
PROMPT2MODEL:
Generating Deployable Models from Natural Language Instructions

Vijay Viswanathan1∗ , Chenyang Zhao1,2∗,
Amanda Bertsch1, Tongshuang Wu1, Graham Neubig1

1Carnegie Mellon University, 2Tsinghua University

Abstract

Large language models (LLMs) enable system
builders today to create competent NLP sys-
tems through prompting, where they only need
to describe the task in natural language and
provide a few examples. In other ways, LLMs
are a step backward from traditional special-
purpose NLP models; they require extensive
computational resources for deployment and
can be gated behind APIs. In this paper, we
propose Prompt2Model, a method that takes
a natural language task description like the
prompts provided to LLMs, and uses it to train
a special-purpose model that is conducive to
deployment. This is done through a multi-
step process of retrieval of existing datasets
and pretrained models, dataset generation using
LLMs, and supervised fine-tuning on these re-
trieved and generated datasets. Over three tasks,
we demonstrate that given the same few-shot
prompt as input, Prompt2Model trains mod-
els that outperform the results of a strong LLM,
gpt-3.5-turbo by an average of 20% while
being up to 700 times smaller. We also show
that this data can be used to obtain reliable
performance estimates of model performance,
enabling model developers to assess model re-
liability before deployment. Prompt2Model
is available open-source at https://github.
com/neulab/prompt2model.1

1 Introduction

Traditionally, building an NLP model from scratch
has been a substantial undertaking. An NLP practi-
tioner seeking to solve a new problem would need
to define their task scope, find or create data that
specifies the intended system behavior, choose a
suitable model architecture, train the model, assess
its performance through evaluation, and then de-
ploy it for real-world usage (Paleyes et al., 2022).

Recently, the rise of LLMs like GPT-3 (Brown
et al., 2020; Liu et al., 2023b) offers a lighter-

∗equal contribution.
1Our demo video is posted at youtu.be/LYYQ_EhGd-Q.

BERT Score: 0.94, ChrF++: 58.9, EM: 0.615

Retrieve
Pretrained model

Retrieve
Data

Generate
Data

Prompt2Model

Input: Prompt (task description + optional examples)

Output: Deployment-ready model

Question: What does LPC stand for?
Context: The psychoacoustic masking codec was...

Answer: linear predictive coding

Answer questions given context from a
relevant Wikipedia article.

Figure 1: Prompt2Model is a framework for generat-
ing a small yet accurate model from a prompt.

weight paradigm for NLP system construction
through “prompting” (Reynolds and McDonell,
2021). Practitioners can now write a prompt speci-
fying the intended system behavior (optionally with
a few demonstrations), and ask an LLM to generate
a desired output via text completion. This makes
it possible to prototype NLP systems rapidly for a
variety of applications without writing a single line
of code (Floridi and Chiriatti, 2020).

However, there is still a gap between proof-
of-concept prototyping — showing LLMs can be
prompted for a particular task — and practical de-
ployment. Prompting LLMs can be expensive as
they require either a significant amount of compute
or access to commercial APIs, and their reliance
on the input prompt quality makes them unsta-
ble compared to trained models (Min et al., 2022;
Bubeck et al., 2023). Because practitioners usually
do not have enough annotated validation data to
measure their system performance, it is also more
challenging for them to debug their systems be-
fore deployment (Jiang et al., 2022). Additionally,
LLM-prompted systems pose usability challenges.
Practitioners have expressed concerns about the

https://github.com/neulab/prompt2model
https://github.com/neulab/prompt2model
youtu.be/LYYQ_EhGd-Q

high serving cost and slow prediction time asso-
ciated with using LLMs (Park et al., 2022), and
those working in high-stakes domains cannot rely
on commercial LLM APIs due to privacy concerns.
For instance, sharing user data with LLM service
providers is illegal for many applications in the
US (Sezgin et al., 2022).

