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ABSTRACT

We consider the discrete time infinite horizon average reward restless markovian
bandit (RMAB) problem. We propose a model predictive control based non-
stationary policy with a rolling computational horizon 7. At each time-slot, this
policy solves a 7 horizon linear program whose first control value is kept as a con-
trol for the RMAB. Our solution requires minimal assumptions and quantifies the
loss in optimality in terms of 7 and the number of arms, N. We show that its sub-
optimality gap is O(1/v/N) in general, and exp(—$(N)) under a local-stability
condition. Our proof is based on a framework from dynamic control known as
dissipativity. Our solution easy to implement and performs very well in practice
when compared to the state of the art. Further, both our solution and our proof
methodology can easily be generalized to more general constrained MDP settings
and should thus, be of great interest to the burgeoning RMAB community.

1 INTRODUCTION

This work investigates the sequential decision making problem of Restless Multi-Armed Bandits
(RMAB for short) over an infinite discrete time horizon. In this problem there are N statistically
identical arms. At each time step, the decision maker must choose for each arm if they would like
to pull the arm or leave it as is. The decision maker has a constraint /N on the maximal number of
arms that they may pull at each time instance. Each arm has a known state belonging to a common
finite state space and upon choosing an action, produces a known state and action dependent reward.
Next, the arms evolve to a new state independently according to a known state-action dependent
transition kernel. These arms are only coupled through the budget constraint on the number of arms
that maybe pulled at each time instance. The state and reward are both revealed to the decision maker
before the next decision needs to be made. The objective of the decision maker is to maximize the
long term time average reward.

This problem was first proposed by [Whittle| (1988)). Over the years RMABs have been used to model
a number of practical problems. These applications include web-crawling, queuing, communication
systems, scheduling problems and many more, (Veatch & Wein, [1996), (Dance & Silander, |2019),
(Nino-Moral 2002), (O’Meara & Patel, 2001). The problem of choosing a subset of tasks to per-
form among a larger collection of tasks under resource constraints shows up time and time again in
various resource constrained control problems. For a comprehensive review on RMABs and their
applications, the interested reader is directed towards [Nino-Mora) (2023)). While the existence of
an optimal policy for RMABs straightforward, Papadimitriou & Tsitsiklis| (1999) showed that the
exact solution to this problem is PSPACE-hard. Consequently, most work focused on designing
approximate solutions with good performance guarantees.

In the seminal paper, Whittle|(1988)) suggested that under a condition known as indexability, an index
can be associated with each state. This index is now referred to as the Whittle’s index (WI) and it was
conjectured that a priority policy based on this index would be an optimal solution for this problem.
This setting naturally lends itself to mean field approximations where one may replace the N armed
problem with a dynamical system in order to find these approximate solutions. (Weber & Weiss,
1990) were the first to point out that under a (hard to verify) condition on the dynamical system
known as uniform global attractor property (UGAP), the (WI) was asymptotically optimal. Recently,
many of the results in the RMAB literature have focused on two major aspects of the problem.
Firstly, how quickly do proposed asymptotically optimal policies converge to the optimal solution
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as a function of the number of arms. Secondly, can the underlying assumptions such as indexability
and UGAP be made less restrictive to obtain more general conditions under which optimal solutions
can be found. In the former category, under the assumptions of Weber & Weiss| (1990), Gast et al.
(2023a) showed that the WI policy is exponentially close to the optimal solution. More recently
still, several works have been able to show an exponential order of convergence, Gast et al.|(2023b);
Hong et al.| (2024a) under less restrictive assumptions. On the other hand, in the latter category,
Hong et al.|(2023)) showed an asymptotic convergence result under a far less restrictive assumption
known as the synchronization assumption. Similar works following this steering dynamics include
Yan|(2024) and |Hong et al.| (2024b)) to show asymptotically optimal algorithms. Furthermore, [Hong
et al.| (2024a)) loosened the restrictions further to not only show asymptotic convergence but describe
fundamental conditions in order to achieve exponential convergence rates for any algorithm. A
more comprehensive view of recent results can be found in Appendix [A] with descriptions of both
assumptions and the algorithm.

In this work, we return to the dynamical control perspective but do not look to steer our system
towards an optimal fixed point. Instead, we focus on the notion of dissipativity, to make the case for
a well known set of policies known as model predictive control. We show that a simple MPC with a
finite planning horizon produces an asymptotically optimal solution to the RMAB problem without
any need to relax constraints. In doing so, not only do we bring a new perspective to this decades old
problem but also describe a simple tractable algorithm that performs exceptionally well in practice
with a small planning horizon.

Main Contributions Our main contribution through this paper is to show that a simple compu-
tationally tractable algorithm with minimal assumptions is asymptotically optimal in the number of
arms. Along the way we make several fresh observations about the nature of RMAB problems:

1. First and foremost, we show that the sub-optimality gap of the natural MPC algorithm

(called LP-update in the literature) is O(1/v/N), where N is the number of arms. This
result uses a minimal set of assumptions.

2. Our proof is of independent interest since it uses a new framework known as dissipativity.
Dissipativity is a closely studied phenomenon in the model predictive literature and is used
to study how a policy drives a system towards optimal fixed points Damm et al.[(2014).

3. Returning to the dynamics around the fixed point, we can tighten the rate of convergence
to e~“N under a local stability condition.

4. Perhaps the most helpful portion of our results, for practical purposes; the MPC algorithm
works well in practice and is easy to implement. It performs well both in terms of the
number of arms N as well as the computational time horizon T' beating state of the art
algorithms in our bench marks.

Roadmap The rest of the paper is organized as follows. We describe the system model and the
corresponding linear relaxation in Section[2] We build the LP-update algorithm in Section [3] and
present its performance guarantee in Section d] We provide the main ingredients of the proof in
Section [3] postponing the most technical lemmas to the appendix. We illustrate the performance
of the algorithm in Section[6] The appendix contains additional literature review [A] details of the
algorithm and their extension to multi-constraints MDPs [B] additional proofs|C| [D]and details about
the numerical experiments [F]

2 SYSTEM MODEL AND LINEAR RELAXATION

2.1 SYSTEM MODEL

We consider an infinite horizon discrete time restless Markovian bandit problem parameterized by
the tuple (S,PY, P! r% rl;a, N). A decision maker is facing IV statistically identical arms, and
each arm has a state that belongs to the finite state-space S. At each time-instant, the decision maker
observes the states of all arms s = {s; ... sy} and chooses a vector of actions a = {a;...an},
where the action a,, = 1 (respectively a,, = 0) corresponds to pulling the arm n (or to leave it). The
decision maker is constrained to pull at most a/V arms at each decision epoch.
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The matrices P° and P! denote the transitions matrices of each arm and the vectors r?, r' denote the
|S| dimensional vector for the rewards. We assume that all the rewards r lie between 0 and 1. As the
state-space is finite, this assumption can be made without loss of generality by scaling and centering
the reward vector. We assume that the transitions of all arms are Markovian and independent. This
means that if the arms are in state s € SV and the decision maker takes an action a € {0,1}", then
the decision maker earns a reward ) 7 and the next state becomes s’ € S N with probability

P(S(t+1) =|S(t) =s,A(t) =a, ... S(O),A(O))
= P(S(t+1) =/|S(t) =s,A(t) =a) = II)_, P, . W

It is important to note that the arms are only coupled through the budget constraint .

