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Abstract

Distributionally robust optimization has been shown to offer a principled way to
regularize learning models. In this paper, we find that Tikhonov regularization is
distributionally robust in an optimal transport sense (i.e., if an adversary chooses
distributions in a suitable optimal transport neighborhood of the empirical measure),
provided that suitable martingale constraints are also imposed. Further, we intro-
duce a relaxation of the martingale constraints which not only provides a unified
viewpoint to a class of existing robust methods but also leads to new regularization
tools. To realize these novel tools, tractable computational algorithms are proposed.
As a byproduct, the strong duality theorem proved in this paper can be potentially
applied to other problems of independent interest.

1 Introduction

Regularization is an important tool in machine learning which is used in, for instance, reducing
overfitting [23]. Recently, ideas from distributionally robust optimization (DRO) have led to a fresh
viewpoint on regularization precisely in connection to overfitting; see, e.g., [7, 2, 20, 10, 29, 24, 25, 5]
and the references therein.

In these references it is shown that many standard regularization-based estimators arise as the solution
of a min-max game in which one wishes to minimize a loss over a class of parameters against
an adversary that maximizes the out-of-distribution impact of any given parameter choice, that
is, the adversary perturbs the empirical distribution in a certain way. The choice of adversarial
distributions or perturbations in DRO is often non-parametric thus providing reassurance that the
decision is reasonably robust to a wide range of out-of-distribution perturbations. For example,
one such non-parametric choice is given by employing optimal transport costs [31] to construct a
so-called distributional uncertainty set (e.g. a Wasserstein ball around the empirical distribution) for
the adversary to choose. [27] shows that optimal transport-based DRO (OT-DRO) is closely related
to adversarial robustness in the sense of steepest gradient loss contamination. This can be further
explained by OT-DRO’s hidden connection with generalized Lipschitz regularization [7]. Thus,
understanding if a well-known regularization technique is actually distributionally robust and in what
sense, allows us to understand its out-of-distribution benefits and potentially introduce improvements.

In this paper, we introduce a novel set of regularization techniques which incorporate martingale
constraints into the OT-DRO framework. Our starting point is the conventional OT-DRO formulation.
The conventional OT-DRO formulation can generally be interpreted as perturbing each data point
in such a way that the average size perturbation is less than a given budget. In addition to this
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conventional formulation, we will impose a martingale constraint in the joint distribution of the
empirical data and the resulting adversarially perturbed data.

Why do we believe that the martingale constraint makes sense as a regularization technique? It turns
out that two random variables X and X̄ form a martingale in the sense that E[X̄|X] = X if and only
if the distribution of X̄ dominates X in convex order [30]. In this sense, the adversary X̄ will have
higher dispersion in non-parametric sense than the observed data X but in a suitably constrained
way so that the average locations are preserved. This novel OT-DRO constrained regularization, we
believe, is helpful to potentially combat conservative solutions, see [16]. Moreover, by allowing a
small amount of violation in the martingale property, we can control the regularization properties of
this constraint, thus obtaining a natural interpolation towards the conventional OT-DRO formulation
and potentially improved regularization performance. We point out that related optimal transport
problems with martingale constraints have been studied in robust mathematical finance [1, 8].

Consider, for example, the linear regression setting with the exact martingale constraints, which
means that for any given observed data point, the conditional expectation of the additive perturbation
under the worst-case joint distribution equals zero. Surprisingly, we show that the resulting martingale
DRO model is exactly equivalent to the ridge regression [18] with the Tikhonov regularization. To
the best of our knowledge, this paper is the first work to interpret the Tikhonov regularization from
a DRO perspective showing that it is distributionally robust in a precise non-parametric sense. In
stark contrast, it is well-known that the conventional OT-based DRO model (without the martingale
constraint) is identical to the regularized square-root regression problem [2]. Therefore, introducing
an additional power in norm regularization (i.e., converting square-root regression to Tikhonov
regularization) can be translated into adding martingale constraints in the adversarial perturbations
thus reducing the adversarial power. A natural question that arises here is whether we can interpolate
between the conventional DRO model and the Tikhonov regularization, and further improve them.

We will provide a comprehensive and positive answer to the above question in this paper. The key idea
here is to relax the equality constraint on the conditional expectation of the adversarial violation and
thus allow a small perturbation of the martingale property to gain more flexibility of the uncertainty
set. This idea leads to another novel model, termed the perturbed martingale DRO in the sequel.
Intuitively, if the relaxation is sufficiently loose, the perturbed martingale DRO model will reduce to
the conventional DRO, which is formally equivalent to setting an infinite amount of possible violations
for the martingale constraint. By contrast, if no violation is allowed, the perturbed martingale DRO
will automatically reduce to the exact counterpart — Tikhonov regularization. As a result, we are
able to introduce a new class of regularizers via the interpolation between the conventional DRO
model and the Tikhonov regularization.

Furthermore, such insightful interpolation also works for a broad class of nonlinear learning models.
Inspired by our extensive exploration of linear regression, the developed martingale DRO model can
also provide a new principled adversarial training procedure for deep neural networks. Extensive
experiments are conducted to demonstrate the effectiveness of the proposed perturbed martingale
DRO model for both linear regression and deep neural network training under the adversarial setting.

We summarize our main contributions as below:

• We reveal a new hidden connection in this paper, that is, Tikhonov regularization is optimal
transport robust when exact martingale constraints (i.e., convex order between the adversary and
empirical data) are imposed.

• Upon this finding, we develop a new perturbed martingale DRO model, which not only provides
a unified viewpoint of existing regularization techniques, but also leads to a new class of robust
regularizers.

• We introduce an easy-to-implement computational approach to capitalize the theoretical benefits
in practice, in both linear regression and neural network training under the adversarial setting.

• As a byproduct, the strong duality theorem, which is proved in this paper and is used as the main
technical tool, can be applied to a wider spectrum of problems of independent interest.

2 Preliminaries

Let us introduce some basic definitions and concepts preparing for the subsequent analysis.
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Definition 2.1 (Optimal transport costs and the Wasserstein distance [21, 31]). Suppose that c(·, ·) :
Rd×Rd → [0,∞] is a lower semi-continuous cost function such that c(X,X) = 0 for every X ∈ Rd.
The optimal transport cost between two distributions Q and P supported on Rd is defined as

D (Q,P) ≜ min
π∈P(X×X )

{
Eπ

[
c(X̄,X)

]
: P1π = Q, P2π = P

}
.

Here, P(X × X ) is the set of joint probability distribution π of (X̄,X) supported on X × X while
P1π and P2π respectively refer to the marginals of X̄ and X under the joint distribution π.

If c(X, X̄) = ∥X̄ −X∥ is any given norm on Rd, then D recovers the Wasserstein distance [31]. In
this paper, we are interested in a flexible family of functions for the computational tractability, so
called the Mahalanobis cost functions in the form of c(X̄,X) = (X − X̄)⊤M(X − X̄), where M
is a d-by-d positive definite matrix.

Next, we consider the conventional OT-DRO problem:

min
β

Lβ(P̂, ρ), where Lβ(P̂, ρ) ≜


sup
π

Eπ[ℓ(fβ(X̄))]

s. t. π ∈ P(X × X )

Eπ

[
c(X̄,X)

]
≤ ρ, P2π = P̂,

(2.1)

where P̂ ≜ 1
N

∑N
i=1 δXi

is the empirical distribution. Using Definition 2.1, we have Lβ(P̂, ρ) =

maxQ:D(Q,P̂)≤ρ EQ[ℓ(fβ(X̄))], which is the worst-case expected loss under all possible distributions

around the empirical measure P̂ at most ρ with respect to the OT distance. It is well-known that
under appropriate assumptions, the DRO problem (2.1) is equivalent to the regularized square-root
regression problem.
Proposition 2.2 ([2, Proposition 2.]). Suppose that (i) the loss function ℓ(·) is a convex quadratic
function, i.e., ∇2ℓ(·) = γ > 0, where γ is a constant, (ii) the feature mapping fβ(X̄) = β⊤X̄ is
linear, and (iii) the ground cost c is the squared Euclidean norm on X = Rd. Then

Lβ(P̂, ρ) =
(√

EP̂[ℓ(fβ(X))] +
√
ρ∥β∥2

)2
.

We also present the strong duality result for a general class of optimal transport based DRO models
with martingale constraints. This result serves as our main technical tool for reformulating the DRO
models, and it can also be applied to other semi-infinity structured DRO models, which could be of
independent interests. We consider the primal problem

sup
π

∫
X×X f(X̄) dπ

s. t. π ∈ P(X × X )∫
X×X c(X̄,X) dπ ≤ ρ, P2π = P̂
Eπ[X̄|X] = X P̂-a.s.

(Primal)

and its associated dual form

inf
λ∈R+

αi∈Rd ∀i

λρ+

N∑
i=1

α⊤
i Xi +

1

N

N∑
i=1

sup
X̄

[
f(X̄)− α⊤

i X̄ − λc(X̄,Xi)
]
. (Dual)

Here, f : X → R is upper semi-continuous and L1-integrable. The next theorem states the strong
duality result linking these two problems.

