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Abstract

Robustness to Byzantine attacks is a necessity for various distributed training sce-
narios. When the training reduces to the process of solving a minimization problem,
Byzantine robustness is relatively well-understood. However, other problem for-
mulations, such as min-max problems or, more generally, variational inequalities,
arise in many modern machine learning and, in particular, distributed learning
tasks. These problems significantly differ from the standard minimization ones and,
therefore, require separate consideration. Nevertheless, only one work [Adibi et al.,
2022] addresses this important question in the context of Byzantine robustness.
Our work makes a further step in this direction by providing several (provably)
Byzantine-robust methods for distributed variational inequality, thoroughly study-
ing their theoretical convergence, removing the limitations of the previous work,
and providing numerical comparisons supporting the theoretical findings.

1 Introduction

Modern machine learning tasks require to train large models with billions of parameters on huge
datasets to achieve reasonable quality. Training of such models is usually done in a distributed
manner since otherwise it can take a prohibitively long time [Li, 2020]. Despite the attractiveness of
distributed training, it is associated with multiple difficulties not existing in standard training.

In this work, we focus on one particular aspect of distributed learning — Byzantine tolerance/robustness
— the robustness of distributed methods to the presence of Byzantine workers?, i.e., such workers
that can send incorrect information (maliciously or due to some computation errors/faults) and are
assumed to be omniscient. For example, this situation can appear in collaborative training, when
several participants (companies, universities, individuals) that do not necessarily know each other
train some model together [Kijsipongse et al., 2018, Diskin et al., 2021] or when the devices used in
training are faulty [Ryabinin et al., 2021]. When the training reduces to the distributed minimization
problem, the question of Byzantine robustness is studied relatively well both in theory and practice
[Karimireddy et al., 2022, Lyu et al., 2020].

However, there are a lot of problems that cannot be reduced to minimization, e.g., adversarial training
[Goodfellow et al., 2015, Madry et al., 2018], generative adversarial networks (GANs) [Goodfellow
et al., 2014], hierarchical reinforcement learning [Wayne and Abbott, 2014, Vezhnevets et al., 2017],
adversarial examples games [Bose et al., 2020], and other problems arising in game theory, control
theory, and differential equations [Facchinei and Pang, 2003]. Such problems lead to min-max
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’The term “Byzantine workers” is a standard term for the field [Lamport et al., 1982, Lyu et al., 2020]. We
do not aim to offend any group of people but rather use common terminology.
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or, more generally, variational inequality (VI) problems [Gidel et al., 2018] that have significant
differences from minimization ones and require special consideration [Harker and Pang, 1990, Ryu
and Yin, 2022]. Such problems can also be huge scale, meaning that, in some cases, one has to solve
them distributedly. Therefore, similarly to the case of minimization, the necessity in Byzantine-robust
methods for distributed VIs arises.

The only existing work addressing this problem is [Adibi et al., 2022], where the authors propose the
first Byzantine-tolerant distributed method for min-max and VI problems called Robust Distributed
Extragradient (RDEG). However, several interesting directions such as application of (9, ¢)-robust ag-
gregation rules, client momentum [Karimireddy et al., 2021], and checks of computations [Gorbunov
et al., 2022b] studied for minimization problems are left unexplored in the case of VIs. Moreover,
[Adibi et al., 2022] prove the convergence to the solution’s neighborhood that can be reduced only via
increasing the batchsize and rely on the assumption that the number of workers is sufficiently large
and the fraction of Byzantine workers is smaller than !/16, which is much smaller than for SOTA
results in minimization case. Our work closes these gaps in the literature and resolves the limitations
of the results from [Adibi et al., 2022].

1.1 Setting

To make the further presentation precise, we need to introduce the problem and assumptions we make.
We consider the distributed unconstrained variational inequality (non-linear equation) problem?:

1
find * € R? such that F(x*) = 0, where F(x) := el > Fi(=), (1)

i€q

where ¢ denotes the set of regular/good workers and operators F; have an expectation form
Fi(z) = Eg,[gi(x;&)]. We assume that n workers connected with a server take part in the
learning/optimization process and [n] = ¢ LI B, where B is the set of Byzantine workers — the subset
B of workers [n] that can deviate from the prescribed protocol (send incorrect information, e.g.,
arbitrary vectors instead of stochastic estimators) either intentionally or not and are omniscient*, i.e.,
Byzantine workers can know the results of computations on regular workers and the aggregation rule
used by the server. The number of Byzantine workers B = |B| is assumed to satisfy B < én, where
d < 1/2 (otherwise Byzantines form a majority and the problem becomes impossible to solve). The
number of regular workers is denoted as G = |G|

Assumptions. Here, we formulate the assumptions related to the stochasticity and properties of
operators {F; }icc.

Assumption 1. For all i € § the stochastic estimator g;(x, &;) is an unbiased estimator of F;(x)
with bounded variance, i.e., E¢,[g;(x,&;)] = F;(x) and for some ¢ > 0
Ee, [llgi(@.&) - Fi(@)|*] < o™ @)

The above assumption is known as the bounded variance assumption. It is classical for the analysis of
stochastic optimization methods [Nemirovski et al., 2009, Juditsky et al., 2011] and is used in the
majority of existing works on Byzantine robustness with theoretical convergence guarantees.

Further, we assume that the data heterogeneity across the workers is bounded.
Assumption 2. There exists ( > 0 such that for all x € R¢

=S IE ) - F@) < ¢ )

i€G

Condition (3) is a standard notion of data heterogeneity in Byzantine-robust distributed optimization
[Wu et al., 2020, Zhu and Ling, 2021, Karimireddy et al., 2022, Gorbunov et al., 2023a]. It is worth

3We assume that the problem (1) has a unique solution =*. This assumption can be relaxed, but for simplicity
of exposition, we enforce it.

“This assumption gives Byzantine workers a lot of power and rarely holds in practice. Nevertheless, if the
algorithm is robust to such workers, then it is provably robust to literally any type of workers deviating from the
protocol.



mentioning that without any kind of bound on the heterogeneity of {F;};c¢, it is impossible to
tolerate Byzantine workers. In addition, homogeneous case ({ = 0) is also very important and arises
in collaborative learning, see [Kijsipongse et al., 2018, Diskin et al., 2021].

Finally, we formulate here several assumptions on operator F'. Each particular result in this work
relies only on a subset of listed assumptions.

Assumption 3. Operator F : RY — R? is L-Lipschitz, i.e.,
|F(z) — F(y)ll < L]z —y, Vz,yeR™. (Lip)
Assumption 4. Operator F : R? — R? is p-quasi strongly monotone, i.e., for j1 > 0
(F(x),z —x*) > pllxz — x*||?, VacRL (QSM)
Assumption 5. Operator F : R — R? is monotone, i.e.,
(F(z) - F(y),z—y) >0, YVa,ycR. (Mon)

Assumption 6. Operator F : R — R? js (-star-cocoercive, i.e., for { > 0

(F(x),x — x*) > %||F(a:)||27 VaeR? (SC)

Assumptions 3 and 5 are quite standard for the literature on VIs. Assumptions 4 and 6 can be seen
as structured non-monotonicity assumptions. Indeed, there exist examples of non-monotone (and
even non-Lipschitz) operators such that Assumptions 4 and 6 holds [Loizou et al., 2021]. However,
Assumptions 3 and 5 imply neither (QSM) nor (SC). It is worth mentioning that Assumption 4 is
also known under different names, i.e., strong stability [Mertikopoulos and Zhou, 2019] and strong
coherent [Song et al., 2020] conditions.

Robust aggregation. We use the formalism proposed by Karimireddy et al. [2021, 2022].

Definition 1.1 ((J, ¢)-RAGG [Karimireddy et al., 2021, 2022]). Let there exist a subset § of random

vectors {yi,...,Yn} such that G > (1 — )n for some 6 < 1/2 and E||y; — y, H2 < p? for any fixed
pairi,j € G and some p > 0. Then, Y = RAGG(y1, ..., Yn) is called (8, c)-robust aggregator if
for some constant ¢ > 0

E|lg - 3] < co0 )

where y = é ZiGQ’ ;. Further, if the value of p is not used to compute vy, then y is called agnostic
(6, ¢)-robust aggregator and denoted as Y = ARAGG(y1, . .., Yn).

The above definition is tight in the sense that for any estimate g the best bound one can guarantee
is E [||§ - ﬂHQ} = Q(6p?) [Karimireddy et al., 2021]. Moreover, there are several examples of
(4, ¢)-robust aggregation rules that work well in practice; see Appendix B.

Another important concept for Byzantine-robust learning is the notion of permutation inveriance.

Definition 1.2 (Permutation invariant algorithm). Define the set of stochastic gradients computed by
each of the n workers at some round t to be [G1 ¢, . . . , Gn.¢). For a good workeri € G, these represent
the true stochastic gradients whereas for a bad worker j € B, these represent arbitrary vectors. The
output of any optimization algorithm ALG is a function of these gradients. A permutation-invariant
algorithm is one which for any set of permutations over t rounds {1, ..., 7}, its output remains
unchanged if we permute the gradients.

[91,17"'7gn,1]) [gﬂl(l),lv"'?g‘n’l(n),l]a
ALG = ALG
[gl,tv"'7gn,t] [gwt(l),ta“'?gﬂt(n),t]
As Karimireddy et al. [2021] prove, any permutation-invariant algorithm fails to converge to any

predefined accuracy of the solution (under Assumption 1) even if all regular workers have the same
operators/functions, i.e., even when ¢ = 0.



Table 1: Summary of known and new complexity results for Byzantine-robust methods for distributed
variational inequalities. Column “Setup” indicates the varying assumptions. By the complexity, we
mean the number of stochastic oracle calls needed for a method to guarantee that Metric < ¢ (for
RDEG P{Metric < e} > 1 — drpec, drpec € (0, 1]) and “Metric” is taken from the corresponding
column. For simplicity, we omit numerical and logarithmic factors in the complexity bounds. Column
“BS” indicates the minimal batch-size used for achieving the corresponding complexity. Notation:
¢, § are robust aggregator parameters; & = momentum parameter; 3 = ratio of inner and outer stepsize
in SEG-like methods; n = total numbers of peers; m = number of checking peers; G' = number of
peers following the protocol; R = any upper bound on ||z° — «*||; 1 = quasi-strong monotonicity
parameter; £ = star-cocoercivity parameter; L = Lipschitzness parameter; 02 = bound on the variance.
The definition 27 can vary; see corresponding theorems for the exact formulas.

Setup Method Citation Metric Complexity BS
L 1 5o
SGDA-RA Cor. 1 Ly Cﬂgg
sc.  M-SGDA-RA Cor. 4 w7 + e e
’ T _ p*|2 4 o2 o?n? o?n?
Qsm  SGDA-CC Cor. 6 Ef|lz" - 2*]*] F e 1
R-SGDA-CC Cor. 8 TR R = 1
L 1 1 céo?
L SEG-RA Cor. 3 T/lz + —ﬁcm;s; 5 L. G
1p, - .y L 1 fos o o
Qsll)\/l SEG-CC Cor. 9 El|z” — x*|2] ©+ 5t 50 j 5#27:;; + o 1
R-SEG-CC Cor. 11 R 1
éélfvl RDEG Adibi et al. 20220 [[zT — z*2 L e

() consider only homogeneous case (¢ = 0) .

1.2  Our Contributions

Now we are ready to describe the main contributions of this work.

e Methods with provably robust aggregation. We propose new methods called Stochastic Gradient
Descent-Ascent and Stochastic Extragradient with Robust Aggregation (SGDA-RA and SEG-RA)
— variants of popular SGDA [Dem’yanov and Pevnyi, 1972, Nemirovski et al., 2009] and SEG
[Korpelevich, 1976, Juditsky et al., 2011]. We prove that SGDA-RA and SEG-RA work with any
(6, ¢)-robust aggregation rule and converge to the desired accuracy if the batchsize is large enough. In
the experiments, we observe that SGDA-RA and SEG-RA outperform RDEG in several cases.

e Client momentum. As the next step, we add client momentum to SGDA-RA and propose
Momentum SGDA-RA (M-SGDA-RA). As it is shown by [Karimireddy et al., 2021, 2022], client
momentum helps to break the permutation invariance of the method and ensures convergence to
any predefined accuracy with any batchsize for non-convex minimization problems. In the case of
star-cocoercive quasi-strongly monotone VIs, we prove the convergence to the neighborhood of the
solution; the size of the neighborhood can be reduced via increasing batchsize only — similarly to the
results for RDEG, SGDA-RA, and SEG-RA. We discuss this limitation in detail and point out the
non-triviality of this issue. Nevertheless, we show in the experiments that client momentum does
help to achieve better accuracy of the solution.

e Methods with random checks of computations. Finally, for homogeneous data case (¢ = 0), we
propose a version of SGDA and SEG with random checks of computations (SGDA-CC, SEG-CC
and their restarted versions — R-SGDA-CC and R-SEG-CC). We prove that the proposed methods
converge to any accuracy of the solution without any assumptions on the batchsize. This is the first
result of this type on Byzantine robustness for distributed VIs. Moreover, when the target accuracy of
the solution is small enough, the obtained convergence rates for R-SGDA-CC and R-SEG-CC are
not worse than the ones for distributed SGDA and SEG derived in the case of § = 0 (no Byzantine
workers); see the comparison of the convergence rates in Table 1. In the numerical experiments, we
consistently observe the superiority of the methods with checks of computations to the previously
proposed methods.



1.3 Related Work

Byzantine-robust methods for minimization problems. Classical distributed methods like Par-
allel SGD [Zinkevich et al., 2010] cannot tolerate even one Byzantine worker. The most evident
vulnerability of such methods is an aggregation rule (averaging). Therefore, many works focus on
designing and application of different aggregation rules to Parallel SGD-like methods [Blanchard
et al., 2017, Yin et al., 2018, Damaskinos et al., 2019, Guerraoui et al., 2018, Pillutla et al., 2022].
However, this is not sufficient for Byzantine robustness: there exist particular attacks [Baruch et al.,
2019, Xie et al., 2019] that can bypass popular defenses. [Karimireddy et al., 2021] formalize the
definition of robust aggregation (see Definition 1.1), show that many standard aggregation rules are
non-robust according to that definition, and prove that any permutation-invariant algorithm with a
fixed batchsize can converge only to the ball around the solution with algorithm-independent radius.
Therefore, more in-depth algorithmic changes are required that also explain why RDEG, SGDA-RA,
and SEG-RA are not converging to any accuracy without increasing batchsize.

One possible way to resolve this issue is to use client momentum [Karimireddy et al., 2021, 2022]
that breaks permutation-invariance and allows for convergence to any accuracy. It is also worth
mentioning a recent approach by [Allouah et al., 2023], who propose an alternative definition of robust
aggregation to the one considered in this paper, though to achieve the convergence to any accuracy in
the homogeneous case [Allouah et al., 2023] apply client momentum like in [Karimireddy et al., 2021,
2022]. Another line of work achieves Byzantine robustness through the variance reduction mechanism
[Wu et al., 2020, Zhu and Ling, 2021, Gorbunov et al., 2023a]. Finally, for the homogeneous data case,
one can apply validation test [Alistarh et al., 2018, Allen-Zhu et al., 2021] or checks of computations
[Gorbunov et al., 2022b]. For the summary of other advances, we refer to [Lyu et al., 2020].

Methods for min-max and variational inequalities problems. As mentioned before, min-
max/variational inequalities (VIs) problems have noticeable differences with standard minimization.
In particular, it becomes evident from the differences in the algorithms’ behavior. For example, a di-
rect analog of Gradient Descent for min-max/VIs — Gradient Descent-Ascent (GDA) [Krasnosel’skii,
1955, Mann, 1953, Dem’yanov and Pevnyi, 1972, Browder, 1966] — fails to converge for a simple
bilinear game. Although GDA converges for a different class of problems (cocoercive/star-cocoercive
ones) and its version with alternating steps works well in practice and even provably converges
locally [Zhang et al., 2022], many works focus on Extragradient (EG) type methods [Korpelevich,
1976, Popov, 1980] due to their provable convergence for monotone Lipschitz problems and beyond
[Tran-Dinh, 2023]. Stochastic versions of GDA and EG (SGDA and SEG) are studied relatively
well, e.g., see [Hsieh et al., 2020, Loizou et al., 2021, Mishchenko et al., 2020, Pethick et al., 2023]
for the recent advances.

