
Appendices

A Differentiable perturbed renderer

This section describes some possible choice of priors for the smoothing noise of our differentiable
perturbed renderers and discuss the eventual links with already existing renderers. In addition, we
provide justification of the variance reduction and adaptive smoothing methods for different priors on
the noise.

A.1 Perturbed renderers

The following propositions discuss some possible choices of noise prior for the perturbed renderer,
exhibiting the links with already existing differentiable renderers [24, 16, 23].
Proposition 1. The sigmoid function corresponds to the perturbed Heaviside function with a logistic
prior on noise:

sigmoid(x) = E[H(x+ Z)] (21)

where Z ∼ Logistic(0, 1)

Proof. First, we note that the sigmoid function correspond to the first weight from the softmax

applied to the R2 vector �x =

�
x
0

�
. Indeed, we have :

σ(x) =
1

1 + exp(−x)
=

exp(x)

exp(x) + exp(0)
(22)

= softmax (�x)T
�
1
0

�
(23)

From the previous proposition, with Z a random variable in R2 distributed with a Gumbel distribution,
we have:

softmax(�x) = E[ argmax
y s.t. �y�1=1

�y, �x+ �Z�] (24)

= E[ argmax
y s.t. �y�1=1

yT
�
x+ �Z1

�Z2

�
] (25)

= E[ argmax
y s.t. �y�1=1

yT
�
x+ �(Z1 − Z2)

0

�
] (26)

because x+ �(Z1 − Z2) > 0 is equivalent to x+ �Z1 > �Z2.

Finally, we can re-write:

σ(x) = E[ argmax
y s.t. �y�1=1

yT
�
x+ � �Z

0

�
]T

�
1
0

�
(27)

= E[argmax
0≤y≤1

y(x+ � �Z)] (28)

= E[H(x+ � �Z)] (29)

where �Z follows a logistic law.

Which allows to conclude that the sigmoid corresponds to the Heaviside function perturbed with
a logistic noise. We could use the fact that the cumulative distribution function of the logistic
distribution is the sigmoid function to make an alternative proof.

Proposition 2. The affine approximation of the step function corresponds to the perturbed Heaviside
function with an uniform prior on noise:

Haff (x) = E[H(x+ Z)] (30)

where Z ∼ U(− 1
2 ,

1
2 )
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Proof. We have :

E [H(x+ Z)] = P(x+ Z > 0) (31)
= P(Z > −x) (32)

=





0 if x ≤ − 1
2

x+ 1
2 if − 1

2 < x < 1
2

1 if x ≥ 1
2

(33)

= Haff (x) (34)

Proposition 3. The arctan approximation of the step function corresponds to the perturbed Heaviside
function with a Cauchy prior on noise:

1

2
+

1

π
arctan(x) = E[H(x+ Z)] (35)

where Z ∼ Cauchy(0, 1)

Proof. We have :

E [H(x+ Z)] = P(x+ Z > 0) (36)
= P(Z > −x) (37)

=

� ∞

−x

1

π(1 + x2)
dz (38)

=
1

2
+

1

π
arctan(x) (39)

Proposition 4. The softmax function corresponds to the perturbed maximal coordinates with a
Gumbel prior on the noise:

softmax(z) = E[ argmax
y s.t. �y�1=1

�y, z + Z�] (40)

where Z ∼ Gumbel(0, 1)

Proof. The Gumbel-max trick is a classical property of the Gumbel distribution stating: the maximizer
of M fixed values zi which have been perturbed by a noise i.i.d Zi following a Gumbel distribution,
follows an exponentially weighted distribution [14]. This can be written:

P(max
j

zj + Zj = zi + Zi) =
exp(zi)�
j exp(zj)

(41)

where Zi are i.i.d. and following a Gumbel distribution. Thus, for a noise Z following a Gumbel
distribution, we have :

E[ argmax
y s.t. �y�1=1

�y, z + �Z�] =
�

i

eiP( argmax
y s.t. �y�1=1

�y, z + �Z� = ei) (42)

=
�

i

eiP(max
j

zj + Zj = zi + �Zi) (43)

=
�

i

ei
exp(zi)�
j exp(zj)

(44)

= softmax(z) (45)
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Figure 8: Modifying the prior on the noise leads to different approximations of a non-smooth operator.
The sigmoid and affine approximations are obtained by using respectively a Logistic and a Uniform
prior.

