies of DRanker and IRanker 781

This appendix presents a comprehensive set of case studies 782

illustrating the behavior of DRanker and IRanker across dif- 783

ferent ranking scenarios. For each model, we provide detailed 784



Table 5: Prompts for DRanker in Passage Task.

<|im start|>
system
You are a helpful assistant that ranks passages by relevance to a given query.
<|im end|>
<|im start|>
user
## Here is a query: {query}
{formatted passages}
Please think step by step according to the content of each passage and how well it supports or
relates to the query. Rank all passages from most relevant to least relevant. Return the passage
IDs in order, one per line (e.g.,
passage 1
passage 3
passage 2). You MUST rank all passages from the candidate list. You can not generate content
that is not in the given candidate list.
Show your work in <think ></think >tags. And return the final answer in <answer ></an-
swer >tags.
<|im end|>
<|im start|>
assistant
Let me solve this step by step.
<think >

examples from three distinct tasks, each further divided into785

three subtasks, resulting in nine case tables per ranker.786

Each case study table includes the following components:787

• Question: The input query or prompt that initiates the788

ranking task.789

• Positive Sample: The ground-truth relevant passage or790

item that should ideally be highly ranked.791

• Answer: The model’s output, including its ranked list792

and any intermediate reasoning (when applicable).793

These examples serve to highlight both the strengths and794

failure modes of each ranker, offering qualitative insights into795

their decision-making processes. DRanker case studies are796

provided in Tables 20 to 28, while IRanker case studies are797

shown in Tables 11 to 19.798

C Examples of thought template generated by799

IRanker800

This section presents examples of thought templates gener-801

ated by IRanker and DRanker’s thinking process, each sum-802

marizing the model’s step-by-step reasoning for representative803

queries. These templates are derived from model inference804

traces and can be used as in-context learning exemplars for805

models not explicitly trained on the ranking tasks. See Ta-806

bles 29,30807

D Analysis on computational efficiency of808

DRanker and IRanker809

We conduct inference time comparisons between two rank-810

ing mechanisms using vLLM version 0.6.3 on a single A6000811

GPU, performing batch inference over the entire test set with812

default vLLM settings. IRanker performs ranking in a sin-813

gle iteration, which results in longer output sequences per814

query. Consequently, its average time per query per iteration is 815

slightly higher, especially as the candidate list length increases. 816

In contrast, IRanker employs an iterative refinement strategy, 817

which can introduce additional latency. To mitigate this, we 818

incorporate an early stopping mechanism: if the positive pas- 819

sage is excluded during any intermediate round, the ranking 820

process is terminated prematurely. This optimization avoids 821

unnecessary iterations and ensures that the overall inference 822

time does not scale linearly with the candidate size. 823

E Additional Results on Extended Metrics 824

This section presents supplementary results using additional 825

evaluation metrics. The detailed outcomes can be found in 826

Tables 34, 35, and 36. While zero-shot performance can be 827

found in Tables 39, 38, and 37 828

F Implementation details 829

We train and evaluate a single ranking FM across all tasks, 830

comparing its performance against both general-purpose rank- 831

ing baselines and domain-specific methods tailored for each 832

task. For reinforcement learning, we adopt Proximal Policy 833

Optimization (PPO) [Schulman et al., 2017], following the 834

implementation details provided in VeRL [Sheng et al., 2024]. 835

Both the DRanker and IRanker are initialized from Qwen- 836

2.5-3B-Instruct, and optimized using KL-regularized policy 837

gradients. To manage policy divergence, we incorporate a 838

low-variance KL loss with a regularization coefficient of 1e-4. 839

Rollouts are conducted using vLLM with a maximum GPU 840

memory utilization cap of 40%, temperature set to 0.9, and 841

a maximum response length of 1024 tokens. Training is per- 842

formed over 5 epochs, using a learning rate of 1e-6 for the 843

actor and 2e-6 for the critic. The optimization uses a global 844

mini-batch size of 36 and a micro-batch size of 8. To en- 845



Table 6: Prompts for DRanker in Recommendation Task.

<|im start|>
system
You are a helpful assistant that ranks products by how likely the user is to buy them, based on
their previous purchase history.
<|im end|>
<|im start|>
user
I’ve purchased the following items in the past, in order:
{historical interactions}
Now there are 20 candidate items that I might purchase next:
{candidate items}
Please rank these items by measuring the possibilities that I would like to buy next most,
according to my purchase history. Please think step by step.
Split your output with line break. You MUST rank the given candidate items. You can not
generate items that are not in the given candidate list. Show your work in <think ></think
>tags. And return the final answer in <answer ></answer >tags.
<|im end|>
<|im start|>
assistant
Let me solve this step by step.
<think >

sure memory efficiency, we enable gradient checkpointing and846

apply Fully Sharded Data Parallelism (FSDP) with both param-847

eter and gradient offloading. All experiments are conducted848

on a setup of 4 NVIDIA A6000 GPUs.849

G Broader Impacts850

Our work on IRanker, a unified ranking foundation model,851

has several potential positive societal implications. By creat-852

ing a single model capable of handling multiple ranking tasks853

across recommendation systems, LLM routing, and passage854

retrieval, we significantly increase efficiency and reduce com-855

putational resources needed across various applications. This856

could lead to more sustainable AI deployment and democra-857

tize access to high-quality ranking technologies for smaller858

organizations with limited resources. The improved zero-shot859

capabilities demonstrated by IRanker could enhance informa-860

tion retrieval in low-resource domains or for underrepresented861

languages where task-specific training data is scarce. This has862

the potential to bridge information access gaps across differ-863

ent communities. Furthermore, IRanker’s ability to perform864

well on out-of-domain tasks suggests that the techniques de-865

veloped in this work may have beneficial spillover effects to866

other AI domains beyond ranking. Our iterative decoding ap-867

proach, which decomposes complex ranking tasks into simpler868

decisions, represents a more interpretable way of understand-869

ing how AI systems make ranking decisions. This improved870

transparency could foster greater trust in recommendation and871

information retrieval systems. Additionally, the efficient use of872

context length in our approach enables more effective reason-873

ing with limited computational resources, potentially reducing874

the environmental footprint of deploying such systems at scale875

while maintaining high performance.876



Table 7: Prompts for DRanker in Router Task.

<|im start|>
system
You are a helpful assistant that selects the most suitable large language model (LLM) for a
given query, based on performance and token cost.
<|im end|>
<|im start|>
user
{llm descriptions}
## This scenario is analyzing a set of sales data to uncover trends and insights. Please provide
useful insights with reasonable depth, balancing accuracy and efficiency. Here is a query:
{query} and LLM candidates: {llm candidates}. Please think step by step according to the
description of each query and LLM, and evaluate from the perspectives of performance in
answering the query and token price. Rank all LLMs from most suitable to least suitable for
this query. Return the LLM names in order, one per line. Split your output with line break.
You MUST rank all LLMs from the candidate list. You can not generate content that is not in
the given candidate list.
Show your work in <think ></think >tags. And return the final answer in <answer ></an-
swer >tags.
<|im end|>
<|im start|>
assistant
Let me solve this step by step.
<think >

Table 8: Prompts for IRanker in Passage Task.

<|im start|>
system
You are a helpful assistant that ranks passages by relevance to a given query.
<|im end|>
<|im start|>
user
## Here is a query: {query}
{formatted passages}
Please think step by step according to the content of each passage and how well it supports or
relates to the query. Select the least likely passage from the candidate list. Only return the
passage ID corresponding to the excluded passage (e.g., ”passage 3”). You MUST choose one
passage from the candidate list. You can not generate content that is not in the given candidate
list.
Show your work in <think ></think >tags. And return the final answer in <answer ></an-
swer >tags.
<|im end|>
<|im start|>
assistant
Let me solve this step by step.
<think >



Table 9: Prompts for IRanker in Recommendation Task.