In this work, we present Prompt2Model, a
system that retains the ability to specify system
behavior in a light-weight way through prompt-
ing, while still resulting in a deployable special-
purpose model, maintaining all the advantages
thereof. Prompt2Model is designed as an auto-
mated pipeline that extracts essential task informa-
tion from users’ prompts, and then automatically
collects and synthesizes task-specific knowledge
through three channels:

• Dataset retrieval: Whenever possible, we col-
lect training data by retrieving task-relevant
annotated data (Färber and Leisinger, 2021;
Viswanathan et al., 2023).

• Dataset generation: We distill knowledge from
an LLM (“teacher model”) by employing it to
generate a pseudo-labeled dataset. Prior work
has demonstrated that such a dataset can be used
to train a smaller “student” model to emulate
the behavior of the teacher model (Wang et al.,
2021a; He et al., 2023; Gudibande et al., 2023).

• Model retrieval: Based on the prompt, we iden-
tify a pretrained language model whose paramet-
ric knowledge is appropriate for the user’s intent.
This chosen model serves as the student model
and is further fine-tuned and evaluated using the
generated and retrieved data.

Prompt2Model is designed to support differ-
ent instantiations of each of these components.
In experiments, we demonstrate its utility with a
gpt-3.5-turbo-based dataset generator, a dataset
retriever based on DataFinder (Viswanathan et al.,
2023), and a model retriever using BM25. We
evaluate on three tasks covering both traditional
NLP benchmarks and novel applications, and find
that, empirically, Prompt2Model is capable of
producing small models that rival or outperform
gpt-3.5-turbo when using the same prompt as in-
put. On 2 of these 3 tasks, we observe >20 point im-
provements over the gpt-3.5-turbo baseline, de-
spite the final model produced by Prompt2Model
being up to 700 times smaller. We also find that
we can generate effective evaluation datasets; per-
formance improvements on these synthetic clones

of real benchmark also hold on their real counter-
parts. We believe that Prompt2Model can serve
the following purposes for the community:
1. A tool for quickly building small and com-

petent NLP systems: Prompt2Model can be
directly used to produce task-specific models
that outperform LLMs in a few hours, without
any manual data annotation or architecture de-
sign. The method bridges the gap between the
proof-of-concept LLM prototyping and the prac-
tical deployment of the model.

2. A testbed for end-to-end, prompt-based
model training: Given Prompt2Model’s ex-
tensible design, it can offer a platform for ex-
ploring new techniques in model distillation,
dataset generation, synthetic evaluation, dataset
retrieval, and model retrieval. Our platform
allows studying these components using ex-
trinsic downstream metrics, enabling empirical
progress on these research areas.

2 Prompt2Model

Our system, Prompt2Model, provides a platform
to automate the components of a machine learn-
ing pipeline: data collection, model training, eval-
uation, and deployment. We illustrate our auto-
mated pipeline in Figure 2. The core workhorse of
our system is our automatic data collection system,
which leverages dataset retrieval and LLM-based
dataset generation to obtain labeled data relevant to
the user’s needs. We then retrieve pretrained mod-
els from Hugging Face (Wolf et al., 2020), which
we finetune on the training splits of the collected
datasets. Finally, we evaluate our trained models
on the test splits of the same datasets and automati-
cally create a web UI that can be used to interact
with the model.

2.1 Prompt Parser

As the primary input to our system, users pro-
vide prompts similar to those utilized for LLMs.
These prompts comprise an instruction and, op-
tionally, a few demonstrations of the anticipated
behavior. To support our pipeline, we parse the
prompt into instruction and demonstrations
fields (shown in Figure 2), where the instruction
represents the primary task or objective and the
demonstrations exemplify the desired behavior. For
this purpose, we utilize an LLM with in-context
learning to parse user prompts, employing the Ope-
nAI gpt-3.5-turbo-0613 in our experiments. If

The Children's
Book Test

Prompt +
Few

Examples
DataFinder

Dataset
Generator

Generated
Training Set

Generated Test
Set

Retrieved
Dataset

Model
Trainer

Trained
Model

Evaluation

Performance
Estimate

Interactive
Demo

Input
Parser

Prompt
Spec

 Model
Retriever

Retrieved
Model

"Answer questions given context from a relevant Wikipedia article.

