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ABSTRACT

The proliferation of AI-generated images necessitates effective watermarking to
protect intellectual property and identify fake content. While existing training-
based watermarking methods show promise, they often struggle with generalization
across diverse image styles and tend to produce noticeable artifacts. To this end,
we introduce a provably generalizable image watermarking method for Latent
Diffusion Models with Self-Augmented Training (SAT-LDM), which aligns the
training and testing phases by a free generation distribution to bolster the water-
marking module’s generalization capabilities. We theoretically consolidate our
method by proving that the free generation distribution contributes to its tight gener-
alization bound without the need to collect new data. Extensive experimental results
demonstrate that SAT-LDM achieves robust watermarking while significantly im-
proving the quality of watermarked images across diverse styles. Furthermore, we
conduct experimental analyses to demonstrate the strong generalization abilities
of SAT-LDM. We hope our method offers a practical and convenient solution for
securing high-fidelity AI-generated content.

1 INTRODUCTION

Recent developments in diffusion models, notably commercial models like Stable Diffusion (SD)
(Rombach et al., 2022), Glide (Nichol et al., 2022), and Muse AI (Rombach et al., 2022), have
revolutionized image generation. These models exhibit exceptional capabilities in generating high-
quality and diverse images from textual descriptions, making them valuable tools across a range of
domains, such as fashion design (Baldrati et al., 2023) and education (Lee & Song, 2023). However,
the ease of generating such images also raises concerns about intellectual property rights and the
propagation of fake content, making it imperative to watermark generated content.

As a tailored approach, watermarking technology (Cox et al., 2007) can embed hidden messages
into images, facilitating copyright verification and source identification. Traditional post-hoc water-
marking techniques (Xia et al., 1998; Zhu et al., 2018) introduce watermarks after image creation,
adding extra workflow steps and potentially degrading image quality (Fernandez et al., 2023). In
response to these limitations, recent efforts (Fernandez et al., 2023; Xiong et al., 2023; Yang et al.,
2024) have shifted towards diffusion-native watermarking, where watermarking is integrated directly
within the image generation pipeline. Notable methods such as Stable Signature (Fernandez et al.,
2023) and FSW (Xiong et al., 2023) fine-tune the VAE decoder within the latent diffusion model
(LDM) as a watermarking module on public image datasets to embed watermarks. While these
methods show promise, they still fall short when applied to real-world scenarios, often resulting in
noticeable artifacts that degrade image quality, as shown in Figure 1. This degradation may stem from
the biases in the public datasets, which fail to cover the diverse image styles present in actual use
and exceeds the practical ability of generative models, thus leading to a watermarking module with
limited generalization ability. A straightforward solution might involve larger datasets encompassing
more diverse styles, but this approach demands substantial resources and time, and may also raise
concerns about data privacy and copyright Khan & Hanna (2022). Driven by the significance of
watermarking effectiveness—the invisibility and robustness of watermarks—a key question arises:
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Original

PSNR: 35.41
SSIM: 0.98

PSNR: 35.98
SSIM: 0.98

SAT-LDM

Prompt: Sacred scrolls reveali-
ng the true history of the univ-
erse, hidden in an ancient mo-
nastery

Prompt: Blossoming almond 
trees in a valley

PSNR: 19.84
SSIM: 0.44

PSNR: 18.97
SSIM: 0.69

FSW

PSNR: 20.76
SSIM: 0.83

PSNR: 20.20
SSIM: 0.91

Stable Signature

Methods
COCO LAION-400M Diffusion Prompts AI-Generated Prompts Without

PSNR↑ FID↓ None↑ Adv.↑ PSNR↑ FID↓ None↑ Adv.↑ PSNR↑ FID↓ None↑ Adv.↑ PSNR↑ FID↓ None↑ Adv.↑ new data

DwtDctSvd 38.84 8.27 1.000 0.809 38.06 8.21 1.000 0.811 39.12 13.04 1.000 0.796 37.94 7.04 0.999 0.806 ✓
HiDDeN 28.40 9.81 0.848 0.767 28.03 9.72 0.847 0.766 27.95 16.69 0.847 0.767 27.63 12.54 0.848 0.767 ×

StegaStamp 28.61 24.82 0.999 0.997 28.26 28.16 0.999 0.996 29.35 33.72 0.999 0.998 28.02 29.25 0.999 0.996 ×
Stable Signature 30.85 6.78 0.963 0.905 30.34 6.89 0.956 0.901 32.36 9.50 0.943 0.885 29.17 9.49 0.958 0.910 ×

FSW 28.93 13.81 0.997 0.925 28.26 14.46 0.997 0.928 30.28 19.41 0.998 0.931 27.32 18.92 0.997 0.928 ×
SAT-LDM 41.74 2.39 1.000 0.985 41.33 2.32 0.998 0.981 42.26 3.20 1.000 0.988 40.58 2.40 1.000 0.988 ✓

Figure 1: Visual comparison of the watermarking methods, including Stable Signature, FSW, and
our proposed SAT-LDM, along with their performance across various datasets. We can observe that
Stable Signature introduces a blue-gray spot and FSW exhibits noticeable glare, while SAT-LDM
produces more visually appealing results. The size of each test dataset is 1K. “None” and “Adv.”
represent the average bit accuracy for images without attacks and with adversarial attacks, respectively.
The symbol ↑ means higher is better; while ↓ means lower is better. The best-performing method for
each metric is highlighted in bold, and the second-best is underlined. SAT-LDM effectively handles
prompts from public datasets (COCO (Lin et al., 2014) and LAION-400M (Schuhmann et al., 2021))
as well as prompts that better reflect real-world scenarios (Diffusion Prompts (Gustavosta, 2022) and
AI-Generated Prompts). See Appendix F for more visualization results.

Can we train a watermarking module that theoretically performs well across various image styles
without collecting new data?

To this end, we propose Image Watermarking for Latent Diffusion Models with Self-Augmented
Training (SAT-LDM), a novel watermarking framework that bridges the gap between effectiveness
and generalization across diverse image styles in watermarking. It fundamentally rethinks how water-
marking modules in LDM are trained: instead of relying on external datasets that may involve bias,
SAT-LDM leverages an internally generated free generation distribution, which aligns closely with
the natural conditions under which diffusion models operate. This free generation distribution, formed
without specific prompts, ideally mirrors the conditional generation distribution that incorporates
all possible prompt-driven outputs. By training the watermarking module on this free generation
distribution, we ensure that the model can generalize effectively across a wide range of image styles,
without the need for any external data. Furthermore, we theoretically consolidate our method by
proving that the free generation distribution contributes to a tight generalization bound, significantly
reducing the distributional discrepancy between the training and testing phases. This tight bound
guarantees the SAT-LDM can deliver both robust watermarking and high-quality images, offering a
practical and convenient solution for protecting AI-generated content.

To evaluate the invisibility and robustness of the watermarks, we generate 10 diverse prompt categories
using GPT-4 and create 100 prompts with varying styles for each category, enabling a comprehensive
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assessment of the method’s generalization across a wide range of image styles (AI-Generated
Prompts). Extensive experimental results demonstrate that SAT-LDM not only maintains high
robustness similar to previous methods but also significantly improves watermarked image quality
across different image styles. Additionally, a detailed experimental analysis provides further empirical
support for the validity of our theoretical analysis.

