
PrimDiffusion: Volumetric Primitives Diffusion
for 3D Human Generation
— Supplementary Material

Zhaoxi Chen1 Fangzhou Hong1 Haiyi Mei2 Guangcong Wang1

Lei Yang2 Ziwei Liu1,B

1S-Lab, Nanyang Technological University 2Sensetime Research
{zhaoxi001, fangzhou001, guangcong.wang, ziwei.liu}@ntu.edu.sg

{meihaiyi, yanglei}@sensetime.com

This is the supplementary material for PrimDiffusion: Volumetric Primitives Diffusion for 3D Human
Generation. We introduce the implementation details of each component and training configurations
in Sec. C. Additional discussions and experiment results are presented in Sec. B. Furthermore, we
demonstrate our method within the supplementary video (Sec. A) for a more comprehensive analysis.

A Supplementary Video

We provide a video with more visual results of our work. In specific, it contains:

• An overview of PrimDiffusion.
• Visualizations of the denoising process during generation.
• Qualitative results of 360◦ novel view synthesis.
• Qualitative results of novel pose generalization.

B Additional Discussions and Results

B.1 Problem Definitions of Different Methods

The setting in our paper is learning from multi-view images, where the distribution of camera
viewpoint is uniformly balanced. This setting is commonly shared among diffusion-based 3D
generative models [11, 21]. Note that, the GAN-based works [3, 6, 13] used for comparisons are
originally proposed to learn 3D representation from image collections, where multi-view data is
unavailable. Therefore, we do not evaluate our method on datasets like DeepFashion [8], which
breaks our assumption. Nevertheless, all baseline methods are retrained on our dataset for fair
comparisons. And we make careful adaptations to our problem setting for each method. For example,
we remove the pose-guided sampling training strategy in EVA3D [6] as our camera poses have
uniform distributions. And we adjust the camera parameters sampling process in StyleSDF [13] to
match the camera pose distribution in our dataset.

B.2 Robustness to SMPL Estimation

Previous 3D human generation methods [6, 24] require accurate SMPL [9] estimations to perform
forward and inverse LBS from the observation space to the canonical space. In contrast, PrimDiffusion
shows robustness to the error of SMPL estimation thanks to the independent degree of freedom for
each primitive. Empirically, we perturb the local pose parameters of SMPL with noise sampled from
N (0, 0.1), and retrain our method using these inaccurate SMPL parameters. The quantitative results
are shown in Tab. 1. Although we train our method with inaccurate SMPL parameters, both the
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Table 1: Robustness to SMPL [9] estimation. The top three techniques are highlighted in red,
orange, and yellow, respectively. †Methods trained on inaccurate SMPL estimations.

Methods FIDCLIP ↓ FID ↓ KID×102 ↓ PCK ↑ Depth×102 ↓ w/ SMPL noise?

StyleSDF [13] 18.55 51.27 4.08 ± 0.13 - 49.37 ± 22.18 ✗
EG3D [3] 19.54 24.32 1.96 ± 0.10 - 16.59 ± 21.03 ✗

EVA3D [6] 15.03 44.37 2.68 ± 0.13 91.84 3.24 ± 9.93 ✗
†Ours 12.34 23.65 2.16 ± 0.11 93.77 1.70 ± 1.42 ✓
Ours 12.11 17.95 1.63 ± 0.09 97.62 1.42 ± 1.78 ✗

w/ View Condition, w/ Decoder-free Rendering w/ View Condition, w/o Decoder-free Rendering w/o View Condition, w/ Decoder-free Rendering

Figure 1: The impact of integrating view condition during generalizable primitive learning.
We separately train the encoder in the first stage with view conditions. We found that incorporating
view conditions leads to view-specific primitives, resulting in novel view artifacts with decoder-free
rendering (Left). These artifacts can be eliminated by repeatedly calling the forward pass of the
model to output view-specific primitives for novel view synthesis (Middle). We solve this issue by
removing the view condition, which enables reasonable novel view synthesis (indicating meaningful
3D representations) with decoder-free rendering (without model inference for novel views) (Right).

generation quality and geometry correctness surpass baseline methods even trained with accurate
SMPL parameters. We attribute our robustness to the degree of freedom offered by independent
kinematic parameters of primitives that correct the drift in SMPL estimation.