Theorem 2.3 (Strong duality). Let P̂ ≜ 1
N

∑
i∈[N ] δXi

be the reference measure. Suppose that (i)
every sample point is in the interior of the cone generated by X , i.e., Xi ∈ int(cone(X )) ∀i ∈ [N ],
and (ii) the ambiguity radius ρ > 0. Then the strong duality holds, i.e., Val(Primal) = Val(Dual).
Remark 2.4. At the heart of our analysis tools is the abstract semi-infinite duality theory for conic
linear program [26, Proposition 3.4]. Notably, it will be tricky and subtle to reformulate our problem
into the standard form and further carefully check the general Slater condition. Moreover, we indeed
fill the technical gap in [19, Theorem 4.2].
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Notation. We use Sd++ to denote the set of d-by-d positive definite matrices and ∥X∥M ≜
√
X⊤MX

for any X ∈ Rd,M ∈ Sd++; if M is the identity matrix, then we omit M and write ∥X∥ ≜√
X⊤X . We use δX to denote the Dirac measure at X and let P̂ ≜ 1

N

∑N
i=1 δXi

be the empirical
measure constructed from sample {X1, . . . ,XN}. We use EP to denote the integration over P :
EP [f(X)] =

∫
X f(X)dP . Specifically, for (X̄,X) following joint distribution π, Eπ[c(X̄,X)] =∫

X×X c(X̄,X)dπ, Eπ[f(X̄)] =
∫
X×X f(X̄)dπ. We use ℓ(·) to denote the loss function applied to

the parametrized feature mapping fβ . Let ∇ℓ(·),∇2ℓ(·) be the first and second order derivative of
ℓ(·) respectively. Notably, we use Lβ(P̂, ρ) to denote the objective function of the conventional DRO
model (2.1); we use Lβ(P̂, ρ) to refer to the exact martingale DRO model (3.1); we use Lβ(P̂, ρ, ϵ)
to refer to the perturbed martingale DRO model (3.2).

3 Tractable Reformulations
In this section, we introduce an optimal transport-based DRO model with the exact martingale
constraint at first. That is, on top of the vanilla DRO model [3], we add an additional martingale
equality constraint on its coupling. It is surprisingly interesting to find out that the resulting DRO
approach is equivalent to empirical risk minimization with Tikhonov regularization. Naturally, we
can relax the equality constraint and thus allow a small violation of the martingale property to enrich
the uncertainty set. Formally, by sending violation size to infinity in the martingale constraint, our
relaxation allows to interpolate between the conventional DRO formulation (i.e. with no martingale
constraints) and Tikhonov regularization (which involves exact martingale constraints). Therefore,
this relaxation further leads to a new class of regularizers in a principled way, which improves upon
Tikhonov regularization as we show in our experiments.

Assumption 3.1. The following assumptions hold throughout.

(i) The ground cost c(·, ·) is the Mahalanobis cost with the weighting matrix M ∈ Sd++,

(ii) The domain X is unconstrained, i.e., X = Rd.

3.1 Optimal Transport-based DRO with Martingale Constraints

To start with, we investigate the exact martingale DRO problem:

min
β

Lβ(P̂, ρ), where Lβ(P̂, ρ) ≜



sup
π

Eπ[ℓ(fβ(X̄))]

s. t. π ∈ P(X × X )

Eπ

[
c(X̄,X)

]
≤ ρ, P2π = P̂

Eπ[X̄|X] = X P̂-a.s.,

(3.1)

and ρ ≥ 0 is the radius of uncertainty set centered at P̂. Note that because P̂ is the empirical measure,
the martingale constraint implies that the conditional expected value of the perturbation obtained
by modifying each observed data point equals the observed data point itself. The quantity Lβ(P̂, ρ)
is referred to as the worst-case expected loss of the model parameter β under the martingale DRO
model. It is easy to see that Lβ(P̂, ρ) ≤ Lβ(P̂, ρ), where Lβ is defined as in (2.1). This is because
the adversary in (3.1) has a smaller feasible set, and thus is less powerful than the adversary in (2.1).
Hence, the martingale DRO solution for problem (3.1) is considered to be less conservative than the
conventional DRO solution for problem (2.1).

The next result asserts that the martingale DRO problem coincides with the Tikhonov regularization
problem under similar conditions of Proposition 2.2.

Proposition 3.2 (Tikhonov equivalence). Suppose that (i) the loss function ℓ(·) is a convex quadratic
function, i.e., ∇2ℓ(·) = γ > 0, and (ii) the feature mapping fβ(X̄) = β⊤X̄ is linear. Then we have

Lβ(P̂, ρ) = EP̂[ℓ(β
⊤X)] +

γρ

2
∥β∥2M−1 .

If the Mahalanobis matrix M is the identity matrix, the martingale DRO model (3.1) recovers the
Tikhonov regularization problem.
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Proof of Proposition 3.2. By a change of the variable, let ∆ = X̄ −X and we have

sup
Eπ [∥∆∥2

M ]≤ρ
Eπ [∆|X]=0

Eπ

[
ℓ(β⊤(X +∆))

]
= sup

Eπ [∥∆∥2
M ]≤ρ

Eπ [∆|X]=0

Eπ

[
ℓ(β⊤X) +∇ℓ(β⊤X)β⊤∆+

γ

2
∥β⊤∆∥2

]

= EP̂
[
ℓ(β⊤X)

]
+ sup

Eπ [∥∆∥2
M ]≤ρ

Eπ [∆|X]=0

Eπ

[γ
2
∥β⊤∆∥2

]

= EP̂
[
ℓ(β⊤X)

]
+

γρ

2
∥β∥2M−1 .

The last equality follows from the general Hölder’s inequality. To achieve the equality, we can, for
example, take a normally distributed random variable C with mean 0 and variance ρ and which is
independent of X , and then let ∆ = CM−1β.

Example 3.3 (Linear regression). Let X⊤ ≜ (Y ,Z⊤) ∈ Rd and β⊤ ≜ (1,−b⊤) ∈ Rd, we have
β⊤X = Y − b⊤Z. For any Q ∈ Sd−1

++ , we take M = diag(+∞,Q), which implies that we do not
allow transport of the response Y , then the problem (3.1) with γ = 2 becomes

min
b

{
EP̂
[
(Y − b⊤Z)2

]
+ ρ∥b∥2Q−1

}
.

In Appendix C.1, we give another instructive proof based on the strong duality result in Section 2.
For general convex loss functions, we have the following certificate of robustness that provides upper
and lower bound for the worst-case DRO loss in (3.1).
Corollary 3.4 (General convex loss functions). Suppose that (i) the loss function ℓ(·) is µ-strongly
convex and C-smooth, that is, ℓ(θ) ≥ ℓ(θ′) + ∇ℓ(θ′)(θ′ − θ) + µ

2 (θ
′ − θ)2 and ℓ(θ) ≤ ℓ(θ′) +

∇ℓ(θ′)(θ′ − θ) + C
2 (θ

′ − θ)2 hold for all θ, θ′ ∈ R, and (ii) the feature mapping fβ(X̄) = β⊤X̄ is
linear. Then we have for any ρ ≥ 0,

EP̂[ℓ(fβ(X))] +
µρ

2
∥β∥2M−1 ≤ Lβ(P̂, ρ) ≤ EP̂[ℓ(fβ(X))] +

Cρ

2
∥β∥2M−1 .

Example 3.5 (Logistic regression). Let X = Y Z ∈ Rd, where Z ∈ Rd,Y ∈ {±1}, and ℓ(t) =
log(1 + exp(−t)), where ℓ(·) satisfies Assumption (i) in Corollary 3.4 with C = 1

4 . Then we have

Lβ(P̂, ρ) ≤ EP̂[log(1 + exp(−Y β⊤Z))] +
ρ

8
∥β∥2M−1 .

3.2 Optimal Transport-based DRO with Perturbed Martingale Constraints

Now we turn to the relaxation of the martingale constraint to improve upon Tikhonov regularization
and gain more flexibility. We consider the perturbed martingale coupling based DRO model (perturbed
martingale DRO):

min
β
Lβ(P̂, ρ, ϵ), where Lβ(P̂, ρ, ϵ) ≜



sup
π

Eπ[ℓ(fβ(X̄))]

s. t. π ∈ P(X × X )

Eπ

[
c(X̄,X)

]
≤ ρ, P2π = P̂

∥Eπ[X̄|X]−X∥M ≤ ϵ P̂-a.s.

(3.2)

The parameter ϵ controls the allowed violations of the martingale constraint for the adversary. It
is trivial that if we set ϵ = 0, then we obtain Lβ(P̂, ρ, 0) = Lβ(P̂, ρ) and we recover the exact
martingale DRO model (3.1). If we set ϵ = +∞ then the martingale constraint becomes ineffective,
thus we have Lβ(P̂, ρ, +∞) = Lβ(P̂, ρ) and model (3.2) collapses to the DRO formulation (2.1).
We thus can think of ϵ as an interpolating parameter connecting two extremes: the conventional DRO
model (2.1) (at ϵ = +∞) and the exact martingale DRO model (3.1) (at ϵ = 0).

However, the resulting optimization problem (3.2) constitutes an infinite-dimensional optimization
problem over probability distributions and thus appears to be computationally intractable. To
overcome this issue, we leverage Theorem 2.3 and prove that the problem (3.2) is actually equivalent
to a finite-dimensional problem. To begin with, we present one crucial proposition that can be applied
to more general settings.
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Theorem 3.6 (General loss functions and feature mappings). Suppose that the loss function ℓ(·) and
the feature mapping fβ(·) are upper semi-continuous. Then, for any ρ > 0 and ϵ > 0, the perturbed
martingale DRO model (3.2) admits

Lβ(P̂, ρ, ϵ) = inf
λ≥0,α

λρ+
ϵ

N

N∑
i=1

∥αi∥M−1 +
1

N

N∑
i=1

sup
∆i

[
ℓ(fβ(Xi +∆i))− α⊤

i ∆i − λ∥∆i∥2M
]
.

(3.3)

Sketch of proof. The key step is to decouple (3.2) as a two-layer optimization problem:

Lβ(P̂, ρ, ϵ) = sup
∥ηi∥M≤ϵ ∀i

sup
π

∫
X ℓ(fβ(X̄))dπ

s.t π ∈ P(X × X )∫
X×X c(X̄,X)dπ ≤ ρ, P2π = P̂∫
X×X IXi

(X) · X̄dπ = 1
N (Xi + ηi) ∀i ∈ [N ].

