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ABSTRACT

With distributed machine learning being a prominent technique for large-scale
machine learning tasks, communication complexity has become a major bottleneck
for speeding up training and scaling up machine numbers. In this paper, we propose
a new technique named Common randOm REconstruction (CORE), which can
be used to compress the information transmitted between machines in order to
reduce communication complexity without other strict conditions. Especially,
our technique CORE projects the vector-valued information to a low-dimensional
one through common random vectors and reconstructs the information with the
same random noises after communication. We apply CORE to two distributed
tasks, respectively convex optimization on linear models and generic non-convex
optimization, and design new distributed algorithms, which achieve provably lower
communication complexities. For example, we show for linear models CORE-
based algorithm can encode the gradient vector to O(1)-bits (against O(d)), with
the convergence rate not worse, preceding the existing results.

1 INTRODUCTION

Distributed machine learning and optimization have become the main technique for solving tasks
with large model and data scales. In simple terms, the distributed optimization problem in machine
learning can be regarded as minimizing an objective function f defined as an average of individual
functions that are respectively accessible by their corresponding local machines. More specifically,
we consider a constrained optimization problem

minimize
x∈Rd

f(x) ≡ 1

n

n∑
i=1

fi(xi)

s.t. x1 = x2 = · · · = xn.

(1)

Here fi represents the individual objective function at the local machine i and the constraint in (1)
guarantees different machines corporately finding the same minimizer of the global objective function
f . Typical examples for fi include regression or classification over linear, graphic, as well as (deep)
neural network models. In these cases, fi shares the form as fi(x) ≡ F (x; ζi), where ζi denotes the
data stored in machine i and F represents the learning model.

One dominating bottleneck for further improving the speed of distributed machine learning is the
communication bandwidth. With the increase of machine numbers and parameter scale, time spent
on communication can not be ignored and even becomes much longer than that on computation.
Such a problem is much more salient when the bandwidth of computing cluster is restricted, such
as mobile devices. Many researchers have noticed that reducing the dimensions of data transmitted
between machines can effectively reduce the communication complexity, and proposed heuristic
techniques, such as quantization (Seide et al., 2014) and sparsity (Aji & Heafield, 2017), to reduce
the communication burden to some degree. Some more complete and theoretically guaranteed
algorithms based on these techniques are proposed soon, However, to the best of our knowledge,
although some researches show how to improve existing compression techniques or propose several
new ones, few results provide concrete and feasible compression techniques that can provably
reduce communication costs and maintain algorithm accuracy under mild conditions. In this paper,
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we propose a new technique named Common randOm REconstruction (CORE) which presents a
provable result on low communication complexity. CORE is a technique that can be used to transmit
a sequence of vector-valued information that follows from well-known ideas from information theory
and communication complexity theory, taking advantage of common random variables. At each
round, the vector-valued information is projected to a low-dimensional vector using Gaussian random
noises by the sender, and after communication reconstructed with the same noises by the receiver.
We show such a procedure generates an unbiased estimator of the original vector-valued information
with a controlled variance. We apply CORE to two distributed tasks, namely convex optimization
on linear models and generic non-convex optimization. Compared with some existing relevant
researches, ours has certain advantages. First, we propose a concrete and feasible compression
technique and algorithms instead of an abstract but potentially not implementable framework to
reduce communication costs. Second, our algorithms provably achieve much lower communication
costs compared with the existing algorithms under realizable conditions.

1.1 RELATED WORK

In this section we briefly introduce the related work about our methods, including gradient com-
pression, random sketching technique, distributed optimization and federated learning, and random
communication complexity. A more detailed introduction can be seen in Appendix A.

Gradient compression. Gradient compression is the main technique to reduce communication
complexity during the process of training. The representative achievements are gradient quantization
(Seide et al., 2014; Tang et al., 2021) and gradient sparsification (Wangni et al., 2018; Shi et al.,
2019; Jiang & Agrawal, 2018). Moreover, some methods (Wen et al., 2017; Alistarh et al., 2017;
Wu et al., 2018; Faghri et al., 2020; Horvóth et al., 2022; Mishchenko et al., 2019; Aji & Heafield,
2017; Lin et al., 2017; Wang et al., 2018; Mishchenko et al., 2020) obtained better results based
on previous works. In addition, some new techniques based on innovative ideas have also been
developed and achieved good results. For example, PowerSGD (Vogels et al., 2019) proposed a new
low-rank gradient compressor. Other techniques (Bernstein et al., 2018; Safaryan & Richtárik, 2019;
Beznosikov et al., 2020; Horváth et al., 2023; Richtárik et al., 2022) were also proposed as innovative
new achievements. However, the second moments of these estimations are often of order d, which
implies a restriction of the total communication costs.

Random sketching. Sketching (Gribonval et al., 2020; Woodruff et al., 2014; Ikonomovska et al.,
2007) is a widely-used technique in machine learning, data mining and optimization, whose core
idea is to reduce the scale by a probabilistic data structure to approximate the data to reduce the
computation costs. It is worth noticing that some researchers have started to use the sketching
technique to reduce communication costs during the process of training. For example, FedAvg
(Konečnỳ et al., 2016) and SKETCHED-SGD (Ivkin et al., 2019), which uses Count Sketch (Charikar
et al., 2004) to compress the gradient. They also presented a theoretical analysis of convergence, but
when d is large, it is much worse than SGD. Hanzely et al. (2018) proved that when adding biased
estimates on the basis of random matrix sketching, their algorithm achieves a faster convergence rate
and can be accelerated. However, they did not come up with a specific sketching method. Moreover,
Lee et al. (2019) and Pilanci et al. (2015) proposed some sketched Hessian-based second-order
optimization algorithms. In this work, we mainly focus on gradient-based communication-efficient
methods.

Distributed optimization. Distributed machine learning and optimization have developed rapidly
in recent years. In the early years, the main achievements were based on the existing optimization
algorithms (Cotter et al., 2011; Lee et al., 2015; Shi et al., 2015; Scaman et al., 2017b). In recent
years, some compressed gradient descent algorithms (Khirirat et al., 2018; Mishchenko et al., 2019;
Gorbunov et al., 2021; Tyurin & Richtárik, 2022; Li & Richtárik, 2021) based on compression
techniques mentioned above were also proposed. But almost all the methods above have the total
communication costs at O(d) level. It is worth noticing that in practice d is often extremely large.
So there is still a lack of a concrete compression technique and corresponding distributed algorithm
that achieves low communication complexity when d is large. Our work fills this gap. In addition,
error feedback technique (Stich & Karimireddy, 2019; Karimireddy et al., 2019; Tang et al., 2019;
Gruntkowska et al., 2022; Richtárik et al., 2021; Fatkhullin et al., 2021) was also widely used in
compressed distributed optimization.
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Federated learning. Federated Learning is another machine learning setting concentrating on
communication costs, where the goal is to train a high-quality centralized model while training
data remains distributed over a large number of clients each with unreliable and relatively slow
network connections. In the early years, some federated learning algorithms (Konečnỳ et al., 2016;
Rothchild et al., 2020; Ivkin et al., 2019; Karimireddy et al., 2020; Mitra et al., 2021) based on the
local gradient have been proposed. However, the approximation of local gradient often results in a
loss of convergence rate. The total communication costs are either worse than or equal to those of
vanilla gradient descent. Recently, some new communication-efficient methods such as Scaffnew
(Mishchenko et al., 2022) and GradSkip (Maranjyan et al., 2022) have been proposed to achieve the
same communication rounds as the lower bound of smooth and strongly-convex objective functions
O(
√
κ), but the total communication costs are still O(d).

Random communication complexity. In theoretical computer science, communication complexity
studies the amount of communication needed to solve a problem when input data is distributed among
several parties. Communication complexity was first proposed in Andrew (1979). Andrew (1979) also
defined randomized protocol and randomized communication complexity. In a randomized protocol,
parties are given a common random string as the input to a deterministic protocol. Random protocols
can determine the answer in high probability with much less amount of information transmitted, so
randomized communication complexity is much lower than deterministic communication complexity
in expectation. Inspired by the advantage of randomized protocols over deterministic ones, we
designed a random compression method for distributed optimization which is faster in expectation.
Newman (1991) proved that any protocol using a common random string can be simulated by a
private random string protocol, with an extra O(log n) bits.

1.2 CONTRIBUTIONS

In this work, we introduce the Common randOm REconstruction (CORE) technique and demonstrate
its application in two distributed tasks. The advantages of utilizing CORE in these tasks are outlined
below.

To the best of our knowledge, CORE is the first concrete and feasible compression method that
achieves a limited bounded variance of the estimate and provably reduce communication complexity
when the eigenvalues of the Hessian matrices of f drop very fast. We have observed that in practice,
the rapid decrease of eigenvalues in the Hessian matrix has long been recognized. For instance,
researchers have introduced concepts like effective rank (e.g., Hsu et al. (2012)) to quantify the
dimensionality of the data’s influence on linear models. Some recent empirical studies (Sagun et al.,
2016) carefully compute the eigenvalue of Hessian curves during training for (deep) neural networks.
(See Figure 4 for an example of eigenvalues of a real dataset and a neural network in Appendix L).

To characterize the strength of CORE in rigor, we introduce the factor

rα = sup
x∈Rd

d∑
i=1

λα
i (∇2f(x)), α > 0 (2)

as the effective dimension for distributed optimization, where λi(·) is the i-th singular value (also
the eigenvalue when ∇2f(x) is semi-definite in convex case). This is inspired by the recent work of
zeroth-order optimization (Yue et al., 2023), Langevin sampling (Freund et al., 2022), and distributed
optimization (Hanzely et al., 2018). We further introduce the Hessian domination assumption, a
concept employed in various studies for theoretical analysis (Hanzely et al., 2018; Safaryan et al.,
2021; Yue et al., 2023). We apply CORE to some gradient-descent-based algorithms and use
the effective dimension rα to characterize their communication costs. By combining CORE with
centralized gradient descent (CGD), we propose the CORE-Gradient Descent (CORE-GD) algorithm
for linear regression and prove that for the standard case where f has L-Lipschitz gradients, CORE-
GD achieves O

(
r1(f)D

2ϵ−1
)

communication costs to obtain an ϵ-optimal solution, where D =

∥x0−x∗∥. Compared with CDG which achievesO
(
dLD2ϵ−1

)
communication costs, CORE-GD has

a significant advantage since r1(f) is much smaller than dL in most cases when eigenvalues decay fast.
In Appendix B, we also study accelerations of CORE-GD using the momentum technique, and propose
a heavy-ball-based accelerated algorithm named CORE-Accelerated Gradient Descent (CORE-
AGD) for linear regression. We prove that CORE-AGD achieves the state-of-the-art Õ

(
r1/2(f)

µ1/2

)
3
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Table 1: The performance of communication-efficient methods
method communication rounds compressor floats sent per round total communication costs

CGD Nesterov (2003) Õ(Lµ ) - Θ(d) Õ(dLµ )

ACGD Nesterov (2003) Õ(L
1/2

µ1/2 ) - Θ(d) Õ(dL
1/2

µ1/2 )

FedLin Mitra et al. (2021) Õ(d
3/2L

k3/2µ
) Top-K1 Θ(k) Õ(d

3/2L
k1/2µ

)

Scaffnew Mishchenko et al. (2022) Õ(L
1/2

µ1/2 ) Skip 2 Θ(d) Õ(dL
1/2

µ1/2 )

GandSkip Maranjyan et al. (2022) Õ(L
1/2

µ1/2 ) Skip 2 Θ(d) Õ(dL
1/2

µ1/2 )

DIANA Mishchenko et al. (2019) Õ( d
K + dL

Knµ )
3 Top-K 1 Θ(K) Õ(d+ dL

nµ )

ADIANA Li et al. (2020) Õ( d
K + dL1/2

Kn1/2µ1/2 )
3 Top-K 1 Θ(K) Õ(d+ dL1/2

n1/2µ1/2 )
4

ASEGA Hanzely et al. (2018) Õ(
∑d

i=1 A
1/2
ii

µ1/2 ) - Θ(1) 5 Õ(
∑d

i=1 A
1/2
ii

µ1/2 )

CORE-GD (this work) Õ(Lµ ) CORE Θ( tr(A)
L ) Õ( tr(A)

µ )

CORE-AGD (this work) Õ(L
1/2

µ1/2 ) CORE Θ(
∑d

i=1 λ
1/2
i

L1/2 ) Õ(
∑d

i=1 λ
1/2
i

µ1/2 )

1 FedLin, DIANA and ADIANA only propose the algorithms using compressor, but do not propose concrete gradient compression technique. They
use Top-K as an example to analyse the communication rounds and costs.

