
Conformal Prediction without Nonconformity Scores

Abstract

Conformal prediction (CP) is an uncertainty quan-
tification framework that allows for constructing
statistically valid prediction sets. Key to the con-
struction of these sets is the notion of nonconfor-
mity function, which assigns a real-valued score
to individual data points: Only those (hypotheti-
cal) data points contribute to a prediction set that
sufficiently conform to the data. The point of de-
parture of this work is the observation that CP
predictions are invariant against (strictly) mono-
tone transformations of a nonconformity function.
In other words, it is only the ordering of the scores
that matters, not their quantitative values. Conse-
quently, instead of scoring individual data points, a
conformal predictor only needs to be able to com-
pare pairs of data points, deciding which of them
is the more conforming one. This suggests an in-
teresting connection between CP and preference
learning, in particular learning-to-rank methods,
and makes CP amenable to training data in the
form of (qualitative) preferences. Elaborating on
this connection, we propose methods for learning
(latent) nonconformity functions from data of that
kind and show their usefulness in real-world clas-
sification tasks.

1 CONFORMAL PREDICITON

Alireza

Theorem 1.1 (equivalence). For any nonconformity func-
tion in conformal prediction, there exists a rank-equivalent
preference relation that can be learned directly, provided
that the appropriate data are available.

Let us define a weak preference relation ≿ to be a complete
and transitive binary relation on a set A (which describes

Table 1: Table of Notations.

Notation Description

x ∈ X instance
y ∈ Y label
C(x) CP set for the instance x
π⋆ : X −→ P(Y) true label probability function
π⋆(x)y probability of class y for instance x
π̂ : X −→ P(Y) an estimate of π⋆

s : X × Y −→ R conformity score function
≻s conformity (score) order relation
Dcalib calibration data
Dtrain training data
α CP error rate

a decision makers ranking of all elements). We see that if
u : X −→ R is a utility function representing ≿, ≿ must be
complete and transitive:

Transitivity. Suppose x ≿ y and y ≿ z. Since u represents
≿, we have u(x) ≥ u(y) and u(y) ≥ u(z). By transitivity
of ≥, u(x) ≥ u(z). Thus, x ≿ z. Hence, ≿ is transitivity.

Completeness. For any x, y ∈ X × Y , u(x) and u(y) are
real numbers. Therefore, either u(x) ≥ u(y) or u(y) ≥
u(x). Since u represents ≿, this implies x ≿ y or y ≿ x.
Hence, ≿ is complete.

Following, the imposed preference relation can be learned
by a ranker, for example by learning a binary predictor for
every pair of items (and aggregating the individual predic-
tions to a ranking at test time) or fitting a Placket-Luce
model.

Theorem 1.2 (validity). If the data points in Dcalib ∪
(xnew, ynew) are exchangeable, then

P(ynew ∈ C(x)) ≥ 1− α.

There are two major approaches towards modeling pref-
erence relations, which are binary preference predicates
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Algorithm 1 Split conformal prediction without non-
conformity score

Input: calibration data Dcalib, training data Dtrain, error
rate α, test instance x

Use preference data Dtrain to infer preference relation ≻s

Sort Dcalib according to ≻s

Let (xq, yq) be the ⌈(1− α)(n2 + 1)⌉ -th element in the
sorted list

Return prediction set C(x) = {y ∈ Y : (x, y) ≻s

(xq, yq)}

and utility functions Fürnkranz and Hüllermeier [2011].
While theoretically both are applicable for our purpose, we
employ the latter and learn a latent utility (or in this case
conformity) function f : X × Y −→ R in lieu of a non-
conformity score. We consider pairwise preference data
Dtrain = {(xin , yin) ≻ (xjn , yjn)}Nn=1

1, where preference
relation indicates that instance xi with label yi is more con-
formal than instance xj with label yj . Having access torework

no-
ta-
tion

training data of this kind, we can learn a conformity func-
tion via a generalized Bradley-Terry model Bradley and
Terry [1952]. The probability of a pairwise preference is
modeled as

P(i ≻ j) =
exp(f(i))

exp(f(i)) + exp(f(j))
(1)