(3.4)

Then we invoke Theorem 2.3 for the inner maximization problem over π and apply the Sion’s
minimax theorem [28] for the outer maximization over η. The desired result is obtained.

Due to the specific structure of the quadratic cost and the linear feature mapping, the dual variable
λ admits a closed-form representation and α ∈ RN×d in (3.3) can be reduced to N parallel one-
dimensional optimization problems. Upon this observation, we thus conduct an instructive and
intuitive reformulation in Theorem 3.7 for linear regression with proof detailed in Appendix C.2.
Theorem 3.7 (Linear regression). Suppose that (i) the loss function ℓ(·) is a convex quadratic
function, i.e., ∇2ℓ(·) = γ > 0 and (ii) the feature mapping fβ(X̄) = β⊤X̄ is linear. Then, the
perturbed martingale DRO model (3.2) admits:

Lβ(P̂, ρ, ϵ) = EP̂[ℓ(fβ(X))] +
ρ∥β∥2M−1

2
+ R(β) , (3.5)

where the additional regularizer is defined as R(β) ≜ ∥β∥M−1 min
s∈RN

(
ϵ
N ∥s∥1 +

√
ρ
N ∥Gβ − s∥2

)
and Gβ = (∇ℓ(β⊤X1), . . . ,∇ℓ(β⊤XN ))⊤ ∈ RN .

Obviously, compared with the exact martingale constraint investigated in Proposition 3.2, the per-
turbed constraint we consider here involves an additional term R(β). Fortunately, armed with Lemma
D.3, we are able to shed light on its intuitive interpretation based on the quantitative relationship
between modeling parameters ϵ and ρ. First, we discuss two extreme cases — there are interesting
hidden connections between (3.2) and other existing regularization techniques.
Remark 3.8. Intuitively, if ϵ is relatively small, the optimal s⋆ is zero which means that all perturbed
martingale constraints will be active. Precisely, if ϵ2 ≤ ρ, the additional regularization term satisfies
R(β) = ϵEP̂[∥∇Xℓ(fβ(X))∥M−1 ], which is so-called Jacobian or input gradient regularizer in the
literature when M is an identity matrix. Recently, it has received much intention owing to its ability
to improve adversarial robustness [32, 9]. Conversely, if ρ is relatively small, the optimal s⋆ is equal
to Gβ , implying that none of perturbed martingale constraints is active. In fact, if ϵ2 ≥ Nρ, we

have R(β) =
√
ρEP̂[∥∇Xℓ(fβ(X))∥2M−1 ]. Then, we can easily figure out that Lβ(P̂, ρ, ϵ) can be

reduced to the conventional OT-based DRO model in Proposition 2.2.

Then for the middle case, it is natural to infer that only part of constraints will be active. In Lemma
D.3, we justify this conjecture rigorously. We refer the reader to Appendix D for the details. As such,
the proposed martingale DRO model takes the first step bridging the input gradient regularization
and regularized square-root regression problem in a unified framework. On the other hand, it also
opens up an exciting brand new avenue of robustified regularizers. In the next section, we validate its
effectiveness for the adversarial training task.

4 Optimization Algorithms

To take advantage of the proposed perturbed martingale DRO model, a natural question here is
whether we can address problem (3.2) in a tractable manner. In this section, we answer the above
question in the affirmative by developing two different computational paradigms for linear regression
and deep neural network respectively.
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(a) Housing (b) Mg (c) Mpg

Figure 1: Compare the proposed martingale DRO with two standard benchmarks (linear regression
and ridge regression) on three real world datasets — Housing, Mg and Mpg. The martingale DRO
performs better than competing methods under large PGD step size.
4.1 Subgradient Method for Linear Regression

Unfortunately, the resulting formulation we conducted in Theorem 3.7 (i.e., (3.5)) for linear regression
is potentially intractable for optimizing (β, s) jointly. One obvious computational challenge here is
that the overall problem is not necessarily convex in (β, s), even if the original problem is convex over
β. This is because the minima of convex functions is not convex. However, under a mild assumption,
it is possible to give a reliable computational routine for solving the resulting problem over β directly.

To start with, a key observation is Lβ(P̂, ρ, ϵ) is convex over β. This is essentially from the fact
that the pointwise supremum of a class of convex functions is still convex. To check the details,
Lβ(P̂, ρ, ϵ) is originally defined in (3.2) and Eπ[ℓ(fβ(X̄))] is convex over β for all π. Thus, a natural
yet simple algorithm is subgradient method. The main difficulty is to obtain the correct subgradient
oracle. Since the first two terms are smooth and strongly convex, we know that R(β) is weakly
convex and thus subdifferentially regular. All the subdifferential concepts are coincide. As such,
we may simply use the Clarke subdifferential [6] in the sequel. Moreover, the sum rule is hold for
computing the subgradient of Lβ(P̂, ρ, ϵ) due to the weakly convexity. We have

∂βLβ(P̂, ρ, ϵ) = ∇βEP̂[ℓ(fβ(X))] +∇β
ρ∥β∥2M−1

2
+ ∂βR(β).

The remaining question is how to compute the Clarke subdifferential of R(β). When ϵ2 ≤ ρ and
ϵ2 ≥ Nρ, R(β) will enjoy the convex composite structure. Thus, we can get the correct subgradient
by invoking the chain rule developed in [22, Theorem 10.6] directly. The more subtle and tricky case
is the middle one — ρ < ϵ2 < Nρ. Without of loss generality, we assume that M = I for simplicity.
Based on [6, Theorem 2.3.9], we have

∂βR(β) ⊆ Conv

∂β

 ϵ

N

N∑
i=1

∥s⋆i β∥1 +

√√√√ ρ

N

N∑
i=1

∥(∇ℓ(β⊤Xi)− s⋆i )β∥22

 , s⋆ ∈ S(β)

 ,

where S(β) is the optimal solution set and Conv{·} denotes the convex hull. If we assume the
inclusion here is tight, then the vanilla subgradient method will converge to the optimal solution with
the rate O(1/

√
K) [4]. Empirically, we find out that the resulting subgradient method works well

and the violated case will never happen.

4.2 A New Principled Adversarial Training Procedure for Deep Learning

In this subsection, we develop inexact stochastic gradient-type methods for (3.3) and thus are able to
realized the benefits of the proposed DRO model in adversarial learning tasks. As the nonconvexity
of fβ(·), the inner maximization problem over ∆i will be no longer tractable. Therefore, we leverage
the methodology proposed in [27] to gain the computational efficiency, that is, regarding the dual
variable as a modeling parameter. To proceed, we make the same smoothness assumption in [27,
Assumption B] (i.e., see Assumption E.1 in appendix for details).
Lemma 4.1 (Convex-concave minimax theorem without compactness). Suppose that f : Rn → R is
convex and level bounded and g : Rm → R is strongly convex. Then we have

min
x∈Rn

max
y∈Rm

f(x) + x⊤Ay − g(y) = max
y∈Rm

min
x∈Rn

f(x) + x⊤Ay − g(y).
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Leveraging Lemma 4.1 and the smoothness assumption, (3.3) leads to a simple and instructive form:

min
β

1

N

N∑
i=1

max
∥∆i∥M≤ϵ

[
ℓ(fβ(Xi +∆i))− λ∥∆i∥2M

]
. (4.1)

In contrast to the vanilla DRO model studied in [27], (4.1) further constrains the perturbation into a
Euclidean ball with the correlation information M . Moreover, we can observe that the magnitude of ϵ
decides how many martingale constraints will be active, which also perfectly matches our theoretical
results and interpretations established for linear regression, see Theorem 3.7 and Remark 3.8.

From a computational viewpoint, if λ is large enough (see Lemma E.2 for details), the inner max-
imization problem is strongly concave and thus the outer minimization problem over β will be
smooth. This motivates Algorithm 1, an inexact stochastic gradient method for Problem (4.1). The
convergence guarantee is provided in [27, Theorem 2]. It is worthwhile mentioning that the resulting
new principled adversarial training is extremely easy to implement by only adding three lines of
Pytorch code based on [27]. We refer the interested readers to Appendix F for details.

Algorithm 1: Martingale Distributionally Robust Optimization with Adversarial Training

Input :Sampling distribution P̂, stepsize sequence {tk}K−1
k=0 ;

for k = 0, 1, 2, · · · ,K − 1 do

Sample Xk ∼ P̂ and find an η-approximate maximizer ∆̂k satisfying

∥∆̂k −∆⋆
k∥ ≤ η, where ∆⋆

k = argmax
∥∆∥M≤ϵ

{
ℓ(fβk(Xk +∆))− λ∥∆∥2M

}
.

Set βk+1 ← βk − tk∇βℓ(fβk(Xk + ∆̂k)).

5 Numerical Results

In this section, we validate the effectiveness of our methods (referred to as martingale DRO) on
both linear regression and deep neural networks under the adversarial setting. All simulations are
implemented using Python 3.8 on: (1) a computer running Windows 10 with a 2.80GHz, Intel(R)
Core(TM) i7-1165G7 processor and 16 GB of RAM, and (2) Google Colab with NVIDIA Tesla
P100 GPU and 16 GB of RAM. As for the adversarial setting, we consider three types of attack, the
detailed definitions of which are collected in Appendix F.