2 Scaffnew and GandSkip use communication skipping instead of gradient compressor. Specifically, they only communicate every O(L
1/2

µ1/2 ) rounds

and the total computation rounds are Õ(L
µ
).

3 The communication rounds of DIANA are Õ(ω+ ωL
nµ

) when ω ≥ n. And similarly, that of ADIANA is Õ(ω+ ωL1/2

n1/2µ1/2 ) when ω ≥ n. Here ω is

compression ratio. For example, when using Top-K compressor, the compression ratio is d
K

, which is much larger than n when the dimension of
data is extremely large. In this setting n can be seen as O(1).

4 The theoretical bound of the total communication costs of this method is Õ(d+ d1/2L1/2

µ1/2 ), and the bound of CORE-AGD is Õ( d
1/2tr(A)1/2

µ1/2 ). In
most cases when tr(A) is bounded and d is much large, CORE-AGD is better.

5 This method is coordinate-descent-based. We show that CORE-AGD is theoretically better. Letting A = U⊤ΣU where U = [uij ] and
Σ = diag{λi}, we have Aii =

∑d
j=1 λju

2
ji ≥ (

∑d
j=1 λ

1/2
j u2

ji)
2 (because the Hessian matrix is positive definite and symmetric). Thus we have∑d

i=1 A
1/2
ii ≥

∑d
i=1 λ

1/2
i .

communication costs which is lower than Õ(d+ dL1/2

n1/2µ1/2 ) in Li et al. (2020) and Õ
(∑d

i=1 M
1/2
ii

µ1/2

)
in Hanzely et al. (2018). More details and comparisons are shown in Table 1. Compared with the
results in Hanzely et al. (2018) , our works present a concrete compression technique. In Section
5, we then examine the efficiency of CORE in generic non-convex optimization when finding an
ϵ-approximated first-order stationary point. We further assume a Hessian-Lipschitz condition and
show that CORE-GD with carefully chosen stepsize can achieve lower communication costs which
reduces upon the communication costs of CGD by a min

{
dL/r1(f), ϵ

−0.5d1/4
}

factor.

In summary, the contribution of the paper is listed below:
(A) We propose a new technique called CORE to efficiently transmit information between

machines. To the best of our knowledge, CORE is the first concrete and feasible compression
technique that is provably more efficient on communication when eigenvalues drop fast and
can be applied to gradient-descent-based algorithms.

(B) We apply CORE to convex optimization on linear models and generic non-convex opti-
mization. We design new optimization algorithms and show a remarkable reduction of
communication complexity under realizable conditions. Compared with the recent dis-
tributed optimization and federated learning algorithms, our CORE-GD and CORE-AGD
achieve the lower bound of iteration rounds the state-of-the-art total communication costs
under the realizable condition.

Finally, we propose a reduction framework that extends CORE to work on decentralized communica-
tion in Appendix E. We show the price is only an additional Õ(√γ) factor, where γ is the eigengap of
the gossip matrix for the network topology. We also show that CORE is equipped with some privacy
guarantee naturally for the use of random vectors, and prove our results in Appendix J. We conduct
empirical studies where we compare CORE with the basic frequently used quantization and sparsity
techniques both on linear models and (deep) neural networks in Appendix K.

1.3 NOTATION

Throughout this paper, we use the convention O (·), Ω (·), and Θ(·) to denote the lower, upper and
lower and upper bound with a global constant, and use Õ(·) to denote the lower bound that hides

4
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a poly-logarithmic factor of the parameters. Let R denote the set of real numbers, and Rd denote a
d-dimensional Euclidean space. We use bold lowercase letters, like x, to represent a vector, and bold
capital letters, like A, to represent a matrix. Specially, we use Id to represent the identity matrix in
d-dimensional Euclidean space, and omit the subscript when d is clear from the context for simplicity.
Let ⟨·, ·⟩ denote the inner product of two vectors in the Euclidean space, ∥x∥ denote the Euclidean
norm of a vector, and ∥A∥ denote the operator norm of a matrix. It is worth noticing that we use
∥x∥A to denote the Mahalanobis (semi) norm where A is a positive semi-definite matrix, which
can be specifically defined as ∥x∥A =

√
x⊤Ax. For all the functions f appearing in this paper, we

simply assume that f ∈ C2, which means that f has a well-defined second-order derivative. We
use ∇f(x) and ∇2f(x) to denote the first-order and second-order derivative of f . Moreover, we
always assume that the objective function f satisfies some basic assumptions in Section 2 and the

minimizer of f exists. We use x∗ to denote the minimizer, i.e. x∗ △
= argminx f(x) and f∗ to denote

its minimum value, i.e. f∗ △
= minx f(x).

2 PRELIMINARY

In this section, we formally present some definitions and assumptions to constrain the objective
function and the optimization problem.
Assumption 2.1 (L-smoothness). We say a function f is L-smooth (or has L-Lipschitz continuous
gradients), if ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x,y ∈ Rd.

Consequently, for the function f ∈ C2, we have the following inequality based on the L-smoothness
of f (see Nesterov (2003, Chapter 1)): f(y) ≤ f(x)+ ⟨∇f(x),y−x⟩+ L

2 ∥x−y∥2, ∀x,y ∈ Rd.

Assumption 2.2 (Convexity). We say a function f is convex if f(y) ≥ f(x) + ⟨∇f(x),y − x⟩ +
µ
2 ∥x− y∥2 for all x,y ∈ Rd, where µ ≥ 0. Moreover, if µ > 0, f is said to be µ-strongly convex.

Assumption 2.3 (H-Hessian Lipschitz continuity). We say f ∈ C2 has H-Hessian Lipschitz continu-
ous Hessian matrices if ∥∇2f(x)−∇2f(y)∥ ≤ H∥x− y∥ for all x,y ∈ Rd.

Next we define some frequently-used criteria for an approximate solution. For convex problems, we
aim to find an ϵ-approximate solution satisfying the definition below:
Definition 2.4 (ϵ-approximate solution). We say x is an ϵ-approximate solution of f if f(x)−f∗ ≤ ϵ.

For non-convex problems, finding an ϵ-approximate solution in general is NP-hard (Murty & Kabadi,
1985). Instead we consider finding an ϵ-approximate first-order stationary point satisfying the
definition below:
Definition 2.5 (ϵ-stationary point). We say x is an ϵ-appriximate first-order stationary point of f if
∥∇f(x)∥ ≤ ϵ.

3 COMMON RANDOM RECONSTRUCTION: CORE IDEA

In this section, we present in detail the underlying idea of our Common RandOm REconstruction
(CORE) technique behind the algorithm design. We can see such a technique reduces the quan-
tities of data transmitted during communication to a great extent, which significantly reduces the
communication complexity. It is of great importance in distributed optimization tasks.

In most distributed machine learning tasks, information is transferred from one machine to another one
in vector form, i.e. the gradient of the objective function. Suppose the dimension of the information is
d. When a machine transmits a d-dimensional vector to another machine, the communication cost is d.
However, in most applications, the dimension d is very large. As a result, it is very expensive to send
the whole vector. Inspired by the theory of communication complexity (Andrew, 1979), we propose
a feasible technique which realizes the dimension reduction by randomization. Specifically, we
suppose that all the machines have a common random number generator, which generates a fresh
random Gaussian vector ξ ∼ N(0, Id) at each transmission. We denote the information we want to
transmit by a ∈ Rd. Instead of sending the d-dimension vector a, we send a scalar ⟨a, ξ⟩ which is
the inner production of a and the common random Gaussian vector ξ. Then the receiver reconstructs
a by multiplying ξ with the scalar.

5
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Algorithm 1 CORE: Common Random Reconstruction
Require: An vector a, machines M1 and M2, one-round communication budget m, a common

random number generator
while M1 want to send a to M2 do

Generate fresh i.i.d. random Gaussian vectors ξ1, · · · , ξm ∼ N(0, Id) with the common random
number generator
M1 sends {pi}mi=1 to M2 with pi = ⟨a, ξi⟩
M2 reconstructs a by ã = 1

m

∑m
i=1 pi · ξi

end while

To ensure the training accuracy and convergence rate, we can take m fresh random Gaussian vectors
for dimension reduction, where m is the one-round communication budget. Specifically, We send
m scalars which are the inner products of a with m random Gaussian vectors, and reconstruct ã by
averaging over the reconstructions using all m random Gaussian vectors. We call this compression
and reconstruction scheme Common Random Reconstruction (CORE), and describe it in Algorithm
1. In Algorithm 1, the estimation of a admits:

ã =
1

m

m∑
i=1

⟨a, ξi⟩ · ξi. (3)

The next important question is whether this technique can guarantee the accuracy of the results. In
Lemma 3.1 and Lemma 3.2, we show that ã is an unbiased estimator, and the variance of ã can be
bounded under arbitrary matrix norms.

Lemma 3.1. ã is an unbiased estimator of a:

Eξ1,···ξm
ã = a. (4)

Lemma 3.2. The variance of ã under norm ∥·∥A, where A is a given positive semi-definite symmetric
matrix, can be bounded by 3tr(A)

m ∥a∥2 − 1
m∥a∥

2
A:

Eξ1,··· ,ξm∥ã− a∥2A ≤
3tr(A)

m
∥a∥2 − 1

m
∥a∥2A. (5)

Remark 3.3. Lemmas 3.1 and 3.2 bound the first and second moments of ã, which provide us
theoretical guarantee of the convergence accuracy if we replace a by ã in certain algorithms. First, it
is obvious that ã has a sub-exponential tail distribution given a, so we can provide high probability
results using concentration inequalities. Second, the variance of ã is upper bounded when tr(A) is
smaller, ensuring the convergence accuracy of our technique with a lower communication cost.

