
1 Appendix1

A. Detailed Structure and Evaluation of the UEM2

Inspired by the work [1] for the degraded image recognition task, we design a novel uncertainty3

estimation module (UEM) for our depth estimation task and further use the output for distillation4

in the feature space and result space, which can better produce 3D-aware features and responses5

from monocular observations. The details of our proposed UEM for depth estimation are shown6

in Fig. 1. Unlike the uncertainty estimation module proposed in [1], which is situated at the end7

of the backbone network and uses a transposed convolution layer as a decoder while using residual8

blocks to learn the uncertainty, our UEM is located at the end of the encoder-decoder network and9

alongside the depth head as an uncertainty regression head to learn the per-pixel uncertainty. The10

proposed UEM consists of one convolution layer, one sigmoid activation function, one scaling layer,11

and an upsampling layer for rearranging the uncertainty map to the same size as the input image.
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Figure 1: The details of our uncertainty estimation module (UEM) for depth estimation.
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Abs Rel RMSE δ ≥ 1.25
Model Method AUSE ↓ AUSE ↓ AUSE ↓
Monodepth2[2] 0.044 2.864 0.056
Mono-Uncertainty[3] 0.030 2.009 0.030
Training-Free[4] 0.031 0.871 0.029
GrUMoDepth[5] 0.024 0.494 0.017
ADU-Depth 0.013 0.199 0.004

Table 1: Uncertainty evaluation results on KITTI Eigen
Split dataset based on the AUSE metric.

Method Sq Rel ↓ Abs Rel ↓ RMSE ↓
DORN [6] 0.274 0.068 2.693
Adabins [7] 0.164 0.041 1.981
NeWCRFs [8] 0.157 0.039 1.977
ADU-Depth 0.130 0.035 1.962

Table 2: Quantitative results on the Virtual KITTI 2.

To validate how precise our estimated uncertainty values are, we follow [9] to use the Area Under13

Sparsification Error Curve (AUSE) metric. Specifically, we evaluate the AUSE in terms of the14

depth estimation metrics Absolute Relative Error (Abs Rel), Root Mean Squared Error (RMSE), and15

Accuracy (δ ≥ 1.25) on the Eigen split of KITTI. Table 1 reports the comparison results, where we16

compare the uncertainty values produced by the UEM module with the state-of-the-art uncertainty17

estimation methods [2, 3, 4, 5]. Clearly, our UEM module achieves significant improvements over18

other competitors.19

B. More Qualitative Results20

To better understand the generalization capability and robustness of our method, we provide more21

qualitative results by comparing our method to state-of-the-art depth estimation methods in various22

scenarios on both real and virtual datasets, including the KITTI depth prediction online bench-23

mark [10] and Virtual KITTI 2 benchmark dataset [11].24

Evaluation on the KITTI Benchmark dataset. We first note that our ADU-Depth ranked first25

on the official testing set of the KITTI depth benchmark. Please refer to official website for the26

leaderboard and Fig. 2 for the leaderboard screenshot. Note that our ADU-Depth was originally27

named as ZongDepth when the result was submitted.28
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Figure 2: Quantitative results on the KITTI depth online benchmark. (Initial name of ADU-Depth
is “ZongDepth” on the online server.)
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Figure 3: Qualitative results on the test set of KITTI depth online benchmark.

We train our model on the Eigen split training data [12], where the left-right image pairs are used to29

train the teacher expert model. Only the student network and monocular testing images are employed30

during the reference stage. The table from the KITTI evaluation server demonstrates that our method31

outperforms NeWCRFs [8] and other public top performers in monocular depth estimation.32

We also display more qualitative results of NeWCRFs and our method on the KITTI depth bench-33

mark, including the colorful visual predictions of the depth map and error map. It can be seen34

in Fig. 3 that our method estimates the depth more accurately and noticeably reduces the main35

ranking metric “SILog” error, especially for distant and hard-to-predict image regions. Our pro-36

posed attention-adapted feature distillation and focal-depth adapted response distillation effectively37

transfer the learned 3D-aware knowledge from the teacher network to the student network. Fur-38

thermore, the introduction of uncertainty modeling enhances the learning for distant regions and39
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Figure 4: More qualitative results on the Virtual KITTI 2 dataset.

hard-to-predict image regions, such as for repetitive textures and low-light conditions, which are40

usually accompanied by high uncertainty. Note that the Eigen split has a cap of 0-80m while the41

KITTI online benchmark extends beyond that with 80m+ distances [13]. As a result, our method42

achieves more performance gains over the KITTI Eigen spilt on the KITTI online benchmark due to43

better depth prediction in distant image regions.44

Evaluation on Virtual KITTI 2. We further compare our method with several top performers on45

the virtual KITTI 2 dataset. We use a subset of the virtual KITTI 2, which contains 1,700 image46

pairs for training and 193 images only for testing. The quantitative results are shown in Table 2 and47

Fig. 4. Notably, our ADU-Depth achieves significantly better performance on all evaluation metrics48

and estimates more accurate depth for distant regions and object contours compared to the previous49

state-of-the-art method.50

We further provide qualitative results of NeWCRFs and our method on Virtual KITTI 2 in Fig. 4.51

Our method also achieves better depth estimation than the baseline method on this photo-realistic52

synthetic video dataset. In particular, our ADU-Depth predicts more accurate depth maps and recov-53

ers more object details in distant regions and hard-to-predict regions, such as the outline of distant54

vehicles and road signs.55
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