5.1 Linear Regression

To start with, we demonstrate the effectiveness of the proposed martingale DRO model (3.5) with
the quadratic loss function and linear feature mapping, i.e., ℓ(fβ(X)) = 1

2 (Y − b⊤Z)2 with X⊤ ≜
(Y ,Z⊤) and β⊤ ≜ (1,−b⊤), where Z is the feature vector and Y is the target variable. In this
experiment, we test our method on three LIBSVM regression real world datasets 1. More specifically,
we randomly select 60% of the data to train the models and the rest as our test data. To showcase
the effectiveness of martingale DRO model under adversarial setting, we apply one-step projected-
gradient method (PGM) attack [17] on test data and report the performance in terms of the the

root-mean-square error (RMSE) on adversarial test data, where RMSE ≜
√

1
N

∑
i(β̂

⊤x
(i)
adv − y

(i)
adv)

2

and β̂ is the estimator of β. All numerical results with different step sizes for PGM attack are collected
in Figure 1. As we mentioned in Proposition 3.2, since the exact martinagle DRO model (i.e., ϵ = 0)
is equivalent to Tikhonov regularization, we choose the same hyperparameter ρ = 0.08 for ridge
regression and martingale DRO mode for fair comparison. We can observe that the martingale DRO
can outperform other two benchmarks over three real world datasets consistently when the step size
for the PGD attack is relatively large. This result also corroborates our theoretical intuition — the
additional regularization R(β) can further improve the adversarial robustness.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
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5.2 Deep Neural Network for Adversarial Training

We generate the synthetic training data {(Yi,Zi)}i∈I with a wide margin as follows: generate
i.i.d. Zj ∼ N(0, I2), where Z ∈ R2, I2 is the identity matrix in R2; set I = {j : ∥Zj∥2 /∈
(
√
2/η, η

√
2)}, where η = 1.6; let Yi = sign(∥Zi∥2 −

√
2), ∀i ∈ I . We train a neural network with

3 hidden layers of size 4, 3 and 2 and ELU activations between layers. We compare our approach (cf.
martingale DRO) with ERM and the conventional DRO approach developed in [27]. More details
about the experiment setup are collected in Appendix F.

(a) Classification boundaries (b) Data perturbation

Figure 2: Illustration of the performance comparison between competing methods. ERM tends to
overfit to the inner class while DRO becomes too conservative due to unconstrained perturbation.
The martingale DRO leaves bigger margins from the sample points than the other methods.

Figure 2 show the experimental results on the synthetic dataset. Test data are shown in darkgray
and gray with different shapes, which are generated by the above-mentioned procedure with a
smaller margin (η = 1.2). Classification boundaries are shown in blue, green, and orange for ERM,
DRO, and martingale DRO respectively, as well as with the true class boundaries of the test data.
Intuitively, the boundary generated by ERM is too close to the true inner boundary since the majority
of points are of darkgray class, while the DRO approach pushes the classification boundary outwards.
However, as illustrated in Figure 2(a), the DRO approach suffers from over-conservativeness and
becomes entangled with the boundary of the outer gray class. In contrast, our martingale DRO
boundary lands in between the two extremes and it leaves bigger margin. Figure 2(b) explicitly
shows the qualitative difference between these two methods in terms of the perturbation to the data:
the Martingale perturbation is constrained below ϵ while the DRO perturbation is unconstrained.
Moreover, previously shown, decreasing non-zero ϵ pushes the perturbed martingale constraints
towards the exact martingale constraints and forces the classification boundary increasingly inward.
More results are in Appendix F.

Then, we validate our method on the MNIST dataset [15]. For the classifier, we train a neural network
equipped with 8× 8, 6× 6, 5× 5 convolutional filter layers and ELU activations followed by a fully
connected layer and softmax output. To show the robustness of our method, we test the performance
of four methods (ERM, DRO, Jacobian regularization [13] and martingale DRO) under the PGD and
FGSM attacks (Definition F.1) with test error defined to be: 1− classification accuracy.

In Figures 3a and 3b, our martingale DRO model outperforms the other methods and still provides
robustness under the∞-norm FGSM attacks. In Figure 3c, we show the performance of our model
with different ϵ. As expected, when ϵ is relatively small, the model is not flexible enough and shows
large test error. Alternatively, as ϵ becomes large, our model will behave similarly to the original
DRO model since the ϵ-constraint is almost inactive in this case.

Figure 4 visualizes the different levels of robustness for the four methods. For each test data point,
we perturb the image using the DRO attacks (Definition F.2) with decaying level of perturbation and
respectively record the first perturbed images that each model correctly classifies. In Figure 4, the
original label is 6 and all methods output the correct prediction, whereas in the adversarial example
that the DRO model predicts 6, the correct classification seems unreasonable to human eyes (see
Appendix F for more examples). This observation shows an insight that the original DRO model is
too conservative in predicting and our model puts more constraints on the perturbation when training
thus providing a model that is more consistent to human eyes.
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PGD Attack ERM DRO Jacobian Regularization Martingale DRO

ϵ = 0 84.16% 84.02% 81.73% 85.48%
ϵ = 0.04 77.50% 82.87% 78.78% 83.25%
ϵ = 0.08 70.20% 80.68% 73.85% 80.86%

Table 1: Top-1 accuracy results with different levels of perturbation on CIFAR-10.

(a) PGD Attack (b) FGSM Attack (c) Sensitivity to ϵ

Figure 3: Compare the proposed martingale DRO with ERM and DRO on the MNIST datasets under
PGD and FGSM attack; compare the proposed martingale DRO with different values of ϵ.

Experimental setup for CIFAR-10 [14]: For the classifier, we train a ResNet with the architecture
in [12]. We optimize using Adam with a batch size of 128 for all methods. The learning rate starts
from 0.01 and shrinks by 0.1

epoch
total epochs , and each model is trained for 100 epochs. The simulations are

implemented using Python 3.8 on Google Colab with TPU v2 and 16GB RAM. Similarly, we test
the performance of four methods (ERM, DRO, Jacobian regularization and martingale DRO) under
the PGD attack with different levels of perturbation, the results shown in Table 1 are consistent with
those from the MNIST dataset.

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(a) Original

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(b) ERM

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(c) Jacobian
Regularization

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(d) DRO

0 Predict 2 Predict 0 Predict 9 Predict 8

1 Predict 2 Predict 1 Predict 8 Predict 8

2 Predict 2 Predict 2 Predict 2 Predict 2

3 Predict 8 Predict 8 Predict 8 Predict 8

4 Predict 6 Predict 4 Predict 9 Predict 4

8 Predict 8 Predict 8 Predict 8 Predict 8

9 Predict 8 Predict 9 Predict 9 Predict 9

Original ERM Jacobian Regularization DRO Martingale DRO

Perturbations on a test datapoint

(e) Martingale
DRO

Figure 4: The largest DRO perturbation such that each model makes correct prediction.

6 Closing Remarks

In this paper, we find that the OT-based DRO model is equivalent to Tikhonov regularization when
exact martingale constraints are imposed. Upon this interesting hidden connection, we introduce a
new model called the perturbed martingale DRO model, which not only provides a unified viewpoint
to several common robust methods but also leads to new regularization tools. Empirically, we validate
the effectiveness of our model in addressing the conservativeness issue for the conventional DRO
model. From the statistical perspective, how to optimally select the size of uncertainty regions and
the perturbation size of the martingale constraint, is a natural problem to be further explored.

Acknowledgements Material in this paper is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-20-1-0397. Additional support is gratefully
acknowledged from NSF grants 1915967 and 2118199. Viet Anh Nguyen acknowledges the support
from the CUHK’s Improvement on Competitiveness in Hiring New Faculties Funding Scheme.

10



References
[1] Mathias Beiglböck, Pierre Henry-Labordere, and Friedrich Penkner. Model-independent bounds

for option prices—a mass transport approach. Finance and Stochastics, 17(3):477–501, 2013.

[2] Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust Wasserstein profile inference and
applications to machine learning. Journal of Applied Probability, 56(3):830–857, 2019.

[3] Jose Blanchet, Karthyek Murthy, and Fan Zhang. Optimal transport-based distributionally
robust optimization: Structural properties and iterative schemes. Mathematics of Operations
Research, 2021.

[4] Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes of EE392o,
Stanford University, Autumn Quarter, 2004:2004–2005, 2003.

[5] Ruidi Chen and Ioannis C Paschalidis. A robust learning approach for regression models based
on distributionally robust optimization. Journal of Machine Learning Research, 19(13), 2018.

[6] Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

[7] Zac Cranko, Zhan Shi, Xinhua Zhang, Richard Nock, and Simon Kornblith. Generalised Lips-
chitz regularisation equals distributional robustness. In International Conference on Machine
Learning, pages 2178–2188. PMLR, 2021.

[8] Yan Dolinsky and H Mete Soner. Martingale optimal transport and robust hedging in continuous
time. Probability Theory and Related Fields, 160(1):391–427, 2014.

[9] Chris Finlay and Adam M Oberman. Scaleable input gradient regularization for adversarial
robustness. arXiv preprint arXiv:1905.11468, 2019.

[10] Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein distributionally robust optimization and
variation regularization. arXiv preprint arXiv:1712.06050, 2017.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[13] Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regularization.
arXiv preprint arXiv:1908.02729, 2019.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[15] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[16] Jiashuo Liu, Zheyan Shen, Peng Cui, Linjun Zhou, Kun Kuang, and Bo Li. Distributionally
robust learning with stable adversarial training. arXiv preprint arXiv:2106.15791, 2021.

[17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[18] Gary C McDonald. Ridge regression. Wiley Interdisciplinary Reviews: Computational Statistics,
1(1):93–100, 2009.

[19] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
using the wasserstein metric: Performance guarantees and tractable reformulations. Mathemati-
cal Programming, 171(1):115–166, 2018.

[20] Hongseok Namkoong and John C Duchi. Variance-based regularization with convex objectives.
Advances in Neural Information Processing Systems, 30, 2017.