In most cases, when eigenvalues decrease rapidly indicating that tr(A) is not large, our technique
demonstrates substantial improvement. Indeed, the CORE technique finds application in a diverse
range of distributed optimization tasks across various settings. These include scenarios involv-
ing gradient-based algorithms, proximal algorithms, as well as both centralized and decentralized
distributed optimization approaches. In this paper, we focus on the gradient-based distributed opti-
mization algorithms on the centralized distributed optimization, by transmitting the reconstruction by
our CORE method, ã, instead of the full gradient vector ã, to reduce the communication cost in each
round.

4 CORE ON LINEAR MODELS

In this section, we delve into the behavior of CORE on linear models. To provide a clear illustration
of the CORE technique, we focus on representative and straightforward cases that encompass the
linear model. This model stands as one of the most crucial applications of convex optimization in
machine learning. We extend our analysis to more general cases in Section 5 and Apendix D.

6
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Algorithm 2 CORE-GD with per-round communication budget m

Require: n machines, a central machine, a common random number generator, m ≤ tr(A)
L , x0,

k = 0, step-size hk = m
4tr(A)

while k < N do
Generate fresh i.i.d. m Gaussian vectors ξ1, · · · , ξm with the common random number generator
Machine i sends pij = ⟨∇fi(xk), ξj⟩ to the central machine
The central machine sends

∑n
i=1 pij back to every machine

Machines reconstruct ∇̃mf(xk) by ∇̃mf(xk) = 1
m

∑n
i=1

∑m
j=1 pijξj

Machines update xk by xk+1 = xk − hk∇̃mf(xk)
k ← k + 1

end while

We start with the general components of CORE. Suppose we have n machines. Based on the analysis
of our core idea, we use Algorithm 1 to compress and reconstruct the gradient vector as below,

∇̃mf(x) =
1

nm

n∑
i=1

m∑
j=1

⟨∇fi(x), ξj⟩ · ξj . (6)

Then from Lemma 3.1 and Lemma 3.2, ∇̃mf(x) is an unbiased stochastic estimation of∇f(x) with
a controlled variance. This implies that if one can design a variety of optimization algorithms using
the stochastic oracle ∇̃mf(x), then these algorithms can be efficiently implemented by CORE. In
this paper, we introduce two typical algorithms based on GD and AGD.

Now we introduce the CORE-GD algorithm, where at each gradient descent step, the gradient∇f(x)
is replaced by estimator ∇̃f(x) using CORE. The whole algorithm is presented in Algorithm 2,
where we let m be the communication budget for a communication round. To show the strength
of CORE, we consider the objective function satisfying a mild assumption: A-Hessian domination
condition, which is defined as follows:
Definition 4.1 (A-Hessian domination). f is said to be A-Hessian dominated if there exists A such
that

∇2f(x) ⪯ A (7)
for every x ∈ Rd.

We aim to characterize the complexity in terms of tr(A). We note that when f is L-smooth, a loose
bound for A is A ⪯ LI . The fact implies that tr(A) will reach dL in the worst case, whereas, tr(A)
can be much smaller than dL in most cases. We will show that the linear models are A-Hessian
dominated. Moreover, when the data is normalized to a constant level, tr(A) is much smaller and
dimension-free. This result suggests only transmitting O(1)-bits information using CORE without
lowering the convergence rate in expectation under suitable conditions. We shall mention that a
similar idea of Hessian domination is also considered by Freund et al. (2022) in the Langevin sampling
algorithm, who instead proposes a squared Hessian domination condition.

We first consider the µ-strongly convex case. Theorem 4.2 below provides a linear convergence
results for Algorithm 2.
Theorem 4.2. Suppose f is µ-strongly convex, L-smooth, and A-Hessian dominated . Let hk =

m
4tr(A) . Then, under the hyper-parameter setting in Algorithm 2, {xk}k∈N satisfy for all k ≥ 0

Ef(xk+1)− f∗ ≤
(
1− 3mµ

16tr(A)

)(
f(xk)− f∗) . (8)

Remark 4.3. According to Theorem 4.2, our total communication costs are O
(

tr(A)
µ log 1

ϵ

)
in

expectation. As we have mentioned, high probability results can also be obtained with additional
logarithmic factors, which we simply omit here.
Remark 4.4. We compare CORE-GD with the vanilla CGD algorithm which has total communication
costs O

(
dL
µ log 1

ϵ

)
. CORE-GD achieves provably lower communication costs since we always have

7
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tr(A) ≤ dL when ignoring constants. CORE-GD is also better than DIANA (Mishchenko et al., 2019)
whose total communication cost isO(d+ dL

nµ ) when d is extremely larger than n. The communication

cost remains unchanged under diffent communication budgets m. When m = Θ
(

tr(A)
L

)
, CORE-GD

achieves the same number of communication rounds (convergence rate) as those of CGD when
ignoring constants. Bigger communication budget cannot accelerate the convergence rate.

Next we present realizable conditions for linear models that ensure tr(A) to be small. We consider
the objective admits the so-called ridge-separable form Freund et al. (2022):

f(x) ≡ 1

N

N∑
i=1

σi(β
⊤
i x) +

α

2
∥x∥2. (9)

Here, we simply consider the ℓ2 norm regularizer. It is possible to generalize our results using
proximal algorithms for other regularizers. In (9), βi is associated with the data, and σi is associated
with the loss function. We make the following assumptions:
Assumption 4.5. The functions σi ∈ C2 has bounded second derivatives: σ′′

i ≤ L0 for all i ∈ [n].
Assumption 4.6. For all i ∈ [N ], then norm of βi is bounded by R: ∥βi∥2 ≤ R.

Note that Assumption 4.6 can be realized by normalizing the data and Assumption 4.5 only requires
that the loss functions have a bounded second derivative. We show that tr(A) is small:
Lemma 4.7. For the objective function in form of (9), under Assumptions 4.5 and 4.6, then f is
A-Hessian dominated and A satisfies

tr(A) ≤ dα+ L0R. (10)

With Lemma 4.7, we show CORE-GD ensures much low communication costs for linear models
under suitable conditions.
Corollary 4.8. For the objective function in form of (9), under Assumptions 4.5 and 4.6, with tr(A)
defined in (10), the total communication costs of CORE-GD are O

((
d+ L0R

α

)
log 1

ϵ

)
.

Remark 4.9. From Corollary 4.8, treated R and L0 as constants, the total communication costs of
CORE-GD are Õ(d+α−1), whereas the vanilla CGD requires Õ(dα−1) communication costs. Here
α−1 can be considered as the condition number of the objective since L can be Θ(1). CORE-GD
greatly reduces the communication costs by the factor of min(d, α−1).

We also consider the acceleration of our algorithm. Specifically, we consider Heavy-ball (Polyak,
1964) acceleration for CORE-GD for quadratic objective functions in Appendix B. From Theorem
B.1, the total communication costs to find an ϵ-approximate solution in linear regression model for

CORE-AGD are Õ
(∑d

i=1 λ
1/2
i

µ1/2

)
, which is better than Õ(d+ dL1/2

µ1/2 ) because
∑d

i=1 λ
1/2
i

µ1/2 ≤ d1/2tr(A)
µ1/2 .

When d is large and the trace of Hessian is bounded, this result is better than Õ(d + dL1/2

µ1/2 ). The

convergenc rate of CORE-AGD is also better than Õ(
∑d

i=1 A
1/2
ii

µ1/2 ) because
∑d

i=1 λ
1/2
i ≤

∑d
i=1 A

1/2
ii

when A is semi-definite. Moreover, when m = Θ

(∑d
i=1 λ

1/2
i

L1/2

)
, CORE-AGD achieves the same

number of communication rounds as those of Centralized AGD with ignoring logarithmic factors.

5 CORE-GD FOR NON-CONVEX OPTIMIZATION

In this section, we study CORE-GD on general non-convex problems. To explore the information on
Hessian matrices, we further assume that f has H-Lipschitz continuous Hessian matrices. We will
characterize the complexities of our algorithm in terms of r1(f), which is often much smaller than
dL (see Figure 4 taken from Sagun et al. (2016) and empirical results in related papers, e.g. Sagun
et al. (2017); Ghorbani et al. (2019); Brock et al. (2018)). For problems where r1/2 is bounded, the
results are shown in Appendix D.

Apart from linear models, a broader range of learning models exhibit a restricted r1(f). We illustrate
it with the two-layer neural network model presented below:

8
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Proposition 5.1. Define f(W,w) = w⊤σ(Wx), where σ is the activation function. When ∥x∥1 ≤
a1, ∥w∥ ≤ a2 and σ

′′
(x) ≤ α, we have tr(∇2f(W,w) ≤ αa1a2.

Moreover, we notice that for many parameterized models, r1(f) is limited at least when the parameter
is close to its optimal solution. The reason is that under weak regular conditions, the fisher information
I(θ) = −E

[
∂2

∂θ2 log f(X; θ)|θ
]
= E

[(
∂
∂θ log f(X; θ)

)2 |θ]. So when ∂
∂θ log f(X; θ) is bounded,

r1(f) is also bounded. This assurance broadens the scope of applications for our results.

We consider the CORE-Gradient Descent algorithm with some adaptations. The algorithm is shown
in Algorithm 4 in Appendix C. Specifically, we take a careful choice of the step size, and give the
communication costs under two options. Moreover, we add one more comparison step, for example,
xk+1 ← argminx∈{xk,x̃k+1} f(x). The step requires only one more round of communication with
O(1) communication costs. The theoretical results are presented as follows:
Theorem 5.2. Assume that f(x) is L-smooth and has H-Lipschitz continuous Hessian matrix. With
the assumption of tr(∇2f(x)) ≤ r1 for any x ∈ Rd and f(x0) − f∗ ≤ ∆. Then, under the
hyper-parameter setting in Algorithm 4, the following result in expectation

Ef(xk) ≤ f(x0)−
k∑

i=1

E
[
hi

2
∥∇f(xi)∥2

]
(11)

holds for option II, and holds with probability 1− δ for option I.
Remark 5.3. With Theorem 4, we give the convergence rate and total communication costs of
CORE-GD.

• For Option I, CORE-GD needs O
(
max

{
∆r1(f)
mϵ2 , ∆H1/2d3/4

m3/4ϵ3/2

})
rounds to find an ϵ-

stationary point with probability 1 − δ. The total communication costs of CORE-GD
are

O
(
max

{
∆r1(f)

ϵ2
,
∆H1/2d3/4m1/4

ϵ3/2

})
.

• For Option II, CORE-GD needs O
(
max

{
∆r1(f)
mϵ2 , ∆5/4L1/4H1/2d3/4

m3/4ϵ2

})
rounds to find an

ϵ-stationary point in high probability. The total communication costs of CORE-GD are

O
(
max

{
∆r1(f)

ϵ2
,
∆5/4L1/4H1/2d3/4m1/4

ϵ2

})
.