Let 7 be a stationary policy mapping each state to a probability of choosing actions, i.e, 7 : SN —
A({0,1}Y) subject to the budget constraint, . Let IIY) denote the space of all such policies.
Given a policy m, mapping the joint state of the arms to a realization of the IV length joint action
vector at time ¢, AN (t) := {a1(£), az(t) ... an(t)}, and an initial set of arm states S (0) = s, we
define the average gain of policy 7 as

Here (SN (t), AN (t)) denotes the state-action pair of the nth arm at time ¢ and 7

S(N (0) = s] ) )

SN ((t)) denotes the

SN ()™ entry of the r(!) vector. As the state-space and action space is finite, for any stationary
policy 7, the limit is well defined |Puterman| (2014). The RMAB problem amounts to computing a
policy 7 that maximizes the infinite average reward. We denote the optimal value of the problem as

N\ . (V)

Vopi(8) 1= max Vi (s). 3)

. The optimal policy exists and the limit is well defined, |Puterman| (2014). Under mild conditions
(which will be verified in our case), this value does not depend on the initial state in which case we
will simply write it as VY.
2.2  ALTERNATIVE STATE REPRESENTATION VIA EMPIRICAL DISTRIBUTION

In order to build an approximation of (3), we introduce an alternative representation of the state
space, that we will use extensively in the paper. Given any joint state of the arms s € SV, we denotes
the empirical distribution of these arms as x(s) € Ag, where Ag is the simplex of dimension |S)|.
x(s) is a vector with |S| dimensions and x;(s) is the fraction of arms that are in state 7. Next, given
an action vector a, we denote by u(s,a) the empirical distribution of the state-action pairs (s, 1).
In words, w;(s,a) is the fraction of arms that are in state ¢ and that are pulled. Since no more than
Na arms can be pulled at any time instance and no more than Nx, arms can be pulled in state s, it
follows that when x is fixed, w satisfies the following inequalities,

0<u<x lulli < a|x|1 = «a, )

where u < x denotes a component-wise inequality and || - ||; denotes the {; norm. We denote by
U(x) the set of feasible actions for a given x, i.e., the set of u that satisfy (d).

2.3 LINEAR RELAXATION

We consider the following linear program:

0o . __ _ 40
Vopt = pmax x4 (r! =10, (52)
Subject to:  u € U(x) (5b)
x = xP° + u(P! — P?) (5¢)

This linear program is known to be a relaxation of (3)) that is asymptotically tight, that is VO[}X < Vopt
for all N and limpy_, oo VY = V20, see|Gast et al.| (2023b)); Hong et al.|(2024a).

opt opt >
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To give some intuition on the relationship between (3) and (), we remark that if X (t) := x(S™ (t))
is the empirical distribution of states at time ¢ and U (t) = w(S(¢), A(¢)) is the joint control, then it
is shown in |Gast et al.|(2023b)) that the Markovian evolution (II]) implies

E[X(t+1) | X(t),U@t)] = X(t)P* +U(t)(P' — PY). (6)

In (3)), the variable z; corresponds to the time-averaged fraction of arms in state ¢ and similarly
the variable wu; corresponds to the time-averaged fraction of arms in state ¢ that are pulled. The
constraint (3b) imposes that on average, no more than N arms are pulled. This is in contrast with
the condition imposed for problem (3) that enforces this condition at each time step.

3 CONSTRUCTION OF THE LP-UPDATE POLICY

3.1 THE FINITE-HORIZON MEAN FIELD CONTROL PROBLEM

To build the LP-update policy, we consider a controlled dynamical system, also called the mean field
model, that is a finite-time equivalent of (3). For a given initial condition #(0) and a time-horizon
T, the states and actions of this dynamical system are constrained by the evolution equations

u(t) € U(z(t)) (7a)

z(t+1) = 2z(t)P° + u(t)(P' — PY), (7b)

Vt € {0...7 — 1}. In the above equation, should be compared with (6) and indicates that x(t)
and w(t) correspond to the quantities E[X ()] and E[U(t)] of the original stochastic system. As

the constraint (7a) must be ensured by x(t) and w(t), this constraint (@) must be satisfied for the
expectations: E[U(t)] € U(E[X (1)]).
1

The reward collected at time ¢ for this dynamical system is r¥ - z(¢) + (r! — r%) - w(t). Let X be
the dual multiplier of the constraint of an optimal solution of (3). We define a deterministic
finite-horizon optimal control problem as:

T—1

W, (x(0)) = x%xz (% x(t) + (r' = 1%) - u(t)) + X z(7), (8a)
T t=0

Subject to: « and wu satisfy (7) for all ¢ € {0,7 — 1}, (8b)

Before moving forward, the above equation deserves some remarks. First, for any finite 7, the objec-
tive and the constraints (7) of the optimization problem (8] are linear in the variables (x(¢), u(t)).
This means that this optimization problem is computationally easy to solve. In what follows, we
denote by . (x) the value of w(0) of an optimal solution to (8).

Second, the definition of (8) imposes that the constraint ||ulj; < «|x||; = « holds for each time
t. This is in contrast to the way this constraint is typically treated in RMAB problems, in which
case (@) is replaced with the time-averaged constraint - ZtT:_Ol lu(®)|l1 < a. The latter relaxation
was introduced in |Whittle| (1988)) and is often referred to as Whittle’s relaxation (Avrachenkov &
Borkar, [2020; |Avrachenkov et al.l [2021). This is the constraint that we use to write @) Gast et al.
(2023a)) showed that for any finite 7', the finite-horizon equivalent of (3) converges to (§) as N goes
to infinity. The purpose of this paper is to show that the solution of the finite 7’—horizon LP (8]
provides an almost-optimal solution to the original N —arm average reward problem (3).

Last, as we will discuss later, taking A as the dual multiplier of the constraint helps to make a
connection between the finite and the infinite-horizon problems (8) and (3). Our proofs will hold
with minor modification by replacing A by 0 and in practise we do not use this multiplier for our
algorithm.

3.2 THE MODEL PREDICTIVE CONTROL ALGORITHM

The pseudo-code of the LP-update policy is presented in Algorithm [T} The LP-update policy takes
as an input a time-horizon 7. At each time-slot, the policy solves the finite horizon linear program
(8) to obtain i, (x) that is the value of «(0) of an optimal solution to (8. Note that such a policy may
not immediately translate to an applicable policy as we do not require that Ny (x) to be integers.
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Algorithm 1 Evaluation of the LP-Update policy

Input: Horizon 7, Initial state S (0), model parameters (P, P!, r%, r!), and time horizon T
Total-reward < 0.
fort=0to7T —1do
u(t)  pr (x(S™(1))).
AM)(t) + Randomized Rounding (w(t)) (by using Algorithm .
Total-reward < Total-reward + R(S"™Y) (¢), A (¢)).
Simulate the transitions according to (T) to get S (¢ + 1)
end for
Output: Average reward : Toabieward VL(]i\f T) (00)

We therefore use randomized rounding to obtain a feasible policy for our N armed problem, AN (t).
Applying these actions to each arm gives an instantaneous reward and a next state. This form of
control has been referred to as rolling horizon Puterman| (2014} but more commonly referred to as
model predictive control Damm et al.|(2014). Our algorithm maybe summarized more succinctly as:

S(N)(t) Solve LP 8) ,uT(X(S(N)(t))) Rando(r;lized AN(t> Obse:vte S(N)(t-i-l). (9)
rounding new state

The randomized rounding procedure that we use is similar to the one described in|Gast et al.|(2023a).
We discuss it in Appendix [B.1}

4 MAIN THEORETICAL RESULTS

The main result of our paper is to show that a finite-horizon model predictive control algorithm, that
we call the LP-update policy, is asymptotically optimal for the infinite horizon bandit problem. Note
that this LP-update policy is introduced in|Gast et al.|(2023a}b);|Ghosh et al.|(2022) for finite-horizon
restless bandit.

4.1 FIRST RESULT: LP-UPDATE IS ASYMPTOTIC OPTIMAL

Our result will show that the LP-update policy is asymptotically optimal as the number of arms N
goes to infinity, under an easily verifiable mixing assumption on the transition matrices. To express
this condition, for a fixed integer and a sequence of action a = (a; ...ay) € {0,1}*, we denote by

P}, the (i, j)th entry of the matrix Hle P2+, We then denote by py, the following quantit;

£ min Z min{Pal’GQ"“ak’PO,0,~~O} (10)

pk * ! og*
s,s'€8,a€{0,1}* 5,8 8,8

s*eS

In the above equation, the minimum is taken over all possible initial state s,s’ and all possible
sequence of action. The quantity p; can be viewed as the probability (under the best coupling) that
two arms starting in states s and s’ reach the same state after % iterations, if the sequence a; . .. ag
is used for the first arm while the second arm only uses the action 0. The assumption that we use for
our result is that p;, > 0 for some integer k.

Assumption 1. There exists a finite k such that p;, > 0.