On the results from [Adibi et al., 2022]. In the context of Byzantine robustness for distributed min-
max/VIs, the only existing work is [Adibi et al., 2022]. The authors propose a method called Robust
Distributed Extragradient (RDEG) — a distributed version of EG that uses a univariate trimmed-mean
estimator from [Lugosi and Mendelson, 2021] for aggregation. This estimator satisfies a similar
property to (4) that is shown for § < 1/16 and large enough n (see the discussion in Appendix B).
In contrast, the known (4, ¢)-robust aggregation rules allow larger §, and do not require large n.
Despite these evident theoretical benefits, such aggregation rules were not considered in prior works
on Byzantine robustness for distributed variational inequalities/min-max problems.

2 Main Results

In this section, we describe three approaches proposed in this work and formulate our main results.

2.1 Methods with Robust Aggregation
We start with the Stochastic Gradient Descent-Accent with (4, ¢)-robust aggregation (SGDA-RA):
't = z' — yRAGG(g!,...,g"), whereg! =g;(x', &) Vic G and g! =% Vic®,

where {g! };c¢ are sampled independently. The main result for SGDA-RA is given below.



Theorem 1. Let Assumptions 1, 2, 4 and 6 hold. Then after T iterations SGDA-RA (Algorithm 1)
with (6, ¢)-RAGG and v < 5, outputs ™ such that

T 2 2 2 . 2 2
]EH“"T 7m*H2 < (1 _ ﬂ) Hmo B m*HQ . 2vo n 2v¢d(240° 4 12¢*) N cd(240 ;r12§ )
2 uG 1 7

The first two terms in the derived upper bound are standard for the results on SGDA under Assump-
tions 1, 4, and 6, e.g., see [Beznosikov et al., 2023]. The third and the fourth terms come from the
presence of Byzantine workers and robust aggregation since the existing (J, ¢)-robust aggregation
rules explicitly depend on ¢§. The fourth term cannot be reduced without increasing batchsize even
when ¢ = 0 (homogeneous data case). This is expected since SGDA-RA is permutation invariant.
When o = 0 (regular workers compute full operators), then SGDA-RA converges linearly to the ball
centered at the solution with radius ©(v¢3¢/,,) that matches the lower bound from [Karimireddy et al.,
2022]. In contrast, the known results for RDEG are derived for homogeneous data case (¢ = 0). The
proof of Theorem 1 is deferred to Appendix D.1.

Using a similar approach we also propose a version of Stochastic Extragradient method with (4, ¢)-
robust aggregation called SEG-RA:

Tt =axt— ’leAGG(gél,...,gén), wheregéi =gi(z', &), Vie G and géi =x Vi€E®B,

ot =t — 72RAGG(gy, ..., 95, ), Where g;, = gi(&',n}), Vie G andg] =x* Vie®,

where {g}, }icc and {g;, }ic¢ are sampled independently. Our main convergence result for SEG-RA
is presented in the following theorem; see Appendix D.2 for the proof.

Theorem 2. Let Assumptions® 1, 2, 3 and 4 hold. Then after T iterations SEG-RA (Algorithm 2)
with (3, ¢)-RAGG, 11 < m and B = 72/, < /1 outputs ™ such that
T 2
2 Mﬁ’h) 0 <2, 8o
< |1-—— T —x +
( | uBG

Similar to the case of SGDA-RA, the bound for SEG-RA has the term that cannot be reduced without
increasing batchsize even in the homogeneous data case. RDEG, which is also a modification of
SEG, has the same linearly convergent term, but SEG-RA has a better dependence on the batchsize,
needed to obtain the convergence to any predefined accuracy, that is O(e~!) versus O(e~2) for

RDEG; see Cor. 3.

In heterogeneous case when o = 0, SEG-RA also converges linearly to the ball centered at the
solution with radius ©(v¢3¢/,,) that matches the lower bound.

]EH:BT —x*

2
< 0 + 8c8(2402 + 12¢2) (71 + >

Bu ' p?

2.2 Client Momentum
Next, we focus on the version of SGDA-RA that utilizes worker momentum m, i.e.,
'™ = 2! —yRAGG(m!,....,m!), withm! = (1—-a)m!™ +ag!,

where g} = gi(z',&}), Vi € G and g/ = x V i € B and {g{, }icg are sampled independently.
Our main convergence result for this version called M-SGDA-RA is summarized in the following
theorem.

Theorem 3. Ler Assumptions 1, 2, 4, and 6 hold. Then after T iterations M-SGDA-RA (Algorithm 3)
with (8, ¢)-RAGG outputs T* such that

2|20 — 2| | $100(240% $12¢%) | 670?  ded(240” + 12¢2)
pyaWr pa paG pra? '

B[la" o] <

! T A~ A~ t R —t—1
where T = G Mo wid, &' = e Mool —a) et we = (1-552) 7

T
and W =3, wy.

>SGDA-based and SEG-based methods are typically analyzed under different assumptions. Although (SC)
follows from (Lip) and (QSM) with ¢ = L2/ u, some operators may satisfy (SC) with significantly smaller /.
Next, when p = 0, SGDA is not guaranteed to converge [Gidel et al., 2018], while SEG does



Despite the fact that M-SGDA-RA is the first algorithm (for VIs) non-invariant to permutations,
it also requires large batches to achieve convergence to any accuracy. Even in the context of
minimization, which is much easier than VI, the known SOTA analysis of Momentum-SGD
relies in the convex case on the unbiasedness of the estimator that is not available due to a robust
aggregation. Nevertheless, we prove® the convergence to the ball centered at the solution with radius
O(Ved(C+o)/ap); see Appendix D.3. Moreover, we show that M-SGDA-RA outperforms in the
experiments other methods that require large batches.

2.3 Random Checks of Computations

We start with the Stochastic Gradient Descent-Accent with Checks of Computations (SGDA-CC).
At each iteration of SGDA-CC, the server selects m workers (uniformly at random) and requests
them to check the computations of other m workers from the previous iteration. Let V; be the set of
workers that verify/check computations, A; are active workers at iteration ¢, and V; N A; = &. Then,
the update of SGDA-CC can be written as

et = gt — g, if gt = Z gi(x', &!) is accepted,

|At 1€A,L

where {g;(x", &!)}ic¢ are sampled independently.

The acceptance (of the update) event occurs when the condition ||g* — g;(x*, £!)|| < Co holds for
the majority of workers. If g is rejected, then all workers re-sample g;(z ,51) until acceptance
is achieved. The rejection probability is bounded, as per [Gorbunov et al., 2022b], and can be
adjusted by choosing a constant C' = ©O(1). We assume that the server knows the seeds for
generating randomness on workers, and thus, verification of computations is possible. Following each
aggregation of g; (x', &), G the server selects uniformly at random 2m workers: m workers check
the computations at the previous step of the other m workers. For instance, at the (¢ + 1)-th iteration,
the server asks a checking peer i to compute g;(z?, é‘;), where j is a peer being checked. This is
possible if all seeds are broadcasted at the start of the training. Workers assigned to checking do not
partlclpate in the training while they check and do not contribute to g*. Therefore, each Byzantine
peer is checked at each iteration with a probability of ~ ™/n by some good worker (see the proof of
Theorem 4). If the results are mismatched, then both the checking and checked peers are removed
from training.

This design ensures that every such mismatch, whether it is caused by honest or Byzantine peers,
eliminates at least one Byzantine peer and at most one honest peer (see details in Appendix E.1). It’s
worth noting that we assume any information is accessible to Byzantines except when each of them
will be checked. As such, Byzantine peers can only reduce their relative numbers, which leads us to
the main result for SGDA-CC, which is presented below.

Theorem 4. Let Assumptions 1, 4 and 6 hold. Then after T iterations SGDA-CGC (Algorithm 5) with
v< 5 outputs T such that

w2 ypu\ T+ 2 4yo? 2qo%nB [~
Bl o' < (1= 2) " a0 - | 0T TR (D7),

where g = 2C? + 12 + O(1) since C = O(1).

n— ZB m’ 9=
The above theorem (see Appendix E.1 for the proof) provides the first result that does not require large
batchsizes to converge to any predefined accuracy. The first and the second terms in the convergence
bound correspond to the SOTA results for SGDA [Loizou et al., 2021]. Similarly to the vanilla
SGDA, the convergence can be obtained by decreasing stepsize however, such an approach does not

benefit from collaboration, since the dominating term 'Y” nB (coming from the presence of Byzantine

workers) is not inversely dependent on n. Moreover, the result is even worse than for single node
SGDA in terms of dependence on n.

%1n contrast to Theorems 1-2, the result from Theorem 3 is given for the averaged iterate. We consider the
averaged iterate to make the analysis simpler. We believe that one can extend the analysis to the last iterate as
well, but we do not do it since we expect that the same problem (the need for large batches) will remain in the
last-iterate analysis.



To overcome this issue we consider the restart technique for SGDA-CC and propose the next
algorithm called R-SGDA-CC. This method consists of 7 stages. On the ¢-th stage R-SGDA-CC
runs SGDA-CC with ~; for K iterations from the starting point Z*, which is the output from the
previous stage, and defines the obtained point as ZZ'*! (see details in Appendix E.2). The main result
for R-SGDA-CC is given below.

Theorem 5. Let Assumptions 1, 4 and 6 hold. Then, after r = {logQ R;—‘ — 1 restarts

R-SGDA-CC (Algorithm 6) with v = min{gg,\/(ntsi%tzzm, 72q:§225;2n2}

29t 34no B4/ q2t
K, = {max{ge Y60 2 g }—‘ where R > ||z° — z*

W m2B—m) PR mpR , outputs T" such that

E||Z" — &*||> < e. Moreover, the total number of executed iterations of SGDA-CC is

- 0 uR? o? nBo )
K, = O Zlog M0 4 + . (5)
tz:; ! (,u € (n—2B —m)ue  my/ue

The above result implies that R-SGDA-CC also converges to any accuracy without large batch-
sizes (see Appendix E.2 for details). However, as the accuracy tends to zero, the dominant term
2

M‘wa inversely depends on the number of workers. This makes R-SGDA-CC benefit from
collaboration, as the algorithm becomes more efficient with an increasing number of workers. More-

over, when B and m are small the derived complexity result for R-SGDA-CC matches the one for
parallel SGDA [Loizou et al., 2021], which is obtained for the case of no Byzantine workers.

Next, we present a modification of Stochastic Extragradient with Checks of Computations (SEG-CC):
t t

z =z’ — g, if ge= ﬁ Yica,9i(®', &) is accepted,
=gt gl if g% = phy Siea,0i(@ ) s accepted,
where {g;(x", £!)}ice and {g;(z",m!)}ic are sampled independently. The events of acceptance
§f,, (or ﬁtg) happens if

|g" — gi(a", &) < Co (or||g;, — g:(@", m})|| < Co)
holds for the majority of workers. An iteration of SEG-CC actually represents two subsequent
iteration of SGDA-CC, so we refer to the beginning of the section for more details. Our main

convergence results for SEG-CC are summarized in the following theorem; see Appendix E.3 for
the proof.

Theorem 6. Ler Assumptions 1, 3 and 4 hold. Then after T iterations SEG-CC (Algorithm 7) with
T < m and B = 2/, < /1 outputs ™ such that

x

2 wBvi\ " 2 4y, 79nB

T * 0 * 2

EH:B —w” §(1— 1 ) Hw —x + 20 (B;LQ(n—QB—m)+ p- ),
where g =2C? + 12+ —2— ¢ = O(1) since C = O(1).

Similarly to SGDA-CC, SEG-CC does not require large batchsizes to converge to any predefined
accuracy and does not benefit of collaboration, though the first two terms correspond to the SOTA
convergence results for SEG under bounded variance assumption [Juditsky et al., 2011]. The last
term appears due to the presence of the Byzantine workers. The restart technique can also be applied;
see Appendix E.4 for the proof.

Theorem 7. Let Assumptions 1, 3, 4 hold. Then, after r = [log2 R?Z—‘ — 1 restarts
. . . —B—m 2 m
R-SEG-CC (Algotithm 8) with v, = mln{zlL, (G16f22tK)f%, 8q02§an . e,

1 1 m?2R?2 (G—B—m)R? _ 8L 16noB+/q2t 2560221
min {4L’ \/m’ \/K and K; = | max n’ muR ’ (G—B—m)p?R? ’

where R > ||@° — x*|| outputs & such that E||Z" — x*||*> < e. Moreover; the total number of
executed iterations of SEG-CC is

s
4 uR2 o? nBo
S K, =0 ( log 2500 " . ®
P I € (n—2B —m)ue  my/pe




The above result states that R-SEG-CC also converges to any accuracy without large batchsizes; see
2

Appendix E.4. But with accuracy tending to zero (¢ — 0) the dominating term (71,—2307—”1,);1,5 inversely

depends on the number of workers, hence R-SEG-CC benefits from collaboration. Moreover, when
B and m are small the derived complexity result for R-SEG-CC matches the one for parallel/mini-
batched SEG [Juditsky et al., 2011], which is obtained for the case of no Byzantine workers.

3 Numerical Experiments

Quadratic game. To illustrate our theoretical results, we conduct numerical experiments on a
quadratic game

. 11 T T I+ T T
rrgnm}xgzgiy Ay+y Agin—EZ Asziz+ b,y — by 2.
=

The above problem can be re-formulated as a special case of (1) with F' defined as follows:

1 S
Flz)=-> Am+b;, wherex=(y ,z")", b= (b],,b5,)", (7)
5 jir D2,
i1
with symmetric matrices A ; s.t. uI < A;; < 01, A; € R¥4 and b; € R? see Appendix F for the
detailed description.

We set £ = 100, u = 0.1, s = 1000 and d = 50. Only one peer checked the computations on each
iteration (m = 1). We used RFA (geometric median) with bucketing as an aggregator since it showed
the best performance. For approximating the median we used Weiszfeld’s method with 10 iterations
and parameter v = 0.1 [Pillutla et al., 2022]. RDEG [Adibi et al., 2022] provably works only if
n > 100, so here we provide experiments with n = 150, B = 20, v = 2e — 5. We set the parameter
a = 0.1 for M-SGDA-RA, and the following parameters for RDEG: agpeg = 0.06, drpeg = 0.9
and theoretical value of €; see Appendix F for more experiments. We tested the algorithms under the
following attacks: bit flipping (BF), random noise (RN), inner product manipulation (IPM) Xie et al.
[2019] and “a little is enough” (ALIE) Baruch et al. [2019].

Robust Neural Networks training. Let f(u; x,y) be the loss function of a neural network with
parameters u € R? given input z € R™ and label y. For example, in our experiments, we let f be
the cross entropy loss, and {(z;,y;)}2 is the MNIST dataset. Now consider the following objective:

N
. 1 A1 Ao
min max ;f(m zi v, u0) + 5 [lulld = S oll3. ®)

This min-max objective adds an extra adversarial noise variable to the input data such that it maximizes
the loss, so the neural network should become robust to such noise as it minimizes the loss. We can
reformulate this objective as a variational inequality with

— (Y _( Vuf(uszi + o) + Mu 1 N
o <U> - Fil@) = (—va(u§$z‘ +v,y:) + )1\2v> , Fla)= N ;Fi(x)~ )

We let n = 20, B = 4, \; = 0, and Ay = 100. We fix the learning rate to 0.01 and use a batch
size of 32. We run the algorithm for 50 epochs and average our results across 3 runs. We test the
algorithms under the following attacks: i) bit flipping (BF), ii) label flipping (LF), iii) inner product
manipulation (IPM) Xie et al. [2019], and iv) a little is enough (ALIE) Baruch et al. [2019]. We
compare our algorithm SGDA-CC against the following algorithms: i) SGDA-RA, ii) M-SGDA-RA,
and iii) RDEG Adibi et al. [2022]. We use RFA with bucket size 2 as the robust aggregator. The
results are shown in Figure 2. Specifically, we show the validation error on MNIST after each epoch.
We can see that SGDA-CC performs the best, followed closely by M-SGDA-RA.

