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APPENDIX A. ALGORITHM SUMMARY

Based on the implementations in Section 3, we summarize the brief procedure of our method in
Algorithm 1.

Algorithm 1: Continual offline RL via diffusion-based dual generative replay
Input: (M1, ...,MK , ...): sequential tasks; Dµk : offline dataset of task Mk, k = 1, ...,K;

µ�(a|s): state-conditioned behavior generative model with parameters �;
p'(s|k): task-conditioned state generative model with parameters ';
Qk

✓(s,a): multi-head critic with parameters ✓.
1 for Task K = 1, 2, ... do
2 if K = 1 then
3 Train the nominal behavior generative model �1 with Dµ1 using Eq. (6)
4 Train the nominal action evaluation model ✓1 with Dµ1 using Eq. (7)
5 Train the nominal state generative model '1 with Dµ1 using Eq. (9)
6 else
7 Initialize dataset: D = DµK

8 for k = 1 to K � 1 do
9 Generate state samples: ŝk ⇠ p'K�1(s|k)

10 Generate corresponding action samples: âk ⇠ µ�K�1(a|ŝk)
11 Construct pseudo dataset: D̂k =

P
(ŝk, âk)

12 Annotate the Q-function of pseudo state-action pairs as Qk
✓K�1

(ŝk, âk)

13 Interleave pseudo samples with real ones: D = D [ D̂k

14 end
15 Initialization of models: ('K ,�K ,✓K) ('K�1,�K�1,✓K�1)
16 Update state generative model 'K with D using Eq. (10)
17 Update behavior generative model �K with D using Eq. (13)
18 Update the multi-head critic with D and {Qk

✓K�1
(ŝk, âk)}K�1

k=1 using Eq. (15)
19 end
20 end

APPENDIX B. EXPERIMENTAL SET-UP AND DATA COLLECTION

This section introduces the details of experimental settings for all investigated domains. The prob-
lems of interest include: 1) Swimmer-Dir, where the swimmer robot needs to move toward a given
direction and we randomly sample four target directions in 2D space to form the sequential tasks;
2) Hopper-Vel, where the hopper robot needs to run at a goal velocity and we randomly sample four
velocities in the range of [0, 1] to form the sequential tasks; 3) Walker2D-Params, where a walker
robot needs to move forward as fast as possible and we randomly sample four sets of physical pa-
rameters for the robot; 4) HalfCheetah-Vel, where a planar cheetah needs to run forward at a goal
velocity we randomly sample four velocities in the range of [0, 2]. For all MuJoCo domains, the
time horizon in a learning episode is set as 200.

Data Collection. For each evaluation domain, we choose four tasks to execute in a sequence and
train a separate policy from scratch to sample the offline dataset for each task. We use soft actor-critic
(SAC) (Haarnoja et al., 2018) for the Swimmer-Vel, Hopper-Vel, and Walker2D-Params domains.
We use the TD3 algorithm (Fujimoto et al., 2018) for the HalfCheetah-Vel domain as it proves more
stable across various HalfCheetah-Vel tasks (Mitchell et al., 2021). The complete replay buffer from
the entire lifetime of training is saved for each task and the number of training steps for all tasks is
1M . Table 3 and Table 4 list the main hyper-parameters for the SAC and TD3 algorithms during
offline data collection, respectively.
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Parameter Standard Configuration

Optimizer Adam
Value learning rate 1e� 4
Policy learning rate 1e� 4
alpha learning rate 1e� 4

alpha 0.2
Batch size 256

Neurons per hidden layer 256
Number of hidden layers 1

discount factor 0.99
target network update rate 0.01

Table 3: Hyperparameters for SAC in the data collection phase.

Parameter Standard Configuration

Optimizer Adam
Value learning rate 1e� 3
Policy learning rate 1e� 4

Batch size 256
Neurons per hidden layer 256
Number of hidden layers 1

discount factor 0.99
target network update rate 0.01

frequency of delayed policy updates 2
range to clip target policy noise 0.5

policy noise 0.2
exploration noise 0.1

frequency of delayed policy updates 2

Table 4: Hyperparameters for TD3 in the data collection phase.

APPENDIX C. ARCHITECTURE AND HYPERPARAMETERS OF CUGRO

Network Architecture. CuGRO includes two conditional scored-based diffusion models that esti-
mate the score function of the behavior action distribution and the score function of the state distribu-
tion, respectively, and a multi-head critic model that outputs the Q-values of given state-action pairs.
The architecture of the behavior generative model and the state generative model resembles U-Nets,
but with spatial convolutions changed to simple dense connections (Janner et al., 2022; Chen et al.,
2023). Please refer to Fig. 5 for more details about the network structure. For the multi-head critic
model, we use one hidden layer of 256 neurons with SiLU activation functions. We refer to the input
and hidden layer as the backbone and the last output layer as the head.

Hyperparameters. Table 5 and Table 6 list the main hyperparameters for diffusion models and the
multi-head critic used in CuGRO, respectively.
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(a) The network architecture of the behavior generative model.
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(b) The network architecture of the state generative model.

Figure 5: The network architecture of diffusion models in CuGRO.

Parameter Standard Configuration

Optimizer Adam
learning rate 1e� 4
Batch size 4096

Diffusion steps 100
epochs 600
�min 0.1
�max 20

Table 5: Hyperparameters of Diffusion models.

Parameter Standard Configuration

Optimizer Adam
learning rate 1e� 4
Batch size 4096

epochs 100
value iteration number 1

Table 6: Hyperparameters of multi-head critic.
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