Remark 5.4. Let us compare CORE-GD with Option I with vanilla CGD. The communication
costs of CGD to find an ϵ-stationary point is Õ

(
dL∆ϵ−2

)
. Treated L, H , ∆ as constants, when

the per-round communication budget m = Θ
(

tr(r1(f))
L

)
, CORE-GD achieves the same number of

communication rounds (convergence rate) as those of CGD, CORE-GD with Option I reduces the
communication costs by a factor of min(dL/r1, ϵ

−0.5d1/4) when ignoring logarithmic factors.

6 CONCLUSION

In this paper, we propose the CORE technique to transmit information in distributed optimization
which can dramatically reduce communication costs. We propose our CORE technique based on the
common random variables, which provably reduce the quantities of information transmitted, and
apply CORE to two distributed tasks. We prove that our CORE-based algorithms achieve lower
communication costs. And by choosing the proper communication budget m, our algorithms can
achieve the same number of communication rounds as those of uncompressed algorithms. In a word,
CORE provides new insights and opens the door for designing provably better compression methods
in distributed optimization.
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A RELATED WORK

Gradient compression. Gradient compression is the main technique to reduce communication
complexity during the process of training. One of the representative achievements is the gradient
quantization, for example, 1-bit SGD (Seide et al., 2014) and 1-bit Adam (Tang et al., 2021), which
heuristically compresses each component of the gradient into an integer that can be encoded in a
few bits. On this basis, TernGrad (Wen et al., 2017), QSGD (Alistarh et al., 2017), ECQ-SGD (Wu
et al., 2018), ALQ (Faghri et al., 2020), Natural Compression (Horvóth et al., 2022) and DIANA
(Mishchenko et al., 2019) further improved the gradient quantization by adding hyperparameters or
combining with the adaptive technique to control the compression ratio. Another main technique is
gradient sparsification, which transmits the main dimensions of the gradient instead of the whole.
Top-K (Wangni et al., 2018; Shi et al., 2019; Jiang & Agrawal, 2018) was the main idea of gradient
sparsification which chose the first k larger dimensions of the gradient to transmit. Gradient Dropping
(Aji & Heafield, 2017), DGC (Lin et al., 2017), Atomo (Wang et al., 2018) and IBCD (Mishchenko
et al., 2020) obtained better results on this basis. In addition, some new techniques based on other
ideas have also been developed and achieved good results. For example, PowerSGD (Vogels et al.,
2019) proposed a new low-rank gradient compressor. SignSGD (Bernstein et al., 2018; Safaryan &
Richtárik, 2019) proposed a sign-based method with simple compression rules. A biased contractive
compressor Beznosikov et al. (2020), a general class of unbiased quantization operators (Horváth
et al., 2023) and three-point compressors (3PC) (Richtárik et al., 2022) were also proposed as
innovative new achievements. However, the second moments of these estimations are often of order
d, which implies a restriction of the total communication costs.

Random sketching. Sketching (Gribonval et al., 2020; Woodruff et al., 2014; Ikonomovska et al.,
2007) is a widely-used technique in machine learning, data mining, and optimization, whose core
idea is to reduce the scale by a probabilistic data structure to approximate the data to reduce the
computation costs. It is worth noticing that some researchers have started to use the sketching
technique to reduce communication costs during the process of training. Specifically, Konečnỳ et al.
(2016) proposed FedAvg to reduce the communication costs, which uses a random subset of the value
of the full gradient to communicate. They call this method sketched update and integrate quantization
(before random sketch) in experiments. Jiang et al. (2018) also proposed a quantization-based
sketched gradient compression method, which divides the values of the gradient into four buckets
bounded by quantiles and encodes them. However, there is a lack of theoretical guarantees in the
convergence of these algorithms, and these methods are still based on random sampling and heuristic
quantization encoding. Moreover, Ivkin et al. (2019) proposed SKETCHED-SGD, which uses Count
Sketch (Charikar et al., 2004) to compress the gradient. They also presented a theoretical analysis
of convergence, but compared with vanilla SGD, it requires an Õ( 1

T + d2

k2T 2 + d3

k3T 3 ) (where d is
the dimension of gradient and k is a fixed parameter satisfying k ≤ d) convergence rate. When d
is large, it is much worse than SGD. Rothchild et al. (2020) proposed FetchSGD which combines
Count Sketch (Charikar et al., 2004) and Top-k (Lin et al., 2017) for k-sparsification. It requires
the same convergence rate as SGD for non-convex objective functions, but the communication cost
is also dependent on d at least. Hanzely et al. (2018) proved that when adding biased estimates on
the basis of random matrix sketching, their algorithm achieves a faster convergence rate and can be
accelerated. However, they did not come up with a specific sketching method. Moreover, Lee et al.
(2019) and Pilanci et al. (2015) proposed some sketched Hessian-based second-order optimization
algorithms. In this work, we mainly focus on gradient-based communication-efficient methods.

Distributed optimization. Distributed machine learning and optimization have developed rapidly
in recent years. In the early years, the main achievements were based on the existing optimization
algorithms, such as SGD with mini-batch (Cotter et al., 2011), DSVRG (Lee et al., 2015), EXTRA
(Shi et al., 2015) and MSDA (Scaman et al., 2017b). In recent years, it is worth noticing that
some compressed distributed optimization methods have been proposed. Inspired by the results of
coordinate gradient descent, Safaryan et al. (2021); Hanzely et al. (2018) proposed a compressed

gradient descent framework based on the idea of random projection, achieving an Õ(
∑d

i=1 M
1/2
ii

µ1/2 )

communication complexity as Allen-Zhu et al. (2016) for M-Hessian dominated and µ-strongly
convex function where Mii is the entry in i-th row and i-th column of the matrix M, but their
achievements are lack of a concrete projection compression method. Moreover, some compressed
gradient descent algorithms based on compression techniques mentioned above were also proposed,
such as DCGD (Khirirat et al., 2018), DIANA (Mishchenko et al., 2019), MARINA (Gorbunov

15



Under review as a conference paper at ICLR 2024

et al., 2021), DASHA (Tyurin & Richtárik, 2022) and CANITA (Li & Richtárik, 2021). Li et al.
(2020) proposed an accelerated distributed algorithm which achieved Õ(d+ dL1/2

nµ1/2 ) considering the

setting that the dimension d is extremely larger than n, whose lower bound is Õ(d+ d1/2L1/2

µ1/2 ). It
is worth noticing that in practice d is often extremely large. So there is still a lack of a concrete
compression technique and corresponding distributed algorithm that achieves low communication
complexity when d is large. And our work fills this gap. In addition, error feedback technique (Stich
& Karimireddy, 2019; Karimireddy et al., 2019; Tang et al., 2019; Gruntkowska et al., 2022; Richtárik
et al., 2021; Fatkhullin et al., 2021) was also widely used in compressed distributed optimization.

Federated learning. Federated Learning is another machine learning setting concentrating on
communication costs, where the goal is to train a high-quality centralized model while training data
remains distributed over a large number of clients each with unreliable and relatively slow network
connections. In federated learning communication bandwidth is a dominating bottleneck and how to
design a communication-efficient algorithm has been a concern for researchers. In the early years,
some federated learning algorithms have been proposed. These methods are often based on local
gradient and heuristic gradient compressors to reduce one-step communication cost, such as FedAvg
(Konečnỳ et al., 2016), FetchSGD (Rothchild et al., 2020), SKETCHED-SGD (Ivkin et al., 2019),
SCAFFOLD (Karimireddy et al., 2020) and FedLin (Mitra et al., 2021). However, the approximation
of local gradient often results in a loss of convergence rate. The total communication costs are
worse than, or at best matching that of vanilla gradient descent. Recently, some new communication-
efficient methods such as Scaffnew (Mishchenko et al., 2022) and GradSkip (Maranjyan et al., 2022)
have been proposed to achieve the same communication rounds as the lower bound of smooth and
strongly-convex objective functions O(

√
κ), but the total communication costs are still O(d).

Random communication complexity. In theoretical computer science, communication complexity
studies the amount of communication needed to solve a problem when input data is distributed among
several parties. Communication complexity was first proposed in Andrew (1979). Andrew (1979) also
defined randomized protocol and randomized communication complexity. In a randomized protocol,
parties are given a common random string as the input to a deterministic protocol. Random protocols
can determine the answer in high probability with much less amount of information transmitted, so
randomized communication complexity is much lower than deterministic communication complexity
in expectation. Inspired by the advantage of randomized protocols over deterministic ones, we
designed a random compression method for distributed optimization which is faster in expectation.
Newman (1991) proved that any protocol using a common random string can be simulated by a
private random string protocol, with an extra O(log n) bits.

B ACCELERATION OF CORE-GD ON LINEAR MODELS

In the optimization community, the momentum technique is used to accelerate convergence of
Gradient Descent. We also design an accelerated CORE-based algorithm. We name the algorithm as
CORE-Accelerated Gradient Descent (CORE-AGD). Here we simply consider the objective function
to be quadratic, i.e.

f(x) =
1

2
x⊤Ax. (12)

This corresponds to picking σi as quadratic in linear models. We also note that the quadratic function
is already very representative, as it is known that most worst-case functions (lower-bound instances)
in the convex optimization are exactly quadratic (see e.g. Nesterov (2003, Chapter 2)). As we have
mentioned, our analysis can be directly extended to general convex optimization under an additional
Hessian smoothness condition combining with higher-order methods. We present our algorithm in
Algorithm 3, which is a heavy-ball (Polyak, 1964) based algorithm by replacing the gradient to be its
estimation using CORE.

By a careful analysis of the CORE-AGD algorithm, we have the following theorem:
Theorem B.1. For objective in form of (12), let {λi}di=1 be the eigenvalues of A with a decreasing
order, and denote L = λ1, µ = λd. Under the hyper-parameter setting in Algorithm 3, we have

Ef(xN ) ≤ 400

(
1− 1

57600

mµ1/2∑d
i=1 λ

1/2
i

)N

· L
µ
· f(x0). (15)
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Algorithm 3 CORE-AGD

Require: n machines, a central machine, a common random number generator, m ≤ tr(A)
L , x0,

k = 0, β ←
√
hµ, h← m2

144002(
∑

i λ
1/2
i )2

while k ≤ N do
Generate fresh i.i.d. m Gaussian vectors ξ1, · · · , ξm with the common random number genera-
tor.
Machine i computes yk = xk + (1 − β)(xk − xk−1) and sends pij = ⟨∇fi(yk), ξj⟩ to the
central machine.
The central machine sends

∑n
i=1 pij back to every machine.

Machines reconstruct ∇̃mf(yk) by

∇̃mf(xk) =
1

m

n∑
i=1

m∑
j=1

pijξj (13)

Machines update xk by ∇̃mf(yk) as

xk+1 = yk − h∇̃(yk) (14)

end while

In Theorem B.1, if f is not strongly-convex (λd = 0) or λd is too small, i.e. (λ < ϵ), we can
also use the reduction technique (see e.g. Lin et al. (2015)) by adding a regularization term. From
Theorem B.1, the total communication costs to find an ϵ-approximate solution for CORE-AGD

are Õ
(∑d

i=1 λ
1/2
i

µ1/2

)
. In contrast, the communication costs of CAGD are Õ

(
dλ

1/2
1

µ1/2

)
. Again, we

obtain a provably better communication costs because
∑d

i=1 λ
1/2
i

µ1/2 ≤ dL1/2

µ1/2 when ignoring logarithmic

factors. And when m = Θ

(∑d
i=1 λ

1/2
i

L1/2

)
, CORE-AGD achieves the same number of communication

rounds (convergence rate) as those of CAGD when ignoring logarithmic factors. We then specify
the objective to satisfy the ridge-separable form (9) with σi being a quadratic function. We have
Corollary B.2, which states that CORE-AGD reduces the communication costs by a

√
min(d, α−1)

factor compared with the “worst-case-optimal” CAGD algorithm.
Corollary B.2. For the objective function in form of (9) with σi being a quadratic function, under
Assumptions 4.6 with R treated as a constant, the total communication costs of CORE-AGD are
Õ
(
d+

√
dL0R
α

)
.