While the assumption may look abstract, note that when the P° matrix is ergodic, it ensures that
assumption (1| holds. Indeed in this case, there exists a £ > 0 such that P%‘“O > 0 for all ¢, 7 which
would imply that p;, > 0. Related assumptions and their relationship to ergodicity can be found
in Hernandez-Lerma & Lasserre] (2012). Assumption [I] is similar to the unichain and aperiodic
condition imposed in [Hong et al.|(2024b). Note that as this quantity involves the best coupling and
not a specific coupling, it is more general than the synchronization assumption used in|Hong et al.
(2023).

"The definition @]} is related to the notion of ergodic coefficient defined in (Putermanl[2014)) that used a re-
lated constant to prove convergence of value iteration algorithms in span norm for the unconstrained discounted
Markov Decision Process.
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We are now ready to state our first theorem, where we provide a performance bound of the average
reward of the LP-update policy, that we denote by VL(;Y T) (c0).

Theorem 4.1. Assume|l| There exist constants Cy,Cg > 0 such that for any € > 0, there exists
7(€) such that, AlgOrithmhas the following guarantee of performance:

kC. aN — |aN k S
o0 > 0~ (A2 ) XN (£ ) (/)

(1)

This result shows that the LP-update policy becomes optimal as 7 and N go to infinity. The sub-
optimality gap of LP-update decomposes in three terms. The first term corresponds to an upper-
bound on the sub-optimality of using the finite-horizon 7 when solving the LP-problem (8). Note,
our proof shows that one can take 7(¢) = O(+). Moreover, in the numerical section, we will show
that choosing a small value like 7 = 10 is sufficient for most problems. The second term corresponds
to a rounding error for the budget «: for all « such that N« is an integer, this term equals 0. The
dominating error term is the last term, O(1/+/N). It corresponds to the difference between the
N-arm problem and the LP-problem with 7 + oo.

4.2 SECOND RESULT: EXPONENTIALLY SMALL GAP UNDER A STABILITY CONDITION

Theorem shows that the sub-optimality gap of the LP-update policy is of order O(1/v/N) un-
der quite general conditions. While one could not hope for a better convergence rate in general,
there are known cases for which one can construct policies that become optimal exponentially fast
when NV goes to infinity. This is the case for Whittle index under the conditions of indexability, uni-
form global attractor property (UGAP), non-degeneracy and global exponential stability |Gast et al.
(2023a). More details can be found in Appendix |[A] In this section, we show that LP-update also
becomes optimal exponentially fast under essentially same conditions as the ones presented in[Hong
et al.| (2024a). The first condition that we impose is that the solution of the above LP-problem is
non-degenerate (as defined in|Gast et al.| (2023a)); Hong et al.| (2024a))).

Assumption 2 (Non-degenerate). We assume that the solution (x*,u*) to the linear program () is
unique and satisfies that 7 > 0 for all i € S and that there exists a (unique) state i* € S such that
0 <uje <.

The second condition concerns the local stability of a map around the fixed point.
Assumption 3. Assume[2|and let P* be the |S| x |S| matrix such that

pr_ Pi% if i is such that u; < x
ig Pl-j—Pz-l*j—FPZ-O*j if 1 is such that u* = x

2

We assume that the matrix P* is stable, i.e., that all of the norm of all the eigenvalues of P* are
strictly smaller than 1, except for one eigenvalue that equals 1.

The two above conditions are equivalent to the assumption of non-degeneracy and local stability
defined in Hong et al.| (2024a)).

The last condition that we impose is a technical assumption that simplify the proofs.
Assumption 4 (Unicity). We assume that for all x € Ag, the LP program @) has a unique solution.

It guarantees that the LP-update policy is uniquely defined. Note that the assumptions of unicity of
the fixed point are often made implicitly in papers when authors talk about “the” optimal solution
instead of “an” optimal solution.

Theorem 4.2. Assume and [ then there exist constants C', C" > 0 (independent on N and
7) such that for all € > 0, with 7(€) (set according to Theorem and N such that aN is an
integer, Algorithm|I| has the following guarantee of performance

Vi o (00) > Vi (00) — e — C'e= ¢, (12)
The first term of the bound above is identical to the one of Theorem 4.1} What is more important is
that the last term decays exponentially with V.
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5 PROOFS: MAIN IDEAS

In this section, we provide the major ingredients of the proofs of the two main theorems. We provide
more details for the proof of Theorem [4.T| because this is the more original of the two. The proofs
of all lemmas and some details of computation are deferred to Appendix [C]

5.1 SKETCH FOR THEOREM [ 1}

Three major components are required in-order to complete the proof.

Part 1, Properties of the dynamical control problem For x, u, we denote by ®(x,u) :=
xP? + u(P! — PY) the deterministic transition kernel, and we recall that the instantaneous reward
is R(z,u) == 1" 2 + (r! —1°). In Lemma|C.2] we establish several properties that relate the
finite-horizon problem and the finite-horizon problem (3 that hold under Assumption [T} First
we show that the average gain of the finite-time horizon problem (8) converges to the average gain
of the infinite-horizon problem, that is lim,_,, W, (x)/7 = g* for all . Second, we also show that
the bias function h*(-) : As — R given by :

h*(x) := 1i_>m W (x) — 19" (13)

is well defined and Lipschitz-continuous with constant %/pj, and that the convergence in (I3) is
uniform in . Moreover, the gain and the bias function satisfy
h*(x) + ¢ = max R(xz,u)+ h*(D(x,u)). (14)
uel(x)
While both these definitions are well known in the average reward unichain MDP setting without
constraints, Lemma@] establishes these definitions for the constrained, deterministic problem.

Part 2, Dissipativity and rotated cost Let (x*,u*) be theE] optimal solution of the infinite-horizon
problem (3), and let I(x, u) := g* —r°-x— (r! — ) - u. Following Damm et al.[{(2014), an optimal
control problem with stage cost [(x, w) and dynamic x(t + 1) := ®(x, u) is called dissipative if
there exists a storage function A : As — R that satisfy the following equation:

Iz, u) = 1(x,u) + A(X) — M(B(x,u)) > I(z*, u*) = I(x*,u*) = 0.
The cost, I(x, ) is called the rotated cost function.

In Lemma we show that our problem is dissipative by setting the storage function A(z) := -z,
where ) is the optimal dual multiplier of the constraint (8a). It is important to note, the rotated cost
so defined is always non-negative.

Part 3, MPC is optimal for the deterministic control problem By using our definition of rotated
cost, we define the following minimization problem

L (x):= minZ_:Z(x(t),u(t)).
t=0

Subject to: x(t) and w(t) satisfy (7) forall t € {0,T — 1}. (15)

By dissipativity, L,(z) is monotone increasing. Moreover, we have that Ly (x) > 0 = Lp(x*).
Hence, the problem is operated optimally at the fixed point, (x*,u*). The optimal operation at a
fixed point is a key observation, made by several works, (Goldsztajn & Avrachenkov, 2024} |Gast;
et al [2023b} [Yan, [2024; Hong et al.l [2023)), we recover this result as a natural consequence of
dissipativity.

By Lemma|C.4, L,(x) = 7g* — W,(z) + A -z becauseE] of a telescopic sum of the terms A - (t).
Combining this with (T3) implies that lim,_,o, L, () = h*(x) + A - . As L. (x) is monotone,
it follows that, for any e > 0, there exists a 7(¢) such that for L, (x) — L;(—1(x) < e. Note
that the fact that L, () is monotone is crucial to obtain this property, leading us to use dissipativity.
Putting the three components together, we can now prove the final steps.

2For clarity we will present the proof as if this point is unique although the proof can be rendered without
this requirement.
3In fact, the two control problems are equivalent: w* is optimal for (8) if and only if it is for (T3).
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Proof of Theorem[{.1] We begin by considering the difference between the optimal value and the
model predictive value function, we let X (¢) denote the empirical distribution of the arms at time
t and U () be the corresponding empirical distribution of the actions. We drop the superscript N
for convenience in the proof below, but it should be noted that U (¢) is always obtained from a
randomized rounding procedure and hence, dependent on N.