2 RELATED WORK

2.1 POST-HOC WATERMARKING

Post-hoc watermarking methods involve embedding watermarks into images after their creation and
can be classified into three categories: (1) Frequency domain method (Cox et al., 2007) embed water-
marks by manipulating the frequency components of image, balancing robustness and complexity.
(2) Per-image optimization (Kishore et al., 2021; Fernandez et al., 2022) customizes watermark
embedding for each image, allowing for more hidden information but increasing computational de-
mands. (3) Encoder-decoder networks (Zhu et al., 2018; Tancik et al., 2020; Jia et al., 2021) enhance
robustness against compression and real-world image transformations, with the option to incorporate
targeted adversarial training to further improve watermark robustness against other attacks. However,
when applied to images generated by diffusion models, these post-hoc methods introduce additional
workflow steps independent of the generation pipeline. This not only increases time overhead but
also may degrade image quality (Fernandez et al., 2023).

2.2 DIFFUSION-NATIVE WATERMARKING

Diffusion-native watermarking integrates the watermarking process directly into the diffusion model’s
workflow. This category can be further divided into training-free methods and training-based methods.

Training-free Methods. Tree-Ring (Wen et al., 2024) introduces the concept of embedding wa-
termarks in the initial noise during the diffusion process, achieving notable robustness but lacking
multi-key identification (Ci et al., 2024b). Subsequent methods enhance this by using improved
imprinting techniques (Ci et al., 2024b; Yang et al., 2024). Despite their advancements, these methods
can significantly alter the layout of the generated images, which may be undesirable in certain
production scenarios (Ci et al., 2024a).

Training-based Methods. DiffuseTrace (Lei et al., 2024) hides information in the initial noise by
training a dedicated encoder/decoder. WaDiff (Min et al., 2024) and AquaLoRA (Feng et al., 2024)
embed watermarks into the diffusion UNet (Ronneberger et al., 2015) backbone, leading to longer
training pipelines and modifications to the generated image layout. RoSteALS (Bui et al., 2023) and
work (Meng et al., 2024) imprint watermarks into the latent space of the VAE (Kingma & Welling,
2014), but face challenges with unstable training, requiring either multi-stage training processes
or precise hyperparameter adjustments. FSW (Xiong et al., 2023), StableSignature (Fernandez
et al., 2023), and WOUAF (Kim et al., 2024) also inject watermarks into the VAE feature space but
necessitate modifications to the VAE decoder, often degrading the quality of the generated images (Ci
et al., 2024a). Besides, these methods generally require collecting extensive external data for training
and remain prone to artifacts on watermarked images. In contrast, our method requires no external
data and features a plugin-based design, offering convenience while preserving high image quality.

3 BACKGROUND

Notations and Definitions. Let (X , ρ) be a metric space, where ρ(x,y) is a distance function for
two instances x and y in the space X . Similarly, let (Y, ρ′) be another metric space, and K > 0 be
a real number. A function f : X → Y is termed K-Lipschitz continuous if for any x,y ∈ X , the
following inequality holds:

ρ′(f(x), f(y)) ≤ Kρ(x,y). (1)
Note that the smallest K that satisfies Eq. (1) is known as the Lipschitz constant or Lipschitz
norm of f , denoted by ∥f∥Lip. Next, we recall the concept of a push-forward measure. Consider
a probability distribution µ on the space X , then the push-forward measure, denoted f♯µ, is a
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probability distribution on Y defined by f♯µ(A) = µ(f−1(A)) for any measurable set A ⊆ Y . In
essence, to sample from f♯µ, one first samples x from µ and then sets y = f(x).

Previous Training-based Methods for Diffusion-native Watermarking in Brief. In previous
works (Fernandez et al., 2023; Xiong et al., 2023; Bui et al., 2023; Meng et al., 2024; Ci et al., 2024a),
the pipeline for training LDM to achieve watermarking can be formalized as a message embedding
stage followed by a message extracting stage:

Embedding : X ×M → X , Em (I,m) = Dm (E (I) ,m) = Iw,

Extracting : X → M, Tm(ϕ(Iw)) = m′,
(2)

where X and M represent the image space and the message space, respectively. The training image I
and the watermarked image Iw are both elements of X . The message to be embedded, denoted as m,
belongs to M. The message encoder Em comprises the VAE encoder E and a modified decoder Dm.
The decoder D in the original VAE is altered to Dm to embed the message m. The message extractor
Tm is used to extract the message m′ from the attacked image ϕ(Iw), where ϕ is a transformation
function for attacking watermarked image. The objective of training can be termed as minimizing the
following loss over the input image distribution µx on X and the message distribution µm on M:

E
I∼µx

E
m∼µm

[ℓm (m,m′,λm) + ℓI (Io, Iw,λI)] , (3)

where Io is the generated image from the original decoder D, i.e., Io = D(E(I)). ℓm is a function
that measures the discrepancy between m′ and m, and ℓI measures the discrepancy between Io and
Iw. λm and λI are weights related to ℓm and ℓI , respectively. ℓm and ℓI are designed according
to specific requirements and can be combinations of multiple functions. For example, ℓI can be
a weighted sum of L2 residual regularization and LPIPS perceptual loss (Zhang et al., 2018), i.e.,
ℓI (Io, Iw,λI) = λ1

I MSE(Io, Iw) + λ2
I LPIPS(Io, Iw).

Wasserstein Metric. The p-th Wasserstein distance between two probability measures µ and µ′ is
defined as:

Wp(µ, µ
′) =

(
inf

γ∈Π(µ,µ′)

∫
ρ(x,y)pdγ(x,y)

)1/p

, (4)

where µ, µ′ ∈ {γ :
∫
ρ(x,y)pdγ(x) < ∞,∀y ∈ X} are two probability measures on (X , ρ) with

finite p-th moment, and Π(µ, µ′) represents the set of all measures on X × X with marginals µ and
µ′. The Wasserstein metric is relevant in the context of optimal transport: γ(x,y) can be interpreted
as a randomized policy for moving a unit quantity of material from a random location x to another
location y while adhering to the marginal constraint x ∼ µ and y ∼ µ′. If the cost of transporting a
unit of material from x ∈ µ to y ∈ µ′ is given by ρ(x,y)p, then Wp(µ, µ

′) is the minimal expected
transport cost. The Kantorovich-Rubinstein theorem (Villani, 2009) reveals that when X is separable,
the dual representation of the first Wasserstein distance (Earth-Mover distance) can be expressed as
an integral probability metric:

W1(µ, µ
′) = sup

∥f∥Lip≤1

Ex∼µ[f(x)]− Ex∼µ′ [f(x)], (5)

where ∥f∥Lip ≤ 1 denotes the set {f | f : X → R, ∥f∥Lip ≤ 1}. For simplicity, the term
”Wasserstein distance” in the following text refers specifically to the first Wasserstein distance.

4 SELF-AUGMENTED TRAINING: A SIMPLE YET EFFECTIVE METHOD

In this section, we introduce Self-Augmentation Training (SAT), inspired by our observations of the
discrepancies between the training and testing phases in previous methods. Specifically, during the
testing phase, the pipeline involves the sequence: prompt → UNet → VAE decoder, whereas during
the previous training phase, it follows: image → VAE encoder → VAE decoder. This inconsistency
likely limits the generalization ability of the watermarking module. Formally, during the testing
phase, the pipeline for the LDM to generate watermarked images is summarized as follows:

Embedding : P × E ×M → X , Gm

(
xprompt, ϵ,m

)
= Dm

(
U
(
xprompt, ϵ

)
,m
)
= Iw,

Extracting : X → M, Tm(ϕ(Iw)) = m′,
(6)
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Figure 2: The training pipeline of the proposed SAT-LDM. The message processor is plugged
onto the VAE decoder. Unlike conventional methods, SAT-LDM utilizes a self-augmented training
mechanism that aligns the training and testing phases, thereby enhancing watermark effectiveness
across diverse image styles without the need for external datasets.

where P and E represent the prompt space and noise space respectively, ϵ ∈ E is the noise sampled
during the denoising process, and the image generation model G is modified to obtain the watermarked
image generation model Gm. This model consists of a denoising process U and a modified-decoder
Dm. Comparing Eq. (2) and Eq. (6), there is an inconsistency in the embedding stage. Hence, it is
natural to align them, which leads to the following loss:

E
xprompt∼µp

E
ϵ∼µϵ

E
m∼µm

[ℓm (m,m′,λm) + ℓI (Io, Iw,λI)] , (7)

where µp and µϵ are distributions on P and E , respectively. Nevertheless, the process of sampling
xprompt presents a substantial challenge due to the inherent uncertainty surrounding the true prompt
distribution µp. The actual distribution is not only unknown but also difficult to approximate
accurately. Even though we can leverage prompts from publicly available datasets for training, these
sources often carry inherent biases and fail to comprehensively represent the wide variability and
diversity of prompts the model might encounter in real-world applications. As a result, we shift our
focus to modeling the distribution derived from xprompt and ϵ.