11



[21] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[22] R Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis, volume 317. Springer Science
& Business Media, 2009.

[23] Stephan R Sain. The Nature of Statistical Learning Theory. Taylor & Francis, 1996.

[24] Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin Esfahani. Regularization
via mass transportation. Journal of Machine Learning Research, 20(103):1–68, 2019.

[25] Soroosh Shafieezadeh Abadeh, Peyman M Mohajerin Esfahani, and Daniel Kuhn. Distribu-
tionally robust logistic regression. Advances in Neural Information Processing Systems, 28,
2015.

[26] Alexander Shapiro. On duality theory of conic linear problems. In Semi-infinite programming,
pages 135–165. Springer, 2001.

[27] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness
with principled adversarial training. In International Conference on Learning Representations,
2018.

[28] Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176,
1958.

[29] Matthew Staib and Stefanie Jegelka. Distributionally robust optimization and generalization in
kernel methods. Advances in Neural Information Processing Systems, 32, 2019.

[30] Volker Strassen. The existence of probability measures with given marginals. The Annals of
Mathematical Statistics, 36(2):423–439, 1965.

[31] Cédric Villani. Optimal Transport: Old and New, volume 338. Springer, 2009.

[32] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks
on deep-learning models in natural language processing: A survey. ACM Transactions on
Intelligent Systems and Technology (TIST), 11(3):1–41, 2020.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See section 3
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



Broader impact

This work does not present any foreseeable societal consequence. While our contribution has a
theoretical orientation, we believe that the structure of our method holds significant promise in the
adversarial learning and robust optimization as we mentioned in the body context.

A Organization of the Appendix

We organize the appendix as follows:

• The proof details of Theorem 2.3 (cf. Strong Duality Result) is given in Section B.

• We collect all proof details of tractable reformulation results in Section C, including Propo-
sition 3.2, Theorem 3.6 and Theorem 3.7.

• All useful technical lemmas are summarized in D.

• Convergence analysis of optimization algorithms are provided in Section E.

• Supplementary materials of numerical results are included in Section F.

B Strong Duality Result

To obtain the tractable reformulation result, we start to prove the strong duality theorem for a general
class of martingale constraints-based Wasserstein DRO optimization problems (i.e., in the main
context, we just provide the simplified version for simplicity):

sup
Q,π

∫
X f(X̄)dQ

s. t. Q ∈ P(X ), π ∈ P(X × X)
P1π = Q,P2π = P̂∫
X×X c(X̄,X)dπ ≤ ρ

Eπ[X̄|X] = X̃ P̂-a.s.

(Primal)

Here,

• f : X → R is assumed to be upper semi-continuous and P̂-integrable i.e., f ∈ L1(P̂).
• P(X ) denotes the set of all Borel probability measures supported on X .

• The cost function c : X × X → [0,∞] is a lower semicontinuous function satisfying
c(X,X) = 0 for every X ∈ X .

• P1π and P2π refer to the first and second marginal probability measure of π, that is,
(P1π)(S) = π(S ×X ) and (P2π)(S) = π(X × S) for any Borel subset S of X .

• For simplicity, let the reference measure be the empirical distribution P̂ = 1
N

∑N
i=1 δXi and

X ≜ {X1,X2, · · · ,XN} ⊂ X .

• X̃ is the perturbed discrete distribution based on the empirical distribution P̂ supported on
{X1 + η1, · · · ,XN + ηN}, i.e., P̃ = 1

N

∑N
i=1 δXi+ηi

.

The Lagrangian dual problem is derived as

min
λ∈R+

αi∈Rd ∀i

λρ+

N∑
i=1

α⊤
i (Xi + ηi) +

1

N

N∑
i=1

max
X̄

[
f(X̄)− α⊤

i X̄ − λc(X̄,Xi)
]
. (Dual)

Theorem B.1 (Restate Theorem 2.3 in a more general fashion). Suppose that (i) the reference
measure P̂ is the empirical distribution, i.e., P̂ = 1

N

∑
i∈[N ] δXi , (ii) X̃ follows from the perturbed

empirical distribution, i.e., P̃ = 1
N

∑
i∈[N ] δXi+ηi

satisfying Xi + ηi ∈ int(cone(X )) ∀i ∈ [N ], and
(iii) the ambiguity radius satisfies ρ > 0. Then strong duality holds, i.e., Val(Primal) = Val(Dual).
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Proof of Theorem B.1. Since Q = P1π a change of variables allows us to rewrite the objective
function as ∫

X×X
f(X̄)dπ.

Then, as the reference measure P̂ = 1
N

∑N
i=1 δXi

, we can recast the marginal constraint P2π = P̂ as∫
X×X

IX×{Xi}(X̄,X)dπ =
1

N
∀i ∈ [N ],

where IS is the indicator function of the set S. Similarly, we can also reformulate the martingale
constraint via further exploiting the discrete structure of the reference measure P̂:∫

X×X
X̄IXi

(X)dπ =
1

N

N∑
i=1

∫
X
X̄IXi

(Xi)Qi(dX̄)

=
1

N

∫
X
Qi(dX̄) =

1

N
(Xi + ηi).

Thus, we have ∫
X×X

IXi
(X) · X̄dπ =

1

N
(Xi + ηi) ∀i ∈ [N ],

where Xi + ηi ∈ X . If we make the normalization of π explicit, we obtain the following equivalent
reformulation of Problem (Primal):

sup
π∈M+(X×X)

∫
X×X f(X̄)dπ.

s. t.
∫
X×X IX×{Xi}(X̄,X)dπ = 1

N ∀i ∈ [N ]∫
X×X IXi

(X) · X̄dπ = 1
N (Xi + ηi) ∀i ∈ [N ]∫

X×X c(X̄,X)dπ ≤ ρ.

(B.1)

Here, M+(X × X) is the set of all non-negative Borel measures supported on X × X and the first
integral constraint ensures that π is a probability measure. AsM+(X × X) is a convex cone and all
of constraints regarding π are linear, problem (B.1) can be fitted into the standard primal problem in
[26, (3.2)]. That is,

min
π∈M+(X×X)

⟨f ,π⟩

s. t. A(π)− b ∈ K,
(B.2)

where

K = {0}N+Nd × R≤0, b =

(
1

N
eN ,X1 + η1, · · · ,XN + ηN , ρ

)
,

and A is the linear mapping defined through the left hand side of the constraints in (B.1):

A : π 7→



∫
X×X IX×{X1}(X̄,X)dπ

...∫
X×X IX×{XN}(X̄,X)dπ∫

X×X IX1(X) · X̄dπ
...∫

X×X IXN
(X) · X̄dπ∫

X×X c(X̄,X)dπ


Next, we aim at invoking Proposition 3.4 in [26] to prove the strong duality. A sufficient condition is
the generalized Slater condition, see (3.12) in [26]. That is, we have to check

b ∈ int[A(M+(X × X))−K], (B.3)
where int(·) is the interior of a set. As such,

A(M+(X × X)) = [0,+∞]N × Range(F )N × [0,∞],

where F : M+(X × X)→ Rd satisfying F (π) =
∫
X×X IXi

(X) · X̄dπ. Then,

A(M+(X × X))−K = [0,+∞]N × Range(F )N × [0,∞].

To check the Slater condition, we validate each constraint separately.
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• 1
N ∈ int([0,+∞]), for all i ∈ [N ];

• As Xi + ηi ∈ int(cone(X )),∀i ∈ [N ] and Lemma D.1 holds (i.e., cone(X ) ⊆ Range(F ),
then 1

N (Xi + ηi) ∈ int(Range(F )),∀i ∈ [N ].

• Due to ρ > 0, we have ρ ∈ int([0,+∞]).

Then, we obtained the desirable result. At last, we derive the dual problem by the standard Lagrangian
method following [26],

L(π;λ, s,α) =λρ+
1

N

N∑
i=1

si +
1

N

N∑
i=1

α⊤
i (Xi + ηi)

+

∫
X×X

[
f(X̄)−

N∑
i=1

IXi(X) · α⊤
i X̄ − λc(X̄,X)−

N∑
i=1

siIX×{Xi}(X̄,X)

]
dπ.

Due to the strong duality result, we have

sup
π∈M+(X×X)

min
λ≥0,s,α

L(π;λ, s,α) = min
λ≥0,s,α

sup
π∈M+(X×X)

L(π;λ, s,α).

Moreover, since X = {X1,X2, · · · ,XN}, the nonnegative measure π ∈ M+(X × X) can be
decomposed as π(X̄,X) =

∑N
i=1 wiIXi

(X)Qi(X̄) where wi ≥ 0,∀i ∈ [N ]. Then, we have

min
λ≥0,s,α

sup
π∈M+(X×X)

L(π;λ, s,α)

= min
λ≥0,s,α

sup
wi≥0

λρ+
1

N

N∑
i=1

si +
1

N

N∑
i=1

α⊤
i (Xi + ηi)

+

N∑
i=1

wi max
X̄

[
f(X̄)− α⊤

i X̄ − λc(X̄,Xi)− si
]

= min
λ≥0,s,α

sup
wi≥0

λρ+

N∑
i=1

(
1

N
− wi

)
si +

1

N

N∑
i=1

α⊤
i (Xi + ηi)

+

N∑
i=1

wi max
X̄

[
f(X̄)− α⊤

i X̄ − λc(X̄,Xi)
]

= min
λ≥0,α

λρ+
1

N

N∑
i=1

α⊤
i (Xi + ηi) +

1

N

N∑
i=1

max
X̄

[
f(X̄)− α⊤

i X̄ − λc(X̄,Xi)
]
.

(B.4)

We complete the proof.