VN (x) — Vg (x) < lim fZEg ~ R(X(t),U(1))]

= lim —Z]E g =" X(#) - (' =) u(t) + (' =10 (u®) - U®))]

T—oo T
aN — |aN|
< — I e
i 1 3 EK0, )+ ] 1
The first inequality follows from the well known result VOJ}X( x) < g*, (Yan, 2024; |Gast et al., [2023a;

Hong et al.| [2023). The last inequality follows from randomlzed rounding and Lemma- Let

(A) :=limp_,00 = Zt: E[I(X (t),u(t))] denotes the first term of (I6). Adding and subtracting
the storage cost we have:

(A) = lim —ZE[Z w(t)) — \- X()+A-¢>(X(t),u(t))]

TS0 T
Now note, by the dynamic programming principle [(z, ) = L, (x) — L,_1(®(x, w)). Further, for
any state « and its corresponding control u consider:
L () — L:—1(®(x,u)) = Ly () — L. (®(x,u)) + L (P(x,u)) — L1 (P(x,u)).
By choosing 7 = 7(¢) so that, L, (x) — L,_1(x) < €, we can ensure,
L&) — Loy (B(,w)) < Lo(z) — Lo (B(z,u)) + ¢ (a7

Plugging these inequalities together, introducing a telescopic sum, and manipulating the order of
variables slightly (shown in Appendix [C.4), we have the following relation:

T—1
() < e Jim 2 STRILAX(E+ 1) — Lo (@(X (0, u(0) ~ A X (14 1) + A+ (X (1), u(t))].
=0
(18)

L, (x) is Lipschitz in x for any 7. Since, E[X (¢ + 1)| X (¢), U (t)] = ®(X(¢),U(t)), Lemma 1 of
Gast et al.| (2023b)) implies:

[ELX ¢+ DX .U - 20X 0wy < Y] 4 GOV 10N,

where Cy is the Lipschitz constant of the map ®. The L1psch1tz constant of L, (-) in the /1 norm is
£ and Cy is equal to ||A||o. Passing to the limit 7 — oo we have:

Vo (x) = Vi (x) < e + (p +C>\) <\/I? Ca( aNN LaNj)) LN —laN]) (o

opt N
O

5.2 THEOREM[4.2]

The proof Theorem [4.2]is more classical and follows the same line as the proof of the exponential
asymptotic optimality of |Gast et al.|(2023a)); Hong et al.|(2024a). The first ingredient is Lemma
that shows that, by non-degeneracy, there exists a neighborhood of &* such that p, (x*) is locally
linear around x*. The second ingredient is Lemmathat shows that X (t) is concentrated around
x* ast — oo, ie, forall € > 0, there exists C' > 0 such that lim;_, ., Pr[|| X (t) — x*|| > ¢] <
e~ “N. Combining the two points imply the result. For more details, see Appendix
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6 NUMERICAL ILLUSTRATIONS

In this section, we illustrate numerically the performance of the LP-update policy. We show that
it performs very well in practice and outperform classical heuristics in most cases. We choose to
compare against two heuristics of the literature: the LP-index policy of [Gast et al. (2023a)) and the
FTVA of (2023). We choose these two heuristics because they are natural and simple to
implement and do not rely on hard-to-tune hyperparameters (further discussion for our choice can
be found in Appendix [F). All parameters of the examples are provided in Appendix[F} All codes are
provided in supplementary material. In the future, a Github link will be provided.

Comparison on representative examples For our first comparison, we consider three represen-
tative examples: a randomly generated example (in dimension 8), the main example used in
(2023) and described in their Appendix G.2 (abbreviated Example (2023)) in the

following), and Example 2 of Figure 7.4 of (2022) (abbreviated Example (2022)). We
report the result in Figure [Tl We observe that in all three cases, both the LP-update and the FTVA

policies are asymptotically optimal, but the LP-update policy outperforms FTVA substantially. The
situation for LP-priority is quite different: as shown in|Gast et al.| (2023a)), in dimension 8, the LP-
priority policy is asymptotically optimal for most of the randomly generated examples. This is the
case for example (a) of Figure[T|for which LP-update and LP-priority give an essentially equivalent
performance and are essentially almost optimal.

Note that the authors of provide the numerical value of the optimal policy N for Exam-
ple |Chen , which can be done because |S| = 3. We observe that the LP-update is very close
to this value.

1.3751 00121 {//’
0.010 0.120 1
° 1.3501 °
£ 1325 £ 0.008 4 ——- upper bound - !
g g —— LPupdate(10) | g 0.115
o 4 o 4 H
$ 1300 % 0.006 — FTVA g gy ———
§ 1.2751 ——- upper bound Q 0.004 4 LP-priority 0.110 —-- optimal value (Gast et al 2022)
< 1250 —— LP update(10) < —— LP-update
. —— FTVA 0.002 —t+— LP-priority
1.225 —— LP-priority 0.000 1 0.105 4 —— FTVA
0 100 200 300 400 500 0 100 200 300 400 500 50 100 150 200

N N N
(a) Random example (b) Example Hong et al.| (2023) () Example

Figure 1: Performance as a function of N

System dynamics: To explore the difference of performance between the LP-update policy and
FTVA, we study the dynamics as a function of time of the different policies for the first two examples
of Figure [T We plot in Figure 2] the evolution of the system as a function of time (for a single
trajectory). We observe that if the distance between X, and x* are similar for LP-update and FTVA,
the rotated cost is much smaller for LP-update, which explains its good performance.

149
—— LP-updatel0 0301 __ | pupdate10
—— FTVA — FTVA 1.2 0.012 4
0.4 - 0.25 {
—— LP-priority —— LP-priority 104 0.010 4
=03 8 0.201 = 8
20 : ‘x 0.8 —— LP-updatelO S 0.008 LP-update10
y B 015 Lo FTva 2 0.006 — FTVA
X 0.2 g 010 x 06 LP-priority g —— LP-priority
2 0. 04l & 0.004 1
o1 0.05 | 021 0.002
0.00 1 0.000 4
, : : . . » 0.0 . : . . .
0 200 400 0 200 400 0 200 400 0 200 400
Time t Time t Time t Time t
(a) Random example (b) Example from Hong et al.

Figure 2: Distance || X; — z*|| and rotated cost as a function of time for N' = 100.

To explore the system dynamics in more details, we focus on Example (2022) and study the
behavior of the LP-update, FTVA and LP-priority policy. In Figures[3[a,b,c), we present a trajectory
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of each of the three policies: each orange point corresponds to a value of X; € Ag (as this example
is in dimension |S| = 3, the simplex Ags can be represented as a triangle). This example has an
unstable fixed point (Assumption [3]is not satisfied). Both LP-update and FTVA concentrate their
behavior around this fixed point but the LP-priority policy exhibits two modes. When concentrating
on the rotated cost (Figure Ekd)), we observe that it is much smaller for LP-update when compared
to FTVA. This explains why LP-update performs better as shown in Figure [I[c).

Pn

FTVA
® Fixed point
o

LP-priority 1.0
@ Fixed point
o

LP-update
@ Fixed point
© 0.81

0.6
w
o
[}

0.4

—— LP-priority

0.2

FTVA
0.0 —— LP-update
0% 078 LUO O.bO 0.61 0.62
Rotated cost
(a) LP-update (b) FTVA (c) LP-priority (d) CDF of rotated cost

Figure 3: Example 2 from Gast et al. 22. Simulation for N = 100.

Influence of parameters In Figure 4] we study the influence of different parameters on the per-
formance of LP-update. In each case, we generated 20 examples and plot the average “normalized”
performance among these 20 examples. By “normalized”, we mean that for each example, we divide
the performance of the policy by the value of the LP problem (3). The first plot[d(a) shows that the
influence of the parameter 7 is marginal (the curves are not distinguishable for 7 € {3,5,10}). In
the second plot[b), we observe that the sub-optimality gap of LP-update does not seem to depend
much on the state space size whereas the one of FTVA does: FTVA performs worse when |S] is large
probably because there are fewer synchronized arms. In the last plot[c), we study the performance
as a function of the budget a.
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Figure 4: Comparison of the gains as a function of some parameters.