Toward this end, we introduce a formal definition that aids in conceptualizing the latent representa-
tions generated by LDM. Specifically, we define z = U(xprompt, ϵ) be the image latent representation
and µz = U ♯ (µp × µϵ) be the corresponding distribution. In other words, sampling z ∼ µz =
U ♯ (µp × µϵ) means first sampling xprompt ∼ µp and ϵ ∼ µϵ, then setting z = U(xprompt, ϵ). Ideally,
the influence of prompt can be averaged overall, i.e., p (z | ϵ) =

∑
p (z | ϵ,xprompt) p(xprompt), and

then the distribution of latent representations generated by all prompts via conditional sampling (con-
ditional generation distribution) is equivalent to the one without a specific prompt1 (free generation
distribution), i.e., U ♯ (µp × µϵ) = U ♯µϵ ⇔ G ♯ (µp × µϵ) = G ♯µϵ.

Actually, this equality may not hold in practical scenarios due to the model’s parameters and training
data limitations. Specifically, suboptimal training or insufficient pre-training data can lead to biases
in how prompts influence generated samples. Nonetheless, this assumption provides a useful simplifi-
cation for our analysis, and the impact of such discrepancies is often minimal in many applications.
Moreover, from a technical perspective, we quantify and visualize the similarity between the condi-
tional generation distribution and free generation distribution using the Wasserstein metric and t-SNE
method in the Section 5.3. This empirical analysis provides further support for our theoretical claims,

1Typically, sampling without specific prompt is achieved by setting xprompt to an empty string “”
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reinforcing the robustness of our findings. Based on this analysis, the Eq. 7 can be simplified as:

E
ϵ∼µϵ

E
m∼µm

[ℓm (m,m′,λm) + ℓI (Io, Iw,λI)] , (8)

where Iw = Gm (“”, ϵ,m) represents the watermarked image generated without a specific prompt.

4.1 THEORETICAL ANALYSIS

We next provide an analysis of the generalization bound of the self-augmented training method,
comparing it to previous approaches to highlight the advantages of our approach. Given a data-
generating distribution µx on the Euclidean observation space X , a probability measure µz on the
latent space Z = RdZ , a probability measure µϵ on the noise space E , and a hypothesis class
H = {(Dm,Tm) | Dm : Z ×M → X ,Tm : X → M}, we introduce a unified loss function:

ℓ(h, z,m) = ℓm (Tm(Dm(z,m)),m,λm) + ℓI (Dm(z,m),D(z),λI) , (9)

where h ∈ H, and (z,m) ∼ µz × µm: µz = E ♯µx for the previous training method; µz = U ♯µϵ

for the proposed training method. We begin by proving an intermediate lemma.
Lemma 1. Let (Z, ρZ) and (M, ρM) be two metric spaces, µz and µt be two probability measures
on Z , and µm be a probability measure on M. For (z,m), (z′,m′) ∈ Z ×M, the distance function
is defined as ρZ,M((z,m), (z′,m′)) = ρZ(z, z

′) + ρM(m,m′). Then we can obtain:

W1(µt × µm, µz × µm) = W1(µt, µz). (10)

Then we introduce the Wasserstein distance to link the training error and the testing error.
Theorem 1. Under the definitions of Lemma 1, consider a hypothesis class H, a loss function
ℓ : H × Z ×M → R and real numbers δ ∈ (0, 1). Assume that for hypotheses h ∈ H, the loss
function ℓ is K-Lipschitz continuous for some K w.r.t. (z,m) ∈ Z ×M, and is bounded within
an interval G: G = max(ℓ) - min(ℓ). With probability at least 1 − δ over the random draw of
{(z1,m1), · · · , (zn,mn)} ∼ (µz × µm)⊗n, for every hypothesis h ∈ H:

E
(z,m)∼µt×µm

[ℓ(h, z,m)] ≤ 1
n

∑n
i=1 ℓ (h, zi,mi) +

√
G2 log(1/δ)

2n + KW1(µt, µz) . (11)

(1) Empirical risk (2) Deviation term

(3) Distributional difference

Theorem 1 bounds the combined expected loss of the watermarked image generator Gm and the
message extractor Tm. Upon receiving previously unseen image latent representation-message pairs
(z,m) ∼ µt × µm, Gm generates the watermarked image, and Tm extracts it. We aim to minimize
this generalization bound as much as possible. It consists of three components: (1) the empirical
risk reflects the model’s performance on the training data and is generally minimized through proper
optimization. (2) the deviation term quantifies the difference between empirical and expected risks,
diminishing with an increased sample size. (3) The most critical factor is the distributional difference,
which is tied to the Wasserstein distance W1(µt, µz). In our context, the regularization stabilizes the
Lipschitz constant K, so the distributional discrepancy dominates.

The detailed proofs are provided in Appendix A.1 and Appendix A.2. The theorem assumes that
the loss function ℓ is K-Lipschitz continuous and bounded. These assumptions are applicable to
many machine learning models, which are commonly satisfied by standard loss functions (e.g., mean
squared error, cross-entropy) (Bousquet & Elisseeff, 2002; Zhang et al., 2021) and neural networks,
which employ Lipschitz continuous activation functions (Bartlett et al., 2017; Ledoux, 2001) and
regularization methods (Bengio et al., 2017; Srivastava et al., 2014). See Appendix G for more
discussion on Lipschitz continuity of the loss function.

Remark. In conclusion, when the model’s structure, loss function, and sample size are fixed
and the model is well-trained, the generalization bound is primarily influenced by W1(µt, µz).
This finding implies that selecting an appropriate training distribution to minimize W1(µt, µz) can
effectively reduce the model’s generalization error. In our task, the test distribution is defined as
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µt = U ♯(µp × µϵ), where µp represents the probability distribution over the prompt space. The
watermarking module is designed to handle a wide variety of styles, meaning µp should cover
any sentence or word. Referring to Eq. (9), previous methods use an external data generation
distribution, µz = E ♯µx, while our approach employs a free generation distribution, µz = U ♯µϵ.
Since µz = E ♯µx depends on external data, it is difficult to regulate its behavior to approximate the
test distribution closely. Given that U ♯(µp × µϵ) = U ♯µϵ, our free generation distribution aligns
more closely with the test distribution, leading to a smaller W1 value and reduced generalization
error, as corroborated by the experiments discussed in Section 5.3 and Appendix E.3.