<|im start|>
system
You are a helpful assistant that ranks products by how likely the user is to buy them, based on
their previous purchase history.
<|im end|>
<|im start|>
user
I’ve purchased the following items in the past, in order:
{historical interactions}
Now there are 20 candidate items that I might purchase next:
{candidate items}
Please select the one item that is least likely to be my next purchase, according to my purchase
history. Please think step by step. You MUST choose exactly one item from the given
candidate list. You can NOT generate or reference items that are not in the given candidate
list. Show your work in <think ></think >tags. And return the final answer in <answer
></answer >tags.
<|im end|>
<|im start|>
assistant
Let me solve this step by step.
<think >

Table 10: Prompts for IRanker in Router Task.

<|im start|>
system
You are a helpful assistant that selects the most suitable large language model (LLM) for a
given query, based on performance and token cost.
<|im end|>
<|im start|>
user
{llm descriptions}
## This scenario is analyzing a set of sales data to uncover trends and insights. Please provide
useful insights with reasonable depth, balancing accuracy and efficiency. Here is a query:
{query} and LLM candidates: {llm candidates}. Please think step by step according to the
description of each query and LLM, and evaluate from the perspectives of performance in
answering the query and token price, and select the least likely LLM from the LLM candidates.
Only return the LLM name corresponding to the LLM. You MUST choose one LLM name
from LLM candidates. You can not generate content that are not in the given LLM candidates.
Show your work in <think ></think >tags. And return the final answer in <answer ></an-
swer >tags.
<|im end|>
<|im start|>
assistant
Let me solve this step by step.
<think >



Table 11: Router-cost IRanker Case Study

Query: # The LLM names and their descriptions are:
# LLaMA-3 (8b): Each token price is 0.2. Handles simple Hybrid QA, basic reasoning, short reading
comprehension, and concise summaries.
# Mixtral-8x7B: Each token price is 0.6. Excels at instruction-based tasks, step-by-step reasoning, solid
reading comprehension, and structured summaries.
# NousResearch (34b): Each token price is 0.9. Ideal for complex research queries, multi-step reasoning,
deep reading comprehension, and thorough summaries.
# LLaMA-2 (7b): Each token price is 0.2. Lightweight chat model for straightforward Hybrid QA, moderate
reasoning, short reading comprehension, and concise summaries.
# Mistral-7b: Each token price is 0.2. Fast for moderate Hybrid QA, quick reasoning, short reading
comprehension, and brief summaries.
# LLaMA-3 (70b): Each token price is 0.9. High-capacity model for advanced Hybrid QA, deep reasoning,
detailed reading comprehension, and extensive summaries.
# LLaMA-3-Turbo (8b): Each token price is 0.2. Balanced performance for moderate Hybrid QA, reasonable
reasoning, clear reading comprehension, and concise summaries.
# LLaMA-3-Turbo (70b): Each token price is 0.9. Powerful model for advanced Hybrid QA, strong reasoning,
in-depth reading comprehension, and high-quality summaries.
# Llama-3.1-Turbo (70b): Each token price is 0.9. Instruction-focused, providing thorough reasoning,
structured reading comprehension, and well-organized summaries.
# Qwen-1.5 (72b): Each token price is 0.9. Versatile for challenging Hybrid QA, nuanced reasoning,
extended reading comprehension, and comprehensive summaries.
## This scenario is analyzing a set of sales data to uncover trends and insights. Please give a quick, high-level
summary of the trends with minimal computation, even if the insights are less detailed.
Here is a query: What city did Super Bowl 50 take place in?
LLM candidates: [’LLaMA-3-Turbo (70b)’, ’LLaMA-3-Turbo (8b)’, ’Mistral-7b’, ’LLaMA-3 (8b)’, ’Llama-
3.1-Turbo (70b)’, ’Qwen-1.5 (72b)’, ’NousResearch (34b)’, ’Mixtral-8x7B’, ’LLaMA-3 (70b)’].
Please think step by step according to the description of each query and LLM, and evaluate from the
perspectives of performance in answering the query and token price, and select the least likely LLM from
the LLM candidates
Ground Truth: LLaMA-3 (8b)
<think > First, I’ll evaluate each LLM based on the description of the query: ”What city did Super Bowl
50 take place in?”
Super Bowl 50 was held in 2016.
LLaMA-3.1-Turbo (70b), LLaMA-3-Turbo (70b), and Mixtral-8x7B have instructions focused on reasoning
and detailed/structured reading comprehension. These models are likely to have strong knowledge of
historical events and locations.
LLaMA-3 (8b) and LLaMA-3-Turbo (8b) have pricing as low as $0.2, making them more affordable and
potentially suitable for cost-sensitive tasks.
NousResearch (34b) is ideal for complex research queries, suggesting it might handle detailed factual
information well.
Mistral-7b, LLaMA-3 (8b), and LLaMA-3 (70b) offer lower token prices but are described as having simple
or basic reasoning capabilities, which might limit performance on historical recall questions.
Qwen-1.5 (72b) is noted for producing nuanced and comprehensive summaries, but its high token price
($0.9) makes it less cost-effective for straightforward factual queries.
LLaMA-3.1-Turbo (70b) also has a higher token price ($0.9) but is instruction-focused, which may enhance
its understanding of direct factual prompts.
Considering these factors:
- The LLM with the highest likelihood of answering the query well given its token price is LLaMA-3-Turbo
(8B or 70B).
- The LLM with the lowest token price while still being likely to answer correctly is LLaMA-3-Turbo (70B).
- LLaMA-3 is slightly cheaper, but its basic reasoning may reduce its confidence or accuracy.
Finally, the model least likely to provide a confident and correct answer is Qwen-1.5 (72B), due to its high
token price and its strengths being more aligned with nuanced reasoning tasks than simple location recall.
</think >
<answer > Qwen-1.5 (72b) </answer >



Table 12: 7 Passage IRanker Case Study

Question: What type of profession does Chris Jericho and Gary Barlow have in common?
Ground Truth: passage 6
<think > First, let’s analyze each passage in terms of how well it relates to the query ”when does winter
end in australia”.
- Passage 1: It states the dates for each season but does not clearly mention when winter ends.
- Passage 2: It provides a relationship between US and Australian seasons but does not specify when winter
ends in Australia.
- Passage 3: It describes when it becomes winter in Southern Hemisphere (Midwinter) but does not mention
when it ends.
- Passage 4: It lists the dates for seasons in Australia, including winter, but does not specify when winter
ends.
- Passage 5: It talks about different times in the year for various activities but does not mention when winter
ends.
Passage 6, although it mentions daylight saving time ending, is not directly about when winter ends, so it can
be a candidate. </think >
<answer > passage 6 </answer >