 Examples: <QA pairs> "
flan-t5-base

Instruction
Answer questions [...]

Demonstrations
 <QA pairs>

ChrF++: 58.9
EM: 0.615
BERTScore: 0.94

Figure 2: The Prompt2Model architecture seeks to automate the core machine learning development pipeline,
allowing us to train a small yet accurate model from just a prompt.

the instruction provided is identified to be in a lan-
guage other than English, we translate it to English
using the DeepL API.2

2.2 Dataset Retriever

Given a prompt, we first try to discover existing
manually-annotated data that can support a user’s
task description. We employ the DataFinder sys-
tem introduced by Viswanathan et al. (2023) to
retrieve datasets. By extracting user-generated
dataset descriptions for each dataset in Hugging-
Face Datasets (Lhoest et al., 2021), we utilize
DataFinder’s trained bi-encoder retriever to rank
the most relevant datasets. Once a relevant dataset
is identified, the next step is to determine which
columns of the dataset correspond to the input and
the desired output specified by the user. As au-
tomatically inducing the correct schema for any
dataset can be challenging, we adopt a human-in-
the-loop approach. We present the top-k datasets,
where k = 25 by default, to the user and allow
them to either select the most relevant dataset or to
state that none are a good fit for their task. We then
ask the user to identify the appropriate columns for
input and output from the dataset’s schema.

2.3 Dataset Generator

Not all conceivable tasks have any existing anno-
tated data, and many tasks are only somewhat rel-
evant to an existing dataset. To support a wide
range of tasks, we produce synthetic training data
to meet the user-specific requirements parsed by

2https://www.deepl.com/en/docs-api

the Prompt Parser. This task presents inherent chal-
lenges related to cost efficiency, generation speed,
example diversity, and quality control. Our strategy,
carefully engineered to address these challenges,
comprises the following key components:

High-Diversity Few-Shot Prompting We use
automated prompt engineering to generate a di-
verse dataset. We assemble dynamic prompts using
the user’s instructions and a mix of user-provided
demonstration examples and previously generated
examples. This strategy yields diverse prompts that
effectively guide the language model to produce
contextually relevant, high-quality outputs. On a
test of 200 QA examples, this strategy reduced the
number of duplicates from 120 to 25.

Temperature Annealing Inspired by Adam
(Kingma and Ba, 2014), as the dataset expands, we
adjust the sampling temperature from low (favoring
deterministic outputs) to high (encouraging diverse
exploration) proportionally to the number of exam-
ples already generated. This gradual temperature
modulation aids in preserving output quality while
simultaneously encouraging diversity.

Minimum Bayes Risk Decoding Given that
LLM may generate non-unique or incorrect out-
puts for the same inputs, we use Minimum Bayes
Risk decoding (Bickel and Doksum, 1977) to se-
lect pseudo-labels, which is a generalized form of
the widely-used self-consistency filtering (Wang
et al., 2022). Specifically, we create a consensus
output for each unique input by selecting the short-
est answer among the most frequent ones. This

https://www.deepl.com/en/docs-api

promotes the consistency and accuracy of the gen-
erated dataset with unique input-output pairs.

Asynchronous Batching API requests are par-
allelized using zeno-build (Neubig and He, 2023).
We use additional mechanisms, such as dynamic
batch size and throttling, to optimize API usage.

2.4 Model Retriever
Besides training data, we also need to select an
appropriate model (e.g., pre-trained on relevant
domains) to finetune. To support many tasks with
a unified model interface, we limit ourselves to
encoder-decoder architectures on Hugging Face
(Wolf et al., 2020). This restriction still leaves
a large set of pretrained models to choose from,
e.g. flan-t5-base for general-purpose NLP
(Chung et al., 2022a), Salesforce/codet5-base
for coding-related tasks (Wang et al., 2021b),
MaryaAI/opus-mt-ar-en-finetuned-ar-to-en
for Arabic-to-English translation (Tiedemann and
Thottingal, 2020). We frame the problem of select-
ing a pretrained model as a search problem. Using
the user’s instruction as a query, we search against
all textual descriptions of models on Hugging Face.