4.2 IMPLEMENTATION DETAILS

Architectures. We employ the FSW (Xiong et al., 2023) model structure, which is one of the latest
training-based invisible watermarking methods. It jointly optimizes the parameters of the modified-
decoder Dm and message-extractor Tm to embed l-bit messages into images, ensuring robustness
to transformations applied during training. Dm introduces a message processor to process the input
message m into a message matrix, which is then fused with the outputs of selected intermediate
layers (namely, the input convolutional layers, intermediate blocks, and the first four upsampling
modules) during the image generation process to create watermarked images. The message processor
mainly consists of 5 fully connected (FC) layers and 6 convolutional layers, and the message extractor
mainly comprises 7 convolutional layers and 3 FC layers. For further details, we refer the reader to
the original paper (Xiong et al., 2023). We implement two modifications to the model structure. (1)
We aim to ensure the entity which manages the model can easily replace the watermarked model with
a non-watermarked version without disrupting the user experience. To achieve this, we preserve the
parameters of the original VAE decoder and replicate the structure of selected intermediate layers
to integrate them into the message processor for training. This method retains the original message
fusion process while maintaining the integrity of the original VAE decoder’s parameters. (2) We
observe that Tm has limited robustness against perspective changes, even with adversarial training
added during training. To address this, we add a spatial transformer network (Jaderberg et al., 2015)
in front of Tm to improve robustness to slight perspective changes introduced when images are
printed and photographed.

Loss Function and Training strategy. Then we introduce the design of loss in Eq. (9). The image
loss is defined as the combination of following functions:

ℓI (Io, Iw,λI) = λ1
I MSE(Io, Iw) + λ2

I LPIPS(Io, Iw) + λ3
I BAL(Io, Iw),

BAL (I, I′) =
1

c · h · w

c∑
i=1

h∑
j=1

w∑
k=1

∣∣∣I(i,j,k) − I′(i,j,k)

∣∣∣
I(i,j,k) + 1

,
(12)

where BAL is used to balance the impact of the watermark on each pixel, preventing excessive
modification of pixels with smaller values (Xiong et al., 2023). Here, c, h, and w represent the
image’s channels, height, and width, respectively. The message loss is simply designed as:

ℓm (m,m′,λm) = λ1
m MSE(m,m′). (13)

During training, we use the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of
2× 10−5. In terms of watermark robustness, we also align with FSW to ensure fairness and use an
attack layer with seven types of watermark attacks, as detailed in Section B. At each training step, the
watermarked image Iw undergoes the attack layer with a random attack intensity, then is processed
by the message-extractor Tm. Note that the attack intensity is scaled by a decay coefficient γϕ, which
gradually increases from 0 to 1 to assist in convergence. Figure 2 shows the training pipeline and
Algorithm 1 describes the training procedure.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

SD models. In this paper, we focus on text-to-image LDM, and thus we choose the SD (Rombach
et al., 2022) provided by huggingface. We use the commonly used version v1.5 of SD 2 to evaluate the

2https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5.
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Table 1: The overall performance on quality of the watermarked images and robustness of the
watermarking methods. The numbers 1 to 7 represent Gaussian blur, Gaussian noise, brightness,
contrast, desaturation, perspective warp, and JPEG attacks, respectively.

(a) Comparison with several competitive watermarking methods.

Methods PSNR↑ SSIM↑ FID↓
Bit accuracy↑

None 1 2 3 4 5 6 7 Adv.

DwtDctSvd 37.94 0.984 7.04 0.999 0.982 0.965 0.994 0.608 0.527 0.606 0.959 0.806
HiDDeN 25.56 0.841 57.94 0.966 0.888 0.775 0.948 0.940 0.873 0.776 0.690 0.842

StegaStamp 28.02 0.921 29.25 0.999 0.999 0.997 0.996 0.996 0.998 0.990 0.998 0.996
Stable Signature 29.17 0.946 9.49 0.958 0.813 0.932 0.951 0.941 0.920 0.930 0.883 0.910

FSW 27.32 0.891 18.92 0.997 0.996 0.996 0.995 0.996 0.961 0.568 0.987 0.928
SAT-LDM 40.58 0.983 2.40 1.000 0.981 0.995 0.998 0.998 0.994 0.980 0.968 0.988

(b) Comparison between training distributions (External v.s. Free) and the Wasserstein distance (W1) between
training and testing distributions.

Training
PSNR↑ SSIM↑ FID↓

Bit accuracy↑
W1 ↓

distributions None 1 2 3 4 5 6 7 Adv.

External 37.46 0.987 3.50 1.000 0.974 0.999 1.000 1.000 1.000 0.929 0.975 0.982 911.4
Free 40.58 0.983 2.40 1.000 0.981 0.995 0.998 0.998 0.994 0.980 0.968 0.988 504.4

proposed methods as well as baseline methods. The generated images have a size of 512× 512, with
a latent space dimension of 4×64×64. During both training and testing, we utilize DDPM (Ho et al.,
2020) sampling with 30 steps. The sample size for free generation distribution is 30K. In the testing
phase, we aim to use prompts that cover a variety of styles and complexities to comprehensively
evaluate the generalization performance of the watermark. Toward this end, we use GPT-4 to generate
10 diverse categories of image prompts, as depicted in Appendix C. For each category, 100 prompts
with varying styles are generated, totaling 1K prompts (AI-Generated Prompts). Then, SD generates
images from these prompts as test data, with a guidance scale of 7.5.

Baselines. In the main experiment, the number of message bits l is set to 100. For the baseline, we
select post-hoc watermarking methods (including DwtDctSvd (Cox et al., 2007) used by SD officially,
HiDDeN (Zhu et al., 2018), and StegaStamp (Tancik et al., 2020)) as well as a training based method
(Stable Signature Fernandez et al. (2023) and FSW (Xiong et al., 2023)).

Robustness Evaluation. To emulate practical scenarios, the watermarked images are first saved
in PNG format. Subsequently, they undergo a sequence of operations: reading, applying an attack,
re-saving, and finally, extracting the embedded message. It is important to note that the attack
intensity decay coefficient, denoted as γϕ, is fixed at 1.

Evaluation Metrics. Referring to previous studies (Xiong et al., 2023; Fernandez et al., 2023), our
metrics are divided into two different aspects: the quality of the watermarked image and the robustness
of the watermark. For the quality of the watermarked images, we use Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM) (Wang et al., 2004), and Fréchet Inception Distance (FID)
(Heusel et al., 2017) to measure the pixel-level and feature-level differences between the watermarked
and non-watermarked generated images. Specifically, PSNR(I, I′) = −10 · log10(MSE(I, I′)). Bit
accuracy (percentage of correctly decoded bits) is used to evaluate the robustness of the watermark.
Since LDM is computation-intensive and we observe the results fluctuate marginally, the experimental
section presents the outcomes of a single experiment.

5.2 MAIN RESULTS

We compare the performance of the proposed method with the baseline methods. All methods use a
message bit number of 100, except for HiDDeN and Stable Signature, where we use the open-source
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reproduced model3 and the pre-trained model4 with a message bit number of 48, respectively. For
StegaStamp and FSW, we utilize the pre-trained models provided by the original papers. Due to the
limitations of the specially designed networks, the image size for StegaStamp is set to 400× 400.

We test 1K generated images for each method. Table 1a lists the comparisons of PSNR, SSIM,
FID, and bit accuracy. The proposed SAT-LDM demonstrates strong image quality, with PSNR
and FID significantly better than other baselines, and SSIM comparable to the best baseline in this
metric. Specifically, the FID score of 2.40 highlights the model’s capability to generate watermarked
images that are nearly indistinguishable from non-watermarked ones, outperforming even the closest
competitor by a margin of over 50%. The proposed watermarking method demonstrates strong
robustness, achieving a bit accuracy of over 96%. Moreover, we also evaluate on other public
datasets in the same way. Figure 1 shows that SAT-LDM consistently performs well across different
datasets, which further demonstrates its superior generalization across various image styles. Such
generalization makes SAT-LDM more suitable for real-world applications where diverse image styles
and robustness against attacks are crucial.