Table 13: case study 3: Music IRanker

Question: [’0. Wildewoman’, ’1. True North’, ’2. Platinum & Gold Collection’, ’3. The Very Best of Ben E.
King’, ’4. All My Life’, ’5. Opera Goes to the Movies’, ’6. Charo and Guitar’, ’7. Greatest Hits’, ’8. Carole
King Tapestry’, ’9. Cheers to the Fall’, ”10. Ravel: Ma Mere L’oye / Bolero / la Valse / Pavane”, ’11. Rimski
Korsakov, Borodin: Sheherazade Op.35’, ’12. Without You: The Best of Harry Nilsson’, ’13. Blue Film’,
’14. The Very Best Of Aaron Neville’, ’15. American Bach: Cello Suite No. 1 in G Major, BWV 1007; Cello
Suite No. 3 in C Major, BWV 1009 / Miles: Suite for the Americas’, ’16. Martha Argerich: The Collection 1
- The Solo Recordings’, ’17. Eagles: The Very Best Of’, ”18. Didn’t He Ramble”, ’19. Greatest Hits’]
Ground Truth: Pli selon pli
<think > First, let’s consider the patterns in your purchase history. We see that you have mostly purchased
music albums by various artists like Ben E. King, Carole King, Aaron Neville, and the Eagles. Additionally,
you own a few classical music albums by composers like Ravel and Rimsky-Korsakov.
Now, looking at the list of candidate items you might purchase next:
- 0. Pli selon pli — This is a track from an electronic duo, so we don’t have a past history of purchasing this
type of music.
- 1. In Through the Out Door 2015 — This is also an artist-based product, but the name of the album is
quite specific and not aligned with your past purchase history.
- 2. Love Deluxe — It’s another artist-based product, likely by Coldplay, and similar to your past albums.
- 3. Exposed Valerie Simpson — This is an artist-based product that matches the pattern of your past
purchases with traditional artists.
- 4. State of Emergency — This is another artist-based product, possibly by a punk rock band, though it
somewhat resembles the classical/classical fusion albums you’ve bought.
We need to determine which item feels the least likely based on patterns in your past purchases. Observing
your history, we see a strong trend toward:
1. Popular artists’ albums
2. Various classical music albums
3. Professional or well-known albums
Pli selon pli stands out the most as it’s an electronic piece, distinctly different from what you’ve traditionally
bought. While Exposed Valerie Simpson follows the same pattern as The Very Best of Ben E. King, the
electronic nature of Pli selon pli makes it the least consistent with your preferences.
Conclusion: Since Pli selon pli is completely different (electronic music) from everything else in your
purchase history, it appears to be the least likely selection, despite being a music album. </think >
<answer > Pli selon pli </answer >



Table 14: Movie IRanker Case Study

Question: [’0. Cop Land’, ’1. Great White Hype, The’, ’2. Toys’, ’3. Mummy, The’, ’4. Frighteners, The’,
’5. Blair Witch Project, The’, ’6. Pleasantville’, ’7. Midsummer Night’s Dream, A’, ’8. Haunting, The’, ’9.
Home Alone 2: Lost in New York’, ’10. Addams Family Values’, ’11. Fatal Attraction’, ’12. Brady Bunch
Movie, The’, ’13. White Men Can’t Jump’, ’14. I Still Know What You Did Last Summer’, ’15. Mighty
Ducks, The’, ’16. Jingle All the Way’, ’17. Jack’, ’18. Dunston Checks In’, ’19. Santa Clause, The’]
Ground Truth: Stuart Saves His Family
<think > First, let’s consider the genre and style of the movies I’ve watched. My previous 17 movies
cover a range of genres and styles:
- Action: Cop Land, Toys, Frighteners, White Men Can’t Jump, Dick Tracy, Edge, Shallow Grave
- Comedy: Toys, Frighteners, Pleasantville, I Still Know What You Did Last Summer, Jingle All the Way, S
Curve, Dunston Checks In
- Drama: The Mummy, Midsummer Night’s Dream, Sense and Sensibility, From the Journals of Jean Seberg,
Stuart Saves His Family, Bonfire of the Vanities
- Horror: The Blair Witch Project, Frighteners, Halloween, Addams Family & Addams Families, Addams
Family Values
- Fantasy: Alice in Wonderland, Santo vs. Frankenstein, Santo vs. Werewolf
- Family: Home Alone, The Mummy, The Christmas Rush, Under the Cherry Tree, The Santa Clause, The
Vampire Bros.
- Romance: Pleasantville, Fatal Attraction, Shallow Grave, Six Ways to Sunday
- Psychological Thriller: Fatal Attraction, Frighteners, The Mummy
- Crime: Budgerigar, Doll Face, Star, Searchers
- Sports: The Mighty Ducks
Now, let’s examine my candidate list for each genre and style:
1. Action: No movies.
2. Comedy: No movies.
3. Drama: No movies.
4. Horror: Sense and Sensibility is the only drama.
5. Fantasy: Desiree is the only fantasy.
6. Family: Unzipped, Welcome to Woop-Woop, Fred Claus are the only family movies.
7. Romance: Desperate is the only romance.
8. Psychological Thriller: There are no movies that fit ’psychological thriller’ perfectly, but Jane Eyre is a
psychological drama.
9. Crime: Unzipped.
10. Sports: Without adding new sports movies.
Looking at this, Unzipped (Drama/Horror) is the most common genre among my previous movies. In
contrast, among the list we’re given, only Dick Tracy and Stuart Saves His Family fit the Drama and Action
genres, respectively. From the Journals of Jean Seberg and Sense and Sensibility fall more in the drama
range, but not in my usual combined movie tastes.
Considering the genres, Dick Tracy stands out as it’s a good comic book buddy cop movie, but it doesn’t
feature the action elements in my watching history. However, since it’s a new addition and not part of my
past genre preferences, it’s still slightly out of place. Between the two, Stuart Saves His Family might be
slightly more out of place as it’s a bit dated in terms of its style and is closer to my usual genre than Dick
Tracy.
So, Stuart Saves His Family is the one that does not seem to align with my usual pattern in my watching
history. </think >
<answer > Stuart Saves His Family </answer >



Table 15: Game IRanker Case Study

Question: [’0. HDE ® Dual Charging Station Dock for 2 Sony Playstation PS3 Controllers’, ’1. Far Cry 4 -
PS3 [Digital Code]’, ’2. Turtle Beach Call of Duty Advanced Warfare Ear Force Sentinel Task Force Gaming
Headset for PlayStation 4’, ’3. Nyko Modular Charge Station (New Version) Dual Port Controller Charging
Station with Patented Charging Dongles for All PS4 , PS4 Slim and PS4 Pro’, ’4. Wipeout 2 - Xbox 360’, ’5.
Kinect Star Wars - Xbox 360’, ’6. Far Cry Primal - PlayStation 4 Standard Edition’, ”7. Uncharted 4: A
Thief’s End - PlayStation 4”, ’8. Battlezone - PlayStation VR’, ’9. Eve: Valkyrie - PlayStation VR’, ’10.
Robinson: The Journey - PlayStation VR’, ’11. Dead Rising 4 - Xbox One’, ’12. LEGO Jurassic World -
Xbox One Standard Edition’, ’13. Halo 5: Guardians 9 Gold REQ Packs – Xbox One [Digital Code]’, ’14.
Sniper Elite 4 - PlayStation 4’, ’15. Resident Evil 7: Biohazard - PlayStation 4’, ’16. Corsair VOID Wireless
RGB Gaming Headset, White’, ’17. DOOM VFR - PlayStation 4’, ’18. Star Wars Battlefront II - Xbox One’,
’19. Far Cry 5 Gold Edition - Xbox One [Digital Code]’]
Ground Truth: Dark Tales Edgar Allan Poe THE MASQUE OF RED DEATH Hidden Object PC Game +
<think > First, I’ll compare the purchased items to the candidate list. The purchased items are all console
games, wireless headsets, and a flying motorcycle simulator. None of the candidate items include a flying
motorcycle simulator, so that’s out.
Next, I’ll check the types of console games:
1. PS3 - I own dozens of PS3 games
2. PS4/PS4 Slim/PS4 Pro - I bought several PS4 games
3. Xbox 360/DX - I own Xbox 360 games
4. PS VR - I own PSVR games
5. Other - I don’t have games for these platforms, and want to keep watching/playing the Xbox 360 games
until they’re no longer on sale / Xbox 360 is apt to vanish
The PSVR and Xbox 360 game categories are more diverse, with more than one of these categories in my
initial purchase history. Except for the PSVR, it seems that I was more interested in PS4 and Xbox consoles.
Now, among the candidate list:
1. PC Hidden Object game - This is a genre I haven’t tried before. It’s far more different from console games
I’ve purchased.
2. Nintendo Switch Game - A different hardware platform. I prefer game diversity over another system.
Both candidate games are different enough types that I haven’t had the chance to play them yet.
Considering diversity and my interest, PC Hidden Object appears to be the less likely purchase since it’s
kind of a different category from the other games. I would rather pick a new game to add to my PlayStation
or Xbox, rather than start on a new gaming experience. Nintendo Switch would likely be fun, but I’ve seen
that people who owned it tend to go back to their preferred gaming platform. Therefore, I would avoid the
Nintendo Switch game.
Thus, Dark Tales: Edgar Allan Poe – The Masque of Red Death Hidden Object PC Game + Bonus appears
unlikely to be my next purchase. </think >
<answer > Dark Tales Edgar Allan Poe THE MASQUE OF RED DEATH Hidden Object PC Game +
</answer >