4 Conclusion

This paper proposes several new algorithms for Byzantine-robust distributed variational inequalities
and provides rigorous theoretical convergence analysis for the developed methods. In particular, we



BF, bs=1 IPM (1e+01), bs=1 RN (1e+01), bs=1

ALIE (1e+01), bs=1 . . .
10-1 - 10 4 RDEG (2¢-05) 1071 % 4 RDEG (2e-05) 1073 % - RDEG (2€-05)
i ¥, & RDEG(e05) < e > SEGRA (2€-05) s W > SEGRA (2-05) 5 M9 > SEGRA (2¢-05)
H Ny - SEGRA (2e:05) 3 e MSGDARA (2¢-05) | 5 NN MSGDARA (2¢-05) | 5 LA MSGDARA (2¢-05)
E K MSGDARA (2€-05) S 102 8 " Y. e SGDARA (2¢-05) H " ©- SGDARA (2e-05) 81072 » ~® SGDARA(2e05)
H Ao SSDARA 2505), e ad 2 B 2 A X Nessevvveevvvery| o § reevrrireoeveses
5102 ® s Yoox g 107 G s &
S N -
£ 2D 2 G009 IIIID @ S g Sesodi g 1 N
S Priee ¢ 10 Y . g o & ST Feerrreads g 10 .
5 & 5 G 7 7 | Y ‘ e
£ 2 - » 2 z veo \d v Negig o
e 10 1ot R e T e Lo
o 2 4 6 8 0 2 a4 6 8 o 2 a4 6 8
° 2N perof 4‘5 t ¥ 1es Number of gradients 1e> Number of gradients 1e5 Number of gradients 1e5
umber of gradients
ALIE (1e+01), bs=1 BF, bs=1 IPM (1e+01), bs=1 RN (1e+01), bs=1
. - - .
107 " 107 2 SEGCC (2e-05) 107 107 2 SEGCC (2e-05)
S 102 ¥ 102 Wa - SGDACC (2¢-05) § 102 XS, 5102 %, - SGDACC (26-05)
s 5 MSGDARA (2e-05) El El MSGDARA (2e-05)
2 10 2 100 2 o 210 ¥
8 10 ° g0 X § 10 v 8
E 5104 b i S10*
5 10 - i X : e g 107 v s X F X
Y L i X 5 b = 1o ok ¢
g0 Fspl | 8w &) v”"ﬂ” FWTL | 2 Mibwl | 227 A LV M
g SEGCC (2€-05) 18 (- o g SEGCC (2€-05) ! 8 106 i £y
2 051 % scDACC (2e-05) 2 8 & 106 | ¥ SGDACC (2e-05) a
MSGDARA (2€-05) B § 10-7 MSGDARA (2€-05) Y 1077
1077 1077
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Number of gradients 1es Number of gradients 1e5 Number of gradients 1es Number of gradients les

Figure 1: Error plots for quadratic games experiments under different Byzantine attacks. The first
row shows the outperformance of M-SGDA-RA over methods without checks of computations. The
second row illustrates advantages of SGDA-CC and SEG-CC.
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Figure 2: Error plots for the robust neural network experiment on MNIST under different byzantine
attacks (BF, LF, IPM, and ALIE). Each algorithm is shown with a consistent choice of color and style
across plots, as indicated in the legends.

propose the first methods in this setting that provably converge to any predefined accuracy in the
case of homogeneous data. We believe this is an important step towards building a strong theory of
Byzantine robustness in the case of distributed VIs.

However, our work has several limitations. First of all, one can consider different/more general
assumptions about operators [Beznosikov et al., 2023, Gorbunov et al., 2022a, 2023b] in the analysis
of the proposed methods. Next, as we mention in the discussion after Theorem 3, our result for
M-SGDA-RA requires large batchsizes, and it remains unclear to us whether this requirement can be
removed. Finally, the only results that do not require large batchsizes are derived using the checks of
computations that create (although small) computation overhead. Obtaining similar results without
checks of computations remains an open problem. Addressing these limitations is a prominent
direction for future research.
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A Examples of (J, c)-Robust Aggregation Rules

This section is about how to construct an aggregator satisfying 1.1.

A.1 Aggregators

This subsection examines various aggregators that lack robustness. It means that new attacks can be
easily designed to exploit the aggregation scheme, causing its failure. We analyze three commonly
employed defenses that are representative.

Krum. For ¢ # j, leti — j denote that x; belongs to the n — ¢ — 2 closest vectors to x;. Then,

KRUM(Z1,...,&y) := argminz (BT

LS
Krum is computationally expensive, requiring ©(n?) work by the server Blanchard et al. [2017].
CM. Coordinate-wise median computes for the k-th coordinate:

[CM(z1,...,x,)]k = median([z1]g, . . ., [Tn]k) = argminz ik — [2]k] -

7

j=1
Coordinate-wise median is fast to implement requiring only ©(n) time Chen et al. [2017].

RFA. Robust federated averaging (RFA) computes the geometric median

RFA(xq,...,x,) = argminz lv — ;|2
Y=l

Although there is no closed form solution for the geometric median, an approximation technique
presented by Pillutla et al. [2022] involves performing several iterations of the smoothed Weiszfeld
algorithm, with each iteration requiring a computation of complexity ©(n).

A.2 Bucketing algorithm

We use the process of s-bucketing, propose by [Yang and Li, 2021, Karimireddy et al., 2022] to
randomly divide n inputs, x; to @, into [n/s| buckets, each containing no more than s elements.
After averaging the contents of each bucket to create y1, . . . , Y[y /5], We input them into the aggregator
AGGR. The Bucketing Algorithm outlines the procedure. Our approach’s main feature is that the
resulting set of averaged yi,...,Yr,/s] are more homogeneous (with lower variance) than the
original inputs.

Algorithm Bucketing Algorithm

input {x;,...,2,}, s € N, aggregation rule AGGR
pick random permutation 7 of [n]

Ll S e

compute y; < + Z?;S’ilz)il T fori={1,...,[n/s]}
output < AGGR(Y1,...,Y[n/s]) /I aggregate after bucketing

A.3 Robust Aggregation examples

Next we recall the result from [Karimireddy et al., 2022], that shows that aggregators which we saw,
can be made to satisfy 1.1 by combining with bucketing.

Theorem 8. Suppose we are given n inputs {x1, . .., @, } such that E||x; — ; I* < p? for any fixed
pairi,j € G and some p > 0 for some § < Spax, With dymax to be defined. Then, running Bucketing
Algorithm with s = L‘S%j yields the following:

* Krum: E|[KRUM o BUCKETING(Z1, .. ., ®,) — &||> < O(6p?) with Sumax < 1.

* Geometric median: E|[RFA o BUCKETING (1, . .., n) — &||* < O(6p2) with Smax < i
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« Coordinate-wise median: E|CM o BUCKETING(z1,... @) — Z||> < O(dép?) with
Smax < %.

Note that all these methods satisfy the notion of an agnostic Byzantine robust aggregator (Definition
1.1).
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B Further Details on RDEG

Originally RDEG was proposed for min-max problems and represents a variation of SEG with
Univariate Trimmed-Mean Estimator aggregation rule. For convenience we give here RDEG pseudo-
code we used in experiments.

In this section we use the notation = € (0, 1) for a confidence level.

Robust Distributed Extra-Gradient (RDEG)

Input: TRIM, ,, s, v
1: fort=1,...do
2:  for worker ¢ € [n] in parallel
g, + gi(x", &)
send géi if i € G, else send x* if Byzantine
get(x') = TRIMc o 5 (G¢,, - - 9E,)
zt— xt — ’71§§t ({Bt)
for worker 7 € [n] in parallel
gfh — gi(z',m;)
send g; if i € ¢, else send * if Byzantine
10:  Gpe(@)=TRIMcas (g, g5 )
1: gt — g, (2h).

R A A

Performance of Univariate Trimmed-Mean Estimator. The TRIM operator takes as input n
vectors, and applies coordinatewisely the univariate trimmed mean estimator from Lugosi and
Mendelson [2021], described bellow here as Univariate Trimmed-Mean Estimator Algorithm.

Univariate Trimmed-Mean Estimator Algorithm Lugosi and Mendelson [2021]

Input: Corrupted data set Z1, ..., Zy/2, Zl, . Zn /2> corruption fraction ¢, and confidence level 7.
I: Sete = 80 + 24084/
2 LetZy <Z;<---< 2" /2 Tepresent a non-decreasing arrangement of {Z; };c[,/2). Compute
quantiles: v = Ze*n/2 and 8 = Z(*lfe)n/Q'
3: Compute robust mean estimate iy as follows:

9 n/2 _ /6 x> B
fiz = > 018(Zi); by p(a) =Sz we[1,f]
i=1 vy

The following result on the performance of Univariate Trimmed-Mean Estimator plays a key role in
the analysis of RDEG.

Theorem. [Adibi et al., 2022, Theorem 1] Consider the trimmed mean estimator. Suppose 6 €
[0,1/16), and let = € (0,1) be such that © > 4e~™/2. Then, there exists an universal constant c,
such that with probability at least 1 — T,

iz —pz| <coz <\/5+ 10g(1/ﬂ)> )

n
Using the latter componentwise result the authors states that

e () - PO < eo (m 1g<1/>) |

n

In fact this result is very similar to the Definition 1.1. The main difference is that for Univariate
Trimmed-Mean Estimator we have a bound with some probability. The other difference that using
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the following representation of the result with p? = c2¢2

~ 2log(1/m
e (a) — Pla) |2 < o7 + BTy p g
Univariate Trimmed-Mean Estimator has the additional term inversely depending on the number of

workers.

Moreover, the result requires § € [0,1/16) in contrast to the aggregators we used, that work for wider
range of corruption level 6 € [0,1/5].

Performance guarantees for RDEG. The authors of [Adibi et al., 2022] consider only homoge-
neous case.

Theorem. [Adibi et al., 2022, Theorem 3] Suppose Assumptions 3 and 4 hold in conjunction with
the assumptions on § and n: the fraction § of corrupted devices satisfies 6 € [0,1/16), and the
number of agents n is sufficiently large: n > 481og(16dT?). Then, with m = 1/(4dT?) and step-size
n < 1/(4L), RDEG guarantees the following with probability at least 1 — 1/T':

log(4dT?
|2 — &TH||2 < 2¢ % g2 4 S0LR <ﬁ+ log(4dT?) )> : (10)

L n
where k = /L.

The result implies that RDEG benefits of collaboration only when the corruption level is small. In
2 2
fact, the term log(idT ) < 481‘1?%(_?1‘]’5;722) < 1/48, so the corruption level should be less than 1/48 to

make RDEG significantly benefit of collaboration in contrast to our SEG-CC that requires corruption
level only less than 1/5. Moreover, in case of larger corruption level, RDEG converges to a ball

centered at the solution with radius O (\/ ‘/giR””) in contrast to our methods SGDA-RA, SEG-RA

and M-SGDA-RA converge to a ball centered at the solution with radius O (, / CZ—‘f), that has a

better dependence on . It is crucial with increasing batchsize (b = batchsize), since 02 depends on a
batchsize as %
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C Auxilary results

C.1 Basic Inequalities
Forall a,b € R™ and A > 0,4 € (0, 1]

lall3 , Allb3
2) * 2’

la + b3 < 2]lall3 + 2/]13,

1
o817 < 1+ )1l + (145 ) 1P,

[{a,0) <

(a,b) = 5 (la+blI3 — llall3 - 1Ib]13) .

1
2
1

(a,0) = 5 (=lla—blI3 + llall3 + [BII3)
n 2 n

Yol <nd el

i=1 i=1

1
la+l* > Sllall* — Bl

q—l
1—7) <1+4q,
( ) =itd

C.2 Usefull Lemmas

We write g! or simply g; instead of g;(x*, £!) when there is no ambiguity.

(11)
(12)
13)
(14)

(15)

(16)

(a7
(18)

(19)

Lemma C.1. Suppose that the operator F' is given in the form (1) and Assumptions 1 and 6 hold.

Then

]

Eﬁ”?(“"?g)“Q </ <F<ZL')7CL' — iL'*> + 9

G )
where B¢ :=I1;E¢, and g, &) = & 2icq 9i(®: &)

Proof of Lemma C.1. First of one can decomposeda squared norm of a difference and obtain

Eellg(z, &) - F()|” = Ee|g(z, &)|I” — 2(Beg(w, €), F(x)) + | F ().

Since g(x, &) = 2 > ic 9i(;&;), by the definition (1) of £’ and by Assumption 1 one has

el
_ 1 1
i€Q i€q
and consequently
Eel[g(z, &)|” = Bel[g(x, &) + F(@)|* — ||F()]*.

One can bound E¢||g(x, &) — F(SIJ)H2 as

_ 1
Ee|g(@. &) — F(a)| = Bl Y (e - i)
i€Q
independence of &; 1 2 o 2
= a2 O Eelgi(@:6) — Fi@)|” < &
€@

)

(20)

where the last inequality of the above chain follows from (SC). The above chain together with (20)

and (SC) implies the statement of the theorem.

21

O



Lemma C.2. Let K > 0 be a positive integer and n1,172, . . . ,NK be random vectors such that

de
Ex[nk] :f]E[nk [ M, . ymk—1] =0fork=2,..., K. Then

2

K K
E S ] | = S Ellnel. @D
k=1 k=1
Proof. We start with the following derivation:
K 2 r K—1 (-1 2
E Y m = E[lnkl] +2E <77K, > 77k>] +E D me
k=1 L k=1 k=1

K-1 1 (x-1 2
= E[lnx|? +2E |Ex <77K, > le>] +E D me
k=1 |

k=1

2

I K-1 K-1
= E[nx|*] + 2E <EK[T]K], Z nk> +E ‘ Z m
L k=1

k=1

2
= E[nxl’] +E

K-1
Z Mk
k=1

Apolvine simi K-1_ |2 k-2 |7 2 2
pplying similar steps to E [ |\(> " me|| | LE [y Mkl |- E ||| D51 k|| |» we get the

result. O
Lemma C.3. Suppose
Tk gro(l—av)K—i—%—i—%o (22)
holds for v < ~y. Then the choise of
p> 30
€

and

implies that v < € for

Proof. Since b > 3‘% then P < §and 5T < cg;‘s. The choise of v < min (*yo, 2—‘1)) implies that
av < €

5S35
K < % and finishes the proof. []

co’ Yo

The choice of K > % max(“—1 L ) In 3% implies that ro(1 — ay

Lemma C.4 (see also Lemma 2 from Stich [2019] and Lemma D.2 from Gorbunov et al. [2020]).
Let {ry } x>0 satisfy

re <ro(l— a’y)K+1 + 17 + o> (23)
for all K > 0 with some constants a,co > 0, c1 > 0, v < 7p.
Then for
In (max{2, min{erok /e, *r0/c,}})
= mi 24
v mm{’Yoa K +1) (24)
we have that
o) C1 C2
= 0 ( —avo(K + 1)) + 2L ) _
'K roexp (—ao(K + 1) + — + 7
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Moreover ri < € after

~ 1 C1 Co
K=0 —
(afyo + ae + QQﬁ)

iterations.

Proof. We have

rg <ro(l— a’y)K+1 + 1y + ey < rgexp (—ay(K + 1)) + 1y + 292 (25)

Next we consider two possible situations.