C CORE-GD FOR NON-CONVEX OPTIMIZATION: ALGORITHM

In this section, we present the CORE-GD algorithm for non-convex optimization problem in Algo-
rithm 4. Specifically, we take a careful choice of the step size, and give the communication costs under
two options. Moreover, we add one more comparison step, i.e. xk+1 ← argminx∈{xk,x̃k+1} f(x).
The step requires only one more round of communication with O(1) communication costs.

D ACCELERATION OF CORE-GD ON GENERIC CONVEX AND NON-CONVEX
PROBLEMS

In this section, we focus on generic optimization problems, where the objective function is L-smooth
and have an H-Lipschitz continuous Hessian matrix. We focus on the settings where r1/2(f)

L1/2 is small,
and obtain optimal communication costs in terms of ϵ while reducing the dominating dimension term
d to r1/2(f)

L1/2 .
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Algorithm 4 CORE-GD in Non-convex Optimization

Require: n machines, a central machine, a common random number generator, m ≤ r1(f)
L , x0,

k = 0, (For Option I, m > log
(
N
δ

)
)

Assume that f(x0)− f∗ ≤ ∆
while k < N do

Generate fresh i.i.d. m Gaussian vectors ξ1, · · · , ξm with the common random number generator
Machine i sends pij = ⟨∇fi(xk), ξj⟩ to the central machine
The central machine sends

∑n
i=1 pij back to every machine

Machines reconstruct ∇̃mf(xk) by ∇̃mf(xk) = 1
m

∑n
i=1

∑m
j=1 pijξj

Let p = 1
m

∑m
i=1

(∑n
j=1 pij

)
hk =

{
min{ m

16r1(f)
, 1
1600H

−1/2p−1/2d−3/4m3/4}, Option I
min{ m

16r1(f)
, 1
1600H

−1/2(L∆)−1/4d−3/4m3/4}, Option II

x̃k+1 = xk − hk∇̃mf(xk)
xk+1 ← argminx∈{xk,x̃k+1} f(x)
k ← k + 1

end while

The key observation is that algorithms using CORE to compress and reconstruct gradient informa-
tion can be implemented by zeroth-order oracles, instead of first-order oracles. Indeed, one can
approximately compute p = ⟨∇f(x), ξ⟩ by

p ≈ f(x+ ρ · ξ)− f(x)

ρ
, (16)

where ρ→ 0. Therefore, we can directly adapt the zeroth-order algorithms from (Yue et al., 2023),
where the gradient is also estimated using (16). We first introduce the definition of D-bounded
distance to the optimal solution and (ϵ, δ)-SSP as follows. Then we have Theorem D.3 and Theorem
D.4.
Definition D.1 (D-bounded distance to the optimal solution). Assume the minimizer of f exists and
X∗ is the of all minimizers. Define D = infx∗∈X∗ sup{∥x− x∗∥ : f(x) ≤ f(x)}.
Definition D.2 ((ϵ, δ)-SSP). x is said to be an (ϵ, δ)-approximated second-order stationary point
(SSP) of f if it admits: ∥∇f(x)∥ ≤ ϵ and∇2f(x) ⪰ −δI.
Theorem D.3. Assume the objective function f is convex and has L-continuous gradient and H-
Lipschitz continuous Hessian matrices. Based on Yue et al. (2023, Algorithm 4), one can find an
ϵ-approximated solution in

Õ
(
D · r1/2(f)

ϵ1/2
+ d ·D6/7H2/7ϵ−2/7

)
(17)

communication costs with high probability.
Theorem D.4. Assume the objective function f is non-convex and has L-continuous gradients and
H-Lipschitz continuous Hessian matrices. Based on Yue et al. (2023, Algorithm 8), one can find an
(ϵ,
√
Hϵ)-Second-order stationary point of f in

Õ
(
r1/2(f)H

1/4∆ϵ−7/4 + dH1/2∆ϵ−3/2
)

(18)

communication costs with high probability.
Remark D.5. The communication costs in Theorem D.3 and Theorem D.4 match the state-of-the-art
results in terms of ϵ, namely Õ(ϵ−1/2) for convex problems (Nesterov, 2003) and Õ(ϵ−7/4) for
non-convex problems (Jin et al., 2017). In the non-convex case, there still exists an ϵ−1/28 gap
between the upper bound and the lower bound (Carmon et al., 2021).

E DECENTRALIZED CORE BASED ALGORITHMS

In this section, we consider the decentralized optimization settings. In centralized settings, we assume
that all the machines can send the gradient to the central machine. However, if machines can only
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Algorithm 5 Decentralized CORE-GD with per-round communication budget m

Require: n machines, a central machine, a common random number generator, m ≤ tr(A)
L , x0,

k = 0, step-size hk = m
4tr(A) .

while k < N do
Generate fresh i.i.d. m Gaussian vectors ξ1, · · · , ξm with the common random number genera-
tor.
Machine i computes projections pij = ⟨∇fi(xk), ξj⟩ locally. Define pi = [pi1 · · · pim]

⊤.
Machines solve an m-dimensional subproblem with an decentralized optimization algorithm:

p = argmin
x∈Rm

1

n

n∑
i=1

1

2
∥x− pi∥2. (19)

Denote pj to be the jth coordinate of p. Machines reconstruct ∇̃mf(xk) by

∇̃mf(xk) =
n

m

m∑
j=1

pjξj , (20)

Machines update xk by
xk+1 = xk − hk∇̃mf(xk). (21)

k ← k + 1.
end while

send messages to their neighbours, a message will be transmitted several times before it reaches
the central machine. In the worst case, the total communication costs will be multiplied by the
diameter of the graph. In the decentralized settings, the communication costs usually depend on the
gossip matrix W of the graph. We propose decentralized CORE-GD in Algorithm 5, and analyze its
communication costs.

The optimal solution of subproblem (20) is

p =
1

n

n∑
i=1

pi. (22)

Therefore, we have

pj =
1

n

n∑
i=1

pij . (23)

By solving supproblem (20), we broadcast pj to every machine in the graph, and each machine can
reconstruct the gradient using pj . The Hessian matrix of the objective function in (20) is Im, so (20)
is simple to optimize. GD will find the optimal solution in one step if (20) can be solved locally. The
optimal communication costs of solving (20) to accuracy ϵ is O

(
1√
γ log 1

ϵ

)
, where γ is the eigengap

of the gossip matrix W of the graph (see e.g. Scaman et al. (2017a)). Ignoring logarithmic factors,
the total communication costs of decentralized CORE-GD are only Õ

(
1√
γ

)
times more than the

communication costs of centralized CORE-GD in the same setting.

F DEFERRED PROOFS IN SECTION 3

Proof of Lemma 3.1.

Eξ1,·,ξm
ã = Eξ1,··· ,ξm

[
1

m

m∑
i=1

⟨a, ξi⟩ · ξi

]
= Eξ1

ξ1ξ
⊤
1 a = Ia

= a

(24)
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Proof of Lemma 3.2. For the simplicity of notation, we use Eξ to denote Eξ1,··· ,ξm
.

Eξ∥ã− a∥2A = Eξ

∥∥∥∥∥ 1

m

m∑
i=1

(⟨a, ξ⟩ · ξ − a)

∥∥∥∥∥
2

A

= Eξ

[
1

m2

m∑
i=1

(
a⊤ξiξ

⊤
i Aξiξ

⊤
i a− a⊤Aa

)]

=
1

m
Eξ1

a⊤ξ1ξ
⊤
1 Aξ1ξ

⊤
1 a−

1

m
∥a∥2A.

(25)

Let A = U⊤DU be the eigenvalue decomposition of A where D = diag{b1, · · · , bd} is a diagonal
matrix, and ζ = Uξ1 be a linear transformation of the random variable ξ1. We have

Eξ1

[
ξ1ξ

⊤
1 Aξ1ξ

⊤
1

] a
= Eζ

[
U⊤ζζ⊤Dζζ⊤U

]
= U⊤Eζ

[
d∑

i=1

biζ
2
i · ζζ⊤

]
U

b
= U⊤

(
d∑

i=1

bi · I+ 2D

)
U

c
= tr(A) · I+ 2A

⪯ 3tr(A) · I.

(26)

In a
=, we use ζ ∼ N(0, Id) based on the rotational invariance of the standard Gaussian distribution.

In b
=, we use the second and forth moment of standard Gaussian variables: Eζ2

i = 1 and Eζ4
i = 3. In

c
=, we use tr(U⊤DU) = tr(U⊤UD) = tr(D). The last inequality of (26) is due to tr(A) · I ⪰ A.
Combining (26) and (25), we have

Eξ1,··· ,ξm∥ã− a∥2A ≤
3tr(A)

m
∥a∥2 − 1

m
∥a∥2A. (27)

G DEFERRED PROOFS IN SECTION 4

Proof of Theorem 4.2. We write the second-order Taylor expansion of f(xk+1) at xk:

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+ 1

2
⟨A(xk+1 − xk),xk+1 − xk⟩. (28)

Combining the updating process of xk+1 and (28), we have

f(xk+1) ≤ f(xk)− hk⟨∇f(xk), ∇̃mf(xk)⟩+ h2
k

2
∥∇̃mf(xk)∥2A. (29)

Taking expectation with respect to ∇̃mf(xk) to both sides of (29), using Lemma 3.1, Lemma 3.2
and Definition 4.1, we have

Ef(xk+1) ≤ f(xk)− hk∥∇f(xk)∥2 + h2
k

(
3tr(∇2f(xk))

2m
∥∇f(xk)∥2 + ∥∇f(xk)∥2A

)
≤ f(xk)−

(
hk − h2

k

(
3tr(A)

2m
+ L

))
∥∇f(xk)∥2.

a
≤ f(xk)−

(
hk − h2

k ·
5tr(A)

2m

)
∥∇f(xk)∥2,

(30)

where in
a
≤ we use m ≤ tr(A)

L . Then, using µ-strongly convex condition, we have

f∗ ≥ min
y

{
f(xk) + ⟨∇f(xk),y − xk⟩+ µ

2
∥y − xk∥2

}
= f(xk)− 1

2µ
∥∇f(xk)∥2.

(31)
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Combining (30) and (31), we have

Ef(xk+1)− f∗ ≤ f(xk)− f∗ − 2µ

(
hk −

5h2
ktr(A)

2m

)(
f(xk)− f∗)

a
=

(
1− 3mµ

16tr(A)

)(
f(xk)− f∗) , (32)

where in a
= we use hk = m

4tr(A) . Thus, we finish the proof of Theorem 4.2.