Table 16: 9 Passage IRanker Case Study

Question: how long do car battery usually last
Ground Truth: passage 4
<think > First, I’ll compare the most relevant information in each passage that relates to the question
“how long do car batteries usually last.” Then, I’ll assess the consistency and comprehensiveness of the
information provided in each passage.
Passage 1: Discussed general factors affecting battery life but didn’t provide an average lifespan.
Passage 2: Suggested four years on average but was somewhat vague about factors affecting life.
Passage 3: Explicitly stated an average of three to five years with driving habits affecting brevity.
Passage 4: Difficult to check, didn’t mention battery lifespan directly.
Passage 0: Between three to four years with average care – aligns with Passage 3.
Passage 7: Generalized to about 60 to 70 months (five to seven years) – closer to Passage 3.
Passage 8: Averaged three to five years – similar to Passage 3.
Passage 6: Averaged three to five years as well – same as Passage 8.
It seems that Passages 3, 8, 6, and 7 provide the most concise answer to the query. Comparing Passage 3
with the others, it provides the range of three to five years, a clear driving-habit explanation on the shorter
end, and some information on factors affecting battery life.
Passage 4 is far less relevant, as it only addresses the difficulty in checking batteries.
Passages 0 and 7 provide a slightly longer or less specific range on average battery life.
Passage 2’s answer is similar to Passage 3’s in terms of range (four years) but lacks driving-habit detail.
Therefore, Passage 4 is the least relevant and supports the question the least effectively. </think >
<answer > passage 3 </answer >



Table 17: 5 Passage IRanker Case Study

Question: potawatomi meaning of word
Ground Truth: passage 3
<think > First, I will carefully examine each passage to understand what information it provides about
the word “potawatomi” and its meaning.
Passage 2 talks generally about the Potawatomi people and their languages, but does not specifically address
the meaning of the word “potawatomi”.
Passage 0 seems more of a general statement about Potawatomi-related information, mentioning synonyms
and offering resources but not providing a clear meaning for the word.
Passage 1 provides phonetic information and Word Lists for Potawatomi, but doesn’t give a clear definition
or explanation for the word “potawatomi” itself.
Passage 3 directly provides information about the word “potawatomi”, including its meaning, but it also
mentions the spelling “Potawatmie”, which seems to be a typographical error.
Passage 4 mostly defines “potawatomi” as a noun, but it is considered rare and mentions it only has two
senses.
Based on this analysis, Passage 3 appears to have the clearest, most direct information about the word
“potawatomi” and its meaning, except for the typographical error in the spelling.
Passage 3 seems to be the most reliable and thorough in providing information about the word, making it
less likely to be the unrelated passage.
Distinguishing between the typographical error and a related passage requires some judgement, but based on
the relevance and detail of information provided in the passage, it seems Passage 3 is the most logical choice.
Therefore, Passage 3 does not seem to be the intended question answer based on the information provided,
so it should be the less likely candidate passage. </think >
<answer > passage 3 </answer >

Table 18: Router Performance IRanker Case Study

Question: Where was Super Bowl 50 held?
Ground Truth: Mistral-7b
<think > First, I’ll analyze each LLM based on its ability to answer the query “Where was Super Bowl
50 held?” according to their descriptions:
1. Mistral-7b: It mentions quick reasoning, short reading comprehension, and brief summaries. It’s not very
suitable for handling detailed information or long texts.
2. LLaMA-2 (7b): It mentions moderate reasoning and short reading comprehension. Given the brief nature
of the Modesto High School incident in 2016 (which was the requested Super Bowl hosting event), it might
struggle.
3. NousResearch (34b): This one specifically mentions complex research queries, multi-step reasoning,
deep reading comprehension, and thorough summaries. For the Super Bowl event, these capabilities are not
essential and the token price is relatively high compared to other LLMs.
Now, I’ll compare the performance:
- NousResearch (34b) has high quality outputs but is expensive, not likely within budget.
- LLaMA-2 (7b) can handle the question, though with moderate reasoning.
- Mistral-7b is quick, short, and the least detailed, which might be suitable – though it does not handle longer,
more nuanced events like the Super Bowl.
From an expense perspective, LLaMA-2 (7b) is the most expensive considering it can handle the question.
Neither NousResearch (34b) nor Mistral-7b is likely to produce comprehensive and thorough results, so
between LLaMA-2 (7b) and Mistral-7b, the least likely candidate is Mistral-7b since it’s less capable for
longer texts and varies quite a bit from the query.
In conclusion, based on both performance and token price, I’d ultimately choose LLaMA-2 (7b) as the least
likely from the given set. </think >
<answer > Mistral-7b </answer >



Table 19: Router Balance IRanker Case Study

Question: Explain why the following fraction is equivalent to 1/4 and 4/16
Ground Truth: NousResearch (34b)
<think > 1. The task is to analyze a set of sales data to uncover trends and insights. This likely involves
complex mathematical operations and in-depth logical reasoning. The description of LLaMA-3 (8b) and
LLaMA-2 (7b) mentions they are good at brief, impartial summaries, and reasoning but not highly advanced
methods. The descriptions of Qwen-1.5 and Mixtral-8x7B suggest they are specialized for nuanced reasoning
and multi-step tasks. NousResearch (34B) specializes in deep reading comprehension.
2. The query provided is “Explain why the following fraction is equivalent to 1/44/16”. This implies that the
LLM needs to demonstrate the equivalence using mathematical methods. It is a straightforward arithmetic
problem that shouldn’t be overly complex.
3. We need to consider token price in our decision. The LLMs with the highest token price are Qwen-1.5
(72b) and LLaMA-3-Turbo (70b), and the LLMs with the lowest token price are LLaMA-2 (7b) and Mixtral-
8x7B.
4. Looking at LLaMA-2 (7b) and Mixtral-8x7B:

- They are described as being more suited to step-by-step reasoning and detailed reading comprehension,
which might be useful.

- The price for Mixtral-8x7B is high, but LLaMA-2 (7b) is quite affordable, so this offers a balance.
5. Looking at Qwen-1.5 (72b):

- Despite its name, it’s described as versatile for challenging Hybrid QA, which seems too specialized for a
straightforward fraction equivalence problem.

- Its token price is also very high, making it less cost-effective.
6. Considering NousResearch (34b):

- While it’s described as ideal for complex research queries and deep reading comprehension, this problem
is not complex research, it’s a simple fraction simplification.