Following the previous results, one can observe that OpenDR [24] corresponds to a rasterization step
where a uniform prior is used for the smoothing noise in order to get gradients during the backward
pass. More precisely, the uniform distribution is taken with a support as large as a pixel size which
allows to get non null gradients for pixels lying on the border of triangles. This can be linked to
antialiasing techniques which are added to classical rendering pipeline to remove high frequencies
introduced by the non-smooth rasterization. These techniques make the intensity of a pixel vary
linearly with respect to the position of the triangle which can also be seen as an affine approximation
of the rasterization. However, one should note that the density of the uniform distribution cannot be
written in the form of µ(z) ∝ exp(−ν(z)) so the properties on differentiability from [4] does not
apply. In particular, this approximation is non-differentiable at some points (x = 1 or −1) and can
have null gradients (for x < −1 or x > 1) which is inducing localized gradients for OpenDR [24].
For this reason, the approach of NMR [16] actually consists in having a variable range for the
distribution support in order to get non-null gradients for a wider region. This approach corresponds
to the affine interpolation proposed in [35] and can lead to null gradients. More closely related to our
approach, SoftRas smoothen the rasterization by using a sigmoid approximation while Z-buffering is
replaced by a softmax during aggregation. As shown by propositions 1 and 4, this approach actually
corresponds to a special case of a perturbed renderer where rasterization and aggregation steps were
smoothen by using respectively a Logistic and a Gumbel prior for the noise.

In short, this means that some existing renderers [24, 23, 16] can be interpreted in the framework of
differentiable perturbed renderers when considering specific priors for the noise used for smoothing.
In addition, the generality of the approach allows to consider a continuous range of novel differentiable
renderers in between the already existing ones.

A.2 Variance reduction

As introduced in the paper, control variates methods can be used to reduce the noise of the Monte-
Carlo estimators of the Jacobian of a perturbed renderer, without inducing any extra-computation. In
particular, we prove this in the case of Gaussian and Cauchy priors on the smoothing noise.

Proposition 5. Jacobian of perturbed renderers can be written as :

Jθy
∗
� (θ) = EZ

�
(y∗(θ + �Z)− y∗(θ))∇ν(Z)�

1

�

�
, (46)

when Z follows a Gaussian distribution.

15



Proof. As done in [4, 1], with a change of variable z� = θ + �z we have:

Jθy
∗
� (θ) =

∂

∂θ

�� ∞

−∞
y∗(θ + �z)µ(z)dz

�
, (47)

=

� ∞

−∞
y∗(z�)

∂

∂θ
µ

�
z� − θ

�

�
dz�, (48)

=

� ∞

−∞
y∗(z�)

1

�
∇ν

�
z� − θ

�

��
µ

�
z� − θ

�

�
dz� (49)

And by doing the inverse change of variable, we get:

Jθy
∗
� (θ) = EZ

�
y∗(θ + �Z)

�
∇ν(Z)�

�
(50)

In addition, for Z following a standard Gaussian distribution we have ν(Z) = �Z�2

2 and thus:

EZ

�
y∗(θ)∇ν(Z)�

�
= y∗(θ)EZ

�
Z�� (51)

and because Z is centered, we get:

EZ

�
y∗(θ)∇ν(Z)�

�
= 0 (52)

Finally we get:

Jθy
∗
� (θ) = EZ

�
(y∗(θ + �Z)− y∗(θ))∇ν(Z)�

1

�

�
. (53)

Proposition 6. Jacobian of perturbed renderers can be written as :

Jθy
∗
� (θ) = EZ

�
(y∗(θ + �Z)− y∗(θ))∇ν(Z)�

1

�

�
, (54)

when Z follows a Cauchy distribution.

Proof. Proceeding in a similar way to 5, for a Cauchy distribution we have ν(z) = ln(1 + z2), thus

EZ

�
y∗(θ)∇ν(Z)�

�
= y∗(θ)EZ

�
2Z�

1 + �Z�2
�

(55)

= 0 (56)

and finally we have:

Jθy
∗
� (θ) = EZ

�
(y∗(θ + �Z)− y∗(θ))∇ν(Z)�

1

�

�
, (57)

for Z following a Cauchy distribution

A.3 Adaptive smoothing

In the same way as we proceeded for Jacobians computation, control variates method can be used to
reduce the variance of Monte-Carlo estimators of the sensitivity of perturbed optimizers with respect
to smoothing parameter �.
Proposition 7. The sensitivity of the perturbed optimizer with respect to the smoothing parameter �
can be expressed as:

J�y
∗
� (θ) = EZ

�
(y∗(θ + �Z)− y∗(θ))

∇ν(Z)�Z − 1

�

�
(58)

for Z a smoothing noise following a Gaussian prior.
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Proof. In a similar way to 5, using the same change of variable, we get:

Jθy
∗
� (θ) =

∂

∂�

�� ∞

−∞
y∗(θ + �z)µ(z)dz

�
, (59)

=

� ∞

−∞
y∗(z�)

∂

∂�
µ

�
z� − θ

�

�
dz�, (60)

=

� ∞

−∞
y∗(z�)

1

�2

�
∇ν

�
z� − θ

�

��
z� − θ

�
− 1

�
µ

�
z� − θ

�

�
dz� (61)

which yields with the inverse change of variable:

J�y
∗
� (θ) = EZ

�
y∗(θ + �Z)

∇ν(Z)�Z − 1

�

�
(62)

Then, for Z following a Gaussian distribution, we have:

EZ

�
y∗(θ)

∇ν(Z)�Z − 1

�

�
= y∗(θ)EZ

��Z�2 − 1

�

�
(63)

= 0 (64)

for Z following a standard Gaussian noise. Finally, we can write:

J�y
∗
� (θ) = EZ

�
(y∗(θ + �Z)− y∗(θ))

∇ν(Z)�Z − 1

�

�
(65)

Proposition 8. The sensitivity of the perturbed optimizer with respect to the smoothing parameter �
can be expressed as:

J�y
∗
� (θ) = EZ

�
(y∗(θ + �Z)− y∗(θ))

∇ν(Z)�Z − 1

�

�
(66)

for Z a smoothing noise following a Cauchy prior.