1n(max{2,min{ﬂ”'0K/c1702"'0K2/02}})

1. If > (KD then we choose 7 =
ax{2,min{ar c1,0%r0K? /e
tn(max{2, EJ(I()(i/l)l) 0 %ea}}) and get that

(25)
rk < roexp(—ay(K +1)) + 1y + 27’

_ 8 ( exp (—1“ (masx(2, min{orofer, o*rofes}) e 1>>)

a(K +1)
~ C1 Co
+0 (aif( + a2K2>

_ 2 2
= © (7‘0 exp (—ln (max{?,min{aroK, oK }})))
C1 C2
~ C1 Co
+0 (o * z27c3)

~ C1 Co
O (— ) .
aK + a?K?

n(maX{Z,min{aK/cl,ﬂzroKz/cg}})

2. Ifyy < : a(R+D) then we choose v = 79 which implies that

(25)
ke < roexp(—avo(K + 1))+ c1v0 + a7
~ C1 Co
- 0 ( —ao(K +1)) + <L ) :
700 eXp ( a’}/()( + )) + CLK + a2K2

Combining the obtained bounds we get the result. O
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D Methods that use robust aggregators

First of we provide the result of Karimireddy et al. [2022] that describes error of RAGG, where
m' =ag' + (1 —a)m' L

Lemma D.1 (Aggregation error Karimireddy et al. [2022]). Given that RAGG satisfies 1.1 holds, the
error between the ideal average momentum m' and the output of the robust aggregation rule m! for
any t > 1 can be bounded as

Ellm’ — | < b (0')?.
where we define fort > 1
(,ot)2 = 4(6ao? 4+ 3¢%) + 4(60% — 3¢*)(1 — )t
For t = 0 we can simplify the bound as (p0)2 = 2402 + 12¢2
Moreover, one can state a uniform bound for (pt)2

()% < p* = 2402 + 12¢°. (26)

D.1 Proofs for SGDA-RA

Algorithm 1 SGDA-RA

Input: RAGG, v
1: fort =0,...do
2:  for worker ¢ € [n] in parallel
gi < gi(z', &)
send g! if i € @, else send * if Byzantine
g' =RAGG (g!,...,g!)and '*! < x' — vg'. // update params using robust aggregate

b

D.1.1 Quasi-Strongly Monotone Case

Theorem (Theorem 1 duplicate). Let Assumptions 1, 2, 4 and 6 hold. Then after T iterations
SGDA-RA (Algorithm 1) with (4, ¢)-RAGG and v < i outputs = such that

w112 yu\T a2 2y 2vedp?  cop?
Ble” o[ < (1~ ) ot o+ 25 4 O 7
where p? = 2402 + 12¢? by Lemma D.1 with o = 1.

Proof of Theorem 1. We start the proof with

||;ct+1 _ :13*H2 _ Hmt 2t —V§t||2 _ ||$13t _ .’13*||2 _ 2”y<§t,mt _ ;c*> +72||§t||2

Since gt = g* — F'* + F'* one has

Hwt-ﬂ e

~t

—29(g' —g', @' — ) — 29(g", ' — =) + 7| g'|*.

*|2

2
=" -2

. . o 02 llat =t L =12 .
Applying (11) for (g* — g', @' —@*) with A = 2 and (12) for ||g*||” = ||g* — g" + g'||” we derive

< (1 + %) ||=* — ar:*||2 —2v(g", x' — x*)

2
|2 =2

29\~ — ~ _
+g gl 22 g - g+ 2
Next by taking an expectation [E¢ of both sides of the above inequality and rearranging terms obtain
2 M t_ *
< (1+Z))o -

2 o — ~ _
+Belg - | + 2°Re|g" — '+ 2% Bl

Eea't! — a* 2 oy (F(at), @' — x*)
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Next we use Lemmas C.1 and D.1 to derive

Eellz't! — x* |2 < (1 + )Hw ar:*||2 + (292 — 29)(F (), =" — x*)

2 2 2
T Yo +265p2<'7 _~_,Y2>’
G L
that together with the choice of v < 55 and Assumption (QSM) allows to obtain
bl w2 YNt o 2y
]EgHa: facH < (17?)”3: facH +G+205p< ’y>
Next we take full expectation of both sides and obtain

2
E||zt+! — *2<(1——>E - +7+25 < + )
a1~ < ot =+ 27 2057 (2 44

The latter implies

T dyo?  Ayebp?  Acdp?
P (1= ) a0 - S T 20
2 pG 7 7

where p is bounded by Lemma D.1 with o = 1. O

IEHwT

Corollary 1. Let assumptions of Theorem 1 hold. Then EH:BT —x H2 < ¢ holds after

2
TZ<4+4€+1>1H3R
1% 3

iterations of SGDA-RA with v = min( L

1 72cd0?
37 2u+ﬁ) and b > e

Proof. 1f ( =0, p? = 24072 the result of Theorem 1 can be simplified as

2 T 2v02  48vycdo?  24cdo?
Ella” 2| < (1= 28) Jla® 2| + ZT% + = ¢ =5
2 pG % I
Applying Lemma C.3 to the last bound we get the result of the corollary. O

D.2 Proofs for SEG-RA

Algorithm 2 SEG-RA

Input: RAGG, v
1: fort=1,...do
2: for worker i € [n] in parallel

3 g, + gi(x", &)

4 send géi if © € @, else send x* if Byzantine

5 get(x') =RAGG (gf,,- -, 9¢)

6: Z' — x' — 1 ge (). // update params using robust aggregate
7¢

8

9

for worker i € [n] in parallel
gi],/ — gi(a:tv T]z)
: send g;, if i € ¢, else send  if Byzantine
10: gnt (') = RAGG (g,71 s Gn)
11: zt — at — g, (2h). // update params using robust aggregate

To analyze the convergence of SEG introduce the following notation

ggk( ) ng Zgz 75

ze(”
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ger (") = RAGG (g1 (2", £), ..., gn(z",£})),
¢ =k - ’}qggk (wk),

g (@) =g Zgz ", ;)

z€(°

where £¥, i € ¢ and n;?, j € @ are ii.d. samples satisfying Assumption 1, i.e., due to the
independence we have

Corollary 2. Suppose that the operator F' is given in the form (1) and Assumption 1 holds. Then

2
_ o
Ee [llge: («*) - F@IP] < =, @7
~k k(|2 o’
“ (g @) - FEIHIF] < & (28)
D.2.1 Auxilary results
Lemma D.2. Let Assumptions 2, 3, 4 and Corollary 2 hold. If
< 1 (29)
n=ar
for SEG-RA (Algorithm 2), then g, (T k) = G (¥ — 11ger (x¥)) satisfies the following inequal-
ity
2 — =k |[2 ] Lk 5 8yio? 2 ¢ 2
+2E [Hg,,k@ )| |w} < 2P, + + dy2e8p2, (30)

where P, = Y1Egk e [<§nk (z*),xk — x*)| and p* = 240* 4 12¢* by Lemma D.1 with o = 1.

Proof. Using the auxiliary iterate z*+! = ¥ — Y1Gy (T k), we get
. w2 2
e e G || =2 (@" — 2”9, (@) + 1l @7 GD
= H:B— —271 <w —’ygsk(w )—az ,gnk(ik» (32)
~ i~ k2

~297(ger ("), Gy (")) + 71|90 (@) (33)
Taking the expectation Egr ,» [[] = E [ | wk} conditioned on * from the above identity, using tower

property Egx (-] = Egr [E, « [-]], and p-quasi strong monotonicity of F'(x), we derive

Egepe |8 - 2]

*

"B (9@
—2'}/1E€k7nk [<£E — ’Ylggk( ) — .’B*,gnk (ik)>j|

~21Eee i [(Ger ("), G0 (31))]
k

— et e

w2
= =" -2
—271Egr [<wk — V1Ggk (:ck) —x* F (:ck — V1Gek (:ck))>]
~23Bes [(Ger (2°), G ()] + 17 B e |G @)
(QSI\QKM)

w112

|2+ — 2"~ 12Egr o ||| ()]

3B |[Ger (@) — G @] -
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To upper bound the last term we use simple inequality (16), and apply L-Lipschitzness of F'(x):

2] (16)

Egrpe |8 2| < R - | COT

7B [[ger () — G (") ]

+y7Eg [|Fah) - F (@)

o (e (@)~ @)

+411 B G () - F (@)

|l2* = 2*|* =92 (1 - 4L%9%) Bex |G (@)]°]

(Lip),(27),(28)
<

+r3Ees [[ger (@) - Ger ()]

4y30?  4yio?
e G
(16),Lerzma D.1 Hggk . 2 'y% (1 _ 4’)/12L2) Esk {Hgsk (iL‘k)Hz]
8 2 .2
+ ’yé,g + 4y2cop?
2 2
(zgg) ||a:k - a:*||2 + 8750 + 4yZcedp?.
Finally, we use the above inequality together with (31):
k |2 B 2 — =k\[12 ] .k k 2, Srio? 252
N R e s capmrr
where P, = Y1Egk pe [<§nk (z*),z* — x*)|. Rearranging the terms, we obtain (30). O

Lemma D.3. Consider SEG-RA (Algorithm 2). Let Assumptions 2, 3, 4 and Corollary 2 hold. If

1
4
NS5 e (34)

then g, (zF) = Gk (¥ — 11ger (x¥)) satisfies the following inequality

n |

2 2
’ M 8%0 _ Oypcdp (35)

R 2
P > o —2*|* + LBt |7 (=* R

or simply

4730

G

/Wl

*

2
+

-P, < + 47 cdp?

|l=* —

where P, = Y1 Egk ne [<g,7 (z*),xk — x*)| and p* = 240* 4 12¢? by Lemma D.1 with oo = 1.
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Proof. Since Egk i [] = E[- | *] and g, (%) = g,pn (€ — 11g¢x (x*)), we have

= —71Egk pr |:<§,nk (:?k), xk — w*)]

= —71E¢r R]Enk [?nk(ik)]v b — 71§gk($k) - w*>]
NE [(G ("), g ()]

F(zF - Y1ger (x*)), x* — 71§gk(=’l’k) - w*>]

(
F(

DB [l @] - e [l
[

@9 B {Hwk — 2" — e (@) } Eﬁk |:Hg€k HQ}
5 [lge @) - e )]
g (@ - F @)]
g lgen () - P

42 o a2
+ S Bt |G @) - F (3)]]

(17),(Lip),Leni. D.1,Cor. 2 —&H *|| B 7;(1 g 47%L2)E§k [||§,$k(mk)l|2]
DI IR ytesy?
¢ Wt | - DEge [ o)) + A ayiesy?
So one have
B < /m e — 2| - %%Egk [Hﬁsk )1 } 4710 97%;502
or simply
~-B < J‘T%Hm’“ —z| 475;2 + 4yiesp?

that concludes the proof. O

D.2.2 Quasi-Strongly Monotone Case

Combining Lemmas D.2 and D.3, we get the following result.

Theorem (Theorem 2 duplicate). Let Assumptions 1, 2, 3 and 4 hold. Then after T iterations
SEG-RA (Algorithm 2) with (4, ¢)-RAGG, 71 < m and 3 = 12/~, < /1 outputs T such that

T o x|? Wb\ o 2, Smo’ Mmoo, 2
EHw —x || < 17T ||a: —x || + LG + 8cop? 5M+M2

where p? = 2402 + 12(? by Lemma D.1 with o = 1.
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k+1

Proof of Theorem 2. Since £* ! = x* — y5g,x (T*), we have

2

|+ & e (&) — 2|

o = @ = 200 (@) 2" &)+ 3 e (&)

o = @[ = 2ralage (&) a* - %) + 2 )

28 (3) = e &) + 20200 () ~ e (@) 2" )
Nt = o = 2ralays (@) 0¥ )+ 23 e )
(245 I @) - e @)

Taking the expectation, conditioned on x*,

-

IN

IN -+

2

*

< (1+ )\)| +(Gnp (%k) xh — ")

+2800 B [ (@) + 280062 (24 1),

Esk’nk Hwk+1 — &

using the definition of 13k = 71Egr i [<§nk (), xh — m*)} , we continue our derivation:

]Egk"nk |:H:Bk+1 — (B*

2} (36)
= (AN — 2| - 28D, + 2843 Bes o |G (@)

1
206p2>

+acdp? (2 + /1\)

<p< ~ 2.2
e (14 N)|Ja* — 2| — 2P, (8 — 28%) + a1

1
+v3cdp? (2 + )\)

(35)
< (1—}—)\)Hmk—az ?
2 dyio?
+26(1—26)( WIH P+ 7& +4v1205p2)
167302

+

1
+ 8y5¢op® 4 Yicdp? (2 + A)

< (1+a-280-280) o — 2|
2 2 16~252 1
+ T 20502 + 22T L 8020602 +42e0p? (24 < (37)
G G A
0<B<1/a Ly a2, 02
<5 (1A= BB ek - |P + Z (33 +1699)

+cop? (71 + 1043 + 12)
A=n72/4 Y2 2 0—2
< Of—Mw 2|+ 5 (o +1643)
4
Fedp? (712 11092 + 32)
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Next, we take the full expectation from the both sides

? 4
E {Hmkz+1 71_*”2} - ( uw) {H w*|ﬂ+%(vf +1643) +cop® (71 +1072 + 32)
(38)

Unrolling the recurrence, together with the bound on p given by Lemma D.1 we derive the result of
the theorem:

472)

2(y3 2y 4ed +10
E [Ha)K — :1:*“2} (1 _ @) HwO _ m*Hz + do (71 + 16’}/2) 4 cop (71 ’Yz
A K12G 12

Corollary 3. Let assumptions of Theorem 2 hold. Then IEH:BT —x H2 < ¢ holds after

2 1 3R?
T>4 — In —
- (6+Bu+35050> e

iterations of SEG-RA with v, = mm<2u+2L’ m

288cio>

Proof. Next, we plug v2 = 1 < 71/4 into the result of Theorem 2 and obtain

K1 k|2 _pBn 0 .2, SYio? | 8mcdp® | 16cop
E[[o"* - @ ||]<<1 P >||a; e R e a7 S )

If ¢ = 0, p? = 2402 the last reccurence can be unrolled as

T
8y10%2  8-24v,cd0? 16 - 24co?
Elle” - a*|" < (1_ “5”> 2 — a*|* + S ¢ T 2
4 npG Bu Bu
Applying Lemma C.3 to the last bound we get the result of the corollary. O

D.3 Proofs for M-SGDA-RA

Algorithm 3 M-SGDA-RA

Input: RAGG, v, a € [0, 1]
1: fort=0,...do

2 for worker i € [n] in parallel

3: gl + gi(x, &) and m! « (1 —a)m!™' + ag! // worker momentum

4 send m! if i € G, else send x* if Byzantine

5 m!=RAGG (m!,...,m!)and 2!t + x! — ym’. // update params using robust
aggregate

D.3.1 Quasi-Strongly Monotone Case

Theorem (Theorem 3 duplicate). Let Assumptions 1, 2, 4, and 6 hold. Then after T iterations
M-SGDA-RA (Algorithm 3) with (8, c)-RAGG outputs ' such that

202® —2*|*  4eop® | 8yedp? | 602
]E{HET—:B*Hz} < I I | Zeopm oyeop o 7
uyaWr n2a? po? na2G
= t i oy —t—1
where T Zt oW, T = rtgmr (1) el w = (1—112) ,
and Wy = Zt:o wy and p? = 240% 4+ 12¢? by Lemma D. 1.
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Proof of Theorem 3. Since m! = m! —m' +m' and m' = ag' + (1 — a)m'~! one has
2t p||? 2t —a* —mtl? = et — 25|17 — 2 mt xt — ) + 2|t 2 _
Y Y ) Y
= |=' - ;c*H2 —2y(m' —m', ' — z*) + 72||ﬁt||2
—2y(m' z' — x*).
Next, unrolling the following recursion
'z —x*) = ag,z'—z*)+(1-a)m ' —2*)
= a@ -+ 1 -a)m e~ + (1 —a)m ! -2t
= afghz' —z) + (1 -a)m 2z —a*) + (1 - apy(m™ m)
one obtains
t ¢
(m', x' — z* az 1—a) g,z —a*) - (1 —a)’yZ(l — o) i m)
j=0 j=1
Applying the latter and (11) for (m' — m', ' — x*) with A = £1% we obtain
2072 ) G ! —x*)
prya t_p* t+1 A2 L 2 st 2
< (1+E0)et - | — |let - 2 + gl -

t
+72Hmt|| +27%(1 — @) Z (1— )@~ m)
j=1

2
_ Hwt-u .