- Its token price is expensive, and it doesn’t seem ideal for solving this straightforward problem.
Based on this reasoning, the least likely LLM for answering this straightforward mathematical query
involving fraction equivalence, considering both performance and cost, seems to be NousResearch (34b).
</think >
<answer > NousResearch (34b) </answer >

Table 20: 5 Passage DRanker Case Study

Question: How much to print at staples?
Ground Truth: passage 1
<think > First, I will analyze each passage to determine how well it supports or relates to the query ”how
much to print at Staples”.
Passage 1: This passage discusses the cost variability of printing at Staples but does not provide specific
pricing details.
Passage 2: This passage provides specific pricing for black and white copies, which is relevant to the query.
Passage 3: This passage highlights benefits like clean, crisp copies and low pricing recommendations, but
does not directly address pricing at Staples.
Passage 4: This passage includes specific pricing for both black and white and color copies at Staples,
making it highly relevant.
Now, I will rank the passages according to their relevance:
- Passage 4 provides the most detailed pricing information.
- Passage 2 gives specific pricing for black and white copies.
- Passage 1 discusses cost variability without giving exact prices.
- Passage 3 is the least relevant, as it does not provide any specific pricing details.
</think >
<answer > passage 4
passage 2
passage 1
passage 3
</answer >



Table 21: 7 Passage DRanker Case Study

Question: How long leave cooked chicken at room temperature?
Ground Truth: passage 6
<think > First, I will analyze each passage to determine their relevance to the query about cooked
chicken and room temperature. The query asks how long cooked chicken can be kept at room temperature
and what action should be taken.
All passages discuss food safety related to perishable items like chicken. While several mention the danger
of room temperature exposure, I will prioritize those that clearly state a specific time limit and recommended
actions.
Passages 0 through 3 reiterate general safety concerns but lack a specific timeframe.
Passage 4 mentions the two-hour limit (also noted in Passage 3) but does not clearly recommend refrigeration
or freezing.
Passage 5 is the most directly relevant, clearly stating that cooked chicken should not remain at room
temperature for more than two hours.
Passage 6 also provides full guidance, including the two-hour limit and the recommendation to freeze the
chicken, making it highly informative.
</think >
<answer > passage 5
passage 6
passage 4
passage 3
passage 0
passage 1
passage 2
</answer >

Table 22: 9 Passage DRanker Case Study

Question: How much weight can a floor joist support?
Ground Truth: passage 5
<think > Firstly, we need to establish which information from the given passages is directly relevant to
the weight capacity of a floor joist.
Passage 5 is highly relevant, as it calculates the weight a 3-foot by 12-foot section of flooring can support
based on standard floor loads.
Passage 2 references weight in pounds but focuses on joist dimensions, which is less directly relevant than
explicit weight calculations.
Passage 7 provides the most direct answer by specifying the weight a single floor joist can support in
load-bearing situations.
Passage 3 supports the calculations presented in Passage 5, confirming its accuracy.
Passage 6 essentially duplicates the relevant content from Passage 5 using nearly identical language.
Passage 8 discusses general safety factors, which are important contextually but do not directly answer the
query.
Passage 1 contains technical material that does not pertain specifically to joist weight calculations.
Passage 4 mentions joists in the broader context of floor framing requirements, making it less relevant to our
focused question.
</think >
<answer > passage 7
passage 5
passage 6
passage 2
passage 1
passage 3
passage 8
passage 7
</answer >



Table 23: Rec Game DRanker Case Study

Question: [’0. WWE 2K15 - PS3 [Digital Code]’, ’1. WWE 2K15 - PS3 [Digital Code]’, ’2. NBA 2K15 -
PlayStation 3’, ’3. Madden NFL 15: 2,200 Points - Xbox One Digital Code’, ”4. Injustice: Gods Among Us
- Collector’s Edition - Playstation 3”, ”5. Injustice: Gods Among Us - Collector’s Edition - Playstation 3”, ”6.
Injustice: Gods Among Us - Collector’s Edition - Playstation 3”, ’7. LEGO: Marvel - PC’, ’8. Madden NFL
15: 2,200 Points - Xbox One Digital Code’, ’9. Lego: Marvel Super Heroes, XBOX 360’, ’10. WB Games
Middle Earth: Shadow of Mordor - Playstation 4’, ’11. The Amazing Spider-Man 2 - Nintendo 3DS’, ’12.
Teenage Mutant Ninja Turtles - Nintendo Wii’, ’13. Disney Epic Mickey 2: The Power of Two - Playstation
3’, ’14. Disney Epic Mickey 2: The Power of Two - Playstation 3’, ”15. Assassin’s Creed IV Black Flag -
PC”, ’16. Dead Rising 3’, ’17. NBA 2K14 - Xbox 360’, ’18. Grand Theft Auto V: Premium Edition - Xbox
One [Digital Code]’, ’19. NBA 2K14 - Xbox 360’]
Ground Truth: Call of Duty Ghosts - PS3 [Digital Code]
<think > Firstly, I need to understand patterns in my historical purchases. I have bought several games
over time, including franchise titles such as WWE, NBA, Madden NFL, and Injustice: Gods Among Us. I also
seem to favor unique items, like WWE digital codes, which appeared in different variants multiple times.
On the PC side, I am drawn to games that offer more freedom, such as LEGO: Marvel and The Amazing
Spider-Man 2. This suggests a preference for open-world or exploratory gameplay on that platform.
Next, I’ll consider how the sequence of past purchases might influence future decisions. Since I’ve con-
sistently purchased games, it is likely that my next purchase will also be a game. This reflects a strong
continuity in gaming content consumption.
Additionally, I’ve noticed some imbalance between console and PC purchases. To address this, I may lean
toward buying more individual titles rather than digital codes or bundles to diversify my collection.
Finally, considering my history of PC-centric games and smaller discrete items like accessories, these
categories could also shape my upcoming choices.
</think >
<answer > 1. Call of Duty Ghosts - PS3 [Digital Code]
2. Rise of the Tomb Raider - Xbox One Digital Code
3. Xbox One S Vertical Stand
4. Hermitshell Hard Travel Case for 8Bitdo Sn30 Pro Bluetooth Gamepad (SN30PRO-GB)
5. Mind’s Eye: Secrets of the Forgotten [Download]
6. MLB 2K16 - Xbox One Digital Code
7. Microsoft Combat Flight Simulator 2: Pacific Theater - PC
8. The Amazing Spider-Man 2 - Nintendo 3DS
9. Family Feud [Download]
10. Amazing Match 3 Games - Volume 3
11. Phineas and Ferb: Across the 2nd Dimension - Playstation 3
12. Evil Dead: A Fistful of Boomstick
13. Turtle Beach - Ear Force PX51 Wireless Gaming Headset - Dolby Digital - PS3, Xbox 360
14. Red Black
Blue Silicone Skin Case Combo for PS3 Controller
15. Gabriel Knight Mysteries: Limited Edition - PC
16. Family Feud [Download]
17. Untold Legends: Brotherhood of the Blade - Sony PSP
18. Batman: The Animated Series
19. NBA 2K16 - Xbox One Digital Code
20. WB Games Middle Earth: Shadow of Mordor Playstation 4
</answer >



Table 24: Rec Music DRanker Case Study

Question: [’0. Horny House’, ’1. Mozart: Piano Sonatas KV 282, 310
545’, ’2. Mozart: Complete Piano Trios’, ’3. Mozart: Piano Sonatas KV. 281/KV. 330/KV. 333/Rondo, KV.
485/Adagio, KV. 540’, ’4. Mozart: The Sonatas for Piano and Violin’, ’5. Beethoven: Piano Sonatas No. 8,
Pathétique/ No. 14, Moonlight/ No. 21, Waldstein/ No. 23, Appassionata’, ’6. Mozart: Violin Concertos
Complete’, ’7. You Took My Heart By Surprise’, ’8. Revenge’, ’9. Prokofiev: Romeo
Juliet - Scenes from the Ballet’, ’10. Ian Bostridge - The English Songbook’, ’11. Hawaiian Slack Key
Christmas’, ’12. The Sinatra Christmas Album - Chorus and Orchestra Conducted By Gordon Jenkins’, ’13.
Niki Nana’, ’14. Distant Fields’, ’15. Whenever You Need Somebody’, ’16. Free’, ’17. Somewhere My
Love’, ’18. Shared Vision: Songs of the Beatles’, ’19. American Live Debut’]
Ground Truth: Classical Hits
<think > First, it’s important to analyze the relationship between the albums I have purchased in the
past and the genres represented in the current list. To do this, I’ll group the albums by musical genre and
determine how likely it is that my future selections will align with those genres.
Genre Clusters:
Classical:

’Horny House’, ’Mozart: Piano Sonatas’, ’Mozart: Complete Piano Trios’, ’Mozart: Piano Sonatas’,
’Mozart: Piano Sonatas’, ’Mozart: Violin Concertos Complete’, ’Beethoven: Piano Sonatas No. 8, Pathétique
/ No. 14, Moonlight / No. 21, Waldstein / No. 23, Appassionata’
Pop/Rock:

’Niki Nana’, ’Somewhere My Love’, ’American Live Debut’, ’Shared Vision: Songs of the Beatles’
Alternative / New Music:

’World of Absence’, ’Fabriclive 54 :’
Jazz:

’Big Band = Jazz’
The most frequently purchased genres are Classical and Pop/Rock, suggesting a strong preference. Therefore,
future purchases are likely to align with these categories.
Non-classical albums such as ’Wild World’ are more thematic and require additional context to fully assess
their appeal. Similarly, ’World of Absence’ is described as an ambient album, which, while intriguing, stands
apart from the dominant genres.
Albums like ’Timeagain’, ’Now’, and ’Pop: Remixed’ show a focus on distinct thematic or remix elements,
which may still capture my interest, albeit less frequently.
In summary, judging from past purchases, Classical and Pop genres are the most likely candidates for future
music selections. This aligns well with my historical preferences.
</think >
<answer > Classical Hits
2. Timeagain
3. Motif
4. Diamond Life
5. Now
6. Original Good Ol’ Boy
6. Niki Nana
7. Shared Vision: Songs of the Beatles
7. Now He Sings Now He Sobs
8. Lone Justice
9. A Broken Frame
10. World of Absence
11. Fabriclive 54 :
12. Pop: Remixed
13. Upon This Rock
14. Wild World
15. I Don’t Want to Be
</answer >



Table 25: Rec Movie DRanker Case Study

Question: [’0. My Fair Lady’, ’1. Top Hat’, ’2. Next Karate Kid, The’, ’3. Gone with the Wind’, ’4. Dave’,
’5. Raiders of the Lost Ark’, ’6. Englishman Who Went Up a Hill, But Came Down a Mountain, The’, ’7.
Star Trek: First Contact’, ’8. Star Trek: The Motion Picture’, ’9. Star Trek VI: The Undiscovered Country’,
’10. Star Trek V: The Final Frontier’, ’11. Star Trek: The Wrath of Khan’, ’12. Star Trek III: The Search for
Spock’, ’13. Star Trek IV: The Voyage Home’, ’14. Star Trek: Insurrection’, ’15. Star Trek: Generations’,
’16. From Russia with Love’, ’17. Goldfinger’, ’18. Star Wars: Episode I - The Phantom Menace’, ’19. Star
Wars: Episode IV - A New Hope’]
Ground Truth: Lassie
<think > First, I will analyze each genre to determine which types of movies align with those previously
viewed:
Historical / Period Films:

’0. My Fair Lady’, ’3. Gone with the Wind’, ’9. Star Trek: The Undiscovered Country’
Hollywood Musicals:

’1. Top Hat’, ’11. William Shakespeare’s Romeo and Juliet’
Action:

’6. The Englishman Who Went Up a Hill, But Came Down a Mountain’,
’19. Star Wars: Episode IV - A New Hope’, ’18. Star Wars: Episode I - The Phantom Menace’,
’1.1 Star Trek: First Contact’, ’13. Star Trek: The Wrath of Khan’

Classics:
’2. The Next Karate Kid’, ’16. From Russia with Love’, ’17. Goldfinger’

Modern Classics:
’4. Dave’, ’2. West Side Story’, ’5. Raiders of the Lost Ark’

Based on this analysis, I grouped the movies into genre categories. Now I’ll predict the most likely category
for your next movie choice:
- Given the chronological pattern in your movie consumption, it’s likely that upcoming selections will
continue from the genres you’ve recently explored.
- You also appear to be a fan of Westerns or horseback-themed films. Movies such as ’Tashunga’, which
blends Western themes with action, support this trend.
- Your interest in ’Shakes the Clown’—a unique Western-style Elvis movie—suggests a preference for genre
blends that combine entertainment and classic elements.
- Among your top movies, ’Frankenstein Meets the Wolfman’ (a part of the Universal Monsters collection)
reveals your appreciation for B-movies with gothic or Poe-like undertones.
This pattern suggests your next movie choice will likely fall into a Western, Classic, or genre-blended
category, with potential interest in entertainment-leaning or horror-inspired classics.
</think >
<answer > 1. ’Tashunga’
2. ’Clean Slate’
3. ’West Side Story’
4. ’Lassie’
5. ’From Russia with Love’
6. ’Home for the Holidays’
7. ’8MM’
8. ’Cemetery Man’
9. ’16. From Russia with Love’
10. ’Shakes the Clown’
11. ’Untouchables, The’
12. ’West Side Story’
13. ’Beauty and the Beast’
14. ’Beauty and the Beast’
15. ’The Friggerito’
16. ’Lassie’
17. ’Clean Slate’
18. ’West Side Story’
</answer >



Table 26: Router Cost DRanker Case Study

Question: How many fumbles did Von Miller force in Super Bowl 50?
Ground Truth: LLaMA-3-Turbo (8b)
<think > First, we need to determine the suitability of each LLM for the given query. The query is quite
straightforward, asking for a specific statistic (number of fumbles) specifically about Von Miller in a Super
Bowl.
Now, we’ll look at the requirements and capabilities mentioned for each of the available LLMs in relation to
simple fact queries:

1. LLaMA-3 (8b): Simplified information, extremely short comprehensions, and brief summaries.

2. Mixtral-8x7B: Instruction-based tasks, step-by-step reasoning, solid reading comprehension, and
structured summaries.

3. NousResearch (34b): Comprehensively searches through complex questions, but assumes advanced
understanding.

4. LLaMA-2 (7b): Moderately deeper understanding, yet fairly limited reasoning among others.

5. Mistral-7b: Moderate Hybrid QA, short reasoning time, and brief summaries.

6. LLaMA-3 (70b): Advanced Hybrid QA, deep reasoning, detailed comprehension, and extensive
summaries.

7. LLaMA-3-Turbo (8b): Balanced and reasonable reasoning time, moderate summarization.

8. LLaMA-3-Turbo (70b): Powerful, strong reasoning, deep reading comprehension, and high-quality
summaries.

9. LLaMA-3.1-Turbo (70b): Specific to instructional tasks, thorough reasoning, structured reasoning.

10. Qwen-1.5 (72b): For challenging tasks, versatile reasoning, extended reading comprehension, and
comprehensive summaries.

Given the simple nature of the query, LLaMA-3 (8b) is most suitable as the information retrieval and
fact-checking might be straightforward for it. However, since the query is fact-dependent and balances
between a high-quality summary and accuracy across simple fact-checks, LLaMA-3 (8b) might struggle
with accuracy due to its limitations in handling complex reasoning.
Mixtral-8x7B and LLaMA-3.1-Turbo (70b), on the other hand, seem well-suited as they can handle concise
and brief information retrieval, though they are likely not strong in advanced reading or fact extraction.
LLaMA-3-Turbo (8b) and LLaMA-3-Turbo (70b) may be marginal choices given their balance of perfor-
mance across reasoning, summaries, and fact retrieval.
Mistral-7b is not the best choice as it is mostly focused on efficiency rather than balance.
LLaMA-3 (70b) is a powerful model but better suited for more complex tasks and reasoning.
NousResearch (34b) and Qwen-1.5 (72b) could also handle the query but may not provide the level of
detail and accuracy required for this specific fact-checking task.
Hence, the rough order of suitability for this query might be:

• Mistral-7b (efficient)

• LLaMA-3-Turbo (8b) (balanced)

• LLaMA-3-Turbo (70b) (advanced)

</think >
<answer > Mistral-7b
LLaMA-3-Turbo (8b)
LLaMA-3-Turbo (70b)
</answer >



Table 27: Router Balance DRanker Case Study

Question: How many teams have played in the Super Bowl eight times?
Ground Truth: LLaMA-3-Turbo (8b)
<think > For this query, we’re looking for information where the answer is likely to be a specific
number (a count of teams) rather than a detailed explanation of a process or interpretation of data. The
information required is factual but not too advanced, as there is no need for extensive reasoning or deep
reading comprehension here. We need a straightforward and concise response using LLMs.
Given the description, the most suitable LLMs would be those in the categories of Lightweight and Fast,
as they are best at simple Hybrid QA and short reading comprehension tasks, ensuring a brief and efficient
answer.
Starting with the LLMs:

• LLaMA-3 (8b) - Lightweight chat model for straightforward Hybrid QA with concise summaries
which is well-suited for this straightforward query.