C Proof Details of Tractable Reformulation Results

C.1 Proof of Proposition 3.2

Proof of Proposition 3.2. Problem (3.1) can be recast into

sup
∫
X ℓ(β⊤X̄)dQ

s. t. Q ∈ P(X ),π ∈ P(X × X )
P1π = Q,P2π = P̂∫
X×X c(X, X̄)dπ ≤ ρ∫
X×X IXi(X) · X̄dπ = 1

NXi ∀i ∈ [N ].

(C.1)

Because P̂ is the empirical measure and because any feasible measure π satisfy the constraint
P2π = P̂, the integral in the last two constraints of (C.1) is restricted to X × X (instead of X × X )
without any loss of optimality.
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The trivial case ρ = 0 is easy to verify. To begin with, we focus on the case where ρ > 0. Here,
we want to invoke the strong result, i.e., Theorem 2.3. Before getting into details, we check the
conditions at first. ℓ(·) is quadratic and thus upper semi-continuous; X = Rd can help us to get rid of
the mild regularity condition, that is, Xi ∈ int(Rd) automatically holds. Then, we get

Lβ(P̂, ρ) = min
λ≥0,α

λρ+
1

N

N∑
i=1

α⊤
i Xi +

1

N

N∑
i=1

max
X̄

[
ℓ(β⊤X̄)− α⊤

i X̄ − λc(X̄,Xi)
]
.

By a change of the variables, i.e., ∆i = X̄ −Xi ∀i ∈ [N ], we have

Lβ(P̂, ρ)

= min
λ≥0,α

λρ+
1

N

N∑
i=1

max
∆i

[
ℓ(β⊤(Xi +∆i))− α⊤

i ∆i − λ∥∆i∥2M
]

= min
λ≥0,α

λρ+
1

N

N∑
i=1

max
∆i

[
ℓ(β⊤Xi) +∇ℓ(β⊤Xi)β

⊤∆i +
γ

2
∥β⊤∆i∥2 − α⊤

i ∆i − λ∥∆i∥2M
]

=
1

N

N∑
i=1

ℓ(β⊤Xi) + min
λ≥0,α

λρ+
1

N

N∑
i=1

max
∆i

[
(∇ℓ(β⊤Xi)β − αi)

⊤∆i +
γ

2
∥β⊤∆i∥2 − λ∥∆i∥2M

]
.

Thus, the crux is the inner maximization problem. To proceed, we exhaust all possible cases. When
λ < ∥β∥2M−1γ/2, it is easy to check that the inner maximization problem will go to +∞ due to
the general Cauchy-Schwarz inequality for the normed space ∥β⊤∆i∥2 ≤ ∥β∥2M−1∥∆i∥2M . When
λ = ∥β∥2M−1γ/2 and αi ̸= ∇ℓ(β⊤Xi)β, the inner maximization problem will also go to +∞. As
such, we have

Lβ(P̂, ρ) ≤
1

N

N∑
i=1

ℓ(β⊤Xi) + min
λ≥0,α

λρ+
1

N

N∑
i=1

max
∆i

[γ
2
∥β⊤∆i∥2M − λ∥∆i∥2M

]
=

1

N

N∑
i=1

ℓ(β⊤Xi) + min
λ≥0,α

λρ+
1

N

N∑
i=1

max
∆i

[γ
2
∥β∥2M−1∥∆i∥2M − λ∥∆i∥2M

]
=

1

N

N∑
i=1

ℓ(β⊤Xi) +
γρ

2
∥β∥2M−1 ,

if λ = ∥β∥2M−1γ/2 and αi = ∇ℓ(β⊤Xi)β. At last, we focus on the left case and further prove the
above inequality is the equality. If λ > ∥β∥2M−1γ/2, we have

λρ+
1

N

N∑
i=1

max
∆i

[
(∇ℓ(β⊤Xi)β − αi)

⊤∆i +
γ

2
∥β⊤∆i∥2 − λ∥∆i∥2M

]
> ∥β∥2M−1γ/2 + 0.

The desirable result is obtained, that is,

Lβ(P̂, ρ) =
1

N

N∑
i=1

ℓ(β⊤Xi) +
γρ

2
∥β∥2M−1 = EP̂[ℓ(β

⊤X)] +
γρ

2
∥β∥2M−1 .

This completes the proof.

C.2 Proof of Theorem 3.6 and Theorem 3.7

Proof of Theorem 3.6. To start with, we recast problem (3.2) into a two-layer optimization problem:

Lβ(P̂, ρ, ϵ) = sup
∥ηi∥M≤ϵ ∀i

sup
π

∫
X ℓ(fβ(X̄))dQ

s.t Q ∈ P(X ),π ∈ P(X × X ),
P1π = Q,P2π = P̂∫
X×X c(X̄,X)dπ ≤ ρ∫
X×X IXi(X) · X̄dπ = 1

N (Xi + ηi) ∀i ∈ [N ],

(C.2)
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where X = {X1,X2, · · · ,XN}. Then, we apply Theorem 2.3 (i.e., strong duality) to the inner
maximization problem, i.e.,

Lβ(P̂, ρ, ϵ)

= sup
∥ηi∥M≤ϵ ∀i

inf
λ≥0,α

λρ+
1

N

N∑
i=1

α⊤
i (Xi + ηi) +

1

N

N∑
i=1

sup
X̄i

[
ℓ(fβ(X̄i))− α⊤

i X̄i − λc(X̄i,Xi)
]

= sup
∥ηi∥M≤ϵ ∀i

inf
λ≥0,α

λρ+
1

N

N∑
i=1

α⊤
i ηi +

1

N

N∑
i=1

sup
∆i

[
ℓ(fβ(Xi +∆i))− α⊤

i ∆i − λ∥∆i∥2M
]
.

The second equality follows by setting X̄i = Xi +∆i. As 0 < ϵ < +∞ and M is a positive definite
matrix, the set {(η1, . . . , ηN ) : ∥ηi∥M ≤ ϵ ∀i ∈ [N ]} is a compact set. Consider the following
mapping

(η,λ,α) 7→ λρ+
1

N

N∑
i=1

α⊤
i ηi +

1

N

N∑
i=1

sup
∆i

[
ℓ(fβ(Xi +∆i))− α⊤

i ∆i − λ∥∆i∥2M
]
.

It is easy to see that this mapping is linear, and thus concave, in η. Moreover, it is convex in (λ,α) as
the pointwise supremum of a class of convex functions (i.e., the inner function over (λ,α) is linear)
is always convex. From Sion’s minimax theorem [28], we can interchange the outer supremum and
infimum operators to obtain

Lβ(P̂, ρ, ϵ)

= inf
λ≥0,α

sup
∥ηi∥M≤ϵ ∀i

λρ+
1

N

N∑
i=1

α⊤
i ηi +

1

N

N∑
i=1

sup
∆i

[
ℓ(fβ(Xi +∆i))− α⊤

i ∆i − λ∥∆i∥2M
]
.

For any feasible value of (λ,α), the optimal solution in ηi is either

η⋆i = M−1αi or η⋆i = −M−1αi.

We thus have

Lβ(P̂, ρ, ϵ) = inf
λ≥0,α

λρ+
ϵ

N

N∑
i=1

∥αi∥M−1 +
1

N

N∑
i=1

sup
∆i

[
ℓ(fβ(Xi +∆i))− α⊤

i ∆i − λ∥∆i∥2M
]
.

We complete the proof.

Proof of Theorem 3.7. Taking ℓ(fβ(X)) = ℓ(β⊤X) with the second derivative of ∇2ℓ(·) = γ
in (3.3), we have

Lβ(P̂, ρ, ϵ) = inf
λ≥0,α

λρ+
ϵ

N

N∑
i=1

∥αi∥M−1 +
1

N

N∑
i=1

sup
∆i

[
ℓ(β⊤(Xi +∆i))− α⊤

i ∆i − λ∥∆i∥2M
]

= inf
λ≥0,α

λρ+
ϵ

N

N∑
i=1

∥αi∥M−1+

1

N

N∑
i=1

sup
∆i

[
ℓ(β⊤Xi) +∇ℓ(β⊤Xi)β

⊤∆i +
γ

2
∥β⊤∆i∥2 − α⊤

i ∆i − λ∥∆i∥2M
]

=
1

N

N∑
i=1

ℓ(β⊤Xi) + inf
λ≥0,α

λρ+
ϵ

N

N∑
i=1

∥αi∥M−1+

1

N

N∑
i=1

max
∆i

[
(∇ℓ(β⊤Xi)β − αi)

⊤∆i +
γ

2
∥β⊤∆i∥2 − λ∥∆i∥2M

]
=

1

N

N∑
i=1

ℓ(β⊤Xi) + inf
λ≥0,α

λρ+
ϵ

N

N∑
i=1

∥αi∥M−1+
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1

N

N∑
i=1

sup
∆i

[
(∇ℓ(β⊤Xi)β − αi)

⊤∆i +
γ

2
∥β⊤∆i∥2 − λ∥∆i∥2M

]
.

Similar with the argument to proof Proposition 3.2 in the appendix, see section ?? for details, we can
conclude that 0 ≤ λ ≤ γ

2 ∥β∥
2
M−1 . As such, we analyze two cases separately.

Case 1: suppose that the optimal value of λ⋆ = γ
2 ∥β∥

2
M−1 . As we discussed the exact martingale

DRO mode in the last subsection , we have α⋆
i = ∇ℓ(β⊤Xi)β and

L⋆
1(P̂, ρ, ϵ) =

1

N

N∑
i=1

ℓ(β⊤Xi) +
ργ

2
∥β∥2M−1 +

ϵ

N

N∑
i=1

∥∇ℓ(β⊤Xi)β∥M−1 . (C.3)

Case 2: suppose that the optimal value of λ⋆ > γ
2 ∥β∥

2
M−1 . For any fixed i = 1, . . . ,N . Define

F (λ,α) = max
ρ

[
(∇ℓ(β⊤Xi)β − αi)

⊤∆i +
γ

2
∥β⊤∆i∥2 − λ∥∆i∥2M

]
.