Model parameters of f can then be learned via maximum
likelihood estimation, where the negative log-likelihood
function is given as

l(f) =

N∑
n=1

ln(exp(f(i) + exp(f(j)))− f(i) (2)

The negative log-likelihood function 2 can then be used as a
loss for training models of f with gradient-based methods,
such as deep neural networks. Due to its probabilistic na-
ture, the Bradley-Terry model deals gracefully with noisy
preference labels and is an appropriate choice for the task of
learning a preference relation for conformal classification.rework

pseu-
docode

1.1 FEEDBACK MODEL AND LEARNABLE
SCORES

Jonas: I think it is also worth to discuss, which type of con-
formity function can be learned depending on the feedback

1For the ease of notation, we will refer to the instance-label-
pairs with i and j in the remainder of this paper.

model. As we discussed, with the “in-instance” compar-
isons, we can learn LAC but not APS. With “cross-instance”
comparisons, any non-conformity score can be learned (as
stated in Theorem 1.1). I think this has practical implica-
tions, depending on which types of comparisons can be
obtained from a human annotator, there may be a constraint
on the conformity functions that can be learned.

2 RELATED WORK

I am not sure whether a dedicated related work section
is necessary, however, the following papers are based on
classifiers that are then used for “ranking”

• Huang et al. [2024]

• Luo and Zhou [2024] (Preprint)

3 EXPERIMENTAL EVALUATION

3.1 RESEARCH QUESTIONS

• RQ2: How does a learned nonconformity score per-
form in comparison to established, pre-specified non-
conformity scores on downstream tasks (image/text
classification)

• . . .

• Datasets, CV splits,

• Learn neural networks (loss function is Bradley-Terry
NLL, Optimizer, Architecture, Epochs . . . ) both for
classifiers as rankers

• Oracle annotators that mimic nonconformity scores
and return preferences for pairs of observations

• Evaluation metrics: Coverage, worst-slice conditional
coverage, y-conditional coverage, efficiency (beautiful
boxplots)

3.2 REPLICATING NONCONFORMITY SCORES
FROM ORACLE FEEDBACK

In the following, we will experimentally demonstrate that
the aforementioned method can indeed be used to replicate
existing nonconformity scores. To this end, we consider a
synthetic setting in which the true label probability function
π⋆ : X −→ P(Y) is known and an oracle annotator is
simulated, that returns ordered pairs

(xin , yin) ≻ (xjn , yjn) ⇐⇒ s(xin , yin) > s(xjn , yjn)

for a nonconformity score s : X × Y −→ R. In order to
validate that the learned preference relation ≻s replicates
s, we reserve observations Dval from the synthetic data
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Figure 1: Rank correlation between Dval sorted according
to the ground truth conformity score s and the preference
relation ≻s inferred from pairwise annotations.

generating process, sort them according to ≻s and s and
compute the Kendall’s τ rank correlation coefficient Kendall
[1938]. A detailed description of the experimental setup can
be found in Appendix C. We consider the cases of the least
ambiguous set-valued classifier (LAC) Sadinle et al. [2019]
and the adaptive prediction sets (APS) Romano et al. [2020],
Angelopoulos et al. [2020] nonconformity scores.

sLAC(x, y) = 1− π⋆(x)y (3)

sAPS(x, y) =

k∑
i=1

π⋆(x)yi
(4)

where y = yk and the probabilities are ranked from higher
to lower.

Figure 1 shows the rank correlation between ground-truth
nonconformity scores and the inferred preference relation
≻s on Dval for LAC and APS. We observe, that while both
curves are rising, only the LAC curve is approaching 1
within the 100 instances. This is most likely due to the fact

4 LIMITATIONS AND FUTURE WORK

Limitations

• Calibration data still needs to consist of observations
(x, y) ∈ X × Y

• Technically, the learned conformity function still re-
turns a score

• So far, we only considered (multi-class) classification.
Regression tasks cannot yet be accomplished by our
method.

Future Work

• Dyad Ranking, allows for zero-shot predictions etc.

5 CONCLUSION
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(Supplementary Material)
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A OMITTED PROOFS

YS: Please keep this section for now. I’ll add notes here without disturbing the progress in the main paper.