This search task is challenging because Hugging
Face model descriptions are sparse and contain lots
of templatic text, often with only a few words that
signify the content of the model. To address this,
we follow the HyDE framework (Gao et al., 2023)
and first use gpt-3.5-turbo to create a hypothet-
ical model description given the user’s instruc-
tions. We show an example of a hypothetical doc-
ument generated for a question-answering instruc-
tion in Figure 3. Using this description as an ex-
panded query, we then apply the BM25 algorithm
to compute query-model similarity scores (Robert-
son et al., 1995). We filter out models whose size
(in bytes) exceeds a user-specified threshold (set to
3GB by default). Using the intuition that highly-
downloaded models are more likely to be high in
quality, we finally rank all remaining models by

BM25(query,model) · log(# of Downloads + 1)

and use the top-ranked model for finetuning.

2.5 Training and Evaluation
Dataset Processing We want to train a model by
leveraging two datasets- one generated and one re-
trieved. To sidestep the challenge of automatically
making schema-specific modeling decisions (e.g.
constructing different architectures for classifica-
tion tasks and generation tasks), we cast all datasets

Your task is to generate an answer to a natural
question. In this task, the input is a string that
consists of both a question and a context passage.

Hypothetical Document Embedding

language: en
license: apache-2.0
tags:
- question-answering
- nlp
- transformers
datasets:
- natural-questions
- squad
--
Model Description

This model is a fine-tuned version of a BERT model
for question-answering tasks. It can generate
answers to natural questions given context.

LLM

Figure 3: For our model retriever, we first construct a
hypothetical model description for a query, then com-
pute similarity scores between that hypothetical model
description and the descriptions of real models.

as “text-to-text” generation problems (Raffel et al.,
2020). We textualize the input columns of each
dataset and prepend the user’s instructions to the
input to guide the model.

Training Since each example in our dataset con-
sists of an instruction followed by input text, we
follow the instruction fine-tuning paradigm (Chung
et al., 2022b) to train the student model. We con-
catenate the retrieved and generated datasets and
shuffle them before training. We use the same
default hyperparameters for all tasks, which we em-
pirically find effective.3 We train with the AdamW
optimizer with lr=5e-5 for 3 epochs, which takes
roughly an hour for all tasks.

Evaluation Our Model Evaluator automatically
evaluates models using three metrics: Exact
Match, ChrF++ (Popović, 2015), and BERTScore
(Zhang et al., 2019). ChrF++ balances precision
and recall to assess text generation quality. Exact
Match measures how often the model output per-
fectly matches the exact reference. BERTScore,
comparing the model output and reference in the
embedding space, captures semantic similarities
despite different wordings or phrasings. We use
XLM-R (Conneau et al., 2020) as the encoder for
BERTScore to support multilingual evaluation.

3In future work, we plan on implementing automated hy-
perparameter selection using generated validation data.

2.6 Web App Creation
The final step in Prompt2Model is the automatic
creation of a graphical user interface that allows
downstream users to interact with the trained model.
This web application, built using Gradio (Abid
et al., 2019), can then be easily deployed publicly
on a server.

3 Experimental Setup

Tasks As a proof-of-concept, we test our sys-
tem’s ability to learn a model for three tasks:
• Machine Reading Question Answering: We first

consider a common use case where pretrained
models and training datasets are plentiful. We
use SQuAD (Rajpurkar et al., 2016) as ground
truth to evaluate this task.

• Japanese NL-to-Code: Code generation from
Japanese-language queries is a scenario where
related work exists but no annotated data or pre-
trained models are available. We use MCoNaLa
(Wang et al., 2023) as gold evaluation data.

• Temporal Expression Normalization: We finally
consider a task where there are no pretrained
models or training datasets of any kind available.
Here we use the Temporal dataset of Wu et al.
(2023) as ground truth for evaluation.

Though Prompt2Model offers automated model
evaluation (on generated and retrieved datasests),
we use real benchmark datasets here to report our
pipeline’s efficacy.