B.3 View Conditions

Previous 3D-aware generative models [3, 6] take as input the view condition or camera extrinsic
to enable viewpoint control. However, we do not follow this practice. We argue that implicitly
encoding view conditions will prevent models from: 1) enabling decoder-free rendering, and 2)
learning meaningful 3D representations. It is obvious that encoding view conditions requires extra
forward passes through the model for novel view synthesis, i.e., the view condition from the novel
viewpoint must feed into the network to render the corresponding view. Therefore, removing view
conditions is critical for decoder-free rendering. Furthermore, we observe that view conditions can
negatively impact 3D representation learning in our setting. To validate this argument, we implement
a variant of our method by incorporating view conditions to the RGB mapping network Frgb as
its input. The visualizations are presented in Fig. 1. We found that incorporating view conditions
leads to view-specific primitives, resulting in novel view artifacts with decoder-free rendering. These
artifacts can be eliminated by repeatedly calling the forward pass of the model to output view-specific
primitives for novel view synthesis. We solve this issue by removing the view condition, which
enables reasonable novel view synthesis (i.e., meaningful 3D representations) with decoder-free
rendering (i.e., without model inference for novel views).

B.4 Runtime Analysis

We report the computational cost of our model in this section. First, we provide the GPU memory
consumption for both training and testing of the denoiser gΦ in Tab. 2.

Moreover, we present the computational performance in light of the whole pipeline at inference
time in Tab. 3. The FPS stands for novel view and pose synthesis of 300 frames. The amortized
FPS indicates the FPS by considering the time of the denoising process. Our average inference FPS
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Table 2: GPU memory consumption.
Phase Mem (MB) Batch size

Training 27428 4
Inference 21258 1

Table 3: Amortized runtime analysis of the whole
pipeline. “A. FPS” indicates “Amortized FPS” which con-
siders both the denoising and rendering time.

Inference mode Denoising FPS A. FPS

DDIM, 100 steps 2.86 s 88.24 47.93
DDIM, 50 steps 1.45 s 88.24 61.86

Figure 2: Qualitative results on THuman [26] dataset.
We use the same number of views as RenderPeople
dataset to train our model on THuman dataset.

Figure 3: Qualitative results of the
baseline using triplane diffusion. It
tends to generate floating artifacts. We
attribute the failure of triplane diffusion
to the inefficiency of triplane in rep-
resenting the human body which is a
highly articulated object.

still outperforms baselines (the best baseline is only 22.97). More importantly, we only claim the
real-time performance for novel view and novel pose synthesis once the denoising process is done. In
most cases, the generative backbones account for identity-specific information. Since we disentangle
the pose and view control from the generative backbone in a physically explicit way, we only need to
call the denoiser once for identity-specific appearance. Thanks to our decoder-free rendering, we do
not need any forward pass through the denoiser for novel view and novel pose synthesis, which is
the fundamental reason for real-time rendering. However, existing 3D generative models like EG3D,
EVA3D, and StyleSDF implicitly condition view and pose as input features, which forces them to
call the forward pass of heavy generative backbones upon the view and pose changes.

B.5 More Qualitative Results

We provide additional qualitative results in Fig. 10. Please refer to the video for more comparison
results. Note that, we observe that StyleSDF fails to explicitly control the viewpoints given the
multi-view images training setting. And EG3D and EVA3D can explicitly control the viewpoints
with 360 degrees. However, their renderings contain many artifacts.

Moreover, we also train our model on THuman 2.0 dataset [26]. Overall, we render 500 identities
from Thuman 2.0 dataset with 36 camera views for each identity. We keep the training configuration
unchanged and retrain our model from scratch on the rendered images. Note that, no explicit 3D
supervision, e.g., normal or 3D mesh, is used during training. We present the results in Fig. 2 where
the renderings show promising results.

In addition, we also perform a sanity check of the triplane as an alternative representation for the 3D
human diffusion model. Specifically, we follow [21] to reconstruct triplane representation followed
by a volumetric shared decoder. However, we found that it is not straightforward to fit triplanes and
train the diffusion model on top of it for 3D human bodies. As shown in Fig. 3, triplane diffusion
can easily generate floating artifacts around the human body. We attribute the failure of triplane
diffusion on 3D humans to the inefficiency of triplane in representing the human body which is a
highly articulated object. The human body only occupies a small portion of the space modeled by
the triplane, thus the network wastes most of the parameters in modeling empty space. It poses
challenges for both the fitting of triplanes and the convergence of diffusion models.
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Figure 4: The network architecture of motion encoder Fθ. Both pose feature and motion feature 2D
feature maps that preserve spatial information. The number on the arrow line denotes the number of
channels. “LReLU” denotes LeakyReLU activation [23] with 0.2 negative slope.