< (1 et e 2 |
1%e}

| +VZZ (1= )|

j=1
t
(- ) Y01 - ey
j=1

(1<2) <1+ M)Har: —x*

e e e L
po

0301 |
j=1

t
+372 Z(l —a) 7 ||m ! H2
=1
Since M’ = aZﬁ»:o(l — ) 7g’ and hence HthQ < ozz;:[)(l — a)t_ngjﬂz one has
t
207 (1- ) /(g', 2’ — )
=0

< (1+M)Hf x*

_ Hwt-s-l ot

R

+4’YQZ (1—a)~ JHmj—ij

Jj=1

t J
+372a Z(l — oz)t*J Z (1-a) J ZH ||
j=1 i=0
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Next by taking an expectation [E¢ of both sides of the above inequality and rearranging terms obtain
t
20y Z(l — o) xl — )
§j=0

< (14 1Y) 2t - | - Bellatt — a7

t
e IR SR R
j=1

J
+3y az 1—a)t 321—a3 1E§H H .
=0

Next we use Lemma C.1 to bound E¢ ng ||2 and Assumption (QSM) to obtain the following bound

¢ ¢
—aZ(l—a)tﬂ‘(Fj,wj—m*) < —aZ(l—a)t*szj—az*Hz < —aﬂ’|wt—w*||2.
j=0 j=0

Gathering the above results we have

2

_ E€||mt+1 _ w*|

J
< (1—@)” b g2

t
D |+ 407 Y0 - B
j=1

J

+3y afz (1-a) Z(I—Q)J UF(x), 2" — )

j=1 =0
31200% & i i—i
+—5 ;(1—(1) J;(l—a)J .

Next we take full expectation of both sides and obtain

t
ay Z(l —o)"IR(FI 2 — x¥)
=0

J
< (1- gl - |’ E

—E|"t" — z*

t
+%E[|fn\t —mt P+ 492 31— )R | — |

¢ J
+3y2%al Z(l — )t Z(l — ) T'E(F(2%),x' — z*)
j=1 i=0
37202

+aG'

Introducing the following notation

t
Z'=> (1-a)E(F, 27 —z*)
j=0
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and using that E||m’ — m' H2 < cdp?, where p is given by (26) we have

avZt < (

4y%cop? 2 i
P 320l (1 —a)t iz
3% Y1-a) +

Next we sum the above inequality 7" times with Weights wy =

T
a’watZt <
=0

1_/wa

*

JE|2* -

t

j=1

(1*

1- e

)

T ¢
+3’yza£Zwt Z(l A
t=0  j=0

472 ¢ p?
L edp

2 EHth _

3~20
gl

2vcép?
Jie

2
+

m*

37202

oG

~yo) —t—1 T
5 ) where LLT— E t—0 Wt

T
T wEle e
=0

2vcép?
(2
16! @

oG

)

Since (1 - %)wt = wi_q
, T t
owatZt < Hwo—w* +3’yza€Zth(1—a)t_]Z7
t=0 t=0  j=0
2vedp?  4y2cdp? 3202
+WT<7 Pyrer g 70).
J7%e} @ aG
Ify < iwehave
a\ —t+ o a\t—1
i (1) 2 (5 2 ()
So we have
T
owatZ < Hazo x*
t=0
43y aEZZ(H ) (1= o) w27
t=0 j=0
2 2.5 .2 2 2
+WT(2’yc5p N 4v%cbp?  3y%o )
[1%e} Q@ aG
t—j ;
< H:co—a:* + 3y aEZZ( %) w; Z?
t=0 j=0
2ved 2 4 2 5 2 2 2
+WT( vedp® | dyiedp 370)
1%} Q@ aG
S
T 00 ant
+3v2a€<2wtzt> (Z(l — 5) )
t=0 t=0
9 2 42082 2 2
+WT( yedp il cop® 3y )
o @ aG
, T
< Hazo—sc* +6fy2€<Ztht>
t=0
2vcép?  4y%cip?  3v20?
+WT( vedp® | Aytedp” 70).
J1e! Q aG
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If v < 135 then the following is true

T

2 52 4252 32 2

?Zwtzt§|}mom*“2+WT< TP I p VGU ) (40)
— o o a

Using the notations for Z* and (QSM) we have

¢
Zt:Z(l—a)t_j]E<Fj,wj—w Z 1— )" 9E|z’ —x*|.
j j=0

and consequently by Jensen’s inequality
t

t
R T (et s al—a)—i
ZtZ“Z(I*a)t ‘Elz’ —z HZN# Z 1_at+1$j
J=0 =0

With the definition 2" = — %1 2220(1 — «)'=J 27 then the above implies that

T—(i-
7' > E|# |
that together with (40) gives

T
v . N w112 2vedp?  4Ay%cip? 37202
S wEe -] < o -’ +WT< == It

Applying the Jensen inequality again with &' = 17— SO, w:Z" we derive the final result

20|2° —2*|*  dcop? | Syedp? | 6yo?
B - o] < A2 0 Eeds? , Gr” @2)
pwyaWy Mo pHo watG
together with the bound on p given by Lemma D.1. [
Corollary 4. Let assumptions of Theorem 3 hold. Then IEHET z*||? < € holds after
1 244 1 3R?
T>—(4+— In —
_a(+ua+865G> €
. . _ _ . s o 1
iterations of M-SGDA-RA with v = mln(me, P )
Proof. 1f ¢ = 0, p?> = 2402 the result of Theorem 3 can be simplified as
B {HfT _ 2] 4 - 24cdo? n 8- 24vcéo? 602
- puyaWr n2a? % ua?G’
Since H’YO?WT < (1 — %)Tﬂ we can apply Lemma C.3 and get the result of the corollary.
O
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E Methods with random check of computations

We replace (0max, ¢)-RAGG with the simple mean, but introduce additional verification that have to
be passed to accept the mean. The advantage of such aggregation that it coincides with "good" mean
if there are no peers violating the protocol But if there is at least one peer violating the protocol at
iteration ¢ we can bound the variance similar to Lemma D.1.

Algorithm 4 CheckComputations
Input: t, Qt @] @t, Gt, Bannedt =g

1: Gt+1 {C?’El7 [N t 1} Gt+1 - (C)t U @t) \ Gt and l[t+1 = {U§+1, NN 7U$;LH'}, l[t+1 C
(Ge U By) \ G, where 2m workers AT e ittt are choisen uniformly at

random without replacement.
2: for i =1,...,m in parallel ¢, checks computations of uﬁ“ during the next iteration
i receives a query to recalculate g(x* €l )

t+1

cﬁ sends the recalculated g(z', &' ;1)
fori=1,...,mdo
ifg(a', &) # g, then
Bannedt = Bannedt U {ut,c
end if
Output: C;11,C; U B, \ Banned,

Z7Z

PR N W

Lemma E.1. Let Assumption 2 is satisfied with ( = 0. Then the error between the ideal average g'
and the average with the recomputation rule gt can be bounded as

1|2
Eellg' - g'|]" < p°1s,
where p? = qo* with q = 2C? + 12+ —2— and C = O(1).

Proof of Lemma E.1I. Denote the set G in the following way G = {i € G; \ C; : ||g* — ¢!|| < Ca}.

 [L3F . g!,  if number of workers > Z,
recompute, otherwise.

So that we have

N _ N 1
lg-gl* = |g'-=gi+=>g -7
612" "6
2 2
L1
> g - = gi gz
2
< 2% 42 éng—gt

i€G
If § < 1/2 then an acceptance of g* implies that |G| > n/4 and |G| > 1G:\Cil/3.

2

G Gla-g| <

ZE(

1
S A B Sl T

G| o IQ\ iCGNCs
3 112
|G \ Ct Z Hgfigt”

1€G\Cy
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Bringing the above results together gives that

Elgt — g'|* < 2% + Ellg! - g'|°
13~ 20"+ i S el o

Since checks of computations are only possible in homogeneous case (¢ = 0) then E||g! — F* H2 =
and

2
Eellg! — '] < 2Ee|lgf - F'||" + 2B¢[|F* ~ 7| < 20° + % 43)
Since |G, \ G| >n—2B —m
g2 _120% 1202

E.1 Proofs for SGDA-CC

Algorithm 5 SGDA-CC
Input: ~
1: Go =g
2: fort=1,...do
3: for worker i € (§; U B;) \ C; in parallel
(xh &), ifie G \C
4: d t_ gl(m a€1)7 1 Lt t7’
senc g, {>|<7 ifie@t\et,

21 G = Yicw, 9> Wi = (G UB)\ G

7: 1f|{z€Wt | Hg —ng < Co}| > I%l/2 then
8: L gt —gt.

9: else

10: recompute

11: end if

12: Gt+17 Qt+1 U @t+1 = CheckComputationS(C’t, Qt U @t)

E.1.1 Star Co-coercieve Case

Next we provide convergence guarantees for SGDA-CC (Algorithm 5) under Assumption 6.
Theorem 9. Let Assumptions I and 6 hold. Next, assume that

1 (n—2B —m)R? m2R?
N 44
7 = min { 20 \/ 602K\ 7202B2n2 “4)

where p* = qo® with ¢ = 20? + 12+ —2— and C = O(1) by Lemma E.I and R > || — z*||.
Then after K iterations of SGDA-CC (Algorithm 5) it outputs T such that
K-1 K—1
20R?
S E|F@h)|| <> E(F(a),zt - z*)] < .
k=0 k=0 v

Proof. Since |G \ C¢| > n — 2B — m one can derive using the results of Lemmas C.1 and E.1 that

EfJet a2 a}] = E[la* — 2" —1g"| | 2*]
= " —z*|]? - 29E [(* — 2*,g") | #*] + V’E [||g"|* | =*]
< 2t — 2| - 2y(a" — 2, F(x")) + 209° (2" — 2*, F ("))
k * ~k  —k k 2 2 2v%a”
—29E [(z* —z*, g —g>|w]+2701k+ma

36



where 1 is an indicator function of the event that at least 1 Byzantine peer violates the protocol at
iteration k.

To estimate the inner product in the right-hand side we apply Cauchy-Schwarz inequality and then
Lemma E.1

“NE[@* - 2',g" 7" |a}] < et~ 27 |E[IgF - 5" | 2*]
< 2z -2 \/E [|g* —g"I? | =]
< 2yplat — 2|1

Since v < 35 the above results imlies
yat —a* Fab) < fa* -2 —E 2" - 2| | 2"]

-2 [(:ck —x* ﬁk —§k> | J:k] + 29201y, + ﬂ
’ n—2B—-m’
¥ —a*||* — E [|lz"" — 2*|? | =*]

2,}/20_2

— 2B —

IN

+29°p° 1y, + + 2yplja” — |1y
n m

Taking the full expectation from the both sides of the above inequality and summing up the results
fork=0,1,..., K — 1 we derive

5 K-1
I ElF k k.
rILCIRIEEY)
k=0
K— 1
1 - . 27%0”
< E (" — 2] — B [|a" - 2" |7]) + — o
k:O
K-—1 K-1
2 ; 2 2 2
+2E Y B[l - o n] + ST Bl
k=0 k=0
< =P ~Elle¥ —a"?] | 29%0?
- K n—2B—m
sza 2+ — & 2] Bl + 2 S B[,
k=0

K—1
Since F satisfies Assumption 6, > E[(F(x*),z* — x*)] > 0. Using this and new notation

Ry = ||a* —ax*|, k > 0, Ry > ||° — x*|| we get

0 o MoER 2
- K n—2B—m
z/yp K—-1 2’72p2 K-1
2
e kZ_O VEIRIE[L] + = k}_% E[1;] (45)

implying (after changing the indices) that

2202k

holds for all £ > 0. In the remaining part of the proof we derive by induction that
29%0 &
2 2 2 2 2
Ro—f— 2B +2’yp§ E[R?]E[1;] + 2v°p E E[1x] < 2Rj (47)
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forall k = 0,..., K. For k = 0 this inequality trivially holds. Next, assume that it holds for all
k=0,1,..., 7 —1,T < K — 1. Let us show that it holds for k¥ = T" as well. From (46) and (47)
we have that E[R?] < 2R3 forall k = 0,1,...,T — 1. Therefore,

242
B[R] < Ro+—(0p—— +2w2\/ E (R} E 11+27202ZE111

2720%T
R?)'Fn_’szm"-Q\/ﬁ’YpR(]Z \/ ll +2’y2p2 ZE I].l

=0

IN

If a Byzantine peer deviates from the protocol at iteration k&, it will be detected with some probability
D during the next iteration. One can lower bound this probability as
G 1 m(1 — dg m
kam'i'*:i( k>2—.
nE Nk N n

Therefore, each individual Byzantine worker can violate the protocol no more than 1/p times on
average implying that

2v202T 2v2ypRonB  27?p*nB
+ +
n—2B—-m m m

1 \/(n — 2B —m)R2 m?2R2
v = min ,
20° 602K T72p?B?n?

272027 N 2v2vpRonB N 2°p*nB _ Ry R§ | Ri _ .o

E[R2] < RZ+

Taking

we ensure that

20,20 R
n—2B—m m m -3 3 + 3 o

and, as a result, we get

E[R}] < 2R} =2R (48)
. Therefore, (47) holds for all k = 0,1, ..., K. Together with (45) it implies

2R3
Z E[{ N
gl

The last inequality together with Assumption 6 implies

K—-1

20 R?
> )| < 208
k=0

K—1
Corollary 5. Let assumptions of Theorem 9 hold. Then % > EHF(wk) H < € holds after
k=0

2 12 22 P2 2
K:@(ER +U€R +0n€R>

€ ne? me

iterations of SGDA-CC.

Proof.
K-1
1 b 2UR? 2€R2 602K 72p2B2n?
— E < — <
K= EllFehil < YKo T — 2B — m)R? N TR

< 40?R? N 240202 R2 . 17pBnlR
- K (n—2B—-m)K mK
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Let us chose K such that each of the last three terms less or equal /3, then
6/2R*>  2160%(?R?>  51pBnfR
e '(n—2B—-m)e2’  me

K= max(

where p? = go? with ¢ = 202 + 12 + m and C' = O(1) by Lemma E.1. The latter implies

that
K—1

1
E||F(z*)|| <e.
k=0
Using the definition of p from Lemma E.1 and if B < 7, m << n the bound for K can be easily
derived. 0

E.1.2 Quasi-Strongly Monotone Case

Theorem (Theorem 4 duplicate). Let Assumptions 1, 4 and 6 hold. Then after T iterations SGDA-CC
(Algorithm 5) with v < i outputs £ such that

L|2 T L2 4ro® 2p°nB [~
Blo?*! o'l < (1= 2) " a0 - a7 AT R (T2,

where p? = qo? with ¢ = 20% + 12 + % and C = O(1) by Lemma E.1.

Proof of Theorem 4. The proof is similar to the proof of Theorem 1
2

—K |2 1 k 1 & k
E[z5 -2*|") = 1|z X (" —a")| | <uE|2 Y [=* -
k=0 k=0
K-1 K-1
= BN E[let - o?] <" = Y E[FEh), 2~ o))
k=0 k=0

Since g! = g* — F' + F'* one has

|+ — 2| P2y g et —at) - 2@ 2 — 27 +2g!