H DEFERRED PROOFS IN SECTION 5

In this section, we prove Theorem 5.2 as below.

Theorem 5.2. Assume that f(x) is L-smooth and has H-Lipschitz continuous Hessian matrix. With
the assumption of tr(∇2f(x)) ≤ r1 for any x ∈ Rd and f(x0) − f∗ ≤ ∆. Then, under the
hyper-parameter setting in Algorithm 4, the following result in expectation

Ef(xk) ≤ f(x0)−
k∑

i=1

E
[
hi

2
∥∇f(xi)∥2

]
(33)

holds for option II, and holds with probability 1− δ for option I.

Proof of Theorem 5.2. We write the third-order Taylor expansion of f(x̃k+1) at xk:

f(x̃k+1) ≤ f(xk) + ⟨∇f(xk), x̃k+1 − xk⟩+ 1

2
⟨∇2f(xk)(x̃k+1 − xk), x̃k+1 − xk⟩

+
H

6
∥x̃k+1 − xk∥3.

(34)

Combining the updating process of x̃k+1 with (34), we have

f(x̃k+1) ≤ f(xk)− hk⟨∇f(xk), ∇̃mf(xk)⟩+ h2
k

2
∥∇̃mf(xk)∥2∇2f(xk) +

Hh3
k

6
∥∇̃mf(xk)∥3.

(35)

We denote Ek[·] = E[·|xk]. Then taking expectation with respect to ∇̃mf(xk) to both sides of (35)
and using Lemma 3.1 and Lemma 3.2, we have

Ekf(x̃
k+1) ≤ f(xk)− hk∥∇f(xk)∥2 + 3h2

ktr(∇2f(xk))

2m
∥∇f(xk)∥2 + Hh3

k

6
Ek∥∇̃mf(xk)∥3

≤ f(xk)− hk∥∇f(xk)∥2 + 3h2
kr1

2m
∥∇f(xk)∥2 + Hh3

k

6
Ek∥∇̃mf(xk)∥3.

(36)

Now we give an upper bound of Ek∥∇̃mf(xk)∥3. We suppose the m random Gaussian vectors are
ξi for i ∈ {1, · · · ,m}. And we denote each ξi as

ξi =

ξi1...
ξid

 , (37)
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where ξij ∼ N(0, 1) is independent to each other. Then we have

Ek∥∇̃mf(xk)∥3 ≤
(
Ek∥∇̃mf(xk)∥6

)1/2
a
≤
(
64∥∇f(xk)∥6 + 64Ek

∥∥∥∇̃mf(xk)−∇f(xk)
∥∥∥6)1/2

b
= 8∥∇f(xk)∥3 ·

1 + E

( 1

m

m∑
i=1

(ζ2
i1 − 1)

)2

+

d∑
j=2

(
1

m

m∑
i=1

ζi1ζij

)2
3


1/2

c
≤ 8∥∇f(xk)∥3

(
1 + 20000

d3

m3

)1/2

≤ 1600
d3/2

m3/2
∥∇f(xk)∥3.

(38)

In
a
≤, we use the upper bound of the sixth moment as below.

E ∥X∥6 ≤ E (∥X − EX∥+ ∥EX∥)6

≤ E (2max {∥X − EX∥ , ∥EX∥})6

≤ 64E ∥X − EX∥6 + 64 ∥EX∥6 .

(39)

In b
=, we analyse

∥∥∥∇̃mf(xk)−∇f(xk)
∥∥∥2 as below. Considering the rotation invariance of the

standard Gaussian vectors, we can simplify the computation by rotating the coordinate system.
For simplicity, we denote ∇f(xk) = a. We can find an orthogonal matrix U such that Ua =[
∥∇f(xk)∥, 0, · · · , 0

]⊤
. Letting â = Ua and ζi = Uξi, we have ζi ∼ N(0, Id) and we denote ζi

as

ζi =

ζi1...
ζid

 , (40)

where ζij ∼ N(0, 1) is also independent to each other. Then we have∥∥∥∇̃mf(xk)−∇f(xk)
∥∥∥2 =

∥∥∥U(∇̃mf(xk)−∇f(xk)
)∥∥∥2 =

∥∥∥∥∥ 1

m

m∑
i=1

(
a⊤ξiUξi −Ua

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

m∑
i=1

(
(Ua)⊤(Uξi)Uξi −Ua

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

m∑
i=1

(
â⊤ζiζi − â

)∥∥∥∥∥
2

=
∥∥∇f(xk)

∥∥2( 1

m

m∑
i=1

(ζ2
i1 − 1)

)2

+

d∑
j=2

(
1

m

m∑
i=1

ζi1ζij

)2
 .

In
c
≤, we calculate the high-order moment of standard Gaussian distribution. Especially, we have

Eζ2n
i = O(1) and Eζ2n+1

i = 0, where n ∈ {1, 2, 3, 4, 5, 6} ensuring that

E

( 1

m

m∑
i=1

(ζ2
i1 − 1)

)2

+

d∑
j=2

(
1

m

m∑
i=1

ζi1ζij

)2
3

= O

(
d3

m3

)
. (41)

Combining (38) with (36), we have

Ekf(x̃
k+1) ≤ f(xk)− hk∥∇f(xk)∥2 + 3h2

kr1
2m

∥∇f(xk)∥2 + 800Hh3
kd

3/2

3m3/2
∥∇f(xk)∥3. (42)
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For option I, we define the event

HN =
(
p ≥ 2∥∇f(xk)∥, ∀k ≤ N − 1

)
. (43)

Let the event H̃k =
(
p ≥ 2∥∇f(xk)∥

)
, with 0 ≤ k ≤ N − 1. Our choice of m ensures for all

0 ≤ k ≤ N − 1, H̃k occurs with probability at least 1− δ
N . So, we have

P (HN ) = P

(
N−1⋂
k=0

H̃k

)
≥ 1−

N−1∑
k=0

P
(
H̃c

k

)
≥ 1− δ. (44)

Therefore, with probability at least 1− δ, p ≥ 2∥∇f(xk)∥ holds for all k = 1, · · · , N − 1. In the
high-probability case, we have

3h2
kr1

2m
∥∇f(xk)∥2 ≤ 1

4
hk∥∇f(xk)∥2, (45)

and
800Hh3

kd
3/2

3m3/2
∥∇f(xk)∥3 ≤ 1

4
hk∥∇f(xk)∥2. (46)

For option II, By the choice of hk, we also have

3h2
kr1

2m
∥∇f(xk)∥2 ≤ 1

4
hk∥∇f(xk)∥2, (47)

and
800Hh3

kd
3/2

3m3/2
∥∇f(xk)∥3 ≤ 1

4
hk∥∇f(xk)∥2. (48)

Therefore, by summing the (42) over k and taking the full expectation, we have

Ef(xk) ≤ f(x0)−
k∑

i=1

E
[
hi

2
∥∇f(xi)∥2

]
, (49)

which holds with probability 1 − δ for option I and holds for option II. Now we take a deeper
discussion.

• For Option I, In the high-probability case, in N iterations, there are at least
N/2 rounds of hk = m

16r1(f)
or N/2 rounds of H−1/2p−1/2d−3/4m3/4, and

in every round Ef(xk) decreases by E
[
hk

2 ∥∇f(x
k)∥2

]
. Therefore, CORE-GD

needs O
(
max

{
∆r1(f)
mϵ2 , ∆H1/2d3/4

m3/4ϵ3/2

})
rounds to find an ϵ-stationary point from

{xk}N−1
k=0 with probability 1 − δ. The total communication costs of CORE-GD are

O
(
max

{
∆r1(f)

ϵ2 , ∆H1/2d3/4m1/4

ϵ3/2

})
.

• For Option II, in N iterations, there are at least N/2 rounds of hk = m
16r1(f)

or

N/2 rounds of H−1/2(L∆)−1/4d−3/4m3/4, and in every round Ef(xk) decreases by
E
[
hk

2 ∥∇f(x
k)∥2

]
. Therefore, CORE-GD needs O

(
max

{
∆r1(f)
mϵ2 , ∆5/4L1/4H1/2d3/4

m3/4ϵ2

})
rounds to find an ϵ-stationary point from {xk}N−1

k=0 in high probability. The total communi-

cation costs of CORE-GD are O
(
max

{
∆r1(f)

ϵ2 , ∆5/4L1/4H1/2d3/4m1/4

ϵ2

})
.
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I DEFERRED PROOFS IN APPENDIX B

Proof of Theorem B.1. Before our proof, we propose a useful Lemma taken from Jin et al. (2017).

Lemma 5.1. Let the 2× 2 matrix A have following form, for arbitrary a, b ∈ R,

A =

[
a b
1 0

]
. (50)

Letting µ1, µ2 denote the two eigenvalues of A, then, for any t ∈ N,

[1 0]At =

(
t∑

i=0

µi
1µ

t−i
2 − µ1µ2

t−1∑
i=0

µi
1µ

t−i−1
2

)
,

[0 1]At = [1 0]At−1.

(51)

Now we start our proof. Let zk+1 =

[
xk+1

xk

]
. The iterations of CORE-AGD can be written as

zk+1 =

[
(2− β)(I− hA) −(1− β)(I− hA)

I 0

]
zk + hϵk

△
= Bzk + hϵk, (52)

where ϵk =

[
(I− 1

m

∑m
i=1 ξiξ

⊤
i )Ayk

0

]
, representing the error of estimating ∇f(xk) with

∇̃mf(xk).

By induction on k, we have

zN = BNz0 + h

N−1∑
k=0

BN−k−1ϵk. (53)

Without loss of generality, we assume that x∗ = 0. We estimate the distance to the optimal solution
by the A2 norm of xk. To compute ∥xk∥A2 , we decompose xk into eigen-directions of A, and B
can be decomposed into 2× 2 matrices. For an eigen-direction with eigenvalue λ, the update of AGD
can be written as follows:

[
xk+1

xk

]
=

[
(2− β)(1− hλ) −(1− β)(1− hλ)

1 0

] [
xk

xk−1

]
+ h

[
ϵ
0

]
△
= Bλ

[
xk

xk−1

]
+ h

[
ϵ
0

]
.

(54)

Let µ1 and µ2 be the eigenvalues of Bλ. Let C =

[
A2 0
0 A2

]
. By (53), We have

E∥zN∥2C ≤ 2∥BNz0∥2C + 2E

∥∥∥∥∥
N−1∑
k=0

BN−k−1ϵk

∥∥∥∥∥
2

C

. (55)
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For the ϵk terms, we have

E

∥∥∥∥∥
N−1∑
k=0

BN−k−1ϵk

∥∥∥∥∥
2

C

=

N−1∑
k=0

Eξ

∥∥BN−k−1ϵk
∥∥2
C

=

N−1∑
k=0

Eξ

[
yk⊤A⊤(I− 1

m

∑m
j=1 ξjξ

⊤
j ) 0

]
(BN−k−1)⊤CBN−k−1

[
(I− 1

m

∑m
j=1 ξjξ

⊤
j )Ayk

0

]
Lemma 3.2
≤ 3

N−1∑
k=0

tr
(
(BN−k−1)⊤CBN−k−1

)
·
∥yk∥2A2

m
.