C Implementation Details

C.1 Network Architecture

Encoder for Generalizable Primitive Learning. As introduced in Sec. 3.2 of the main paper, our
proposed encoder for generalizable primitive learning consists of {FI , Fθ, Frgb, Fσ, Fs} with inter-
mediate cross-modal attention layers. We document the implementation details of their architectures
as follows:

• Motion Encoder Fθ. It takes as input the pose feature and outputs the corresponding motion
feature. The architecture is illustrated in Fig. 4.

• Image Encoder FI . It takes as input the UV-aligned image feature and outputs the corre-
sponding appearance feature. The architecture is illustrated in Fig. 5.

• Cross-Modal Attention Layer. It takes as input the concatenated features from the motion
branch and appearance branch and outputs the fused cross-modal feature. The architecture
is illustrated in Fig. 6. Specifically, it consists of two basic attention blocks followed by a
two-layer convolutional block.

• RGB Mapping Network Frgb. It takes as input the fused cross-modal feature yielded by
the attention layers, and outputs the color information c of primitives. The architecture is
illustrated in Fig. 7.

• Density Mapping Network Fσ . It takes as input the fused cross-modal feature, and outputs
the density information σ of primitives. The architecture is illustrated in Fig. 8.

• Scale Mapping Network Fs. It takes as input the fused cross-modal feature yielded by
the attention layers, and outputs the delta scale factor δs of primitives. The architecture is
illustrated in Fig. 9.

Denoiser gΦ. We implement the denoiser as 2D U-Net with intermediate attention layers [16]. The
model configuration is summarized in Tab. 5. Note that, the input shape corresponds to the volumetric
primitive representation of one person V0 ∈ R[W ·S]×[W ·S]×[7·S] where we set W = 32, S = 8.

Table 4: Statistics of clothing texture in the RenderPeople dataset. The “Mono-color” denotes the
texture with only one single color while “Complex texture” denotes the clothing with at least two
different colors or patterns.

Body Part Mono-color Complex texture

Upper (shirts, jacket, etc.) 698 98
Lower (pants, trousers, etc.) 754 42
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Figure 5: The network architecture of appearance encoder FI . Both image feature and appearance
feature 2D feature maps that preserve spatial information. The number on the arrow line denotes the
number of channels. The “Bilinear Downsample” layer downsamples the input feature map by a
factor of 0.5 via bilinear interpolation.
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Figure 6: The architecture of cross-modal attention module. It takes as input the concatenated feature
from the motion and appearance branch, and outputs the fused cross-modal feature map. The number
on the arrow line denotes the number of channels. “GELU” denotes Gaussian Error Linear Units
function [4]. “LReLU” denotes LeakyReLU activation [23] with 0.2 negative slope.

C.2 Dataset Details

We purchased 796 high-quality 3D humans from RenderPeople [20], where each sample is a 3D
textured mesh obtained from high-resolution scans. Note that, we do not explicitly utilize the 3D
supervision from the dataset, which is different from occupancy-based methods [17]. Instead, we
render 36 camera views of each human subject, which are uniformly distributed on a circular trajectory
around the human with a radius of 10 meters. The camera’s orientation is set to point to the pelvis of
the human body. Each rendered image has a 512× 512 resolution with the corresponding field of
view (FOV) of 14◦. Furthermore, we utilize the motion retargeting technique to animate 3D human
mesh, where each person is rendered with 20 different poses sampled from the AMASS [10] dataset.
In total, the dataset used for training consists of 36× 20× 796 = 573120 images.

Notably, the dataset has a strong bias towards mono-color clothes, which leads to the lack of complex
texture in the generated results. We present the statistics of clothing texture in Tab. 4.

C.3 Training Hyperparameters

Generalizable Primitive Learning. We train the encoder {FI , Fθ, Frgb, Fσ, Fs} for generalizable
primitive learning from multi-view images in an end-to-end manner. The learning objective is
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Table 5: Model configuration of denoiser gΦ. Note that, the input shape corresponds to the volumetric
primitive representation of one person V0 ∈ R[W ·S]×[W ·S]×[7·S] where we set W = 32, S = 8.