7 CONCLUSION

In this paper, we study the problem of constructing an efficient policy for restless multi-armed bandit
for the average reward case. We show that under quite general condition, a simple model-predictive
control algorithm provides a solution that achieves both the best known upper bound up to know
(O(1/V/N) or exp(—SQN) for stable non-degenerate problems), but also works very efficiently in
practice. Our paper provides the first analysis of this policy for the average reward criterion.

Our paper uses a novel framework based on dissipativity that helps up to make a crisp connection
between the finite- and the infinite-horizon problems and we are the first to us it in this context.
We believe that this framework is what makes our analysis simple and easily generalizable to other
settings. As an example, we discuss in Appendix [B.2] potential generalization to the multi-action
multi-constraint bandits, that is an interesting direction for future work.
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A ADDITIONAL LITERATURE REVIEW

The study of bandit problems dates back at least to the 1930’s in the form of sequential design of
experiments, (Thompsonl, [1933)), (Wald| |1947). However, the more modern perspective of Marko-
vian bandits in terms of MDPs is largely credited to the monograph by Bellman et al|(1957). This
monograph brought to light the combinatorial difficulty of this problem even over a finite horizon.
The rested variant of the multi-armed bandit problem was famously resolved through Gittins|(1979))
which proposed a remarkably simple structure to the solution by allotting indices to the states of the
bandit arms.

In his seminal work [Whittle| (1988)) generalized the problem to the restless multi-armed bandit prob-
lem in its modern form and conjectured that under a condition known as indexability, an index policy
is asymptotically optimal (in the number of arms) for the RMAB problem. |Weber & Weiss| (1990)
showed a counter example to this conjecture, further going on to show in the same work that the
conjecture did hold under a global attractor and ergodicity condition of a single-arm. This result
was generalized to the multi-action setting by Hodge & Glazebrook! (2015)). On the other hand, |Ver-
loop, (2016); |Gast et al.| (2023b)) generalized the set of index policies by constructing a set of priority
policies known as LP priority index. More surprisingly, |Gast et al.| (2023a3b)) showed these priority
policies are in fact exponentially close to being optimal, under three conditions: uniform global
attractor property (UGAP), non-degeneracy of the fixed point and global exponential stability (Gast
et al.[(2023a). The restriction of indexability is removed in |Gast et al.| (2023b) and the condition of
UGAP was first removed |[Hong et al.| (2024al).

Gast et al.|(2023azb)) observed that under the conditions of non-degeneracy, there exists a local neigh-
borhood around the fixed point where the priority policy set is affine. This is the key observation
which leads to the exponentially small error bounds under simple local stability conditions. This
observation around the fixed point drove several works (Hong et al., 2023} |2024aib; |Goldsztajn &
Avrachenkovl, |2024; Yan| [2024) to shift their perspective towards policies that look to steer the dy-
namical system towards the optimal fixed point. [Hong et al.| (2023) created a virtual system that
was driven to the fixed point. To transform this into an asymptotically optimal policy, they required
the real system to synchronize with the virtual system, hence, they developed the synchronization
assumption. Unlike [Hong et al.|(2023)) which passively allowed arms to align with each other even-
tually, (Hong et al.| (2024a)) used a two set policy to actively align non aligned arms to the fixed point.
In contrast to this form of control, |Yan| (2024)) designed the align and steer policy to steer the mean
field dynamical control system towards the fixed point. |Yan| (2024))’s policy is asymptotically opti-
mal under the assumptions of controllability of the dynamical system to more directly move the state
of the system towards the fixed point over time. In parallel to this work, (Goldsztajn & Avrachenkov
(2024) used a similar idea of mean field dynamical control for weakly coupled systems under a
relaxed but generalized constraint set if the single arm process is unichain and aperiodic.

In contrast to these approaches our algorithm is not explicitly designed at the outset to steer the
corresponding dynamical system towards a fixed point. Rather, we show that the model predictive
control algorithm is designed to solve an equivalent rotated cost minimization problem. In doing
s0, it produces policies that are close to optimal to the infinite horizon average reward problem.
We thus produce a policy that is easily generalizable to the multi-action, general constraint setting
without relaxing the constraints using ideas from Whittle’s relaxation. Further, when the fixed point
is unique, minimizing the rotated cost problem will coincide with steering the dynamical control
system towards the fixed point, allowing us to recover exponentially close asymptotic optimality
bounds.

There are also a lot of recent papers on RMABs for the finite-horzon reward criteria Hu & Frazier
(2017); [Zayas-Caban et al.| (2019); Brown & Smith| (2020); Ghosh et al.[ (2022); Zhang & Frazier
(2021);|Gast et al.|(2023a)), or the infinite-horizon discounted reward|Zhang & Frazier|(2022); Ghosh
et al.|(2022). Our results are close in spirit to those since our policy shows how to use a finite-horizon
policy to construct a policy that is asymptotically optimal for the infinite-horizon rewards.
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B ALGORITHM DETAILS

B.1 ROUNDING PROCEDURE
The rounding procedure is composed of two steps:

1. First, given u = p, ((S(t))), we need to construct a vector U™ that is as close as possible
to u while satisfying the constraints that ), u; <= a and N UV is an integer.

2. Second, we use U™ to construct a feasible sequence of actions A(¢) € {0, 1}V that we can
apply to S(t).

The second step is quite easy: as Na; and NUY are integers for all 4, we can construct a feasible
sequence of action by applying the action 1 to NU} arms that in state i and action 0 to the N (z; —
UX) others. The first step is more complicated because we want to construct a U that is as close as
possible as u;. Before giving our procedure, let us illustrate it through two examples of (Na, Nu)
for a = 0.5:

Nz Nu Difficulty Possible U™ by Algorithmm
(10,10,10,9) | (10,9.5,0,0) | Jul: = (10,9,0,0)
We need to randomize (10,6,0,0) with proba 0.7
(10,10,10,9) | (10,5.7,0.2,0) || to be as close as (10, 5,1, 0) with proba 0.2
possible to u (10,5, 0, 0) with proba 0.1

(10,5,4,0)
(10,4,5,0)

(10,10,10,9) | (10,4.9,4.6,0) || JJulls > o and we with proba 0.4
need to randomize with proba 0.6

[=R==K=K=]

This leads us to construct Algorithm 2} This algorithm first construct a v that is as close as pos-
sible to w while satisfying ||v]| < a. There might be multiple choices for this first step and the
algorithm can choose any. For instance, applied to the example such that « = (10, 10, 10,9) and
u = (10,4.9,4.6,0), this algorithm would first construct a vector v that can be any convex com-
bination of (10,4.4,4.6,0,0) and (10,4.9,4.1,0,0). For instance, if the algorithm chose the vec-
tor v = (10,4.4,4.6,0), then the algorithm would produce (10, 5,4,0) with probability 0.4 and
(10,4,5,0) with probability 0.6. Once this is done, the algorithm outputs a U™ that satisfies the
constraints and such that E[U™] = v. In some cases, there might be multiple distributions that work.
The algorithm may output any. An efficient procedure to implemented this last step is provided in
Section 5.2.3 of loannidis & Yeh! (2016).

Algorithm 2 Randomized rounding

Input: Integer N, vector ¢ € Ag such that Nx; is an integer for all 4, vector u € U(x).

Let v be (any) vector such that v < w and ||v]|; = min (Hqu, LO‘AI,VJ )

For all state 4, let z; := Nv; — | Nv;| be the fractional part of Nv;.
Sample a sequence of |S| Bernoulli random variables Z = (Z ... Zs|) such that E[Z;] = z;

and >, Zi < (Y2, zil.
Output: (| Nv;| + Z;)ics-

Lemma B.1. Algorithm[é]outputs a random vector U™ such that UN € U(x) and such that

aN| —aN
E[UY] - |y < 0N —aN,
IEUY] - uly < <25
B.2 GENERALIZATION TO MULTI-CONSTRAINTS MDPS
In this section, we give some clues on how and why our algorithm and results can be generalized
to multi-action multi-constraints MDPs. Specifically, we make the following modifications to our
model:
* Instead of restricting an action to be in {0, 1}, we can consider any finite action set A =

A=1{0...A—1}.
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* Instead of having a single constraint ) A, (t) < aN, we consider that there are K types
of constraints and that when taking action « in state ¢, this action consumes D;f r = 0of
resource k. The action 0 is special and does not consume resources. We impose K resource
constraints:

N
S oyl <o Vkel... K.