(56)
In order to estimate tr

(
(BN−k−1)⊤CBN−k−1

)
, we consider blocks of B with respect to eigen-

directions of A. The contribution of an eigen-direction with eigenvalue λ in the trace is

tr

(
(BN−k−1

λ )⊤ ·
[
λ2 0
0 λ2

]
BN−k−1

λ

)
= λ2

(∥∥[1 0]BN−k−1
λ

∥∥2 + ∥∥[0 1]BN−k−1
λ

∥∥2) (57)

By Lemma 5.1, the last line in (57) equals to

λ2
∥∥∥[∑N−k−1

i=0 µi
λ,1µ

N−k−1−i
λ,2 −µλ,1µλ,2

∑N−k−2
i=0 µi

λ,1µ
N−k−2−i
λ,2

]∥∥∥2
+ λ2

∥∥∥[∑N−k−2
i=0 µi

λ,1µ
N−k−2−i
λ,2 −µλ,1µλ,2

∑N−k−3
i=0 µi

λ,1µ
N−k−3−i
λ,2

]∥∥∥2 . (58)

Define aλ = |µλ,1| =
√
(1− β)(1− hλ). By the choice of β, we have aλ ≤ 1−

√
hµ
2 . We have the

following equation:

λ2
∥∥∥[∑N−k

i=0 µi
λ,1µ

N−k−i
λ,2 −µλ,1µλ,2

∑N−k−1
i=0 µi

λ,1µ
N−k−1−i
λ,2

]∥∥∥2 ≤ 4λ2(N − k)2aN−k
λ . (59)

From the definition of yk and Cauchy-Schwartz inequality, we have

∥yk∥2A2 ≤ 8∥xk∥2A2 + 2∥xk−1∥2A2 ≤ 8∥zk∥2C + 2∥zk−1∥2C. (60)

Therefore,

E

∥∥∥∥∥
N−1∑
k=0

BN−k−1ϵk

∥∥∥∥∥
2

C

≤ 3

N−1∑
k=0

d∑
i=1

8λ2
i (N − k)2aN−k

λi
·
∥yk∥2A2

m

= 24

d∑
i=1

N−1∑
k=0

λ2
i (N − k)2aN−k

λi
·
∥yk∥2A2

m

(61)

Then we calculate ∥BNz0∥2C. As x−1 = x0, the contribution of an eigen-directions of A to the norm
is

λ2x2
λ

∥∥∥∥BN
λ

[
1
1

]∥∥∥∥2 , (62)
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where λ is the eigenvalue, and xλ is the coefficient of the eigen-decomposition of x0. By Lemma 5.1,
we have

BN
λ

[
1
1

]
=

[ ∑N
i=0 µ

i
λ,1µ

N−i
λ,2 − µλ,1µλ,2

∑N−1
i=0 µi

λ,1µ
N−1−i
λ,2∑N−1

i=0 µi
λ,1µ

N−1−i
λ,2 − µλ,1µλ,2

∑N−2
i=0 µi

λ,1µ
N−2−i
λ,2

]

=
1

2

[
µN
λ,1 + µN

λ,2 + (2− µλ,1 − µλ,2)
∑N

i=0 µ
i
λ,1µ

N−i
λ,2

µN−1
λ,1 + µN−1

λ,2 + (2− µλ,1 − µλ,2)
∑N−1

i=0 µi
λ,1µ

N−1−i
λ,2

]

=
1

2

µN
λ,1 + µN

λ,2 + (2− µλ,1 − µλ,2)
µN+1
λ,1 −µN+1

λ,2

µλ,1−µλ,2

µN−1
λ,1 + µN−1

λ,2 + (2− µλ,1 − µλ,2)
µN
λ,1−µN

λ,2

µλ,1−µλ,2


(63)

The 2−µλ,1−µλ,2

µλ,1−µλ,2
term in (63) can be bounded as follows:

2− µλ,1 − µλ,2

µλ,1 − µλ,2
=

2− (2− β)(1− hλ)√
(1− hλ)(hλ(2− β)2 − β2)

≤ β + hλ√
1
4 · hλ

≤ 2 +
√
hλ

≤ 3.

(64)

Therefore,∥∥∥∥BN
λ

[
1
1

]∥∥∥∥2 ≤ (|µ2N
λ,1|+ |µ2N

λ,2|+ 9|µ2N+2
λ,1 |+ 9|µ2N+2

λ,2 |+ |µ2N−2
λ,1 |+ |µ2N−2

λ,2 |+ 9|µ2N
λ,1|+ 9|µ2N

λ,2|
)

≤ 40

(
1−
√
hµ

2

)2N−2

,

(65)
and we have

∥BNz0∥2C ≤ 40

(
1−
√
hµ

2

)2N−2

∥z0∥2C. (66)

Finally, we use induction to prove that E∥zN∥2C < 200(1− b)N∥z0∥2C where b = 1−
√
hµ
4 . Suppose

that for k < N , we have E∥zk∥2C < 200(1− b)N∥z0∥2C. By (55), we have

E∥z0∥2C ≤ 80

(
1−
√
hµ

2

)2N−2

∥zN∥2C + 48h2
d∑

i=1

N−1∑
k=0

λ2
i (N − k)2aN−k

λi
·
∥yk∥2A2

m
. (67)

By the definition of yk and the assumption for induction, we have

E∥yk∥2A2 ≤ 2000(1− b)N−1∥z0∥2C. (68)

Using the summation result:
n∑

k=1

k2ak <
1

(1− a)3
, (69)

we have

E∥zN∥2C ≤ 80

(
1−
√
hµ

2

)2N−2

∥z0∥2C + 96000(1− b)N−1
d∑

i=1

h2λ2
i(

1− aλi

b

)3 ∥z0∥2Cm

≤ 80

(
1−
√
hµ

2

)2N−2

∥z0∥2C + 384000(1− b)N−1
d∑

i=1

√
hλi
∥z0∥2C
m

.

(70)
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By h = m2

144002(
∑

i λ
1/2
i )2

, we have

E∥zN∥2C ≤ 80

(
1−
√
hµ

2

)N−1

∥z0∥2C + 40(1− b)N−1∥z0∥2C. (71)

Therefore, by hµ ≤ 14400−2 and induction, we have E∥zN∥2C < 200(1 − b)N∥z0∥2C holds for
positive integers N .

Finally, we have

∥zN∥2C = (xN )⊤A2xN + (xN−1)⊤A2xN−1

≥ µ
(
(xN )⊤AxN + (xN−1)⊤AxN−1

)
= 2µ

(
f(xN ) + f(xN−1)

)
,

(72)

and

∥z0∥2C = 2(x0)⊤A2x0

≤ 2L(x0)⊤Ax0

= 4Lf(x0).

(73)

Therefore,

Ef(xN ) ≤ 1

2µ
· 200(1− b)N · 4Lf(x0)

= 400 · L
µ
·

(
1− mµ

57600
∑

i λ
1/2
i

)N

· f(x0).

(74)

Thus, we finish our proof of Theorem B.1.

J DIFFERENIAL PRIVACY

J.1 INTRODUCTION OF DIFFERENTIAL PRIVACY

In distributed machine learning, privacy has attracted increasing attention. In general, people tend
to think about whether the machines will reveal information to attackers. However, in this section
we study that when information transmitted (for example, pij in Algorithm 2) is leaked, attackers
still has no access to the actual gradient information. Moreover, the privacy argument proposed by
our paper is based on the differential privacy (Dwork, 2006). Usually, there is a trade-off between
privacy and accuracy. Since random projection is a differential-private operation, our CORE-GD can
naturally satisfy certain differential privacy conditions. Below, we introduce basic definitions and our
main result in differential privacy.

First we introduce the definition of adjacent vectors and (ϵ, δ)-differential privacy as below.

Definition 5.1. For two vectors x and y, we say x and y are adjacent if they satisfy

∥x− y∥ ≤ ∆1∥x∥. (75)

Definition 5.2. Given ϵ, δ ≥ 0, letting the output of an algorithm M with input x be M(x), the
algorithm M satisfies the (ϵ, δ)−differential privacy property if for an distinguishable set of outputs
S, and each adjacent variances pairs x and y, it holds that

P (M(x) ∈ S) ≤ exp(ϵ)P(M(y) ∈ S) + δ. (76)

Intuitively, the differential privacy of an algorithm ensures that if two data are adjacent, with a
high probability, one cannot distinguish them from the outputs of the algorithm. We notice that in
CORE-based algorithm, if two gradient vectors are not far from each other, then after a random
projection, the results will be undistinguished with a high probability. So our algorithm naturally has
a certain privacy guarantee. Specificaly, we have the result below.
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Theorem 5.3. Under the assumptions and settings in Corollary 4.8, assume that ∆1 < 0.1.
For any (ϵ, δ) satisfying ϵ = 20∆1 ln

1
δ , Algorithm 2 with the released information pij satisfies

(ϵ, δ)−differential privacy.

Theorem 5.3 is based on the observation mentioned above. Surprisingly, Theorem 5.3 does not
depend on the choice of m. We think this is because the random projection is rotational invariant, so
the attacker can only learn about the norm of the gradient and have no idea about its direction.

J.2 PROOF OF THEOREM 5.3

For the convenience of our proofs, we first present some properties of (ϵ, δ)-differential privacy.
Definition 5.4. For two adjacent variances pairs x and y, an algorithm M and outputs o, the privacy
loss is defined as

L = ln
P(M(x) = o)

P(M(y) = o)
. (77)

Lemma 5.5. M satisfies (ϵ, δ)−differential privacy if P(L > ϵ) ≤ δ.

Proof. Letting B = {o : L > ϵ}, we have

P(M(x) ∈ S) = P(M(x) ∈ S ∩B) + P(M(x) ∈ S −B)
a
≤ P(M(x) ∈ B) + P(M(x) ∈ S −B)

b
≤ P(M(x) ∈ B) + exp(ϵ)P(M(y) ∈ S −B)
c
≤ P(M(x) ∈ B) + exp(ϵ)P(M(y) ∈ S)

d
≤ exp(ϵ)P(M(y) ∈ S) + δ.

(78)

In
a
≤ and

c
≤, we use the fact that P(X ∈ A1) ≤ P(X ∈ A2) if A1 ⊆ A2. In

b
≤, we use Definition

5.4. In
d
≤, we use P(L > ϵ) ≤ δ. And by a similar analysis of Lemma 5.5, we have

Lemma 5.6. M satisfies (ϵ, δ)−differential privacy if P(L < −ϵ) ≤ δ.

Now we analyze the differential privacy of CORE compression. If we use CORE to compress an
vector a, we project it to m Gaussian vectors ξ1, · · · , ξm, and send the inner products pi = ⟨a, ξi⟩.
We define

Ξ = [ξ1 · · · ξm]
⊤
, (79)

and
p = [p1 · · · pm]

⊤ ∈ Rm. (80)
Therefore, we have p = Ξa. We define the compression as

C : Rd → Rm

a 7→ p.
(81)

Now we study the distribution of C(a) for further analysis.
Lemma 5.7. C(a) ∼ N

(
0, ∥a∥2Im

)
.