Proof. We adapt the previous proof to the case of a Cauchy distribution for the noise. We observe
that:

J�y
∗
� (θ) = EZ

�
y∗(θ + �Z)

∇ν(Z)�Z − 1

�

�
(67)

remains valid. In addition, we have :

EZ

�
y∗(θ)

∇ν(Z)�Z − 1

�

�
= y∗(θ)

1

�
EZ

�
2�Z�2

1 + �Z�2 − 1

�
(68)

(69)

for Z following a Cauchy noise. Moreover, an integration by parts gives:
� ∞

−∞

2x2

(1 + x2)
2 dx =

� −x

1 + x2

�∞

−∞
+

� ∞

−∞

1

1 + x2
dx (70)

= [arctan(x)]]∞−∞ (71)

so we have :

EZ

�
2�Z�2

1 + �Z�2 − 1

�
= 0 (72)

As previously done in Proposition 7, we finally get:

J�y
∗
� (θ) = EZ

�
(y∗(θ + �Z)− y∗(θ))

∇ν(Z)�Z − 1

�

�
(73)
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Figure 9: Pose optimization with an initial guess uniformly sampled on the rotation space. Results
are reported for our differentiable perturbed renderer with Adaptive Smoothing (AS) and Variance
Reduction (VR), and for SoftRas [23] with and without Adaptive Smoothing.

B Experimental results

In this section, we provide details on our experimental setup and some additional results. In ad-
dition, we provide the code for our differentiable perturbed renderer based on Pytorch3d [31] and
the experiments on pose optimization while additional experiments will be made available upon
publication.

B.1 Pose optimization

Trying to solve pose optimization from an initial guess taken uniformly in the rotation space leads to
very variable results when measuring the average final error (Fig.9). When the initialization is too far
from the initial guess, the optimization process converges towards a local optima. This limitation
is inherent to approaches using differentiable rendering to solve pose optimization tasks and could
be avoided only by using a combination with other methods, e.g. Render & Compare [18], to get
better initial guess for the pose. For this reason, we prefer to consider the ability of our differentiable
renderer to retrieve the true pose with an initial guess obtained by perturbing the target and measure
the amount of final errors below a given precision threshold (Fig. 10,11).

In addition to the pose optimization task on the cube, we propose to solve the same problem with
others objects from Shapenet dataset [7] (Fig. 11).

B.2 Mesh reconstruction

Reconstruction network Network architecture is based on [23] and is represented in Fig. 12. The
encoder is composed of 3 convolutional layers (each of them is followed by a batch normalization
operations) and 3 fully connected layers. We use two different decoders to retrieve respectively the
vertices’ position and their color. The positional decoder is composed of 3 fully connected layers.
The decoder used for colors retrieval is composed of a branch selecting a palette of Np colors on the
input image while the second branch mixes these colors to colorize each of the Nv vertices.

Training setup We use the same setup as described in [8, 16, 23]. The training is done by
minimizing a loss combining silhouette and color information with a regularization term:

L = λsilLsil + λRGBLRGB + λlapLlap, (74)

and we set λsil = 1, λRGB = 1, λlap = 3.10−3 during training.
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Figure 10: Pose optimization results for a perturbed renderer with Gaussian and Cauchy priors on the
smoothing noise, and for SoftRas.
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Figure 11: Pose optimization on various objects: a bag (Top) and a mailbox (Bottom)

In more details, Lsil is the negative IoU between silhouettes I and Î which can be expressed as:

Lsil = E

�
1− �I � Î�1

�I + Î − I � Î�1

�
(75)

LRGB is the �1 RGB loss between R and R̂:

LRGB = �R− R̂�1 (76)

Llap is a Laplacian regularization term penalizing the relative change in position between a vertices v
and its neighbours N (v) which can be written:

Llap =
�

v


v − 1

|N (v)|
�

v�∈N (v)

v�




2

(77)

Additional results We provide additional qualitative results for colorized mesh reconstruction
(Fig. 13).
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Figure 12: Learning architecture for the task of colorized 3D mesh reconstruction. First row:
Overview of reconstruction network. Second row: Encoder network. Third row: Positional decoder.
Fourth row: Color decoder.
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Figure 13: Results from unsupervised 3D mesh and color reconstruction. 1st and 4th column: Input
image. Other columns: Reconstructed 3D mesh from different angles.
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