- ot -a
Applying (11) for (g*, &" — *) with A = 2 and (12) for ||g||* = gt —g' +§tH2 we derive
=+ -2l < (14 )’ - o) - 2008 ot - )
290~ - PO _
+g =gl 22 g - g+ 2 e
Next by taking an expectation [E¢ of both sides of the above inequality and rearranging terms obtain
’2 < (1 + )Hw

2y s _
+Beg — 9| + 20°Ee|g — 7'+ 2%l

Esﬂazt"’l —z* xz* ’2 —2v(F(z"), " — x*)

The difference with the proof of Theorem 1 is that we suppose that the number of peer violating the
protocol at an iteration ¢ is known to any "good" peer. So the result of Lemma E.1 writes as follows

~t _ —t||2 2
E¢llg® — 9| < »°Ls,
where 1, is an indicator function of the event that at least 1 Byzantine peer violates the protocol at
iteration ¢.

Together with Lemma C.1 we can proceed as follows m

< (1—|— )Hw —z*||” + (2% — 29) (F(2"), 2" — x*)
S (),
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Since v < i and Assumption (QSM) holds we derive

2 _w t 0k
< (1-F)le' -2

Eellz't! — o

2v252
2+ 2l +21tp2<7+72)-
G jz
Next we take full expectation of both sides and obtain

2 2
El|lz" —2* | < (1 - %)]Euwt P L A 2p2(z + 72)E1t.

n—2B—-m

The latter implies

.2 T+ .2 4yo
Efa’™ —o|* < (1- ) [a* —a"| 2B —m)

T
T—1
2 (24e?) LEL(1- )

If a Byzantine peer deviates from the protocol at iteration ¢, it will be detected with some probability
p¢ during the next iteration. One can lower bound this probability as
Gy 1 m(1l—9 m
Dt Z m - J — M Z —
ng My ng n

Therefore, each individual Byzantine worker can violate the protocol no more than 1/p times on

average implying that
E i 1| <8
t=0 1o m

that implies

E <E

T .
YTt
>u(i-75)

%

T
S L—] < "B (49)
f m

T+1

The latter together with the above bound on EH:B —x* H2 implies the result of the theorem.

|2 T+ L2 4yo? 2p*nB [~
Bt - o) < (1= ) ot - ot 0T B (D),

2 < € holds after

Corollary 6. Let assumptions of Theorem 4 hold. Then IEH:L'T —x*

~ [/ o? go’Bn  qo’Bn
T=0(-
(M - p*(n —2B —m)e * prme - /ﬂm\@)

iterations of SGDA-CC (Alg. 5) with

. m(n—2B—m)u?R?*K mu? R?K?
. 1 2In (maX{Q’ mln{ 8mo2+4qo?nB(n—2B—m)’ 8qnBo?
~y=min{ —

20 u(K +1)

Proof. Using the definition of p (p? = qo? = O(0?)) from Lemma E.1 and if B < 2, m << n the
result of Theorem 4 can be simplified as

T+1 2 4y0? 2qo’nB [~y
E T+1 _ *2<<17ﬂ) 0 % A 2'
l 2| < 2 |l = 2| JrM(n—2B—m)Jr m qufY
Applying Lemma C.4 to the last bound we get the result of the corollary. O
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E.1.3 Monotone Case

Theorem 10. Suppose the assumptions of Theorem 9 and Assumption 5 hold. Next, assume that

1 (n—2B —m)R? m2R?
N 50
7 = min { 20’ \/ 602K '\ 72p2B2n2 (50)

where p* = qo? withq = 2C? + 12+ —2— and C = O(1) by Lemma E.1 and R > ||x° — =*||.
Then after K iterations of SGDA-CC (Algorithm 5)

3R?

—K

]E{GapBR(I*)(:c ):| S ’}/7’ (51)
K-1

where Gapp, () (z") = ue%l,?é*) F(u), 2" —u), 2% = L ’;_:O x¥ and R > ||a° — x*|.

Proof. Combining (16), (14) one can derive
2 (Fah)ab —u) < [ —ul ot ]
-29(g" —g", " —u) —2¢(g" — F*, 2" —u)

2

27" ~g"|” + 22°g"|"
Assumption 5 implies that
<F(u),azk —u) < <F(a:k),wk —u) (52)
and consequently by Jensen inequality
K—1
27K<F(u),§K — u> < Hmo — uH2 — 2~ Z<§k —g" k- u>
k=0
K-1 K—1
~2 Y (@ - Pt w292 Y ([l -3t + (it
k=0 k=0
Then maximization in u gives
—_K 2K . —k||2 —k||2
2yKGap o) (B) < max [l —ul|" +2y > (lle* -a"1" + [9"1I")
k=0
K—1
—k _ =k ok
+27u€rggé*)<;<g g"x u>>
K—1
k_ =k .k

Taking the full expectation from the both sides of the previous inequality gives

27KE[GapBR(z*)(EK)} < uer}xglang ||a: fu”
K-1
Lmax (Z (g —g* a" - u>>]

Fk_ gk gk _ .
ue%ffi*)< ( gz u>>‘|

k=0

K—-1 5 5
S (I -3 + 13" )]
k=0

+27E

T
LL

+27E

+2+°R
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Firstly obtain the bound for the terms that do not depend on w using Assumption 1, Lemma E.1 and
Theorem 9

K—1
m[ (e )]
k=0
K—-1 9 K—1 5
< 2|3 ¢ -] + 2178 an*fu]
k=0 k=0
K—1 K-—1
< 29%°E| ) 1| + e fe\” 20 E(FRah - at)
k=0 k=0
2v2nBcp? 29 Ko? 9
40y R”.
m Gove T

48)
*|]+ max |l&* —wul < 3R

Since]E[H:Ek — UH] < E[ u€BR(z*)

W+l —u| <E[

one can derive that

ue%gé*)<i<gk g' " “>+Z<9 ot - >]
Z<gk _ gk — w*>]

IN
)
2

K-1
]E[ max <§k —gfz* —u ] + 27E

=0 uEBR(x*) o
K—-1 -1
< 2 B e lo* e -] 4202 e Tl - et o112
i—o Lu€Br(=") fr
K—-1 K—-1
< 2y E[R|g" — g"||] + 27E Zplkak—w*H]
k=0 k=0
= . 6nBYR
< 2vpRE Z Li| +49pRE| 114 < GYRpE| Y 114 < #
k=0 k=0

Following Beznosikov et al. [2023] one can derive he bound for the next term:

K-1 K-1
E <F -g amk>] = E Z ]axk>] 207
k=0 k=0
K-1 K-1
E (F* -3 w>] = (E[F* —g"],2") =0,
k=0 k=0




we have

K-1
2vE max FF— ,:ck —u
WE | max ’;< g )
rK—1 K-1
= 2E (FF —gF 2" | + 29E | max Z(Fk—gk,—u)
L k=0 ueBr(") 125
r K-1
= 27E| max (FF —g"*, —u)
uEBR(z*) —o
rK—1
= 29E <F’“—g’“7w°>1
L k=0
K-1
+2~E max Fk—gF —u
uEBR(z*) kZ:O< >
=
= 29KE = F* —gh), 2" -
e g (e 2 900
k=0
2
K-1
an 1 1
I~KE, RN Fk —k - 0 2
< 2y [uégﬁfi*) 5 |7 k_o( g’) +27||-’B ul|
K-1 2
= 7’E (F* —g"|| | + max [a°— u?
=0 €Br(z*)

We notice that E[F* —g* | FO —g°, ..., FF=' —g*~1] = 0 forall k > 1, i.e., conditions of
Lemma C.2 are satisfied. Therefore, applying Lemma C.2, we get

K-1 K-1
2vE | max Z (Fk —gF xb — u)| < 72 Z E[HFk _ngQ]
u€EBR(z*) k=0 k=0
+ max ||z° —wul? (53)
uEBR(x*)
’}/QKO'Q

max ||z° —ul®  (54)

< 27 4
|gt \Gt‘ uEBR(x*)

Assembling the above results together gives

2v2nBp? 3y Ko? 6nBYRp
< 2 max wo—u2 + 4R+ —
u€EBR(xz*) || m ‘gt \ Gt| v m
2v2nBp? 372K o?
< 2 max @ —uf? ¢ T2 20
wEBR(z*) m n—2B—m
6nByRp ¢4

+4€’}/R2 + T < 6R2

Corollary 7. Let assumptions of Theorem 10 hold. Then E {Gap Br(z*) (EK )} < ¢ holds after

2 2 12 2
K:(Q(H%+a]§ +cmR>
€ ne me

iterations of SGDA-CC.
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V)
e,
w
5
P
8|
~
IN
El
~
A\

3R? 31’:{2 2 + 602K n | 72p%B?n?
- (n—2B —m)R? m2R?

6(R? . 5402 R? n 26pBnR
- K (n—2B-m)K mK

Let us chose K such that each of the last three terms less or equal ¢/3, then

18¢R? 9 - 5402 R? 78pBnR
"(n—=2B—m)e?’ me

K = max

guarantees that

Using the definition of p from Lemma E.1 and if B < Z, m << n the bound for K can be easily
derived. O

E.2 Proofs for R-SGDA-CC

E.2.1 Quasi-Strongly Monotone Case

Algorithm 6 R-SGDA-CC

Input: z° — starting point, r — number of restarts, {7, }7_, — stepsizes for SGDA-CC (Alg. 5),
{K;}{_, — number of iterations for SGDA-CC (Alg. 5)

.30 = 0

fort=1,2,...,rdo

3: Run SGDA-CC (Alg. 5) for K, iterations with stepsize ;, starting point Z*~!

DN =

t
4: Define z¢ as z¢ = K% S Pt where %t bt ... 2Kt

by SGDA-CC (Alg. 5).
5: end for
Output: ="

are the iterates produced

Theorem (Theorem 5 duplicate). Let Assumptions 1, 4 and 6 hold. Then, after r = [log2 - 1 -1

. : - —2B—m)R> g2

restarts R-SGDA-CC (Algorithm 6) with v, = min {%, (n 6022&2 , 72[1;’32532”2 } and
251 34no B\/q2" .

K = {max {8;, (n—2?§fn3)u21%2’ nfnuRq }—‘ where R > ||x° — x*||, outputs " such that

E||&" — z*||> < e. Moreover, the total number of executed iterations of SGDA-CC is

g 14 uR2 o? nBo
K,=0(-1 . 55
; ¢ (,u %8¢ +(n72Bfm),u5+m,/u5 (53)

With g = 2C? + 12 +

—52— and C = O(1) by Lemma E.1.

Proof of Theorem 5. T = e Zk oz

. " | K2 . ) 2 | K2 . L
e[ o] = || =Y @ )| | <um| L Yo [et -2t
k=0 k=0
K-1 K-1
= B E[let - o] S £ YD B[, 2 -2
k=0 k=0
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Theorem 9 implies that SGDA-CC with
1 \/(n — 2B —m)R2 m?2R2
Y = mn gy o=, )
20 602K 72p2B2n?

ME[HEK — 2|’

guarantees

after K iterations.

After the first restart we have
B[ - o] < 2%
Next, assume that we have E[[|z¢ — z*||?] < 12?73 for some ¢ < r — 1. Then, Theorem 9 implies that
]E“|£t+1 _ m*HQ | 5},\1 < 2||z* *w*H2.

T K

Taking the full expectation from the both sides of previous inequality we get

| < ElIE ) o

~t+1 o ||2
E[Hm = popkKe T 2ty kG T 20

Therefore, by mathematical induction we have that forallt =1,...,r
E [H%t — :1:*||2] < =,

Then, after r = {log2 R?g—‘ — 1 restarts of SGDA-CC we have E [[|Z" — z*||?] < e. The total
number of iterations executed by SGDA-CC is

. " 14 022! nBp232
K, = © max< —, ,
; ! <; {u (n—2B —m)u?Rg” muRo })

© n a?2r nBp23
= —r
po (n=2B—-m)p*RZ  muR
2 2 2 B [ 2
- © élog'uRO—F g Q_NRO_’_TLP. i
i € (n—2B—m)u’Ri ¢ muRg €
l R? 2 B
:@floguo—i— 7 +np.
1 € (n—2B —m)ue  my/ue
O
Corollary 8. Let assumptions of 5 hold. Then E [||&" — x*||?] < € holds after
r /¢ R2 2 2
ZKt_@(log'quUJr na ) (56)
— i € NUE  My/JIE

iterations of SGDA-CC.

Proof. Using the definition of p from Lemma E.1 and if B < Z, m << n the bound for ) K; can
t=1
be easily derived. O
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E.3 Proofs for SEG-CC

Algorithm 7 SEG-CC

Input: RAGG, v
1: fort=1,...do

2:  for worker ¢ € [n] in parallel

4: send géi if i € G, else send x if Byzantine

5 ge(z) = @ 2iew, % ger Wii1 = (GUB)\Cy
6 ’{z e | Hggt gst < CO’}‘ > W1

7: Tt ' — 11 ge (a)

8: else

9: recompute

10: end if

11: Ciy1,Gryr UB, 1 = CheckComputations(Cy, G U By)
12: for worker 7 € [n] in parallel

13: g5, < 9i(Z', M)

14: send gf] if i € ¢, else send * if Byzantine

15: gn (~t) = Wf, Ziew 951 , W= (Qt+1 U@H )\GH%
16: if |{i € W} | Hfjn (') —gb || < Co}| > IWt\/Q then

17: !t ot —’}/QQnt(IE )
18: else

19: recompute

20: end if

21: Ci41, Gra1 U By = CheckComputations(Cyy 1, Gy 1 UBy 1)

E.3.1 Auxilary results

Similarly to Section E.1 we state the following. If a Byzantine peer deviates from the protocol at
iteration k, it will be detected with some probability p; during the next iteration. One can lower
bound this probability as

ne nNg ni

3|3

Therefore, each individual Byzantine worker can violate the protocol no more than !/ times on

average implying that
;E[M + lng[nl_ﬂ <= (57)

Lemma E.2. Let Assumption 3 holds. Let Algorithm 7 is run with v1 < /21 and 8 = 72/, < 1/2.
Then its iterations satisfy

22 (@ (). 3" —w) < 2t —uf” [ w22 (G @) g (@) 2 )

208G (@) — g (@) + 42 g ~k> - Pt |\2

k

+4y172 ]| F(2*) — e (2)||* + 4y |ger () — Ger ()|

k+1

Proof. Since xFt1 = xF — YoGnk (T k), we have

et —al” = 2t~ agy @)

k

" = ] = 292G @), 2 — ) + 23 G (@)
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Rearranging the terms gives that

272 (G (2F), " — w)

Next we use (14)

2<§nk (516)7 r

xr 7U>

and obtain the following

2’}/2 <§nk (ik), CEk — u>

2

=t —ul” — 2"+ - ul|
295 (G () — Gope (@), 2 — wt) + 3G (35|
2(g (@), 2" — ") + 2(g,n (2¥), 2" — u)

271(G e (), ger () + 2<gnk( )2t —u)

_ 2 _ ~ 2
*%(Hgnk 5) — Ger ()" — ||ger ()| *||9nk<w’“>||)
+2(g,x (@ M), @ —u)

2 — u|” = |2 — u|)” = 242(Goe (@) — G (B°), 2" — )

+93 (G ()]

O = g @)

7172 ([ (@) — G ()|~ || (=

|z — )~ (2" — ]’ — 290(Gr () — G (3), 2" — )
+292]|Ge (@) — G @) || + 293][Goge (@) ||

#1172 (|G (@) — G @)]* = e @I — [[g- @]°).