LLM Baseline A primary goal of our work is
to train small models that can match or outper-
form LLMs. To measure success towards this goal,
we report the performance of gpt-3.5-turbo on
each benchmark. We provide gpt-3.5-turbo the
same instruction and demonstrations provided to
Prompt2Model, for fair comparison.

4 Experiment Results

4.1 Downstream performance
How effective is Prompt2Model at producing a
high-quality model? In Table 1, we evaluated mod-
els produced by Prompt2Model, as well as our
baseline LLM gpt-3.5-turbo, on real benchmark
datasets for each task — SQuAD, MCoNaLa, and
Temporal. We further examine the effect of re-
moving 2 specific elements of the Prompt2Model
pipeline — model retrieval and dataset retrieval.

On 2 of 3 datasets, we find that Prompt2Model
produces models that are considerably more ac-

Method SQuAD MCoNaLa Temporal
(EM) (ChrF++) (ChrF++)

Prompt2Model 61.5 13.1 55.2
w/o Model Ret. 61.5 15.8 55.2

w/o Data Ret. 50.2 16.6 N/A

gpt-3.5-turbo 42.1 37.3 30.7

Table 1: We evaluate the model produced by
Prompt2Model on real benchmarks for each test set,
compared to gpt-3.5-turbo, which we used to power
our dataset generator. We also examine the effect of re-
moving specific parts of our pipeline — model retrieval
and dataset retrieval.

curate than gpt-3.5-turbo. This is remarkable
because the retrieved model for SQuAD and Tem-
poral is Flan-T5, which, at 250M parameters, is up
to 700 times smaller than gpt-3.5-turbo (which
is believed to contain 175B parameters).

We observe that Prompt2Model’s performance
on MCoNaLa’s Japanese-to-Python task is signif-
icantly worse than gpt-3.5-turbo. One explana-
tion for this is the relatively low diversity in the
generated dataset of Japanese queries; 45 of 5000
examples are different ways of saying “find the
maximum value in a list of numbers“. We do not ob-
serve this level of redundancy in our other datasets,
suggesting that gpt-3.5-turbo may struggle to
generate diverse text for non-English languages.
Another reason is the lack of an appropriate student
model — the models found by the model retriever
were trained on either on multiple language or code,
but not both. The resultant models may lack the
parametric knowledge to represent the Japanese
inputs, Python outputs, or both.

4.2 Combining retrieved and generated
datasets is powerful

Ideally, generated and retrieved data should be as
close to the target domain as possible. In our ex-
perimental setting, where we deliberately choose
prompts that mimic existing datasets, we can eval-
uate how well the model performs relative to a
model trained on the same amount of data from the
true dataset. We use SQuAD as a running exam-
ple.4 As our prompt is a description of the SQuAD
passage-level question answering task (Figure 1),
we exclude SQuAD from our retrieved datasets list.
Instead, we evaluate models finetuned on:

4We focus on only SQuAD here because our other two
tasks have less real training examples than the datasets we
generate, making comparison impractical.

Method #Train. data Performance Cost

Retrieval only 3,000 56.79 $ 0
Generation only 3,000 44.20 $ 5

Retrieval+generation 6,000 61.46 $ 5

Custom annotation 3,000 61.64 $ 540

Table 2: We compare model performance on SQuAD,
using datasets produced by different modules of
Prompt2Model, along with fully-manual annotation.
Performance reported for all models is the exact match
on the test set,6 which reflects the true task performance.
Cost of custom annotation is estimated from Rajpurkar
et al. (2016) using their reported annotator pay rate of
$9/hour and keeping 1,000 validation examples.

Dataset Metric τ p-value

SQuAD EM 64.3 0.03*
Temporal ChrF++ 24.2 0.31

MCoNaLa (JP) ChrF++ 70.9 0.00**

Table 3: We evaluate 10 different models on real test sets
and their corresponding generated clones. We compute
Kendall’s Tau on the ranked lists of models and find
statistically significant correlations for 2 of 3 datasets.