Theorem A.1. Let s : Z → R be any (pointwise) non-conformity score, and let ρ : Z → R be rank-equivalent to s. Then
for every finite sample {z1, . . . , zn} ⊂ Z and every new point zn+1 the conformal p-values coincide. Specifically, we have

πs(zn+t | z1, . . . , zn) = πρ(zn+t | z1, . . . , zn).

An immediate consequence of A.1 is that Cs(Xn+1) and Cρ(Xn+1) coincide.

Suggestion for the introduction:
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B WORK IN PROGRESS

Theorem B.1. For any nonconformity function in conformal prediction, an equivalent ranking problem can be learned
directly, provided that the appropriate data are available.

Let us define a weak preference relation ≿ to be a complete and transitive binary relation on a set A (which describes
a decision makers ranking of all elements). We see that if u : X −→ R is a utility function representing ≿, ≿ must be
complete and transitive:

Transitivity. Suppose x ≿ y and y ≿ z. Since u represents ≿, we have u(x) ≥ u(y) and u(y) ≥ u(z). By transitivity of ≥,
u(x) ≥ u(z). Thus, x ≿ z. Hence, ≿ is transitivity.

Completeness. For any x, y ∈ X × Y , u(x) and u(y) are real numbers. Therefore, either u(x) ≥ u(y) or u(y) ≥ u(x).
Since u represents ≿, this implies x ≿ y or y ≿ x. Hence, ≿ is complete.

Following, the imposed preference relation can be learned by a ranker, for example by learning a binary predictor for every
pair of items (and aggregating the individual predictions to a ranking at test time) or fitting a Placket-Luce model. See after
1.2.

Definition B.2 (Basic Spaces). Let (X,Y ) be a measurable space where:

• X is the feature space

• Y is the label space

• Z = X × Y is the example space

Definition B.3 (Nonconformity Function). Let α : Z −→ R be a nonconformity function where:

• For any z ∈ Ztest, α(z) measures the nonconformity of z with respect to the calibration set Z∗

Proof. Part 1: Construction of the Ranking Function

Definition B.4. For any nonconformity function α, define the ranking function rα : Z × Z −→ {−1, 1} as:

rα(z1, z2) = sign(α(z2)− α(z1))

Part 2: Equivalence in Conformal Prediction

Theorem B.5. For any z ∈ Z, the p-value computed using α is equivalent to that computed using rα.

Proof. The p-value using α is defined as:

pα(z) =
|{z′ ∈ Z : α(z′) ≥ α(z)}|

|Z|+ 1

Using rα, we can express the same set:

{z′ ∈ Z : α(z) ≥ α(z)} = {z′ ∈ Z : rα(z
′, z) ≤ 0}

Therefore:

pα(z) =
|{z′ ∈ Z : rα(z

′, z) ≤ 0}|
|Z|+ 1

= pr(z)

Part 3: Learnability
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C ADDITIONAL EXPERIMENTS

C.1 REPLICATING NONCONFORMITY SCORES FROM ORACLE FEEDBACK

In the following, we will describe the experimental details for replicating nonconformity scores from Oracle feedback. We
consider a multiclass scenario with three features and K = 3 classes. The classification instances follow a multivariate
normal distribution x ∼ N (µ,Σ) and the conditional class distribution is modeled as a multinomial logistic regression
P(y = k | x) = exp(xT βk)∑K

j=1 exp(xT βj)
.

We draw n classification instances from the P (x) and create all n ·K possible observations (x, y). The oracle annotator
proceeds to compute the nonconformity scores for all observations and returns all

(
n·K
2

)
ordered pairs as preference data

Dtrain for the ranking model. The ranking model is a simple feed-forward neural network with three hidden layers of width
three and sigmoid activation functions. We train it for 300 epochs at a learning rate of 0.01 with the Adam optimizer to infer
a preference relation ≻s.

Afterwards, we sample another 100 instances from P (x) and again create all possible observations. These observations are
then being sorted with respect to the ground-truth nonconformity score s and according to ≻s. We compute the Kendalls τ
rank correlation coefficient between these two rankings in order to validate whether ≻s indeed replicates s.
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