Combining the latter with the result of the following chain

I

[ G (&) — Ger ()

we obtain if y; < /2L

2"/2 <§"k (ik), fﬁk - ’LL> <

l2* = wf® = 2" = ul|* = 235(Gye (@) — G (), & — )
+293 |Gt (&) — G @]
917 (|G @) - e (@) = Ger (@)]*)-
< d)jg, @) - @) || 4P - Pt
+4|[F (") - ger (a")] +4Hgsk 2*) — Ger ()|
< dllg, @) - @) || +ar?|j@* - |
+4|[F(@*) - Geu (@) +4||ggk ¥) = Ger (@)
= 4, @") - F< I + 4| F () - Geu ()|
+4][ger () - Ger ()] +4V%L2Hgsk ol
l2* = w|® = 2" = ul|* = 295(Gye (@) — G (), & — )
+293][G (@) — G (@) + 4172 G (&) — F(@Y)”
e |F(*) — Ger (@) + 47172 |ger (%) — Ger (2)]°(59)

O
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E.3.2 Lipschitz Case

Theorem 11. Let Assumptions 1, 3, 5 hold. And let

. 1 (n — 2B — m)R? mR2
_ 1 59
n B { 2L’ \/ 1602k '\ 8p2Bn [’ 59)
1 m2R? (n—2B —m)R?
— min{ — 60
2 i { AL\ 64028202 6402K ’ (60)

where p? = qo? with ¢ = 202 + 12 + m and C = O(1) by Lemma E. 1. Then iterations of
SEG-CC (Algorithm 7) satisfy for k > 1

E[R}] < 2R, (61)

and

E(FN’“ zh—a) < —.

=0 V2

where Ry, = ||x* — x*|| and R > ||z° — x|

Proof. Substituting u = x* into the result of Lemma E.2 and taking expectation over 17* one obtains

2’)/2]E k [<§nk (5k), Ek — a:*ﬂ
(l(’) —E, [Hmk+1 _

l*
+71724E s [Hgn"' @k) B F(fék”ﬂ - 71724HF($I€)

| - 2B [(Gor (3) — G (@), 2F — @)
I

- §gk(f'3k)

024G (@) = G (@) + 203E e G (@) — @)

To estimate the inner product in the right-hand side we apply Cauchy-Schwarz inequality:

—272E [<§n( ) gn ) ® fow >]
< sznk[Hw ol ) - 7 )]
Lemma E.1 k «
< 272p|| 2" — @*|| L.

Then Assumption 6 implies

2y (F(@h), 2" —2*) < |= -

o*||* — E,x [Har:kJrl —z*

]

2
Foyaplat — |1y + 293071 + 127

|Gk \ Ck|
17| F(a*) — Gen (@) + 4y |[ger (@) — Gex ()|
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Taking expectation over £* one obtains that
2v:Ber e [(F(ZY), 2" — )]

< H:]}k,m*||27E£k,nk [Hkarl ,;I;*H }+272p“.’13 —x H]l +2’)/2p 1

402 _
+7W2<M+4]Esk[HF(wk> —ger ()] } +4E£’“[”gs* — Ger ()] D
< ok = o)~ Bge 4 — |
2 2
+7172 | <G | + i +4p2]lk_%
G\ G ’QH% \Cryy
< H k “|I” — Eg [ka'“ —x* 2} —|—2’yng:ck — az*”]lk + 293 p? 1y,

402 402
+
—2B-m n-2B-—

+’Yl’)’2< +4p2]lk_é>.
n m

Finally taking the full expectation gives that
2%E[(F(z¥), 2" — x*)]
= E[Hﬂfk - 9”*||2} - E{Hmkﬂ - “f'*HZ] + 272pE[||2* — || 14] + 24397 E[1Ly)

+ L—HLQE[H }
e\ B —m P k=3 )

Summing up the results for k = 0,1,..., K — 1 we derive
9y K1
23 E[(F@EH), & -]
k=0
K—1
1 871720”
< - E k _ .%]2 . k+1 _ %2
< g 2 Bl o) -Ellet —ot ) + 2R
9 p K1 5 K—1 4 1
+22 S Eflof - a1 + “25 3T B + 25 S E[1 ]
k=0 k=0 k=0
o N2’ =P - Efe —at|?] | 871720
- K n—2B—-m
292p = 2730° L e’ =
2 172
223 Ellet o PIEL + T Z 2 R[]
k=0 -

Assumption 5 implies that 0 < (F(z*),z* — x*) < (F(z*),z* — x*). Using this and a the
notation Ry, = ||z* — z*||, k > 0, Ry > ||z° — z*|| we get

R§ — E[R%] n 871720°
- K n—2B—m

22 S el o B + 227
K &~ 4§ K

implying (after changing the indices) that

8 o2k
BRY) < R+ — 27— +2vzp2\/ E[R?]E[1,] (63)

0

K

= 47172P2 =
Z E[]lk] + T Z E[ﬂk_%}(ﬁz)
k=0 k=0

k-1 k-1
+2930 Y EIL] + 4n700® Y E[1,_y ] (64)
=0 =0
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holds for all £ > 0. In the remaining part of the proof we derive by induction that

811720%k
2 2 2
B[R] < Rj+—o— +272pz E[R?|E[1,] (65)
k—1 k—1
+293p7 Y "E[L] + 491720 ZE{L_%] < 2Rj (66)
=0 =0

forall k = 0,..., K. For k = 0 this inequality trivially holds. Next, assume that it holds for all
k=0,1,..., T —1,T < K — 1. Let us show that it holds for k£ = T" as well. From (64) and (66)
we have that E[R?] < 2R3 forall k = 0,1,...,T — 1. Therefore,

8 o’k
E[R7] < R+ %;; +272PZ\/ E[R?|E +272pZZE]ll

k-1
+invap® Y E {1175}
1=0

A

k—1

8 o’k
R§ + %27; + 272pRo Z VE[L] + 293 p? Z E[1]
1=0

IA

k—1

+4v172p° ZE[L_%}-
=0

The latter together with the expected number of at least one peer violations (57) implies

8 %k nB nB nB

E[R3] < R3+ 205 4oy, 0Ry "= 429202 7 4 dyyyap®
n—28B—-m m m m
Taking
. 1 \/(n — 2B — m)R? mR3
R VR 160K\ 8p2Bn
, m?2R2 \/ n—2B —m) R2 mR2
Y2 = min ,
64p2B2n2’ AL’ 6402 K 32p2Bn

N m2R2 \/n2B m)R2
min§ —, ,
4L\ 64p%B%n?2 6402 K
we satisfy conditions of Lemma E.2 and ensure that

8 o2k nB nB nB R2 R? R? R?
BT 2apRo e + 293P 4 dyap® s < 0 4 20 0 T0 R
n—2B—-m m m m

and, as a result, we get
E[R2] < 2R2 = 2R. (67)
Therefore, (66) holds for all £ = 0,1, ..., K. Together with (62) it implies

K-1

E[(F(z"), 2" —z*)] < i
k=0 72
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E.3.3 Quasi-Strongly Monotone Case

Lemma E.3. Let Assumptions 3, 4 and Corollary 2 hold. If

< — 68
ME=57 (68)

then g, (%) =g, (¥ — y1gex (F)) satisfies the following inequality
n n 3

2 2

— k(2 , =  8vio
712]E{Hgnk(xk)’| |a:k} < 2P+ ,Yé, +4’yf,02]1,€_%, (69)

where D, = Y1 Egr pr Kgn (), x* — x >] and p?® = qo? with ¢ = 20% + 12 + m and
C = O(1) by Lemma E.1.
Proof. Using the auxiliary iterate z*+! = ¥ — Y1Gpk (T k), we get

[CasE e I (@ "G @) + 2 ]F @) 0

<w —’yggk(:v ) —x* 7gnk($k)> 71
I (72)

~297 (Ger ("), G (&%)) + 77|y (")

Taking the expectation Egx . [[] = E [ | mk} conditioned on ¥ from the above identity, using tower
property Egr px[-] = Egr [Eyx[-]], and p-quasi strong monotonicity of F'(x), we derive

Egi {Hmk—&-l x*|2}
= H k 2 i [<$k _ 71§gk($k) _ m*agnk (%k)>]

~27Eer e [(Ger (@), T ()] + 1B e |3 @)
k

w2
- e
—271Egr Kmk — M1Ger ( k) —x* F (a:k — V1Gek (a:k))>]

~27Eer (e (@), T ()] +17Ber e | @]

~ 2
2Bt e [[1Ger ()]

3B |[Ger (@) — G @]

(QSM),(14)
<
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To upper bound the last term we use simple inequality (16), and apply L-Lipschitzness of F'(x):

Bo [ -2 7] S ot o - iR [[e @]

+473Ees |[[ge (@) - Ger ("))

+413E [ F (") — F ()]

+473Ee | [[ge (=) - F(a")||’]

473 B¢t e [[G (3°) = F (3]

P9t (1-4L79) Ben |[lgies ()]

+473Ees |[[ge (@) - Ger ()|

dio? Ao’

(Lip),(27),(28)
<

= o

G G
(16),Lem. D.1 .
2P ok a2 (1 22 g [
2 9
SR e N
2 2
(Ggg) [|z* — :1:*”2 + 1o + 497y

Finally, we use the above inequality together with (70):

~ 2 2
||mk_m*||2_2Pk+712E {Hgn’“(ik)HQ | mk} < Hmk_x*H2+ 8’7(1;0 —|—4’}/12p2]1k-—%7
where P, = Y1Egr mi [(Gyr (@), 2% — *)]. Rearranging the terms, we obtain (69). O

Lemma E.4. Let Assumptions 3, 4 and Corollary 2 hold. If

< — 73
then g, (xF) = Gk (¥ — 11ger (z¥)) satisfies the following inequality
> 2.2 94221, .
2 BY1) ke «N2, N _ By )2 8yio Vip g1
Pe = BRa* — o' | + LEe [[[ger )] - e
or simply
5 a0 2, bio’
-P, < _7H$k_$ H + é +4’yfp2lk7%

where Py, = YEgr pr |:<§,'7k (%), 2k — a:*>] where p? = qo? with ¢ = 2C? + 12 + n721§7m and
C = O(1) by Lemma E.1.
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Proof. Since Egk i [] = E[- | *] and g, (%) = g,pn (€ — 11g¢x (x*)), we have
7ﬁk = 7’Y1E€kmk [<§nk (Ek), CCk — .’I}*H
= —71Egx [<Enk[§nk(5k)]a zk — 71§gk(wk) —a*))
_’YIQE Rgnk Ek)7§£k (wk»]
F(z* - Y1Ggk (wk))a zt — 71§gk(f'3k) - w*}]

(
F(
9 2
el %H} 5 Bes g =)
[

By [ 3) - e (@]
@ 1B e [[2* - @ = 1gen ()] - %Eg (g "]
g lge ) - e (@)
e Mg [|IFah) - F@))]

J%&%wwﬁwwaﬂ

42 . N
+ S B e [|[7 @) - F (@)]7]

ip),Lem.D.1,Cor. 2
(17),(Lip), L z D.1,Cor.2 M’Yl HCB 2 7?1(1 o — 47%L2)E£k [H./q\gk (wk)HQ}
4’71‘7 drio? 2 2
tgg oy T Ly
2
< ok — 2P~ D [||ge ()]
4 2 2
R S T
So one have
. 2 4252 9v2p21 1
Bo< ek P - Uk [ge (o)) + 4 T
or simply
B et o T g,
that concludes the proof. O

Combining Lemmas E.3 and E.4, we get the following result.

Theorem (Theorem 6 duplicate). Letr Assumptions 1, 3 and 4 hold. Then after T iterations SEG-CC
(Algorithm 7) with v; < m and 3 = 2/, < 1/4 outputs T such that

T
2§ (1_Mﬁ471> Hmo—x* 2

O(1) since C = O(1).

EH:ET —x*

4m y1gnB
952
e (6u2(n2Bm)+ m )
whereq—202+l2+m,q—
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Proof of Theorem 6. Since £* 1 = x* — y5g,x (T*), we have

2

=" = e — oy (&) — 2|

2* — 2||* - 292(G (B) 2" — ") + 43 |e (&)

||
I

< ot -2 |* ~ 202Gy (@) 2* — @) + 203G (@)
123G (@) — G @) + 200 () — e (@) 2 —27)
< @ Nfet — P - 2n(gy @) 0" - @) + 293 [lg (@)

T\~ /=~ iy 2
(245 ) lgge (@)~ e @)

Taking the expectation, conditioned on x*,

Eee e [a" —2*||° < (14 N)|[a* — 2*|” = 2871 Ber e (@ (&), 2" — 27)
~ 1
1282 E ek o [Gre ()] 41207 (2 n A) 1,
using the definition of Py = 71 Egk ,» (G- ("), 2% — 2*)], we continue our derivation:
]
= (Nt — 2|~ 28P + 268297 E gk o [Gope (@)

1
+730° (2 + )\> 1y

Egk’nk [Hwk-H —x*

(69) 9 ~ ~ 84202
< (L+N)]|z* — = —Qﬂpk+252<2pk+ ’yé +471202]1k—§>
2 2 1
+72p (2+>\>]1k
0<p<1/2 2 o 167302
< a4Vt - a|” - 2B (8 - 28%) + 2 +8930°1,
2 2 1
74) 2
< (1—1—/\)Hsck—a:*|
Y1k a2, hio? 2 2
+23(1 — 2p) —7Hx —z*||" + o Thietl
167202 1
+— 27 1892070, + 307 (24 1 |
G 2 A
< (1+r-280-2050 ) o -2
2 2 16 2 2 1
+%C(; +’yfp2]lk_%+ V20 +87§p2]lk_é+7§p2<2+)\)]lk
0<B<t/a
2 i e

1
(7F +1673) + 71" L1 + 8130° 1y 1 + 75p? (2 + ) 1k

A
w2 k.
ke )Haz ®

al

_|_

2

A=H72/4
(1

o? 4
+5 (1 +16%) + 770" 1y + 83301y + 307 (2 + ) 1.
K2
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Next, taking the full expectation from the both sides and obtain

Elfa** —o|] < (1-57)E[le* — =]

g
+5 (01 +1693) +p° (47 + 873) Ly +2” (72 + M)M’“

Unrolling the recurrence, we derive the rest of the result:

2 e 0 a2 402 (7} + 1673)
= (1 4 ) Hm 2| wg,u(n—2B—m)

Eljx"*t! — 2~

K2
+0°(7f +873) (1 ) E1l,

7

2\ B
+2p2<§ M) ) EL,.

7

1
2

Since 2 < % and that implies

Zj:l(l—w> Z]l] (75)

using the expected number of at least one peer violations (57) we derive

E

2.2 2
gt o (1= 22) g0 g A2 DEEI0N)
IEH:E x < 1 1 Ha: x Y2 (n — 2B — m)
2/ 2 2 @ 2( 2 % @
+07 (75 +873) —— + 20 (72+ . ) -
2 K+1 0 2 402('7%"'16'7%)
= (1 4 ) l” = 2| +72,u(n—2B—m)

nB  4p?y, nB
+p* (i + 10’}’2)7 t—
nwoom

that together with p? = qo? with ¢ = 202 + 12 + m and C = O(1) by Lemma E.1 give
result of the theorem. O

Corollary 9. Let assumptions of Theorem 6 hold. Then IEHwT —x* H2 < ¢ holds after

2 2 2
T L 1 o n qo°Bn n qo°Bn
B PR 2B —me | Bieme | BiPmyz

iterations of SEG-CC wzth

. m(n—2B—m)B%u’R*K mp?B2R2K?
1 41n (max{2’ mln{ 32mo?2+4qo2B2nB(n—2B—m)’ 32qnBo?