1. 3k examples from the closest retrieved dataset5

2. 3k examples generated by Prompt2Model
3. The union of the above, which is what the full

Prompt2Model pipeline uses
4. 3k examples from SQuAD (analogous to the

user custom-annotating data for a task).
Table 2 shows the results across these four set-

tings. While using retrieved or generated data
causes a reduction in performance due to domain
shift, the combination of the two methods achieves
similar performance to using the true dataset. In the
real world, where the user would need to custom-
annotate data for their task, Prompt2Model allows
for similar performance at less than 1% of the cost.

4.3 Our generated evaluation data can
identify real modeling improvements

High-quality generated data should also allow us to
discriminate between multiple candidate models to
select a model that will perform well downstream.
We finetune various models on a generated dataset
and rank their performance according to the gen-
erated test data and the test data from the target
(real) dataset. We evaluate the Kendall’s rank cor-
relation (Kendall, 1938) between the two rankings

5The closest dataset retrieved by the dataset retriever for
our SQuAD-inspired prompt is The Children’s Book Test
Dataset (Hill et al., 2016).

to determine if our generated data can effectively
determine which models are likely to perform well
downstream. This is closely related to the concept
of concurrence between benchmarks (Liu et al.,
2023a); however, we are evaluating whether the
generated and real data rank specific models in the
same ordering, rather than modeling approaches.

Table 3 shows the Kendall’s τ for each task, com-
puted over a set of reasonable models.7 The gen-
erated data shows strong correlation to the true
performance on two of the three datasets.

5 Discussion and Conclusion

We propose Prompt2Model, a framework that au-
tomatically train task-specific models using only
natural language prompts. Our proof-of-concept ex-
periments show that Prompt2Model uses the same
easy-to-use interface of LLMs to deliver small yet
accurate models, and that its generated datasets can
be used to estimate real-world performance. Be-
sides being a ready-to-use tool, Prompt2Model’s
extensible design and modularized implementa-
tion makes it a platform for advancing model dis-
tillation, dataset generation, synthetic evaluation,
dataset retrieval, and model retrieval.

We believe our Prompt2Model framework can
inspire various novel research questions. We hope
that our platform enables future work that looks
more deeply into quality assurance on the generated
data and the model. Interesting questions include,
how much data should we generate for downstream
model training, and how diverse should it be? How
do we effectively mix the retrieved and generated
dataset such to achieve complementary strengths
(e.g. using dataset generation to focus on the ex-
pected inputs to the model that the retrieved dataset
fails to cover)? Additionally, since people often
struggle to articulate their needs up front, future ex-
tensions will also need to address the challenge of
human-in-the-loop correction – either by offering
potential strategies to help humans iteratively refine
prompts, or allowing humans to perform post-hoc
fixes when the task metadata extraction and gen-
erated data do not align with their intentions. We
hope to propose explicit challenges and invite the
community to contribute novel implementations of
various components in our framework.

7This set of models consisted of 5 T5-family models, 2
BART-family models, and 1-5 additional retrieved models
from the Model Retriever, depending on task.

Limitations

One of the primary limitations of our system is that
our current experiments have all been conducted
using the gpt-3.5-turbo API (used for prompt
parsing, dataset generation, and model retrieval).
This proprietary LLM is paid and closed-source,
which makes this problematic as a scientific artifact
(Rogers et al., 2023). Furthermore, the service
provider of this LLM, OpenAI, prohibits the use of
their API to create models that may compete with
OpenAI, creating potential legal concerns with the
use of Prompt2Model in commercial applications.
Our tool has been designed to be extensible, and we
are exploring the integration of open-source LLMs
as a way to avoid our reliance on proprietary APIs.

Another limitation of our work is the limited
ability of Prompt2Model to support tasks that
require processing languages other than English.
While we have shown the limitations of our sys-
tem at supporting code generation from Japanese
natural language queries, our system is likely to
struggle more with lower-resource languages. We
use the unpublished gpt-3.5-turbo model for our
Dataset Generator. This model is believed to be
similar to GPT-3 (Brown et al., 2020), which was
trained on a corpus consisting of 93% English doc-
uments, 1% German documents, 1% French docu-
ments, and <5% documents in any other language.
Subsequently, our work may exacerbate existing
disparities in language technologies between high-
resource languages and low-resource languages.