As these new constraints are linear, one can define LP relaxation equivalence of (3)) and (8], which
leads to an LP-update adapted to this new setting. The only major modification of the algorithm
concerns the randomized rounding and is where one would need to have an action 0 in order to
guarantee the feasibility of the solution.

* The generalization of Assumption [I|to the multi-action case is straightforward. Hence, one
can prove an equivalent of Theorem [{.1] for multi-action multi-constrained MDPs with a

rate of convergence of O(1/v/N).
* To obtain a generalization of Theorem .2 there are two main difficulties

1. The first is to redefine the notion of a non-degenerate fixed-point in order to replace
Assumption [2 by one adapted to the multi-action multi-constraint case. To that end,
we believe that the most appropriate notion is the one presented in |Gast et al.[ (2024)).
It provides the notion of non-degeneracy that uses a linear map.

2. The second is to provide an equivalent of the stability Assumption[3} To do so, we
can again use the notion of non-degeneracy defined in|Gast et al.[(2024) that defines a
linear map. The stability of this linear map should suffice to prove the theorem.

C PROOF OF THEOREM [_1]

C.1 PART 1, PROPERTIES OF THE DYNAMICAL CONTROL PROBLEM [8}

We begin by formally defining the space of stationary policies IT as the set of all policies that map
x € As to an action u € U(x). Note, any policy in II"N) must satisfy this condition. Now, for an
initial distribution & € Ags define the discounted infinite horizon reward problem,

V5* () = max > B'R(x(t), u(t)) (20)
=0
Subject to the dynamics 2D

where z(t) denotes the trajectory induced by the policy 7. Note, this limit is always well defined
for 5 < 1 and the optimal policy exists (Puterman, |2014). The main idea of this section will be an
exercise in taking appropriate limit sequences of the discount factor 3 to define the gain and bias for
the constrained average reward problem.

Before we proceed we introduce a little notation for convenience in writing down our proof. For any
pair (z, u) define an equivalent {ys 4 } 5,4 With:

Ys,1 = Us
Ys,0 ‘= L5 — Us

Here y; . (t) represents the fraction of arms in state s, taking action a at time ¢. It is also convenient
to introduce a concatenated reward vector r := [r’, r!] and a concatenated transition kernel P :=
[PYPY. Ify := {ys.a} represents the S x 2 vector, it is not hard to check that R(z,u) =

" z+ (-1 u=r -yand ®(z,u) =P’ -z + (P! — P%) - u =P -y. We can rewrite the
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discounted problem as follows:

Vi () rzggggﬂtr -¥(t) (22)

Ys,0 (t) + ys,l(t> :ws(t) (23)

Y Yealt+1) =D PY yuw(t) Vi (24)
S.t.

> yealt) <o Vi (25)

We now state the following lemma on the continuity of the value function in the state:
Lemma C.1. Under assumption Sorany 8 € (0, 1] we have,

k
Vit (x) — V5o (a') < ljkllic —a'[y (26)

Note, this continuity result is independent of the discount factor 3. We postpone the proof to Ap-
pendix [E] This will be critical to proving the main result of the subsection below.

Lemma C.2. Consider the infinite horizon average reward problem under the synchronization as-
sumption. There exists a constant gain and a bias function from As — R denoted by g* and h* (")

respectively defined by:
g = lim (1 - 3;)Vg7 ()
71— 00

for an appropriate sequence 3; — 1 as i — oo. For the same sequence of 3; we can define the
Lipschitz continuous bias function,

P(x) o= Tim 37 BER@ (), u(t) — (1 5) g
t=0
Furthermore, they satisfy the following fixed point equations,

g0 = max Ba(t).u(t) + b (®(z.w) @7)

Proof. Now note, y - 1 = 1, where 1 is the all 1’s vector. We will overload the notation slightly by
letting y(¢) be the optimal trajectory taken by the optimal policy L for Hence, for any constant
g we have:

V(@)= (1-B)"'g+ > _B'r—gl] -y (28)
t=0
One can check that VBOO(:L') satisfies the following Bellman equation,
Vi©(x) =r - y(t) + BVg° (P -y) (29)

Now note, given y(t) at time ¢, «(¢t + 1) is given by a linear (hence, continuous) map (¢ + 1) :=
P - y(t). Further note, given 7, y(t) is upper hemicontinuous with respect to z(t). Let Hg denote
the map induced by 7 from x to y, then Hg(z(t)) = y(¢). Combining the two maps, we have
PHj : As — Ag. Since, Ag is closed and bounded, by Kakutani’s fixed point theorem there
exists atleast one fixed point g := PHp - @3 if yg is the corresponding value for x3 we have
x3 := P - yz. Combining these observations allows us to write,

Vgi(mg) =1 y5+ BV5" ()
We will set gg := r -y and designate this value as the gain of our problem. It then follows that

VBOO(%) = (1 — B)"1gs. Now, we can define a bias function hg(-) as the remaining terms of the
equation (28), concretely,

hg(w) =Y B — gs1] - y(t) (30)
t=0
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and this definition of hg(-) is well defined since the sum is bounded. It now follows that,

V§e(x) = (1—8)""gp + h(x) (31)

More importantly, by plugging these definitions into (29) and making the dependence of y on the
maximal policy, we obtain the following recursion equation:

+hg(x) = max + Bhg(P - 32)
9p +hs(@) = max 95+ Bhs(P-y) (
Further, due to the Lipschitz continuity, Lemma of Vg°(x) with respect to « we have, for any
discount factor 3; < 1,

k(1 — B; ,
(1 - BIVE (@) — Vio(a)|h < (pk’”m |,

. Hence, by choosing a sequence 3; 1 1 as ¢ — oo we obtain:

Jlim (1= ) [VEe () = V2 ()]l — 0

. From Puterman (2014) we know there exists a sequence ¢ — oo such that (1 — 3;)Vg°(z) —

lim7 oo WTT(“”). In particular, this implies that (1 — 3;)V$°(x) converges to a constant value

which we shall denote by g*. This gives us the first result. Critically, by noting that gg, :=
(1= Bi)V5°(zp,) we see that g* must be the limit point of R(zs,, up,) = T -y, =: gs,, hence, it
is the solution to (3).

Next, once again leveraging Lemma[C.T| we have, for any 3 < 1,
o0 - o0 o] k
IVEe () — (1= B8)"gslls = V5° (=) — V5®(@s) |1 < ﬁllm —zplh
Plugging these results into (31I)) we see that,
k
1hs ()] < Ellw — 3L (33)

is bounded by a constant for all 3 < 1. By the same token hg is Lipschitz with constant p%'
Choosing the same sequence /3; in (30) and passing to the limit we obtain :

W (@) == lim h, (@) = lim > Bl —g5,1] - y(t) = lim 3 Bir-y(t) - (1- 8) 9"
t=0 t=0

1—00

Thus, we have defined both the gain and bias g* and h*(-) for our deterministic average reward
problem. Recall, R(z,u) :=r° -z + (r! —r%) - u = r -y giving us the second result:

W () = lim »  GiR(x(t), u(t) — (1- B)~'g" (34)
11— 00 =0
Further, this sequence 3; 1 1 in (32)) yields the following fixed point equation:
g + P (%) = max R(a(t),u(t) + 7" (2(2(1), u(t)))
which completes the proof. O

C.2 PART 2: DISSIPATIVITY

Lemma C.3. Let [(x,u) = g* — R(z,u) + \- @ — \- ®(x, w). Then:
« [(x,u) > 0forall x € As and u € U(zx).

o If (x*,u*) is a solution to (), then [(x*,u*) = 0.

This shows that our problem is dissipative.
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Proof. Recall that ) is the optimal dual variable of the constraint x = P% - x + (P* — P%) . u of
problem (3). By strong duality and Lemma [C.2] this implies that

g* =max R(z,u) +\- (P’ -z + (P' —P%.u)—A-x  Subjectto: wu €U(x).
x,u
Recall that ®(x,u) = P? - & + (P! — P?) - w. This implies that

0 = min I(z, u) Subject to: u € U(x),

w7

which implies the results of the lemma. O

C.3 PART 3: MPC IS OPTIMAL FOR THE DETERMINISTIC PROBLEM

Recall that L, (x) := min Y7 I(z(t), u(t)) with 2(0) = x.
Lemma C4. Forall x € Ag, for any € > 0, there exists t such that:

Lt(w) — Lt_l((I’(:IZ, U)) < €.
where u € U(x) is p ().