• Mistral-7b - Fast for moderate Hybrid QA with brief summaries, consistent with the straightforward
nature of the query.

• LLaMA-2 (7b) - Similar in lightweight category, but more moderate in reasoning and responses versus
the more detailed LLaMA-3. It is still suitable for our task.

• Qwen-1.5 (72b) - Versatile for challenging Hybrid QA. Although it’s described as versatile, this level
of versatility isn’t essential for a simple query like this and it could be a bit overpowered.

• The other LLMs, like Mixtral-8x7B, NousResearch (34b), LLaMA-3 (70b), LLaMA-3-Turbo (70b),
and LLaMA-3.1-Turbo (70b), all indicate more advanced reasoning, which is not necessary for this
query.

</think >
<answer > LLaMA-3 (8b)
Mistral-7b
LLaMA-2 (7b)
</answer >

Table 28: Router Performance DRanker Case Study

Question: Explain why the given definition is wrong.A mole is an animal that lives underground.
Ground Truth: Llama-3.1-Turbo (70b)
<think > The task here is to critique a definition and provide insights with reasonable depth. The given
definition is ”A mole is an animal that lives underground. ” From the description provided, LLaMA-3 (8b)
and Mistral-7b are the two models that mentions less capacity for detailed explanations and comprehensive
insights due to their lower token price and model sizes.
Mixtral-8x7B was described as excelling at instruction-based tasks, step-by-step reasoning, solid reading
comprehension, and structured summaries. NousResearch (34b) was ideal for complex research queries,
multi-step reasoning, deep reading comprehension, and thorough summaries. LLAma-2 (7b) has similar token
price and capacity to LLaMA-3 (8b) and is lightweight for straightforward reasoning and comprehension.
Qwen-1. 5 (72b) is described as versatile for challenging reasonsing, extended reading comprehension, and
comprehensive summaries.
Given the need to find a model that can provide detailed, clear insights and reasoning, Qwen-1. 5 (72b) stands
out as the most suitable for the task given its higher token price and better description. Next, NousResearch
(34b) would be suitable for producing detailed reasonings with its higher capacity as well. LLaMA-3 (8b)
and Mistral-7b are less suitable as they have limitations in capacity also with lower token prices. Lastly,
Mixtral-8x7B could also be a suitable model, but LLaMA-3-Turbo (70b) and LLaMA-3-Turbo (8b) are
better choices given their upgrades in capacity and token prices. LLaMA-3-Turbo (70b) specifically deals
with strong reasoning validation, which fits well with the essence of the query. Therefore, we’re left with
only one model for comprehensive reasoning and analyses - Qwen-1. 5 (72b). </think >
<answer > Qwen-1. 5 (72b)
LLaMA-3-Turbo (70b)
NousResearch (34b)
LLaMA-3-Turbo (8b)
</answer >



Table 29: Thought Template for IRanker on Router Task.

When evaluating and ranking language models for a factual query, the reasoning process
should consider (1) the complexity and specificity of the query, (2) the model’s described
strengths such as factual recall, structured comprehension, or reasoning ability, and (3) the
cost-effectiveness relative to the expected performance. Models should be prioritized if they
demonstrate strong alignment with the task type (e.g., historical fact retrieval) and offer a good
balance between accuracy and efficiency. In contrast, models optimized for complex reasoning
or verbose summaries may be less suitable for straightforward factual prompts, especially if
they incur high token costs.

Table 30: Thought Template for IRanker on Recommendation Task.

For recommendation tasks, the reasoning process should center on aligning candidate items
with the user’s demonstrated preferences across categories such as genre, style, or theme.
Effective evaluation involves identifying dominant patterns in the user’s historical choices and
comparing them to the attributes of each candidate item. Items are ranked higher if they closely
match frequently occurring features in the user’s history, while items that diverge significantly
in tone, genre, or thematic elements are deprioritized. This approach encourages models to
reason over latent user preferences and make decisions based on cumulative alignment rather
than isolated matches.

Table 31: Inference Time (s) per Query for Passage Ranking on 5, 7, and 9 Candidates. DRanker performs single-pass ranking, while
IRanker performs iterative exclusion.

5 Passages 7 Passages 9 Passages

Model Avg / Iter (s) Total (s) Avg. Iter / Case Avg / Iter (s) Total (s) Avg. Iter / Case Avg / Iter (s) Total (s) Avg. Iter / Case

DRanker 0.29 419.92 1 0.41 1594.54 1 0.48 860.16 1
IRanker 0.23 832.6 2.5 0.26 3543.54 3.5 0.27 1935.36 4.5

Table 32: Inference Time (s) per Query for Recommendation Task DRanker performs single-pass ranking, while IRanker performs iterative
exclusion with early stopping mechanism.

Movie Music Game

Model Avg / Iter (s) Total (s) Avg. Iter / Case Avg / Iter (s) Total (s) Avg. Iter / Case Avg / Iter (s) Total (s) Avg. Iter / Case

DRanker 0.67 1680.36 1 0.65 1630.21 1 0.66 1542.42 1
IRanker 0.41 5758.37 5.6 0.39 4401.54 4.5 0.42 5987.40 6.1

Table 33: Inference Time (s) per Query for LLM Routing Task DRanker performs single-pass ranking, while IRanker performs iterative
exclusion with early stopping mechanism.

Performance Cost Balance

Model Avg / Iter (s) Total (s) Avg. Iter / Case Avg / Iter (s) Total (s) Avg. Iter / Case Avg / Iter (s) Total (s) Avg. Iter / Case

DRanker 0.38 58.14 1 0.40 61.2 1 0.41 62.73 1
IRanker 0.29 88.74 2.0 0.30 82.62 1.8 0.29 79.86 1.8



Table 34: Recommendation Performance on Movie, Music, and Game Domains.

Movie Music Game

Model nDCG@10 nDCG@20 MRR nDCG@10 nDCG@20 MRR nDCG@10 nDCG@20 MRR

Retrieval-based Models

BM25 23.44 35.09 17.56 22.06 35.21 18.09 17.39 32.49 14.96
Contriever 22.26 25.29 18.29 21.03 34.26 17.04 39.87 53.66 23.98

Recommendation Models

BPR 31.28 41.65 25.54 28.51 38.60 21.96 35.79 44.32 28.92
SASRec 39.79 48.06 33.60 29.72 39.85 23.69 35.57 43.52 28.75
R1-Rec 25.01 34.87 18.49 21.38 34.54 17.22 17.22 32.32 14.75

Direct-Rank LLMs without RL

Qwen2.5-3B-Instruct-direct 21.23 34.26 16.92 17.90 33.46 16.68 16.62 30.98 13.17
Qwen2.5-7B-Instruct-direct 22.21 34.23 16.59 17.90 34.29 17.29 21.57 36.15 18.63

Llama3.1-70B-Instruct-direct 28.27 40.75 22.19 24.40 32.61 19.13 27.83 41.18 24.51

Iterative LLMs without RL

Qwen2.5-3B-Instruct-iter 26.44 38.55 22.01 27.06 38.45 21.97 32.80 44.23 29.49
Qwen2.5-7B-Instruct-iter 28.14 38.59 22.11 30.59 39.86 23.36 37.31 47.30 33.14

Llama3.1-70B-Instruct-iter 54.76 58.92 46.96 57.03 59.98 48.24 64.79 67.50 57.89

Direct-Rank LLMs with RL

DRanker 23.98 37.02 18.71 20.50 33.18 15.70 17.57 32.89 15.77

Iterative LLMs with RL

IRanker-3B 42.32 49.06 34.69 33.47 40.25 29.18 47.84 49.33 42.49

Table 35: Router Performance on Performance, Cost, and Balance Objectives.