Proof. By the definition of C and the properties of standard Gaussian distribution, C(a) must follows
an mean zero Gaussian distribution. We notice that the covariance of pi and pj is

Epipj = Ea⊤ξiξ⊤j a =

{
0 i ̸= j,

∥a∥2 i = j.
(82)

Therefore, the variance of C(a) is

EC(a)C(a)⊤ = ∥a∥2Im. (83)
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By Lemma 5.5, 5.6 and 5.7, we can start the proof of Theorem 5.3.

Proof of Theorem 5.3. To simplify the representation, let σ1 = ∥∇f(xk)∥2 and σ2 = ∥∇f ′
(xk)∥2,

where∇f(xk) and∇f ′
(xk) are adjacent. By Lemma 5.7, we have C(∇f(xk)) ∼ N(0, σ2

1Im) and
C(∇f ′

(xk)) ∼ N(0, σ2
2Im). Based on Definition 5.4, the privacy loss is

L = ln

(
σm
2

σm
1

exp

(
∥p∥2

2

(
1

σ2
2

− 1

σ2
1

)))
=
∥p∥2

2

(
1

σ2
2

− 1

σ2
1

)
+m ln

σ2

σ1
.

(84)

If σ1 > σ2 we compute the probability of event {L > ϵ}, which is equivalent to

∥p∥2 >
2
(
ϵ−m ln σ2

σ1

)
1
σ2
2
− 1

σ2
1

. (85)

And if σ1 < σ2 we compute the probability of event {L < −ϵ}, which is equivalent to

∥p∥2 >
2
(
ϵ−m ln σ1

σ2

)
1
σ2
1
− 1

σ2
2

. (86)

We define
t =

2ϵ∣∣∣ 1
σ2
2
− 1

σ2
1

∣∣∣ , (87)

so in both cases, we have P(L > ϵ) ≤ P(∥p∥2 > t) or P(L < −ϵ) ≤ P(∥p∥2 > t). Noticing that
∥p∥2 is the sum of square of independent identically Gaussian distribution, so we have

∥p∥2 ∼ σ2
1χ

2
m, (88)

where χ2
m is chi-square distribution with the degree of freedom m. According to tail bound of

chi-square distribution, we have

P(∥p∥2 > t)
a
≤ exp

(
− t

20σ2
1

)
b
≤ δ. (89)

In
a
≤, we use the tail bound of chi-square distribution. If X ∼ χ2

n, then

P(X > t · 2n) ≤ exp

(
− t · n

10

)
. (90)

In
b
≤, we use the definition of ϵ that ϵ = 20∆1 ln

1
δ , We have

t = 40∆1 ln
1

δ
· σ2

1σ
2
2

|σ2
1 − σ2

2 |

= 40∆1 ln
1

δ
· σ2

1 ·
1

|σ2
1/σ

2
2 − 1|

≥ 40∆1 ln
1

δ
· σ2

1 ·
1

2∆1

= 20 ln
1

δ
· σ2

1 .

(91)

Therefore, we have proven that
P(L > ϵ) ≤ P(∥p∥2 > t) ≤ δ, σ1 > σ2, (92)

and
P(L < −ϵ) ≤ P(∥p∥2 > t) ≤ δ, σ1 < σ2. (93)

Based on Lemma 5.5 and 5.6, we obtain that our algorithm satisfies (ϵ, δ)−differential privacy. Thus
we finish the proof of Theorem 5.3.
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K EXPERIMENT DESCRIPTION AND DISCUSSIONS

We conduct experiments to test the CORE method. We train the ridge and logistic regressions on the
two datasets: MNIST and covtype. Further, we also train the ResNet18 on the two datasets: CIFAR10
and CIFAR100 to test the effect of our method on neural networks. In this section, we only compare
our method with some basic compression technique, for example, Gradient Quantization (Seide et al.,
2014; Alistarh et al., 2017; Tang et al., 2021; Wen et al., 2017) and Gradient Sparsity (Aji & Heafield,
2017; Lin et al., 2017), to verify that our algorithm works. We also do not use other compensation
techniques such as feedback. In the future, we will add more comparison and improvements to get
better experimental results.

Methods. We have implemented the following three gradient compression methods to compare their
convergence rate and communication complexities.

• Gradient Quantization (Seide et al., 2014; Alistarh et al., 2017; Tang et al., 2021; Wen et al., 2017)
and . This method compresses each dimension of the gradient to several bits instead of a 32-bit
floating-point number to transmit with some techniques of error feedback to reduce the quantization
errors. This method can compress the gradient up to 32 times.

• Gradient Sparsity (Aji & Heafield, 2017; Lin et al., 2017). This method only preserves the
dimensions that occupy more than a certain proportion of the norm in the gradient to transmit while
accumulating other dimensions to the next step. In this step other dimensions are replaced by 0
to sparse the gradient. This method works better on the models with gradients having dominant
components.

• CORE. Our method projects the gradient by common Gaussian random vectors in order to realize
dimension reduction, which could compress the gradient by a certain multiple.

Performance Plot. We design two kinds of performance plots. One uses the number of "passes" of
the dataset as the x-axis. Note this also reflects the number of communication round since in our
experiments the batch-size for all algorithms are the same. Another uses the number of bits the model
transmits as the x-axis. Both use the training objective distance to the minimum as the y-axis.

K.1 LINEAR MODEL

We use the above three methods on the following two datasets downloaded from the LibSVM website
(Chang, 2008):

• The MNIST dataset (784 features). One dataset about 1 ∗ 28 ∗ 28 pixel handwritten 0− 9 pictures.

• The covtype dataset (54 features). One dataset about some features of a piece of land and the types
of vegetation that grows on it.

We use distributed gradient descent and accelerated gradient descent to optimize the logistic regression
and ridge regression on different datasets. Though we do not give convergence analysis for CORE-
AGD on logistic regression, we find it works empirically. Considering experiments on a real
distributed system typical set the number of machines up to 16 as Alistarh et al. (2017) but some
simulation experiments often set the number of machines much bigger, for example 100 as Freund
et al. (2022), we set the number of machines N = 50 as a compromise. We take the algorithm
without any gradient compression as the baseline and select learning rate from {10−k : k ∈ Z}. In
most cases the learning rate is not necessary to be very small, but noticing that Gradient Quantization
may cause relatively large error in the early stage of training, we set the learning rate of the algorithm
using this method smaller to ensure convergence. We also compare the same algorithm with and
without momentum.

To make comparison across datasets, we normalize every vector by its Euclidean norm to ensure the
Euclidean norm of each vector is 1.
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(d) communication

Figure 1: Experiments on MNIST. (a) and (c) plot the function value against the number of epochs
respectively, and (b) and (d) plot the function value against communication costs respectively. (a) and
(b) plot the result of logistic regression while (c) and (d) plot the result of ridge regression.

The results on linear models are shown in Figure 1 and 2. The results show that our method has lower
communication costs while ensuring a nearly same convergence rate (communication round). We
notice that the Gradient Quantization has a poor effect with linear models. And compared to the
Gradient Sparsity, our method has a significant advantage on communication costs. Another result is
that our method works better with momentum.

K.2 NEURAL NETWORK

We use the above three methods on the following two datasets downloaded from http://www.cs.
toronto.edu/~kriz/cifar.html:

• the CIFAR10 dataset (50000 samples). One dataset about 3 ∗ 32 ∗ 32 pixel pictures of 10 kinds of
different classes.

• the CIFAR100 dataset (50000 samples). One dataset about 3 ∗ 32 ∗ 32 pixel pictures of 100 kinds
of classes which can be placed into 20 superclasses.

Our goal is to compare our method with the baseline method, Gradient Quantization and Gradient
Sparsity on the speed of convergence and communication costs. Moreover, we also compare CORE
with some near results such as PowerSGD (Vogels et al., 2019) and DRIVE (Vargaftik et al., 2021).
We choose common-used ResNet-18 (He et al., 2016) as the structure of network. We train the model
with SGD, the setting of hyperparameters are shown in Table 2.
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(d) communication

Figure 2: Experiments on covtype with logistic regression. (a) and (c) plot the function value against
the number of epochs without and with momentum, respectively, and (b) and (d) plot the function
value against communication costs without and with momentum, respectively.

The results on nueral networks are shown in Figure 3. The result shows that our method has a
greater convergence rate and communication costs compared to the Gradient Quantization and the
Gradient Sparsity. The convergence rate of our method is basically the same as the baseline while the
communication costs reduce by hundreds of times. To be more specific, the iteration convergence
rate of our CORE method is almost the fastest in the methods participating in the comparison while
the number of bits transmitted is much smaller than baseline and almost twice as small as PowerSGD
and DRIVE.

L ADDITIONS

L.1 ADDITIONAL FIGURE

We show the eigenvalues of data matrix on MNIST and the eigenvalues of a three-layer neural
network on MNIST in Figure 4.

L.2 MORE MODELS WITH DIMENSION-FREE EFFECTIVE DIMENSION

We will show more learning models for which the effect dimension is dimension-free. As one typical
example, we consider the two-layer neural network model under suitable conditions.
Proposition 5.1. Define f(W,w) = w⊤σ(W⊤x), where σ is the activation function. When
∥x∥1 ≤ r1, ∥w∥ ≤ r2 and σ′′(x) ≤ α, we have tr

(
∇2f(W,w)

)
≤ αr1r2.
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Table 2: Hyperparameter setting of the experiment on networks

Hyperparameter CIFAR10 CIFAR100

Batch Size(for all machines) 1024 512

Batch Size(for each machine) 32 16

Machine Numbers 32 32

Optimizer SGD SGD

Learning Rate 5e-2 5e-2

Min Learning Rate 3e-6 3e-6

Weight Decay 5e-4 5e-4

Epoch 200 200

Learning Rate Scheduler cosine decay cosine decay

Input Resolution 32 × 32 32 × 32

Momentum 0.9 0.9

Compression Ratio 100+ 80+

Proof. By direct computation, we have

∂f

∂w
= σ(W⊤x),

∂f

∂W
=
(
σ′(W⊤x)⊙w

)
⊗ x,

∂2f

∂w2
= 0,

∂2f

∂W2
= Diag(σ′′(W⊤x)⊙w)⊗ x⊗ x.

(94)

Therefore,
tr
(
∇2f(W,w)

)
) = ∥x∥2 · tr

(
Diag(σ′′(W⊤x)⊙w)

)
≤ r21 · ⟨σ′′(W⊤x),x⟩
≤ αr1r2.

(95)
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(f) communication

Figure 3: Experiments on the neural network. (a) and (c) plot the function value against the number
of epochs on CIFAR10 and CIFAR100, respectively, and (b) and (d) plot the function value against
communication costs on CIFAR10 and CIFAR100, respectively. (e) and (f) present more results
compared with PowerSGD (Vogels et al., 2019) and DRIVE (Vargaftik et al., 2021).
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Figure 4: (a) The eigenvalues of the data matrix on MNIST. (b) The eigenvalues of a three-layer
neural network on MNIST. (b) is taken directly from Sagun et al. (2016).
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