As λ⋆ > γ
2 ∥β∥

2
M−1 , the inner maximization with respect to ∆i is strongly convex. Consequently, it

is necessary and sufficient to study its first-order optimality condition:

(∇ℓ(β⊤Xi)β − αi) + (γββ⊤ − 2λM)∆i = 0. (C.4)

Then, we obtain the optimal solution and the optimal value,

∆⋆
i = (2λM − γββ⊤)−1(∇ℓ(β⊤Xi)β − αi), (C.5)

where the matrix inversion is valid as λ⋆ > γ
2 ∥β∥

2
M−1 and

F (λ,α) = λ∥∆⋆
i ∥2M −

γ

2
∥β⊤∆⋆

i ∥2

= (∆⋆
i )

⊤
(
λM − γ

2
ββ⊤

)−1

∆⋆
i

=
1

4
(∇ℓ(β⊤Xi)β − αi)

⊤
(
λM − γ

2
ββ⊤

)−1

(∇ℓ(β⊤Xi)β − αi).

For simplicity, let us ignore the empirical loss at first, which is the constant w.r.t. the dual variables λ
and α.

min
λ,α

λρ+
ϵ

N

N∑
i=1

∥αi∥M−1 +
1

N

N∑
i=1

max
∆i

[
(∇ℓ(β⊤Xi)β − αi)

⊤∆i +
γ

2
∥β⊤∆i∥2 − λ∥∆i∥2

]
= min

λ> γ
2 ∥β∥

2
M−1 ,α

λρ+
ϵ

N

N∑
i=1

∥αi∥M−1+

1

4N

N∑
i=1

(∇ℓ(β⊤Xi)β − αi)
⊤
(
λM − γ

2
ββ⊤

)−1

(∇ℓ(β⊤Xi)β − αi).

The resulting structure of (λ,α) is still quite complicated. To further characterize the structure of the
optimal solution, we utilize the parallel structure of α and focus on the corresponding subproblem as
follow:

min
αi

ϵ∥αi∥+
1

4
(∇ℓ(β⊤Xi)β − αi)

⊤
(
λI − γ

2
ββ⊤

)−1

(∇ℓ(β⊤Xi)β − αi). (C.6)

By the Sherman–Morrison Formula (i.e., see Fact D.2), we have

(
λM − γ

2
ββ⊤

)−1

= (λM)−1 +
(λM)−1(γ2ββ

⊤)(λM)−1

1− γ
2β

⊤(λM)−1β

=
1

λ
M−1 +

γM−1ββ⊤M−1

λ(2λ− γ∥β∥2M−1)
.
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Together with (C.6),

min
αi

ϵ∥αi∥M−1 +
1

4
(∇ℓ(β⊤Xi)β − αi)

⊤
(
1

λ
M−1 +

γM−1ββ⊤M−1

λ(2λ− γ∥β∥2M−1)

)
(∇ℓ(β⊤Xi)β − αi).

Similarly, as the minimization problem w.r.t. β is strongly convex, it is sufficient to study its first-order
optimality condition. WLOG, we can assume the optimal solution αi ̸= 0 to get rid of the non-smooth
point. Then, we have

0 =
ϵM−1αi

∥αi∥M−1

+
1

2

(
1

λ
M−1 +

γM−1ββ⊤M−1

λ(2λ− γ∥β∥2M−1)

)
(∇ℓ(β⊤Xi)β − αi)

=

(
ϵ

∥αi∥M−1

− 1

2λ

)
M−1αi +

(
∇ℓ(β⊤Xi)

2λ
+

γ
(
∇ℓ(β⊤Xi)∥β∥2M−1 − β⊤M−1αi

)
λ(2λ− γ∥β∥2M−1)

)
M−1β.

It is easy to observe that the optimal solution αi is parallel to β. The conclusion is also valid for the
corner case αi = 0. Consequently, problem (C.6) can be reduced to a one-dimensional problem, i.e.,
αi = siβ,

min
si

ϵ∥β∥M−1 |si|+
1

4

(
∥β∥2M−1

λ
+

γ∥β∥4M−1

λ(2λ− γ∥β∥2M−1)

)
(∇ℓ(β⊤Xi)− si)

2. (C.7)

Putting all pieces together, we get

min
λ> γ

2 ∥β∥
2
M−1 ,s

λρ+
ϵ∥β∥M−1

N
∥s∥1 +

1

4N

(
∥β∥2M−1

λ
+

γ∥β∥4M−1

λ(2λ− γ∥β∥2M−1)

) N∑
i=1

(∇ℓ(β⊤Xi)− si)
2

= min
λ> γ

2 ∥β∥
2
M−1 ,s

λρ+
ϵ∥β∥M−1

N
∥s∥1 +

1

4N

(
∥β∥2M−1

λ
+

γ∥β∥4M−1

λ(2λ− γ∥β∥2M−1)

)
∥Gβ − s∥22

= min
λ>γ/2,s

λρ∥β∥2M−1 +
ϵ∥β∥M−1

N
∥s∥1 +

1

4N

(
1

λ
+

γ

λ(2λ− γ)

)
∥Gβ − s∥22,

= min
λ>γ/2,s

λρ∥β∥2 + ϵ∥β∥
N
∥s∥1 +

2

4N(2λ− γ)
∥Gβ − s∥22,

where Gβ = (∇ℓ(β⊤X1), · · · ,∇ℓ(β⊤XN )). By changing the variables θ = 2
2λ−γ and λ = 1

θ + γ
2

where θ > 0,

min
s

γρ

2
∥β∥2M−1 +

ϵ

N
∥β∥M−1∥s∥1 +min

θ>0

ρ

θ
∥β∥2M−1 +

θ

4N
∥Gβ − s∥22.

Here, the optimal solution θ⋆ is

θ⋆ =
2
√
Nρ∥β∥M−1

∥Gβ − s∥
.

Consequently, we have

L⋆
2(P̂, ρ, ϵ) = EP̂[ℓ(β

⊤X)] +
γρ

2
∥β∥2M−1 + ∥β∥M−1 min

s

(
ϵ

N
∥s∥1 +

√
ρ

N
∥Gβ − s∥2

)
. (C.8)

By applying Lemma D.3, we have

min
s

(
ϵ

N
∥s∥1 +

√
ρ

N
∥Gβ − s∥2

)
=

ϵ

N
∥Gβ∥1

when ϵ ≤ √ρ. Then, combining these two cases, we can obtain,

Lβ(P̂, ρ, ϵ) = EP̂[ℓ(β
⊤X)] +

γρ

2
∥β∥2M−1 + ∥β∥M−1 min

s

(
ϵ

N
∥s∥1 +

√
ρ

N
∥Gβ − s∥2

)
.

We complete the proof.
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D Useful Technical Lemmas

Lemma D.1. Suppose that F : M+(A) → Rd defined by F (µ) =
∫
A
Xµ(dx), then we have

cone(A) ⊆ Range(F ).

Proof of Lemma D.1. Recall that

cone(A) =

{
k∑

i=1

wixi : xi ∈ A, wi ∈ R≥0, k ∈ N

}
. (D.1)

For any x ∈ cone(A), then there exists x1,x2, . . . ,xk ∈ A and {wi}ki=1 ≥ 0 such that x =∑k
i=1 wixi. Pick µ =

∑k
i=1 wiδxi

, where δxi
are Dirac’s delta measure at xi. Then µ ∈ M+(A),

and

x =

k∑
i=1

wixi =

k∑
i=1

wi

∫
A

xδxi(dx) =

∫
A

xµ(dx),

which leads to the postulated claim.

Fact D.2 (Sherman–Morrison Formula). Suppose A ∈ Rn×n is an invertible square matrix and
u, v ∈ Rn are column vectors. Then A+ uv⊤ is invertible if and only if 1 + v⊤A−1u ̸= 0. In this
case, (

A+ uv⊤
)−1

= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Here, uv⊤ is the outer product of two vectors u and v.
Lemma D.3. Suppose that y ∈ Rd satisfying |y1| ≤ |y2| ≤ · · · ≤ |yd| and ϑ > 0. Then, there exist
1 < j < d and α > 0 such that the problem

min
x∈Rd

∥x∥1 + ϑ∥y − x∥2

admits the following optimal solution

x⋆(ϑ) =


0 if ϑ ≤ ∥y∥2

∥y∥∞
,

[01:j , yj+1:d − α sign(yj+1:d)] if ∥y∥2

∥y∥∞
< ϑ <

√
d,

y if ϑ ≥
√
d.

(D.2)

Proof of Lemma D.3. The basic strategy here is to check the first-order optimality condition.

• If ϑ ≤ ∥y∥2

∥y∥∞
we have

0 ∈ ∂∥x∥1|x=0 − ϑ
y

∥y∥
holds. Thus, 0 is the optimal solution.

• Moreover, if ϑ ≥
√
d, we have

0 ∈ sign(y) + ϑ∂∥x− y∥2|x=y

holds as v ∈ ∂∥x− y∥2|x=y satisfies ∥v∥2 ≤ 1.