5.3 EXPERIMENTAL ANALYSIS

Here, we conduct comprehensive ablation studies to show that (1) free generation distributions signifi-
cantly reduce generalization error, (2) moderate training sample sizes yield optimal performance, and
(3) the system exhibits strong robustness to varying message lengths, sampling methods, guidance
scales, and inference steps. These insights validate the design choices in SAT-LDM and highlight
its flexibility and effectiveness. See Appendix E for additional experimental analysis. Unless stated
otherwise, the experimental setup follows the description provided in Section 5.1.

Figure 3: The t-SNE visualization of proxies
for external data, free, and conditional/test
distributions. The free generation distribu-
tion closely aligns with the test distribution,
while the external data generation distribution
diverges.

Training Distributions. We assess the impact of
the training distribution µz on generalization perfor-
mance by retraining our model using 30K images
from the LAION-400M dataset (Schuhmann et al.,
2021), which is included in the LAION-5B dataset
used to train the official SD model (Schuhmann et al.,
2022). As shown in Table 1b, the model trained with
external data shows lower performance in PSNR, FID,
and robustness to perspective warp. To compare dis-
tributions, we sampled 1K instances from both the
external and free generation distributions, using them
as proxies for their respective training distributions.
These are compared to the test distribution generated
from the test data. Figure 3 visualizes these distri-
butions via t-SNE, where the free generation distri-
bution closely aligns with the test distribution, while
the external data generation distribution diverges. We
also calculated the Wasserstein distances between
the training and test distributions, as shown in Table
1b. These results strongly support our theoretical
framework, highlighting the superior alignment of
free generation with the test distribution. By mini-
mizing distributional discrepancy, our method improves generalization, providing a more robust
foundation for practical applications.

Number of Training Samples. As shown in Table 2, with the increase in the number of samples,
the quality of the watermarked images remains relatively stable, but the robustness first increases and
then decreases. We posit the reason is that the proposed method is designed to generate watermarked
images from any given prompt, including meaningless ones, such as gibberish. In contrast, the
prompts we use here are all meaningful. Hence, as the number of training samples increases, the
training distribution begins to align with and then deviates from the test distribution. Furthermore,

3https://github.com/ando-khachatryan/HiDDeN.
4https://github.com/facebookresearch/stable signature.
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an excessively large training set introduces additional computational overhead. Based on these
observations, we set the number of training samples to 30K to strike a balance between robustness
and efficiency, which is much smaller than many previous methods (Bui et al., 2023; Fernandez et al.,
2023; Xiong et al., 2023; Ci et al., 2024a).

Table 2: Performance ablations of SAT-
LDM with different number of training sam-
ples, number of message bits, sampling meth-
ods, guidance scales and inference steps.

PSNR↑ SSIM↑ FID↓
Bit accuracy↑

None Adv.

#Training
sample

15K 41.88 0.994 2.62 1.000 0.972
30K 40.58 0.983 2.40 1.000 0.988
60K 40.18 0.980 2.10 0.999 0.982
120K 41.54 0.994 2.70 1.000 0.963

#Message
bit

48 43.92 0.996 2.21 1.000 0.979
64 42.51 0.994 2.46 1.000 0.981

100 40.58 0.983 2.40 1.000 0.988
128 41.17 0.993 3.28 1.000 0.977
200 40.51 0.993 3.25 0.999 0.970

Sampling
methods

DDPM 40.58 0.983 2.40 1.000 0.988
DDIM 39.93 0.986 2.35 1.000 0.989
LMS 40.00 0.986 2.23 1.000 0.986
Euler 40.14 0.984 2.41 1.000 0.987

Guidance
scales

2 40.75 0.984 3.18 1.000 0.987
6 40.62 0.983 2.60 1.000 0.994
10 40.51 0.982 2.29 1.000 0.989
14 40.44 0.982 2.32 1.000 0.985
18 40.35 0.982 2.32 0.999 0.980

Inference
steps

10 40.97 0.979 2.98 1.000 0.992
30 40.58 0.983 2.40 1.000 0.988
50 40.52 0.983 2.38 0.999 0.985

100 40.49 0.984 2.29 1.000 0.984

Number of Message Bits. Table 2 compares five
separately trained models with different message
lengths. They all perform well in terms of SSIM,
PSNR, and FID, but the robustness decreases when
the length is longer, though it still remains above 90%.
This is because larger messages are more difficult to
embed and extract. Fortunately, given the excellent
quality of the watermarked images produced by SAT-
LDM, robustness can be further improved by sacri-
ficing some image quality (Fernandez et al., 2023),
which can be achieved by adjusting λI and λm.

Sampling Methods. To verify generalization abil-
ity, we select four representative sampling methods,
i.e., DDPM (Ho et al., 2020), DDIM (Song et al.,
2021), LMS5 and Euler (Karras et al., 2022). As
shown in Table 2, they all exhibit excellent perfor-
mance, with a bit accuracy of approximately 97% in
the presence of attack.

Guidance Scales. The guidance scale adjusts the
balance between following the prompt and allowing
creative freedom, and it may influence the shift from
the free generation distribution. In SD, the typical
range for guidance scales is between 5 and 15, so
we extend our experiments from 2 to 18. As shown
in Table 2, increasing the guidance scale leads to a
slight decrease in the performance of the proposed method. This occurs because a higher guidance
scale amplifies the influence of prompt and causes the test distribution to deviate from the free
generation distribution in training, thus increasing the generalization error. Nonetheless, even raising
the guidance scale to the rarely used value 18, it has a very weak degradation of performance, so our
method is sufficiently robust to the guidance scale.

Inference Steps. In practice, the number of inference steps is often unknown, which introduces a
mismatch with the free generation setup during training. As shown in Table 2, this mismatch causes
minimal degradation in watermarked performance. Given the efficiency of modern samplers, the
number of inference steps typically does not exceed 50. Therefore, we fix the number of inference
steps to 30 for better efficiency in our experiments.

6 CONCLUSION AND FUTURE WORK

In this work, we propose SAT-LDM, an enhanced image watermarking method for latent diffusion
model with self-augment training. Compared to existing methods, SAT-LDM offers effectiveness
and convenience by utilizing the free generation distribution for training. This approach does not
alter the diffusion process, ensuring compatibility with most LDM-based generative models. We
also provide a theoretical analysis of the generalization error to consolidate our proposed method.
Extensive experiments validate its superior performance, particularly in the quality of watermarked
images. In future work, we will explore the application of dataset distillation (Wang et al., 2018) to
further minimize the need for training samples, potentially eliminating that requirement altogether.
Our prompt design may still harbor biases, necessitating future ablation studies to evaluate their
impact comprehensively..

5https://en.wikipedia.org/wiki/Linear multistep method.
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A MATHEMATICAL PROOF

A.1 PROOF OF LEMMA 1

This section presents the proof of Lemma 1, which establishes the equivalence of the Wasserstein
distance for combined distributions.

Lemma 1. Let (Z, ρZ) and (M, ρM) be two metric spaces, µz and µt be two probability measures
on Z , and µm be a probability measure on M. For (z,m), (z′,m′) ∈ Z ×M, the distance function
is defined as ρZ,M((z,m), (z′,m′)) = ρZ(z, z

′) + ρM(m,m′). Then we can obtain:

W1(µt × µm, µz × µm) = W1(µt, µz).

Proof. The Wasserstein distance W1(µt × µm, µz × µm) is defined as:

W1(µt × µm, µz × µm) = inf
γ∈Π(µt×µm,µz×µm)

∫
ρZ,M((z,m), (z′,m′))dγ((z,m), (z′,m′)),

where Π(µt × µm, µz × µm) is the set of all couplings of µt × µm and µz × µm. Since the distance
function ρZ,M((z,m), (z′,m′)) = ρZ(z, z

′) + ρM(m,m′), we can separate the integral to:

inf
γ∈Π(µt×µm,µz×µm)

∫
(ρZ(z, z

′) + ρM(m,m′)) dγ((z,m), (z′,m′)).