Ethics Statement

Any system which makes powerful technology
more accessible to the public has ethical implica-
tions. Widder et al. (2022) discuss ethical issues
with open-source packages in relation to software
libraries for deepfaking, including the possibility
of enabling malicious actors to use technology that
they would otherwise not have the technical skills
to leverage. This is also a risk for an AutoML sys-
tem such as Prompt2Model; however, we believe
this risk is outweighed by the benefits of greater
accessibility, especially given that a low barrier to
entry for generating harmful data already exists in
the form of prompted, web-interface models.

While Prompt2Model could, if given harm-
ful inputs, generate toxic, offensive, or inaccu-
rate synthetic data, this is no more of a risk with
Prompt2Model than it is with the underlying
prompted model (Bender et al., 2021); indeed, the

use of models and supplementary datasets retrieved
from HuggingFace may lessen the likelihood of
a downstream model replicating harms from the
prompted model’s outputs, though more investiga-
tion is needed here. Like all ML models, the mod-
els that Prompt2Model returns can make mistakes,
and we aim to be transparent in our documentation
about potential limitations of the system.

We hope that Prompt2Model will be broadly
useful. Our work is motivated by a desire to in-
crease the accessibility of NLP models to people
who are not in the NLP community but would ben-
efit from the innovations made by the community;
particularly, to people who would use NLP models
downstream but may not have the domain-specific
knowledge to select data, models, and hyperpa-
rameters themselves. Prompt2Model may also
prove useful for early NLP researchers by provid-
ing a starting point for intuitions about baselines
for various tasks and the similarities between a de-
scribed task and existing community work. We
open-source Prompt2Model and welcome com-
munity contributions.

References
Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan,

Abdulrahman Alfozan, and James Zou. 2019. Gradio:
Hassle-free sharing and testing of ml models in the
wild. arXiv preprint arXiv:1906.02569.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Peter J. Bickel and Kjell A. Doksum. 1977. Mathemati-
cal statistics: Basic ideas and selected topics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://api.semanticscholar.org/CorpusID:120450474
https://api.semanticscholar.org/CorpusID:120450474
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022a. Scaling instruction-finetuned language mod-
els.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022b. Scaling instruction-finetuned
language models.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Michael Färber and Ann-Kathrin Leisinger. 2021. Rec-
ommending datasets for scientific problem descrip-
tions. In CIKM, pages 3014–3018.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2023. Precise zero-shot dense retrieval without rel-
evance labels. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1762–1777,
Toronto, Canada. Association for Computational Lin-
guistics.

Arnav Gudibande, Eric Wallace, Charles Burton Snell,
Xinyang Geng, Hao Liu, P. Abbeel, Sergey Levine,
and Dawn Song. 2023. The false promise of imitating
proprietary llms. ArXiv, abs/2305.15717.

Xingwei He, Zheng-Wen Lin, Yeyun Gong, Alex Jin,
Hang Zhang, Chen Lin, Jian Jiao, Siu Ming Yiu, Nan
Duan, and Weizhu Chen. 2023. Annollm: Making
large language models to be better crowdsourced
annotators. ArXiv, abs/2303.16854.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra
Molina, Aaron Donsbach, Michael Terry, and Carrie J
Cai. 2022. Promptmaker: Prompt-based prototyping
with large language models. In CHI Conference on
Human Factors in Computing Systems Extended Ab-
stracts, pages 1–8.

Maurice G Kendall. 1938. A new measure of rank
correlation. Biometrika, 30(1/2):81–93.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Nelson F. Liu, Tony Lee, Robin Jia, and Percy Liang.
2023a. Do question answering modeling improve-
ments hold across benchmarks? In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13186–13218, Toronto, Canada. Association
for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Graham Neubig and Zhiwei He. 2023. Zeno GPT Ma-
chine Translation Report.