• The most complicated case is the middle one, i.e., ∥y∥2

∥y∥∞
< ϑ <

√
d. Here, we are trying

to characterize the structure of the optimal solution. Without of loss generality, we assume
that y = sort(y,′ abs′), i.e., sorted by its absolute value. Still, we focus on its first-order
optimality condition:

0 ∈ ∂∥x∥1 + ϑ
x− y

∥x− y∥2
,

as x cannot equal to y derived from the condition ∥y∥2

∥y∥∞
< ϑ <

√
d. Furthermore, the

optimal solution x shares the same sign of y and |xi| ≤ |yi|,∀i ∈ [d], otherwise you can
always decrease the objective value by changing the sign. Next, we will argue that the
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optimal solution admits x∗
i = 0 for some index i. We prove it by contradiction. If we

assume x∗ ̸= 0, there exists a constant α > 0 such that

x∗ = y − αsign(y).

Then, the first-order optimality condition will not hold, i.e.,

sign(y) + ϑ
α sign(y)

∥α sign(y)∥2
̸= 0,

as ϑ <
√
d. As such, there exist 1 < j < d and a constant α > 0 such that x∗ =

[01:j , yj+1:d − α sign(yj+1:d)].

E Convergence Analysis of Optimization Algorithms

Denote ℓ(fβ(X)) = h(β,X) and we make the following blanket assumption:
Assumption E.1. The loss function h : Ω×X → R satisfies the Lipschitzian smoothness conditions

∥∇βh(β1,X)−∇βh(β2,X)∥ ≤ Cββ ∥β1 − β2∥ ,
∥∇Xh(β,X1)−∇Xh(β,X2)∥ ≤ CXX ∥X1 −X2∥ ,
∥∇βh(β,X1)−∇βh(β,X2)∥ ≤ CβX ∥X1 −X2∥ ,
∥∇Xh(β1,X)−∇Xh(β2,X)∥ ≤ CXβ ∥β1 − β2∥ ,

where Ω ⊂ Rd is a closed convex set.

Derivation of (4.1)

min
β

1

N

N∑
i=1

min
αi

max
∆i

[
ℓ(fβ(Xi +∆i))− α⊤

i ∆i − λ∥∆i∥2M + ϵ∥αi∥M−1

]
(a)
= min

β

1

N

N∑
i=1

max
∆i

min
αi

[
ϵ∥αi∥M−1 − α⊤

i ∆i + ℓ(fβ(Xi +∆i))− λ∥∆i∥2M
]

=min
β

1

N

N∑
i=1

max
∥∆i∥M≤ϵ

[
ℓ(fβ(Xi +∆i))− λ∥∆i∥2M−1

]
,

(E.1)

where equality (a) follows from the following minimax theorem as the inner maximization over ∆i

is strongly concave and ∥αi∥M−1 is level bounded.

Proof of Lemma 4.1. By invoking the general best-case primal-dual relations given in [22, Corollary
11.40 (d)], the key ingredient is to check the boundedness of{

x ∈ Rn : x = argmin
x

max
y

{
f(x) + x⊤Ay − g(y)

}}
and {

y ∈ Rm : y = argmax
y

min
x

{
f(x) + x⊤Ay − g(y)

}}
.

For the purpose of this proof, we use f∗ to denote the convex conjugate of f , formally defined as

f∗(z) = max
x∈Rn

z⊤x− f(x).

Similarly, g∗ is the conjugate of g. We have:

• As f(x) is level-bounded, maxy f(x) + x⊤Ay− g(y) = f(x) + g∗(A⊤x) is also level bounded.

• As g(y) is strongly convex, minx f(x)+x⊤Ay− g(y) = −f∗(−Ay)− g(y) is strongly concave
and thus its optimal solution set is compact.
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The proof is complete.

Lemma E.2. Let h : Ω× X → R be differentiable and ϕλ(β,X) = sup∥∆∥M≤ϵ{h(β,X +∆)−
λ∥∆∥2M}. Suppose that Assumption E.1 holds and λ > σmin(M)CXX , where σmin(M) is the
minimum eigenvalue of M . Then, ϕλ(·,X) is differentiable.

Proof. As the set ∥∆∥M ≤ ϵ is a compact set whenever 0 < ϵ <∞, we know the function ϕλ(β,X)
is subsmooth function, see Definition 10.29 in [22]. Furthermore, since h(β, ·) is L-smooth and
λ > σmin(M)CXX , we know that h(β,X +∆)− λ∥∆∥2M is (λ− σmin(M)CXX)-strongly concave
with respect to ∆. Thus, the inner maximizer is unique and we can invoke [22, Theomrem 10.31]
(i.e., an extension of envelope theorem) to obtain the differentiablity.

Compared with Lemma 1 in [27], our proof here is simpler as we utilize the compactness condition.

Recall that

min
β

F (β) :=
1

N

N∑
i=1

max
∥∆i∥M≤ϵ

[
ℓ(fβ(Xi +∆i)))− λ∥∆i∥2M

]
︸ ︷︷ ︸

ϕλ(β,Xi)

. (E.2)

Theorem E.3 (Convergence of nonconvex SGD; Adopted from Theorem 2 in [27]). Suppose that
∆F ≥ F

(
β0
)
− infβ F (β) and E

[
∥∇F (β)−∇βϕγ(β,X)∥22

]
≤ σ2 and we take constant stepsizes

α =
√

∆F

LϕKσ2 where Lϕ := Cββ +
CβXCXβ

λ−σmin(M)CXX
. For K ≥ Lϕ∆F

σ2 , Algorithm 1 satisfies

1

K

K−1∑
k=0

E
[∥∥∇F (βk

)∥∥2
2

]
−

4C2
βX

λ− σmin(M)CXX
ϵ ≤ 4σ

√
Lϕ∆F

K
.

F Supplementary Experiments

First we introduce the attack methods we use in the experiments of adversarial training.

Definition F.1 (PGD/FGSM attack). For any model parameter β, let

∆zi(β) ≜ argmax
∥η∥p≤ξ

{
∇zℓ(fβ(zi, yi))

⊤η
}

and z̃i ≜ ΠBξ,p(zi) {zi + α ∆zi(β)} ,

where ξ is the attack step size, α is a pre-specified hyperparameter and Π denotes the projection
onto Bξ,p(zi) ≜ {z : ∥z − zi∥p ≤ ξ}. When p =∞, the attack is reduced to the Fast Gradient Sign
Method (FGSM) [11]. As in [27], we also consider the Euclidean case p = 2, which is a general
version of Projected Gradient Descent (PGD) [17] with one step.
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Definition F.2 (DRO attack). For any parameter β, let

z̄i ≜ argmax
z∈Rd

{
ℓ(fβ(zi, yi))− γ ∥z − zi∥22

}
,

where γ is is a pre-specified hyperparameter.

As for the setup of the experiments on the synthetic data (i.e., Figure 2), we use λ = 2 for
both the DRO approach and our approach. Further in our approach, we use a sequence of
ϵ ∈ {0.2, 0.22, . . . , 1.5} to demonstrate the effectiveness of our approach for being less conser-
vative then the conventional DRO approach. Full results are shown in Figure 5.

As for the setup of the experiments on the MNIST dataset (Figures 3, 4), EP̂∥X∥2 = 9.21 and we
choose λ = 0.04EP̂∥X∥2 for training the original DRO and Martingale DRO model. Additionally,
we choose ϵ = 1.2 in our model, which is smaller than the average L2 norm of the perturbations
suggested by the original DRO model when training on the MNIST dataset. As for the DRO attack,
we choose an increasing sequence of γ (corresponding to a decaying sequence of perturbation) and
collect the images after the largest perturbation so that these methods can classify correctly. Full
results are shown in Figures 6, 7.

All the hyperparameters conducted in this section have been fine-tuned via grid search for optimal
performance.

In the following, we want to highlight that our method can be applied within three lines of PyTorch
code modification based on the original DRO approach, which is due to the formulation (4.1). The
interested reader is referred to our code to see the details.

with torch.no_grad():
delta_norm = delta.norm(p = 2, dim = (2,3))
delta_index = delta_norm > eps
delta[delta_index] /=(delta_norm[delta_index][:, None, None]/eps)

Simple implementation based on the original DRO approach results in little extra computation
complexity, which is also shown in the following track of time during experiments on MNIST dataset.

Training time per epoch (s) DRO Martingale DRO

Average 1.66 1.73
Variance 1.90 ×10−3 2.10 ×10−3

Table 2: Per-iteration wall-clock time comparison between the vanilla DRO model and Martingale
DRO model.
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(a) ϵ = 1.48 (b) ϵ = 1.32 (c) ϵ = 1.16

(d) ϵ = 1 (e) ϵ = 0.84 (f) ϵ = 0.68

(g) ϵ = 0.52 (h) ϵ = 0.36 (i) ϵ = 0.2

Figure 5: Synthetic data. Decreasing non-zero ϵ’s push the perturbed martingale constraints towards
the exact martingale constraints and force the classification boundary increasingly inward.
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Original ERM Jacobian Regularization DRO Martingale DRO

(a) Original

Original ERM Jacobian Regularization DRO Martingale DRO

(b) ERM

Original ERM Jacobian Regularization DRO Martingale DRO

(c) Jacobian
Regularization

Original ERM Jacobian Regularization DRO Martingale DRO

(d) DRO

Original ERM Jacobian Regularization DRO Martingale DRO

(e) Martingale
DRO

Figure 6: The largest DRO perturbations such that each model makes correct prediction.
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Original ERM Jacobian Regularization DRO Martingale DRO(a) OriginalOriginal ERM Jacobian Regularization DRO Martingale DRO(b) ERMOriginal ERM Jacobian Regularization DRO Martingale DRO(c) Jacobian
Regularization

Original ERM Jacobian Regularization DRO Martingale DRO(d) DROOriginal ERM Jacobian Regularization DRO Martingale DRO(e) Martingale
DRO

Figure 7: The largest DRO perturbations such that each model makes correct prediction.
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