Performance Cost Balance

Model nDCG@5 nDCG@10 MRR nDCG@5 nDCG@10 MRR nDCG@5 nDCG@10 MRR

Retrieval-based Models

BM25 9.06 35.99 18.41 4.79 32.35 13.52 4.79 32.22 13.39
Contriever 11.28 36.28 20.75 14.62 35.81 16.29 13.88 33.57 16.74

Routers

RouterKNN 24.38 40.72 26.73 15.12 35.29 16.87 20.68 39.10 21.74
RouterBert 27.25 44.37 28.25 20.44 39.50 22.11 20.44 39.37 21.98

GraphRouter 22.22 39.53 21.57 34.85 44.11 26.56 27.18 45.16 29.56

Direct-Rank LLMs without RL

Qwen2.5-3B-Instruct-direct 0.00 28.91 10.00 0.00 28.91 10.00 0.00 28.91 10.00
Qwen2.5-7B-Instruct-direct 4.78 32.21 13.38 4.78 32.34 13.51 9.06 35.99 18.41

Llama3.1-70B-Instruct-direct 7.56 32.57 13.84 9.71 32.96 14.26 25.34 45.54 30.26

Iterative LLM Models without RL

Qwen2.5-3B-Instruct-iter 17.41 38.55 20.87 13.35 37.82 20.22 0.0 31.41 12.42
Qwen2.5-7B-Instruct-iter 12.49 36.92 19.13 18.28 38.57 21.06 22.17 42.39 26.09

Llama3.1-70B-Instruct-iter 17.65 38.18 20.67 44.78 56.74 43.93 35.68 50.27 35.30

Direct-Rank LLMs with RL

DRanker 17.90 38.10 20.63 4.78 32.34 9.06 4.78 32.21 13.38

Iterative LLM Models with RL

IRanker 28.64 41.06 23.62 22.32 45.88 30.39 20.27 41.45 24.44



Table 36: Passage Ranking Performance on 5, 7, and 9 Candidates.

5 Passages 7 Passages 9 Passages

Model nDCG@3 nDCG@5 MRR nDCG@3 nDCG@5 MRR nDCG@3 nDCG@5 MRR

Retrieval-based Models

BM25 53.19 65.05 53.63 41.80 52.09 44.95 34.51 43.81 39.69
Contriever 37.09 56.11 41.91 28.91 40.13 36.41 25.79 34.39 33.10

Passage Ranking Models

RankBERT 65.26 72.54 63.37 60.19 67.18 60.06 56.33 64.35 56.51
MonoT5 62.97 70.82 60.96 60.27 66.25 58.84 49.76 54.96 47.61

RankLLama 76.24 79.57 72.67 66.86 72.34 65.35 61.42 66.92 59.78

Direct-Rank LLMs without RL

Qwen2.5-3B-Instruct-direct 33.82 52.76 38.08 10.63 12.69 22.47 5.77 7.76 15.94
Qwen2.5-7B-Instruct-direct 36.54 57.82 44.57 12.55 16.24 23.69 8.56 9.83 17.79
llama-3.1-70b-instruct-direct 48.83 62.91 50.90 35.22 40.57 40.75 30.03 34.66 36.37

Iterative LLM Models without RL

Qwen2.5-3B-Instruct-iter 56.54 68.14 57.74 38.13 48.11 43.47 32.78 40.23 39.40
Qwen2.5-7B-Instruct-iter 62.67 71.45 62.01 49.99 58.48 50.94 44.63 52.24 48.74
llama-3.1-70b-instruct-iter 65.55 72.89 63.90 56.73 64.04 56.74 54.80 60.76 55.22

Deepseek-R1-1024-iter 69.64 76.53 68.83 40.08 55.43 45.73 39.64 50.54 45.32
Deepseek-R1-2048-iter 69.39 73.52 64.56 52.70 62.31 53.03 53.41 62.88 56.84

Direct-Rank LLMs with RL

DRanker 35.88 57.37 43.85 11.73 13.28 22.86 5.96 8.14 16.11

Iterative LLM Models with RL

IRanker 64.47 70.62 60.98 53.52 59.89 53.22 49.83 54.54 49.96

Table 37: Zero-shot on Recommendation Performance on Movie, Music, and Game Domains.

Movie Music Game

Model nDCG@10 nDCG@20 MRR nDCG@10 nDCG@20 MRR nDCG@10 nDCG@20 MRR

Qwen2.5-3B-Instruct-iter 26.44 38.55 22.01 27.06 38.45 21.97 32.80 44.23 29.49
DeepSeek-R1-Distill-Qwen-7B-direct 13.28 30.03 11.20 12.70 29.86 11.86 15.30 31.58 14.74

Qwen2.5-7B-Instruct-direct 22.21 34.23 16.59 17.90 34.29 17.29 21.57 36.15 18.63

IRanker 42.32 49.06 34.69 33.47 40.25 29.18 47.84 49.33 42.49
IRanker (zero-shot) 32.45 41.85 25.95 28.97 39.51 23.21 34.48 46.43 31.16

Table 38: Zero-shot on Router Performance on Balance, Cost, and Performance Objectives.

Performance Cost Balance

Model nDCG@5 nDCG@10 MRR nDCG@5 nDCG@10 MRR nDCG@5 nDCG@10 MRR

Qwen2.5-3B-Instruct-iter 17.41 38.55 20.87 13.35 37.82 20.22 0.0 31.41 12.42
DeepSeek-R1-Distill-Qwen-7B-direct 11.11 36.81 20.00 20.17 42.65 27.22 26.55 44.22 28.52

Qwen2.5-7B-Instruct-direct 4.78 32.21 13.38 4.78 32.34 13.51 9.06 35.99 18.41

DRanker 17.90 38.10 20.63 4.78 32.34 9.06 4.78 32.21 13.38
IRanker 28.64 41.06 23.62 22.32 45.88 30.39 20.27 41.45 24.44

IRanker (zero-shot) 19.58 39.72 20.41 16.62 40.61 23.10 18.28 39.34 21.89



Table 39: Zero-shot on Passage Ranking Performance on 5, 7, and 9 Candidates.

5 Passages 7 Passages 9 Passages

Model nDCG@3 nDCG@5 MRR nDCG@3 nDCG@5 MRR nDCG@3 nDCG@5 MRR

Qwen2.5-3B-Instruct-iter 56.54 68.14 57.74 38.13 48.11 43.47 32.78 40.23 39.40
DeepSeek-R1-Distill-Qwen-7B-direct 33.72 56.44 42.69 18.97 22.27 28.23 10.73 12.38 19.39

Qwen2.5-7B-Instruct-direct 36.54 57.82 44.57 12.55 16.24 23.69 8.56 9.83 17.79

DRanker 35.88 57.37 43.85 11.73 13.28 22.86 5.96 8.14 16.11
IRanker 64.47 70.62 60.98 53.52 59.89 53.22 49.83 54.54 49.96

IRanker (zero-shot) 63.18 67.19 56.42 45.27 52.92 51.19 38.12 46.15 42.45
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