2L +2p uB(K +1)

v = min

2 80%y1 5 onB  4p°fy nB

Proof. Next, we plug v2 = 371 < 7/4 into the result of Theorem 6 and obtain
2 — .
+ﬁu(n72Bfm)+p%m+ wooom

: «||2 pBy .
]E{Hackﬂ—w }S(l— 41)Hazo—x
(76)

Using the definition of p (p* = ¢qo* = O(c?)) from Lemma E.1 and if B < 2, m << n the result
of Theorem 6 can be simplified as

T 9 9

|2 BB 0 ]2 801 9 onB  4qo*fvy nB

E||z” - < (1-2E25= - 2 i Sl b el
|a” — | _( 1 ) || xH+B(n—2B—m)+ o+ m

Applying Lemma C.4 to the last bound we get the result of the corollary. O
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E.3.4 Lipschitz Monotone Case

Theorem 12. Suppose the assumptions of Theorem 11 and Assumption 5 hold. Then after K
iterations of SEG-CC (Algorithm 7)

]E{GapBR(x*)(EK)} SN 77
where Gapy, ooy (#) = max (F(w). @ ~u), 5 = } z 3 and R < |2° — 2*].
Proof. We start the proof with the result of Lemma E.2
292(Ge @), —w) < [t | ||t u|| = 292Gy (") — G ( 5,2 —u)
203G (@) — e (@) +4’7172Hgn z") - F(@) H
+Hnye||F(x*) — Ger (=) H + Ay172[Ger (2F) — ") 2’

that leads to the following inequality

27, (F(z"), 2" — u)

2
= [|=*+ I

—u|” + 292]|Gr (@) — G (@)
427, (F(&F) — G, (@), 8 — w) — 272(Goe () — 9 o(@), b — u>
% (|[gg (@) = F@E)| + | F@") - g (@) + ger (@) — G (2°)]).

e~

Assumption 5 implies that
<F(u),:Ek —u) < <F(:Ek),5§k —u) (78)
and consequently by Jensen inequality

272K<F(u), K — u>

|2 — ul|” + 293 ZHgn g @)
K-1
1272 Y ((F@) ~ G (@), 7" — ) — (G (@) — 7 (@), 2" — )
+47192 Y ([[g0 @) = F@)|* + | F*) - gen(@h)||” + [|ger (=) — G ()],
k=0

Then maximization in u gives

272 KGapp, ;) (")
— ~ 2
< mox o~ uf? +mkzo||gn @)
K—-1 9 )
a7 3 (g @) = FE)| +|[F() — g (@) + g (") - Ger (b))
k=0
K—1
+272 Lmax 2 (F(&") — gpe ("), 2" — u)
K-1
+292 max 2 (G (T*) = G (&°), 2" — ).
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By Lemma E.1

K—1
g2 nB ©0) R?
272E<ZH977 wk)H ) < 23p° E[1x] < 27§P2W < 3 (79)
k=0
and
K—1 K—1
B R 9 o B (59,60 R2
4717215(2(’99: (") — Ger ()] ) < dy172p0° E{]lkfé} Sdympt— < =
k=0 k=0
(80)
By Corollary 2
K-1 9
= ~k ~k — kN (12 8’}/1’}/2K (59),(60) R
4’}’172E<I;)(Hgnk($ ) - F(z H + HF —Ger(x )H )) < 9B —m < o
(81)
K—1
9 T (T — 6 (%) 2k —
v max ,;)@"k (@") = gy (%), 2" — u)
K-1
< 2 ma; G.x(T") — g (2°), 2" — 2
< 12 max ’;)(gnk( ) = G () )
K—1
2 — ~k _’\ . ~k *
o g S )0
K—1
< 2 ) 2t - a||gg (@) - g (3
k=0
+2 - G () — G, n (ZF
02 max kZ:on ull[|gyx () — g, (&)
Lemma E.1
< 6v2pRo1k.
Taking the full expectation of both sides of the result of the previous chain we derive
K—1 o (60) 3
27, eIlli”lag{*) Z<gnk (13 ) — Gk (w ),SC > < 672 pRoELy, < 6’}/2pR07 < iR
u R(T
=0
Now the last term
ma F(z") , " — 82
ueBRé*>Z< — gy (@), 2" —u) (82)
Following Beznosikov et al. [2023] one can derive the bound for the next term:
K—1 K—1
B[ X0 a8 - 2| Y Ene - g #5) <o
k=0 k=0
K—1 K—1
Y (FP@E*) - g, (@), w0>] = (E[F(@") — g (@")],2°) =0,
k=0 k=0




K—1
27 E F(z5) — g . (&F). 5% —
2 [ue%lgé*);< (") gﬂ’“(m ), @ u)]
K-1
= 272K <F(5k) —-g k(ik), :Ek)]
k=0
K—1
+2v K F(x*) — k —
P25 ueBnien) §)< (%) — g (2°) u}]
K-1
2 uerggé*) k:Z:O< (CB ) Gnt (:l? ) u>‘|
K—1
= 2yoE Z (F(x*) - gnk(ik), x0>]
k=0
K—1
427K F(zFY —g Ry, —
" ue%lgéc*) k‘:O< (.’I} ) Gnk (:13 ) u>]
=
= 27, KIE max — (F(gk) -g k(ik)),azo u
ueBg(z*) \ K =
K—1 2
an Y2 || 1 L . 1, )
< 27, KE Z= F — i _
= Y2 [uerggé*){ 2 | K kzo( (") gnk( NI+ 272”33 ul|
K—1 2
= 'ySE (F(%k) _ gnk (J:k)) + max ‘:L‘O _ u||2
k=0 UGBR(I*)

We notice that E[F(2") — g, (Z*) | F(2°) — g,0(2°),..., F(Z"!) — G- (8"1)] = 0 for
all k£ > 1, i.e., conditions of Lemma C.2 are satisfied. Therefore, applying Lemma C.2, we get

K-1
kY = sk Ak
27y E uerﬁifi*) kZﬂ)(F(w ) = G (T7), 2 —u>] (83)
K-1
< % Y E[IF@EY) - g, @) (84)
k=0
+ max ||z° —ul? (85)
u€EBR(z*)
257 2
Y2 Ko 0 2
- - 86
S ws2Bom w1 M (86)
(59),60) Q
< gR?. (87)

Assembling the above results together gives

R?> R* R? 3 9
—K 2 2 2
QVQKIEGapBR(w*)(m ) < 3 + = + T + 1R + gR < 3R°. (88)

Corollary 10. Let assumptions of Theorem 12 hold. Then E {Gap Br(z*) (EK )} < ¢ holds after

2 22 2
K@(LR JrUR JrUTLR)

€ ne? me

iterations of SEG-CC.
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Proof.

3R? 3R2 6402 K [64p° B?n?
_K
E[GapBR@*)(w )} = 2K <4L * \/ 2B-mr N R

< 67 n 14402 R? 12pBnR
- K (n—2B-m)K mK

IN

Let us chose K such that each of the last three terms less or equal /3, then
18LR?>  144-90%R?>  36pBnR
5 7(n—QB—m)z—:27 me ’

K= max(

where p? = qo? with ¢ = 2C? + 12 + —2— and C = O(1) by Lemma E.1. The latter implies
that

E {GapBR(m*) (EK)} <e.

Using the definition of p from Lemma E.1 and if B < 2, m << n the bound for K can be easily
derived. O

E.4 Proofs for R-SEG-CC

E.4.1 Quasi Strongly Monotone Case

Algorithm 8 R-SEG-CC

Input: z° — starting point,  — number of restarts, {~y;}/_, — stepsizes for SEG-CC (Alg. 7),
{K:}{_, — number of iterations for SEG-CC (Alg. 7),
120 ==
2: fort=1,2,...,rdo
3: Run SEG-CC (Alg. 7) for K, iterations with stepsize ;, starting point Z¢~1,

K
4: Define &t as &* = K% S &kt where 2%¢ bt ... 2Kt are the iterates produced by
k=0
SEG-CC.
5: end for
Output: z”

Theorem (Theorem 7 duplicate). Let Assumptions 1, 3, 4 hold. Then, after r = {log2 R;] -1

16022tK, 8qo22tBn

min 1 m2R2 (G—B—m)R? d K, — 8L 16noB+/q2°t 2560291
1L’ \/ 649022t BZn?> 6402 K, anda iy = ' T mpR 0 (C—B-m)®RZ (|’

where R > ||z° — x*|| outputs Z" such that E||z" — :c*||2 < e. Moreover, the total number of
executed iterations of SEG-CC is

restarts R-SEG-CC (Algotithm 8) with 71, = min {21L, \/(G_B_m)R2 mR? }, Yo, =

. B 14 uR? o2 nBo
;Kt_(g(,ubg € + (n—2B—m),u5+m,//,L5 ' (89)
K-1
Proof of Theorem 7. TX = + > ak
k=0
, | K1 2 | K1
—K * o - ~k . - *
sl -] - e[ @ o) | <l Sl ool
k=0 k=0
K-1 K-1
_ M [~k_ *2](Q2M)i kY =k o
e k:OE ||z — x| < % kzoE[(F(w ), " — x*)]
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Theorem 11 implies that SEG-CC with

_ min 1 \/(n—2B—m)R2 mR?
mo= oL’ 1602k '\ 8p2Bn [
~ min 1 m2R? \/(nQBm)R2
T2 MY AT\ 6ap2BEn 6402K ’
guarantees
2 R2
E{ K — z* }S—O
s H Yo K

after K iterations.

After the first restart we have

T o, K T2

Efe - o'[?] < =0 < [

since py2, K1 > 2.

2
Next, assume that we have E[||z! — x*||?] < % for some ¢ < r — 1. Then, Theorem 11 implies that
ot ax||2
IE|:H‘,/B\t+1 -~ m*H? | :/L,\t} < 2" — |
vz, Ky
Taking the full expectation from the both sides of previous inequality we get

A~ 112 2 2
IE[H.’/E\Hl—m*Hﬂ < Ef||z* — z*|?] < Rj < Rj

pye, Ky T 2hpye, Ky T2
Therefore, by mathematical induction we have that forallt =1,...,r
. X R}
E [Hmt —x ||2] < 2—?.

Then, after r = [log2 R?‘QJ-‘ — 1 restarts of SEG-CC we have E [||[z" — x*||?] < e. The total number
of iterations executed by SEG-CC is

- d L 022! nBp2%
K = O max{ —, ,
2% (Z {u (n—2B —m);PR3 ‘muRq })

o L n a?2r n nBp23
= —Tr
p o (n—=2B—m)u?R:  muRy

I 2 2 2 B 2
— 0 Z0g J2i% + g - pl + nbp i
m 5 (n—2B—m)u’R; ¢ muRy €

L R? 2 B
— OfZlog Hhg + g + nbp )
1 € (n—2B —m)ue = my/pe
that together with p? = go? with ¢ = 2C% + 12 + —2— and C = O(1) given by Lemma E.1
implies the result of the theorem. O

Corollary 11. Let assumptions of 7 hold. Then E [||Z" — x*||?| < € holds after

T L R2 2 2
ZKt:(Q(logM—&-U—&- no > (90)
— 1 € nueE  My/HE

iterations of SEG-CC.

Proof. Using the definition of p from Lemma E.1 and if B < Z, m << n the bound for Y K; can
t=1
be easily derived. O
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F Extra Experiments and Experimental details

F.1 Quadratic games

Firstly, let us clarify notations made in (7):

with symmetric matrices A ; s.t. uI < Aj; < /I, A; € R4 and b; € R,

Data generation. For each j we sample real random matrix B; with elements sampled from a
normal distribution. Then we compute the eigendecomposition and obtain the following B; =
UZTDi U, with diagonal D;. Next, we scale D; and obtain ]37 with elements lying in [u, £]. Finally
we compose A ; as A ; = UiTﬁiUi. This process ensures that eigenvalues of A ; all lie between

wand £, and thus F'(x) is strongly monotone and cocoercive. Vectors b; € R? are sampled from a
normal distribution with variance 10/d.

Experimental setup. For all the experiments we choose ¢ = 100, 4 = 0.1, s = 1000 and d = 50.

For the experiments presented in the Appendix we simulate n = 20 nodes on a single machine and
B = 4. For methods with checks of computations the only one peer attacks per iteration.

We used RFA with 5 buckets bucketing as an aggregator since it showed the best performance. For
approximating the median we used Weiszfeld’s method with 10 iterations and parameter v = 0.1
Pillutla et al. [2022].

RDEG [Adibi et al., 2022] provably works only if » > 100 we manually selected parameter € = 0.5
using a grid-search and picking the best performing value.

We present experiments with different attack (bit flipping (BF), random noise (RN), inner product
manipulation (IPM) Xie et al. [2019] and “a little is enough” (ALIE) Baruch et al. [2019]) and
different batchsizes (bs) 1, 10 and 100. If an attack has a parameter it is specified in the brackets on
each plot.

No checks. Firstly we provide a detailed comparison between methods that do not check com-
putation with fixed learning rate value v = 3.3e — 5. Code for quadratic games is available at
https://github.com/nazya/sgda-ra’.

"Code is based on https://github.com/hugobb/sgda
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Figure 3: Distance to the solution ALIE attack with various of parameter values and batchsizes.
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Figure 4: Distance to the solution BF attack with various batchsizes.
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Figure 5: Distance to the solution under IPM attack with various parameter values and batchsizes.
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Figure 6: Distance to the solution under RN attack with various parameter values and batchsizes.

Checks of Computations.

Next, using the same setup, we compare M-SGDA-RA, which showed

the best performance in the above experiments, with methods that check computations. With checks
of computation the best strategy for attackers is that at each iteration only one peer attacks, since
it maximizes the expected number of rounds with the presence of actively malicious peers. So the
comparison in this paragraph is performed in this setup.
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Figure 7: Distance to the solution under ALIE attack with various parameter values and batchsizes.
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Figure 8: Distance to the solution under BF attack with various batchsizes.
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Figure 9: Distance to the solution under IPM attack with various parameter values and batchsizes.
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Figure 10: Distance to the solution under RN attack with various parameter values and batchsizes.
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F.2 Generative Adversarial Networks

One of the most well-known frameworks in which the objective function is a variational inequality is
generative adversarial networks (GAN) Goodfellow et al. [2014]. In the simplest case of this setting,
we have a generator G : R — R4 and a discriminator D : R% — R, where z denotes the dimension
of the latent space. The objective function can be written as

m(%n max ]Elog(D(x)) + IZElog(l — D(G(z))). 1)

Here, it is understood that D and G are modeled as neural nets and can be optimized in the distributed
setting with gradient descent ascent algorithms. However, due to the complexity of the GANs frame-
work, tricks and adjustments are being employed to ensure good results, such as the Wasserstein GAN
formulation [Gulrajani et al., 2017] with Lipschitz constraint on D and the spectral normalization
[Miyato et al., 2018] trick to ensure the Lipschitzness of D. The discriminator can thus benefit in
practice from multiple gradient ascent steps per gradient descent step on the generator. In addition,
Adam [Kingma and Ba, 2014] is often used for GANSs as they can be very slow to converge and not
perform as well with vanilla SGD.

Therefore, in our implementation of GANSs in the distributed setting, we employ all of these techniques
and show improvements when we add checks of gradient computations to the server. As for the
gradients in our implementation, we can think of the accumulated Adam steps within the clients as
“generalized gradients” and aggregate them in the server with checks of computations (by rewinding
model and optimizer state). We tried aggregation after each descent or ascent step, after full descent-
ascent step, and after multiple descent-ascent steps. For the first case, we found that GANs converge
much more slowly. For the third case, the performance is better but checks of computations take
more time. Thus, we choose to report the performance for the second case: aggregations of a
full descent-ascent step. Though, we note that experiments for the other cases suggest similar
improvements.

The dataset we chose for this experiment is CIFAR-10 [Krizhevsky et al., 2009] because it is more
realistic than MNIST yet is still tractable to simulate in the distributed setting. We let n = 10,
B = 2, and choose a learning rate of 0.001, 5; = 0.5, and S5 = 0.9 with a batch size of 64. We
run the algorithms for 4600 epochs. We could not average across runs as the simulation is very
compute intensive and the benefits are obvious. We compare SGDA-RA (RFA with bucket size 2)
and SGDA-CC under the following byzantine attacks: i) no attack (NA), ii) label flipping (LF), iii)
inner product manipulation (IPM) [Xie et al., 2019], and iv) a little is enough (ALIE) [Baruch et al.,
2019]. The architecture of the GAN follows Miyato et al. [2018].

We show the results in Figure 12. The improvements are most significant for the ALIE attack. Even
when no attacks are present, checks of computations only slightly affects convergence speed. This
experiment should further justify our proposed algorithm and its real-world benefits even for a setting
as complex as distributed GANs. Code for GANSs is available at https://github.com/zeligism/
vi-robust-agg.
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Figure 12: Comparison of FID to CIFAR-10 per epoch between SGDA-CC and SGDA-RA. The
FID is calculated on 50,000 samples. (lower = better).
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