Andrei Paleyes, Raoul-Gabriel Urma, and Neil D
Lawrence. 2022. Challenges in deploying machine
learning: a survey of case studies. ACM Computing
Surveys, 55(6):1–29.

https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
http://arxiv.org/abs/arXiv:2210.11416
http://arxiv.org/abs/arXiv:2210.11416
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/2023.acl-long.99
https://aclanthology.org/2023.acl-long.99
https://api.semanticscholar.org/CorpusID:258887629
https://api.semanticscholar.org/CorpusID:258887629
https://api.semanticscholar.org/CorpusID:257805087
https://api.semanticscholar.org/CorpusID:257805087
https://api.semanticscholar.org/CorpusID:257805087
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://aclanthology.org/2023.acl-long.736
https://aclanthology.org/2023.acl-long.736
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee,
Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon,
Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
2022. Lut-gemm: Quantized matrix multiplication
based on luts for efficient inference in large-scale
generative language models.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Com-
puting Systems, CHI EA ’21, New York, NY, USA.
Association for Computing Machinery.

Stephen E. Robertson, Steve Walker, Micheline
Hancock-Beaulieu, Mike Gatford, and A. Payne.
1995. Okapi at trec-4. In Text Retrieval Conference.

Anna Rogers, Niranjan Balasubramanian, Leon Der-
czynski, Jesse Dodge, Alexander Koller, Sasha Luc-
cioni, Maarten Sap, Roy Schwartz, Noah A Smith,
and Emma Strubell. 2023. Closed ai models make
bad baselines.

Emre Sezgin, Joseph Sirrianni, and Simon L. Linwood.
2022. Operationalizing and implementing pretrained
large ai linguistic models in the united states health-
care system: An outlook of gpt-3 as a service. JMIR
Medical Informatics, 10(2).

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
enec of the European Association for Machine Trans-
lation (EAMT), Lisbon, Portugal.

Vijay Viswanathan, Luyu Gao, Tongshuang Wu, Pengfei
Liu, and Graham Neubig. 2023. DataFinder: Scien-
tific dataset recommendation from natural language
descriptions. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 10288–10303,
Toronto, Canada. Association for Computational Lin-
guistics.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021a. Want to reduce la-
beling cost? GPT-3 can help. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 4195–4205, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021b. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In EMNLP.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F.
Xu, and Graham Neubig. 2023. MCoNaLa: A bench-
mark for code generation from multiple natural lan-
guages. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 265–273,
Dubrovnik, Croatia. Association for Computational
Linguistics.

David Gray Widder, Dawn Nafus, Laura Dabbish, and
James Herbsleb. 2022. Limits and possibilities for
“ethical ai” in open source: A study of deepfakes. In
Proceedings of the 2022 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT ’22,
page 2035–2046, New York, NY, USA. Association
for Computing Machinery.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Sherry Wu, Hua Shen, Daniel S Weld, Jeffrey Heer, and
Marco Tulio Ribeiro. 2023. Scattershot: Interactive
in-context example curation for text transformation.
In Proceedings of the 28th International Conference
on Intelligent User Interfaces, IUI ’23, page 353–367,
New York, NY, USA. Association for Computing
Machinery.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. Bertscore: Evalu-
ating text generation with bert.

https://api.semanticscholar.org/CorpusID:258180013
https://api.semanticscholar.org/CorpusID:258180013
https://api.semanticscholar.org/CorpusID:258180013
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://api.semanticscholar.org/CorpusID:14137141
https://doi.org/10.2196/32875
https://doi.org/10.2196/32875
https://doi.org/10.2196/32875
https://aclanthology.org/2023.acl-long.573
https://aclanthology.org/2023.acl-long.573
https://aclanthology.org/2023.acl-long.573
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://aclanthology.org/2023.findings-eacl.20
https://aclanthology.org/2023.findings-eacl.20
https://aclanthology.org/2023.findings-eacl.20
https://doi.org/10.1145/3531146.3533779
https://doi.org/10.1145/3531146.3533779
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3581641.3584059
https://doi.org/10.1145/3581641.3584059
http://arxiv.org/abs/arXiv:1904.09675
http://arxiv.org/abs/arXiv:1904.09675