Given the independence between µz and µm, we can divide the coupling γ into two independent
parts: one for (z, z′) and another for (m,m′). Thus:

γ((z,m), (z′,m′)) = γZ(z, z
′) · γM(m,m′)

Using this decomposition, we obtain:

inf
γ∈Π(µt×µm,µz×µm)

∫
(ρZ(z, z

′) + ρM(m,m′)) dγ((z,m), (z′,m′))

= inf
γ∈Π(µt,µz)

∫
ρZ(z, z

′) dγ(z, z′) + inf
γ∈Π(µm,µm)

∫
ρM(m,m′) dγ(m,m′)

=W1(µt, µz) +W1(µm, µm).

Note that the Wasserstein distance between identical distributions is zero (i.e., W1(µm, µm) = 0),
hence the second term vanishes:

W1(µt × µm, µz × µm) = W1(µt, µz).

A.2 PROOF OF THEORY 1

This section provides a detailed proof of Theorem 1, which quantifies the generalization bound for
the proposed SAT-LDM method. The central result shows that the Wasserstein distance between the
training and test distributions directly influences the generalization error, underscoring its importance
in minimizing this error.

Theorem 2. Under the definitions of Lemma 1, consider a hypothesis class H, a loss function
ℓ : H × Z ×M → R and real numbers δ ∈ (0, 1). Assume that for hypotheses h ∈ H, the loss
function ℓ is K-Lipschitz continuous for some K w.r.t. (z,m) ∈ Z ×M, and is bounded within
an interval G: G = max(ℓ) - min(ℓ). With probability at least 1 − δ over the random draw of
{(z1,m1), · · · , (zn,mn)} ∼ (µz × µm)⊗n, for every hypothesis h ∈ H:

E
(z,m)∼µt×µm

[ℓ(h, z,m)] ≤ 1

n

n∑
i=1

ℓ (h, zi,mi) +

√
G2 log(1/δ)

2n
+KW1(µt, µz).

14
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Proof. By the definition of the K-Lipschitz continuity of ℓ, we have:

E
(z,m)∼µt×µm

[ℓ(h, z,m)]− E
(z,m)∼µz×µm

[ℓ(h, z,m)]

≤ sup
∥f∥Lip≤K

(
E

x∼µt×µm

[f(x)]− E
x∼µz×µm

[f(x)]

)
.

Using the Kantorovich-Rubinstein duality theorem mentioned in Section 3, this expression simplifies
to:

sup
∥f∥Lip≤K

(
E

x∼µt×µm

[f(x)]− E
x∼µz×µm

[f(x)]

)
= KW1(µt × µm, µz × µm).

From Lemma 1, we know that:

W1(µt × µm, µz × µm) = W1(µt, µz).

Thus, we can bound the expected loss difference by:

E(z,m)∼µt×µm
[ℓ(h, z,m)]− E(z,m)∼µz×µm

[ℓ(h, z,m)] ≤ KW1(µt, µz).

Next, we apply Hoeffding’s inequality to bound the empirical loss difference:

Pr

(
E(z,m)∼µz×µm

ℓ(h, z,m)− 1

n

n∑
i=1

ℓ(h, zi,mi) ≤ ϵ

)
≥ 1− δ,

where

ϵ =

√
G2 log(1/δ)

2n
.

Combining the bounds from the Wasserstein distance and Hoeffding’s inequality, we obtain:

E(z,m)∼µt×µm
[ℓ(h, z,m)] ≤ E(z,m)∼µz×µm

[ℓ(h, z,m)] +KW1(µt, µz)

≤ 1

n

n∑
i=1

ℓ(h, zi,mi) +

√
G2 log(1/δ)

2n
+KW1(µt, µz).

B ATTACK TYPES

In order to enhance the robustness of the watermark, we consider seven representative types of attack,
each applying different types of image distortions. Figure 4 shows the examples of all attack types,
and Table 3 presents the attack intensity ranges.

C TEST PROMPTS

The evaluation of SAT-LDM’s generalization capabilities is conducted using a diverse set of image
prompts generated across 10 distinct categories. These categories encompass a wide array of styles,
enabling us to rigorously assess the effectiveness of the watermarking method across different image
types. The kind of prompt generated is described as follows:

Table 3: The intensity ranges of attack during training.

Attack type Gaussian blur Gaussian noise Brightness Contrast Desaturation Perspective warp JPEG

Intensity range Kernel size: 7 × 7 std: [0, 0.08] [0, 0.3] [0.5, 1.5] [0, 1] [0, 0.1] QF: [0, 50]

15
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Figure 4: Illustration of attack types.

1. Natural landscapes: including mountains, beaches, forests, deserts, and other natural scener-
ies.

2. Urban landscapes: skylines of different cities, street views, nightscapes, etc.

3. Traditional art styles: style imitations of artistic movements such as the renaissance, baroque,
and impressionism.

4. Modern and abstract art: abstract expressionism, cubism, futurism, etc.

5. Everyday objects: common household items, tools, decorations, etc.

6. Technology and futurism: focusing on actual technological advancements and potential
future developments such as smart cities, robots, and high-tech equipment.

7. Animals and wildlife: animals in different environments, such as in the wild, zoos, or
domestic settings.

8. Historical and cultural events: major historical events, cultural festivals, traditional costumes,
etc.

9. Fantasy and science fiction: emphasizing fantasy elements such as magic, mythical creatures,
alien worlds, and space exploration.

10. Food and beverages: creative presentations of various dishes, desserts, and drinks.

D PSEUDOCODE FOR SAT-LDM

The pseudocode in this section outlines the core steps involved in the training process for the SAT-
LDM watermarking framework. The algorithm integrates the watermark embedding process within
the latent diffusion model (LDM) and applies a self-augmented training mechanism to enhance the
model’s generalization capabilities. Specifically, the watermarking module Gm and the message
extractor Tm are trained together. During each training epoch, the process involves sampling noise,
generating the latent variable through the denoising process, and embedding the watermark into
the image. Additionally, adversarial attacks are applied with increasing intensity to simulate real-
world conditions and improve robustness. The training loss is minimized by balancing the image
reconstruction loss and the message extraction accuracy, ensuring that the watermarked images
maintain high quality while the embedded message remains recoverable under various conditions.

Algorithm 1 provides a step-by-step representation of this process, illustrating how the model is
iteratively improved through self-augmented training.
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Algorithm 1 SAT-LDM with Self-Augmented Training

Input: Pretrained LDM (Denoising process U, VAE encoder E and VAE decoder D); Watermarking
Module Dm; Message Extractor Tm; Number of Message Bits L; Learning rate α; Loss weights λm

and λI ; Number of epochs N ; Attack decay coefficient γϕ.
Output: Trained watermarking module Gm and message extractor Tm.

1: for each training epoch t = 1, ..., N do
2: Sample a noise vector ϵ ∼ N (0, I)
3: Sample a message m ∼ {0, 1}L
4: Generate latent variable z = U(“”, ϵ)
5: Watermark Embedding:
6: Generate watermarked image Iw = Dm(z,m)
7: Image Reconstruction Loss:
8: Compute original image Io = D(z)
9: Compute image loss ℓI (Io, Iw,λI) by Eq. (12)

10: Watermark Extraction:
11: Apply random attack I′w = ϕ(Iw)
12: Extract message m′ = Tm(I′w)
13: Compute message loss ℓm (m,m′,λm) by Eq. (13)
14: Total Loss:
15: Compute total loss L = ℓI + ℓm in Eq. (9)
16: Backpropagation:
17: Update parameters of Tm and message processor in Gm using AdamW optimizer
18: Gradually increase attack intensity by updating γϕ
19: end for

E ADDITIONAL EXPERIMENTAL ANALYSIS

E.1 DETECTION AND IDENTIFICATION RESULTS

In this section, we consider two common tasks in image watermarking: watermark detection and
user identification, to investigate the impact of different training distributions on watermarking
performance in practical scenarios.