Proof. Recall that the objective function of the optimization problems W.. and L. are:

- I(x(t), u(t)) For L,
=0
3 R(z(t), u(t)) + A(z(r)). For W

t

By Lemma the rotated cost is I(x,u) = ¢g* — R(x,u) + A(x) — A\(®(x,u)). As any valid
control of L, and W satisfy &(t + 1) = ®(x(t), u(t)), the objective of L, can be rewritten as:

I
o

S i), u(t) = 3 g° — Rla(t), u(t)) + Ma(t) — N@(a(t), u(t)
t=0 t=0

—M@(0) + g — 3 Ri@(t), u(t) — Az (r)),
t=0

As the last two terms correspond to the objective function for W, this shows that L, (x) = 7¢* +
A - @ — W, (x). Clearly, the two objectives are equivalent and () = w(0). Now note, by Lemma

[C2lwe have,
lim L,(x)=X-x+ h*(x) < o0
T—00

is bounded. Due to dissipativity, L (x) is monotone increasing in 7. It follows that
L (x)— L.—1(®(z,u)) <e.
This completes the proof. O

C.4 PROOF OF THEOREM[4. I} COMPUTATION DETAILS

Here we detail the analysis of (A) and how we go from (T6) to (I8) in the proof of Theorem [4.1
This term is equal to

F 2 B0 = 1 3B

T E L (X(6) — Ly (9(X(8), ult) — A- X(8) + A S(X(8), u(t))]
0
-1
E (L, (X (1)) — Ly (9(X (6),u(t)) + ¢ — A X(8) + A- (X (), u(t))], (35)

(X (), u(t) = A- X() + A- (X (D), U(t))}

IA
Nl= =
IMT T

o
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where we use the definition of the rotated cost for the first equality, the dynamic principle for the
second line and the identity (T7) for the last time.

)ﬂ
L

= S EAX() ~ A~ X (0] = 0 SO[EA(X (4 1)) = A~ X (4 1)

t=0

ol
o

+ o (Lo(X(0)) = Lo (X (1)) + A= X (0) = A+ X(T)

When T goes to infinity, the second line of the above result goes to 0. This shows that when we take
the limit as 7" goes to infinity, (33) is equal to

T—o0

et Jim D (X (0 1)) = Lo(BOX(0):ul0) A X0+ 1)+ 0 @(X(0).u(0)]
which shows (I8)

D PROOF OF THEOREM [4.2]

Lemma D.1. Assume[2)and 3] then there exists a neighborhood N of * and a matrix A such that
pr(x) = pr(x*) + A(x — x*) forall z € N.

Proof. Let us denote by ST := {i : uf = z}} the set of states for which all the action 1 is taken for
all arms in those state and by S — + := {3 : u] = x]} the set of states for which all the action 0
is taken for all arms in those state. Recall that ¢* is the unique state such that 0 < u; < z} (which
exists and is unique by Assumption[2] We define the function f : As — S by:

T Foralli € St
fileg)=¢ a—> csr ;i Fori=i*
0 Foralli € S—.

We claim that there exists a neighborhood N such that

1. Forall x € NV, we have f(x) € U(x), which means that f(x) is a feasible control for .

Proof. We remark that by construction, one has ). f;(x) = «. Hence, f(x) is a valid
control if and only if 0 < w < «. This is clearly true for all ¢ # ¢*. For ¢*, it is true if
0 <a—3 s x; <z which holds in a neighborhood of = because of non-degeneracy
(Assumption that implies that 0 < u} = o — >, o4 @} < T).

2. There exists a neighborhood A/’ of &* such that if (0) € N, and we construct the se-
quence x(t) by setting @ (t + 1) = ®(x(t), f(x(t))), then z(t) € N for all ¢.

Proof. We remark that ¢(t + 1) = «* + (x(t) — «*) P*, where P* is the matrix defined in
Assumption E} Indeed, one has:

©;(z, f(2)) = (xP°); + (f(=)(P' - P"));
= Z ;piPl + Z leO + 2 P j + (a0 — Z xi)(Pil*yj - Pio*_’j)
ieSt i€ES™ €St
= Z ,’]:‘ZPO+ sz i,j Pl +PO )+a(P11»<77_qu77)
€S~ U{i*} €St

= (@P"); +a(P ;- P. ),
where P* is the matrix defined in Assumption 3]

Note that by construction, one has ®(x*, f(x*)) = x*. This implies that ®;(x, f(x)) —
Q;(x*, f(x*)) = (x — x*)P*. The result follows by Assumptlon 3| that imposes that the
matrix P* is stable.
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3. Let Z(x) be the reward function collected by the control f(x). Z(x) is a linear function
ofx and Z(x*) = 7g* + A - z* = W, (x*). Asaresult, Z(x) = W, (x) forall z € N”.

Proof. The linearity of Z is a direct consequence of the linearity of f and ®. The fact that
Z(x*) = 7g* + X - " is because f(x*) = u*. Itis also the optimal value of W, (z*) by
dissipativity. Last, as the function W;() is the solution of an LP, it is concave. Since Z is
linear and 0 < z; < 1 for all state 7, it follows that the two functions must coincide.

O

Lemma D.2. Assumell| andH| Assume that aN is an integer. For any neighborhood N of x* There
exists a C' > 0 such that if X (t) is a trajectory of the optimal control problem, then:

lim Pr[X () e N] < e 9N

t—o00
Proof. We use two main steps:

1. For any initial condition x(0), let (¢t + 1) = ®(x,(t), u-(x-(t))), then there exists 7
and T such that for any initial condition 2 (0) and any ¢ > T, one has x(t) € N.

Proof. The result follows by dissipativity (which holds because of Assumption [T). Indeed,
as x - (-) is an optmal trajectory, it must hold that lim, _, o 700 [(2+(t), ptr (2 (2))) = 0.
2. The map x — p, () is Lipschitz-continuous in x.

Proof. By assumption El, the control p.(x) is unique. The result then follows because
- () is the solution of a linear program parametrized by .

The lemma can then be proven by adapting the proof of Theorem 3 of |Gast et al.| (2023b) and in
particular their Equation (17). This is proven by using Lemma 1|Gast et al.|(2023b)) that implies that

Pr(| X (t+1) = (X (1), U(t)] = e < e ™. O

We are now ready to prove Theorem We can follow the proof of Theorem [.T|up to that
shows that V¥ (x) — VL(I{YT) (x) is bounde by

opt

T—1
e Tim - S E[L (1)) — Lo (B(X (1), u(t))) ~ AX(E+ 1)+ AB(X (1), u(t)]
t=0

Let g(x) = L,(z) — A@. By LemmaD.1] this function is linear on \. Let us denote by E(t) the
event

E(t) = {X(t+1) € N AD(X(t),u(t) € N'}.
Hence, this shows that:
E[L: (X (t+1)) = Lo (®(X (1), u(t))) —
Elg(X(t+1)) — g((X (1), u(t)))
E[(9(X(t+1)) = g((X (1), u(t)) e ] +E[(9(X(t+1)) — g(@(X(t), u(t)1pw)]

By linearity of the ¢ when E(¢) is true and by the fact that E[U (¢)] = w(¢) (Lemma|B.I), the first
term is equal to 0. Moreover, as F(t) is true with probability at least 1 — 2¢e~“™ the second term is
bounded by C’e~“"N when ¢ is large.

This concludes the proof of Theorem .2}

AX(t+ 1) + AB(X (), u(t))]

*In this expression, the term (aN — |aN |) /N is equal to 0 here because we assumed that aN is an integer.
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E PROOF OF LEMMA

PROOF OUTLINE

This section is dedicated to proving the Lipschitz property for the value function V3 (x) in & under
the ergodicity Assumption [I] For simplicity of exposition we will set k& = 1, although it is not hard
to extrapolate the proof for k£ > 1 and is left as an exercise for the reader.