Input shape 256× 256× 56
Input scaling factor 0.2
Diffusion steps 1000
Noise schedule Linear, β ∈ [1× 10−4, 2× 10−2]
Channels 128
Depth 2
Channel multiplier 1, 2, 3, 4
Head channels 32
Number of attention heads 8
Transformer depth 1
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Figure 7: The architecture of mapping network Frgb. It takes as input the fused cross-modal feature
map and outputs the color information of primitives. The number on the arrow line denotes the
number of channels.

presented as Eq. 3 in the main paper, where the loss weights are set as λrgb = 1, λsil = 0.01, λvol =
0.001, respectively. The silhouette loss Lvol is computed as L1-norm between the alpha mask and
ground truth. We adopt Adam [7] optimizer with a learning rate of 5 × 10−5. The training is
distributed on 4 A100 GPUs with a batch size of 24 on each GPU for 300,000 iterations.

Primitive Diffusion. We train the denoiser gΦ on 4 A100 GPUs with a batch size of 8 on each
GPU for 200,000 iterations. The learning rate of Adam optimizer is set to 1× 10−5.

C.4 Evaluation Protocols

We introduce the evaluation protocols of metrics shown in Sec. 4 of the main paper, respectively.
Unlike 2D image generation, 3D human generative tasks have three orthogonal dimensions to evaluate,
i.e., identities, poses, and views. Therefore, we uniformly randomly sample identity, pose, and view
from the dataset to get ground truths for evaluation.

• FID and KID. Fréchet Inception Distance (FID) [5] and Kernel Inception Distance (KID) [2]
are metrics for the quality of generated images. We utilize publicly available torch-
fidelity1 [12] to compute FID and KID against 48,000 images. The backbone model
used to calculate the feature space distance is Inception-V3 [19]. All images are evaluated
on a resolution of 512× 512 with white backgrounds.

• FIDCLIP. In addition to FID, we utilize the image encoder of CLIP [14] to compute
FIDCLIP. The backbone we leveraged is ViT-B/322.

• PCK. In order to evaluate the pose controllability of 3D human generative model, we
evaluate the Percentage of Correct Keypoints (PCK) [1]. In specific, we use an off-the-shelf
2D human pose estimator [18] to predict 2D human poses from generated images. The
ground truth poses are regressed from driven SMPL parameters and remapped to the format
compatible with the pose estimator. The metric is computed against 5,000 images.

1https://github.com/toshas/torch-fidelity
2https://github.com/openai/CLIP/blob/main/model-card.md

6

https://github.com/toshas/torch-fidelity
https://github.com/openai/CLIP/blob/main/model-card.md


Fused

Feature 4
x

4
 

C
o
n
v
T

ra
n

sp
o
se

4
x

4
 

C
o
n
v
T

ra
n

sp
o
se

4
x

4
 

C
o
n
v
T

ra
n

sp
o
se

R
eL

U
(2
5
𝑥
+
1
0
0

)

Density 𝜎
64 32 16 8

𝑊 ×𝑊

8

8𝑊 × 8𝑊

R
es

h
ap

e

Density 𝜎

𝑊 ×𝑊
× 8 × 8 × 8

1

Unbiased + Weight Normalized ConvTranspose2D with LeakyReLU activation

Figure 8: The architecture of mapping network Fσ. It takes as input the fused cross-modal feature
map and outputs the density information of primitives. The number on the arrow line denotes the
number of channels.
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Figure 9: The architecture of mapping network Fs. It takes as input the fused cross-modal feature
map and outputs the delta scale factor of primitives. The number on the arrow line denotes the number
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• Depth. We follow a similar practice in EG3D [3] and EVA3D [6] for the evaluation of 3D
geometry. We use a pre-trained model3 [15] for monocular depth estimation to generate
a pseudo ground truth depth map for each generated frame. The predicted depth map is
generated via volume rendering by accumulating density for baseline methods. Finally, the
depth error is computed as the L2 distance between the two. The metric is computed against
5,000 images.

Besides, the metrics for evaluating different design choices of volumetric primitives fitting (Tab. 3
of the main paper), i.e., Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) [22], and Learned Perceptual Image Patch Similarity (LPIPS) [25], are computed on rendered
images in 512× 512 resolution with black background masked out.
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Figure 10: Additional qualitative results. Depth maps and RGB renderings are placed side-by-side.
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