Watermark Detection. The goal of the watermark detection task is to determine whether specific
watermark information exists in an image. Given an image I, the detection process involves decoding
and verifying the extracted watermark m′ to assess whether it matches the expected watermark. The
key challenge in this task lies in efficiently distinguishing between watermarked and non-watermarked
images while maintaining accuracy under various image attack scenarios.

User Identification. The user identification task not only requires detecting the presence of a
watermark in an image but also accurately identifying the embedded watermark message to trace it
back to the corresponding user. This task typically involves locating the specific message embedded
in an image from a pool of users. As the number of users increases, the complexity of identification
rises significantly, especially when the user pool becomes larger.

We refer to the evaluation protocols used in Tree-Ring(Wen et al., 2024), WAVE(An et al.), and
WaDiff(Min et al., 2024). Specifically, for the watermark detection task, we use 1,000 watermarked
images and 1,000 non-watermarked images to compute the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve and the True Positive Rate at a False Positive Rate of 0.001%,
denoted as T@0.001%F. For the user identification task, we evaluate our method using user pools of
varying sizes, ranging from 10,000 to 1,000,000 users. For each user pool, we randomly select 1,000
users and generate 5 images per user, resulting in a total of 5,000 images. Identification accuracy is
then calculated based on these watermarked images.

As shown in Table 4 and Table 5, both “External” and “Free” demonstrate strong performance in the
watermark detection and user identification tasks, with no significant differences observed between
the two approaches.
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Table 4: Impact of training distributions on watermark detection.

Training AUC/T@0.001%F

distributions None 1 2 3 4 5 6 7 Adv.

External 1.000/1.000 1.000/0.997 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 0.995/0.960 1.000/1.000 0.999/0.995
Free 1.000/1.000 0.995/0.958 1.000/1.000 1.000/1.000 1.000/1.000 1.000/0.997 1.000/0.999 1.000/0.999 0.999/0.994

Table 5: Impact of training distributions on user identification.

Training Trace 104/Trace 106

distributions None 1 2 3 4 5 6 7 Adv.

External 1.000/1.000 0.994/0.990 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 0.956/0.930 1.000/0.999 0.994/0.990
Free 1.000/0.999 0.965/0.957 0.999/0.999 0.999/0.999 0.999/0.999 0.997/0.994 0.992/0.988 0.997/0.992 0.994/0.991

E.2 RESULTS ON DIFFERENT PRETRAINED MODELS

We compared the effects of different training distributions on SDv1.5 & v2.1. Table 6 shows the
results. We observe that models trained with free distributions significantly improve the quality of
watermarked images while maintaining high robustness on both SDv1.5 and SDv2.1.

E.3 EXPERIMENTAL ANALYSIS WITH LAION-400M AS THE TEST DISTRIBUTION

To ensure the performance improvements are more general, we replace the test data in the “Training
Distributions” of Section 5.3 with prompts from LAION-400M (which differs from the training data)
and repeate the remaining steps, obtaining Table 7 and Figure 5.

Figure 5: The t-SNE visualization of prox-
ies for external data, free, and condi-
tional/test distributions (Prompts from
LAION-400M).

Comparing Tables 1b and 7, we find that after re-
placing the test data with LAION-400M, the differ-
ences in PSNR, FID, and W1 between “External”
and “Free” decrease. This is reasonable because, in
this experimental setup, the external data comes from
LAION-400M. Replacing the test data with prompts
from LAION-400M reduces the disparity between
the training and test distributions, thereby decreasing
W1, which results in higher image quality (PSNR
and FID).

On the other hand, in Figures 3 and 5, although there
appears to be significant overlap between the “Ex-
ternal” and “Test” regions, this is expected, as the
generative capacity of the model is derived from ex-
ternal data. The key takeaway from Figure 3 and 5
is the noticeable divergence between the “External”
and “Test” distributions in their non-overlapping re-
gions. These divergent regions in “External” likely
correspond to samples outside the model’s generative
capacity, thus introducing noise and limiting general-
ization when used for training.

While our testing scenarios may not be entirely bias-free, these additional experiments and results
further reinforce the robustness and practical relevance of the proposed method across diverse
distributions.

E.4 DOES THE WATERMARKING MODULE ADAPT TO THE NEGATIVE OUTPUT OF
UNCONDITIONAL GENERATION?

When generating images, SD employs the noise prediction formula:

ϵguided = ϵuncond + w · (ϵcond − ϵuncond),
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Table 6: Impact of training distributions on different pretrained models.

Pretrained Training
PSNR↑ SSIM↑ FID↓

Bit accuracy↑ AUC/T@0.001%F↑ Trace 104/Trace 105/Trace 106 ↑
models distributions None Adv. None Adv. None Adv.

SD v1.5
External 37.46 0.987 3.50 1.000 0.982 1.000/1.000 0.999/0.995 1.000/1.000/1.000 0.994/0.992/0.990

Free 40.58 0.983 2.40 1.000 0.988 1.000/1.000 0.999/0.994 1.000/1.000/0.999 0.994/0.993/0.991

SD v2.1
External 36.07 0.988 4.22 1.000 0.980 1.000/1.000 0.995/0.989 1.000/1.000/1.000 0.985/0.983/0.981

Free 41.76 0.995 2.65 1.000 0.971 1.000/1.000 1.000/0.994 1.000/1.000/1.000 0.990/0.987/0.982

Table 7: Comparison between training distributions (External v.s. Free) and the Wasserstein
distance (W1) between training and testing distributions (Prompts from LAION-400M).

Training
PSNR↑ SSIM↑ FID↓

Bit accuracy↑
W1 ↓

distributions None 1 2 3 4 5 6 7 Adv.

External 38.87 0.988 2.89 1.000 0.973 0.999 1.000 1.000 1.000 0.935 0.967 0.982 898.6
Free 41.30 0.982 2.21 0.998 0.967 0.989 0.993 0.993 0.989 0.970 0.956 0.980 669.4

where w is the guidance scale.

Since in all cases where the guidance scale is greater than 1, the final output probability is inversely
proportional to the unconditional distribution, it raises the possibility that the watermarking module
adapts to the negative output of unconditional generation, rather than the proposed method accurately
reflecting the generated distribution of diffusion models.

Table 8 presents experimental results with a guidance scale of 1, i.e., direct conditional generation. For
the “Free” approach, when the guidance scale is reduced from 7.5 to 1—shifting the test distribution
from a mixture of conditional and unconditional distributions to a purely conditional distribution—the
FID increases from 2.4 to 3.75 but remains relatively low. In contrast, for the “External” approach,
the FID rises from 3.5 to 6.75. These observations indicate the following:

• The “Free” approach does not simply depend on the negative output of the unconditional generation
but can adapt to different generation conditions.

• For the “Free” approach, lowering the guidance scale to 1 essentially reduces the diffusion model’s
reliance on the free/unconditional distribution, resulting in generated images that may slightly
deviate from the training distribution. While we assume that the distribution of latent representations
generated by all prompts via conditional sampling (conditional generation distribution) is equivalent
to that without a specific prompt, this assumption holds only under the ideal condition of sufficiently
diverse prompts. Therefore, the slight increase in FID is acceptable and aligns with our proposed
Theorem 1.

E.5 PERFORMANCE OF TRAINING USING LAION-400M CAPTIONS AS PROMPTS

Table 9 compares the results of three different training distributions: 1) 30K images from LAION-
400M (LAION Image), 2) 30K images generated using the captions from 1) as prompts (LAION
Prompt), and 3) 30K images from the free generation distribution (Free).

Compared to “LAION Image”, “LAION Prompt” shows slight improvements in PSNR and FID but
still falls short of “Free”. This could be due to the inherent bias in prompts, similarly to that in images.
Increasing the number of images or prompts might help mitigate this bias, but such an approach
would require substantial computational resources and time, and could raise concerns regarding data
privacy and copyright.

Although using the unconditionally generated distribution may seem less meaningful, it offers a
simpler and more general way to approximate the model’s generative capabilities, even when the
dataset used by the generative model is unknown.
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Table 8: The impact of training distribution when guidance scale is 1 and 7.5.

Guidance Training
PSNR↑ SSIM↑ FID↓

Bit accuracy↑
scales distributions None Adv.

1
External 36.71 0.987 6.75 1.000 0.987

Free 40.90 0.984 3.75 1.000 0.994

7.5
External 37.46 0.987 3.50 1.000 0.982

Free 40.58 0.983 2.40 1.000 0.988

Table 9: Performance of training using LAION-400M captions as prompts.

Training
PSNR↑ SSIM↑ FID↓

Bit accuracy↑
distributions None 1 2 3 4 5 6 7 Adv.

LAION Image 37.46 0.987 3.50 1.000 0.974 0.999 1.000 1.000 1.000 0.929 0.975 0.982
LAION Prompt 38.82 0.992 3.32 1.000 0.986 0.998 1.000 1.000 1.000 0.938 0.984 0.986

Free 40.58 0.983 2.40 1.000 0.981 0.995 0.998 0.998 0.994 0.980 0.968 0.988

E.6 THE IMPACT OF GUIDANCE SCALE ON DISTRIBUTION VISUALIZATION RESULTS

In fact, lots of research has demonstrated that using classifier guidance significantly affects image
quality and its alignment with the training prompt, depending on the guidance scale (Ho & Salimans,
2022). (Moreover, generation under guidance is fundamentally different from unconditional genera-
tion, the latter often resulting in blurry or content-less outputs.) Therefore, it is counter-intuitive to
assume a direct alignment between free and conditional distributions. In the context of this study, it is
particularly interesting to investigate how the guidance scale influences our distribution visualization
results. Following the setup described in 5.3, we vary only the guidance scale (gs) value and visualize
the corresponding distributions.

As shown in Figure 6, when gs ≤ 10, there is almost no noticeable difference between the “Free”
and “Test” distributions. However, at gs = 14 and gs = 18, some differences become apparent.
This phenomenon may result from excessively high guidance scales (gs = 14 and gs = 18), which
amplify the guidance signal, causing a certain degree of distributional deviation. On the other hand,
as seen in the guidance scale results of Table 2, when gs changes from 10 to 18, there are slight
indications that both the FID score and average watermark robustness may degrade. Watermarking
methods typically aim to achieve Pareto optimality between watermark image quality and robustness.
In our case, the observed distributional deviation might shift this Pareto frontier (either one of the
objectives worsens, or both do simultaneously). Nevertheless, even under extreme conditions, such
as gs = 18, the results remain exceptionally good.

Why training with free distribution works? Our method might capture some deeper shared
features between conditional and free/unconditional distributions. For instance, both are derived from
denoising Gaussian noise. While the denoising processes are not identical, they might retain certain
shared features. These features, while meaningless to humans, could be meaningful to the model. As
a result, watermarking modules trained on unconditional distributions can generalize effectively to
conditional distributions or their hybrids.

F ADDITIONAL VISUAL COMPARISONS

We provide additional watermarked examples for the prompts discussed in Section C, shown in
Figure 7.
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Figure 6: Distribution visualization results with different guidance scale (gs). Due to the stochastic
nature of the t-SNE, the visualization of the distributions may be slightly different.

G DISCUSSION ON LIPSCHITZ CONTINUITY OF LOSS FUNCTION

Detailed Explanation of Lipschitz Continuity Assumption. Lipschitz continuity ensures that the
loss function does not change too abruptly with respect to its inputs, providing a bounded relationship
between changes in predictions and changes in loss. Many widely used loss functions satisfy this
property when their inputs are confined to bounded domains (e.g., image data or binary vectors in our
case). For instance:

• Mean Squared Error (MSE) Loss: Defined as L(y, ŷ) = (ŷ − y)2, the MSE loss is Lipschitz
continuous when predictions ŷ are restricted to a closed interval [a, b]. Within this range, the
gradient ∇L = 2(ŷ − y) remains bounded, ensuring Lipschitz continuity.

• Cross-Entropy Loss: This loss is Lipschitz continuous when prediction probabilities ŷ are confined
to the interval (0, 1), guaranteeing bounded gradients.

Additionally, activation functions commonly used in neural networks, such as ReLU and Sigmoid, are
inherently Lipschitz continuous. Regularization techniques applied to model weights further help in
preventing the Lipschitz constant K from becoming excessively large. Therefore, the assumption is
not overly restrictive and can be satisfied by carefully selecting the loss functions, model architectures,
and training strategies.

Estimation of the Lipschitz Constant K. Estimating the Lipschitz constant of neural networks
is an active area of research. For instance, Fazlyab et al. proposed a convex optimization-based
approach to efficiently estimate the upper bound of a neural network’s Lipschitz constant (Fazlyab
et al., 2019). Additionally, Latorre et al. employed polynomial optimization techniques to compute
tight upper bounds for K (Latorre et al., 2020). These methods provide both theoretical support and
practical tools for estimating K.

Empirical methods complement these theoretical approaches by analyzing gradient norms and
employing spectral norm analysis on validation datasets. Regularization techniques, such as weight
decay and spectral normalization Miyato et al. (2018), not only aid in controlling K but also enhance
the generalization capabilities of the model.
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Original DwtDctSvd HiDDeN StegaStamp StableSign FSW LAION-Img SAT-LDM

Crystal-clear lake in the Canadian Rockies

A drone view over a sprawling metropolis reveals complex road networks

Renaissance style portrait of a noblewoman with elaborate attire

Echoes of a forgotten landscape in subtle hues

Panoramic window view framed by stylish curtains

Figure 7: Watermarked images generated with given prompts. In each image group, the second
row of images is the pixel-wise difference (×10) between the watermarked and non-watermarked
images. LAION-Img represents the “External” approach in Section 5.3. Zoom in for better view.
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Energy-efficient urban planning with smart grids and renewable resources

Crabs scuttling across a sandy beach

Emigrants board ships during the Great Migration

Enchanted forest with trees whispering ancient secrets

A pot of fondue with assorted fruits and cakes for dipping

Figure 7: (continued)

23


	Introduction
	Related Work
	Post-hoc Watermarking
	Diffusion-native Watermarking

	Background
	Self-Augmented Training: a Simple yet Effective Method
	Theoretical Analysis
	Implementation Details

	Experiments
	Experimental Setup
	Main Results
	Experimental Analysis

	Conclusion and Future Work
	Mathematical Proof
	Proof of Lemma 1
	Proof of Theory 1

	Attack Types
	Test prompts
	Pseudocode for SAT-LDM
	Additional Experimental Analysis
	Detection and Identification Results
	Results on different Pretrained Models
	Experimental Analysis with LAION-400M as the Test Distribution
	Does the watermarking module adapt to the negative output of unconditional generation?
	Performance of training using LAION-400M captions as prompts
	The Impact of Guidance Scale on Distribution Visualization Results

	Additional Visual Comparisons
	Discussion on Lipschitz Continuity of Loss Function