The key (rather counter-intuitive) idea behind this proof is to rewrite the problem in terms of an
M component vector s € S™M). As M tends to infinity we will use the dense nature of rational
numbers in the real line and continuity arguments to argue that the proof holds for any € Ag.

Hence, to start with, we will assume that x € AgM), the set of all points on the simplex that can

be represented by an M component vector S(*). In order to complete this proof we will need an
intermediate result that verifies the Lipschitz property for all ¢, ' € AY such that |z — /|| < &
i.e, they differ on at most two components.

PROOF OF LEMMA

Following the proof outline above let ¢, ' € Ang). Hence, there exist unique (up to permutation)
M component vectors s(x) := {so, s1...spm—1} and s'(x) := {s(, 8] ... 81}

Lemma E.1. Under assumptionfor any B € (0,1], let x, ' € Ang) with ||z —x'||1 < %, then,

]\4’

1
Vs (@) — Vo (2') < ;Hw*w’lh (36)

Proof. Lets(x) := {so, $1...5m—1}, WLOG we can assign s’ () := {s{, 51, s2 ... sn—1}. Note,
in this case if sq is the 1% component (sg = 1) then one can look at the fraction of arms in state 1,
x(s); := 1. Now if s, =i # 1, we have 2} = z1 — ﬁ and z} = x; + ﬁ, allowing us to conclude
|z — @'y = Z. Note, for any @, let a be an action vector i.e. a = {ag,a;...ap—1}. Since,
\Zn (x) is always well defined for any 8 < 1, one can write the @) function for state s and action a
as follows:

M~
1
(s,2) = 57 ZR§:+B > VRIS P,

S//EASSM)
Now, there exists a* := {ag,a1...an—1} such that Q(s,a*) = V5°(x(s)). Suppose we pick

a’ :={0,a1,az2...ap-1}. Note, a’ always satisfies the constraint on the action space (if needed by
pulling one less arm). Hence,

Vie(x) — V5o (x') < Q(s, a*) —Q(s',a’)

Rao —
8
_°0 S0 4 § Voo /l HJW 1Pa” (Pgo ., — PB’ 3“)
s 0,50 0:°0
s’eS(M)
R% —RY,
80
+
M
M 1 o] T/ " An 0
E , I, Ps,b,s;; E Vﬁ (x({7,87 ... shy1 ))(Psn,i _Ps'n,i)
sY sty €S
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Note, 0 < Rgg < 1, so the first term is bounded above by % We will focus on the second term, to
this end let p(i) = min{ P>, P% }.

80,17 56,1

Z V= (x({7, s sh1 ))(P5:LL - Pg/n,i)

€S
=Y VEI (st st D)Pe — (i) = D VES(x({dy 87 - shy 1)) (PY s — p(D))
i€S 1€S
S VAo i D= 3 p(0) — i V(U o oy} = 3 000)

Note, by assumption , p =Y icsp(i) > 0. Further, let

o= max [V5©(x) — V5o (x')|
@0’ e AL |lo—a' || <2/M

Let us denote by & := x({i, s} ...s%,_1}) and & := x({¢/, s{ ... s, _1}) we have: ||& — &'||; <
2/M. This leads us to the following result, for any @, ' such that ||z — «'||; < 2/M we have:

V3 (@)~ V()] < 2 + (1= plo

)

In particular, choose x, ' € AgM that maximize the value of Vg° (x) — Ve (x’), we then have,

1
o< T (1-p)o
Finally, putting the results together we have for any x, z’ € A(SM) with || — 2’| <2/M:

o0 o0 1
[V5e(x) = V§o(z')| <o < %”93—93/“1

We are now ready for the final steps of the proof.

Proof of Lemma|C.1] The result then follows by noting that for any =, a2’ € AESM) there exists a
shortest path from x to &', say {& = x¢, €1, @2 ..., zp = &'} such that between any two sequential
components exactly one component is changed at a time ||z; — @;41|| = 2. Clearly, no more than
2M changes can occur along this path, it follows that P < 2)/. Summing along this path allows us

to see that for all x, 2’ € Agw) we have,
oo o0 1
IW(@—%(fﬂéﬁm—fm

We can now complete the proof by noting that Ups~¢ Agm is dense in As. Hence, the result must
hold for any x, ' € As. This completes the proof. O

F DETAILS ABOUT THE EXPERIMENTS

F.1 GENERALITIES

All our simulations are implemented in Python, by using numpy for the random generators and
array manipulation and pulp to solve the linear programs. All simulations are run on a personal
laptop (macbook pro from 2018). To ensure reproducibility, we will make the code and the Python
notebook publicly available (this not done now for double-blind reasons).

Value of 7 — Except specified otherwise, we use the value 7 = 10 in all of our example except for
the example |Chen|(2022) where we use 7 = 50.
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Number of simulations and confidence intervals — To obtain a estimate of the steady-state aver-
age performance, we simulate the system up to time 7" = 1000 and estimate the average performance
by computing the average over values from ¢ = 200 to 7" = 1000. All reported confidence intervals
correspond to 95% interval on the mean computed by using i + 2\/%, where i and ¢ are the
empirical mean and standard deviation and k is the number of samples (the number of independent
trajectories and/or number of randomly generated examples).

A note on choice of algorithms for comparison As specified in the main body of the paper,
we choose to restrict our comarison to two algorithms: LP-update and FTVA. We note here that
Hong et al.| (2024a)) is theoretically an exponentially optimal solution to the RMAB problem and
its absence in our comparison might seem conspicuous to the reader. Hong et al.| (2024a)) is a
two set policy which requires the identification of a largest set that can be aligned with the fixed
point and actively steering the remaining arms towards this set. Theoretically, we know that for
a suitable definition such a set always exists for any finite joint state, however, from a practical
perspective the problem of choosing a “largest” set that aligns with the fixed point seems unclear to
us. Unfortunately, the authors do not provide an implementation for their algorithm and hence, we
refrain from comparing our work in order to avoid misleading our readers about the efficacy of their
algorithm in comparison to our own as the performance of such an algorithm might heavily depend
on the choice of hyperparameter used to implement the alignment procedure. On the contrary,
the LP-update does not have any hyperparameters (except for 7 that we set to 7 = 10 in all our
simulations), and so have FTVA and LP-update.

F.2 EXAMPLEHONG ET AL.|(2023)

This example has 8 dimensions and its parameters are:

1
1
048 0.52
. 047 0.53
P = 0.9 0.1
0.9 0.1
0.9 01
0.1 0.9
09 0.1
0.9 0.1
0.9 01
1 0.9 0.1
P= 0.46 0.54
045 0.55
0.44 0.56
043 057

R} = 0 for all state and R° = (0, 0,0,0,0,0,0,0.1).

For a« = 0.5 (which is the parameter used in [Hong et al| (2023)), the value of the relaxed LP
is 0.0125 and the LP index are [0.025,0.025,0.025,0.025,0, —0.113, —0.110, —0.108]. Note that
these numbers differ from the “Lagrangian optimal indices” given in Appendix G.2 of [Hong et al.
(2023). This is acknowledge in[Hong et al.| (2023)) when the authors write “In [their] setting, because
the optimal solution y remains optimal even without the budget constraint, we can simply remove
the budget constraint to get the Lagrangian relaxation [...] A nuance is that the optimal Lagrange
multiplier for the budget constraint is not unique in this setting, so there can be different Lagrange
relaxations”. As a result, the priorities given by their indices and the true LP-index are different.
In our simulation, we use the “true” LP-index and not their values. We also tested their values and
obtained results that are qualitatively equivalent for the LP-priority (i.e., for their order or ours, the
LP-priority essentially gives no reward).

23



Under review as a conference paper at ICLR 2025

F.3 EXAMPLE|CHEN|(2022))

This example has |S| = 3 dimensions and its parameters are:

0.022 0.102 0.875 0.149 0.304 0.547
P°=1{ 0034 0.172 0.794 Pl =1 0568 0.411 0.020

0.523 0.455 0.022 0.253 0.273 0.474

R! = (0.374,0.117,0.079) and R? = 0 for all i € S.

For oo = 0.4 (which was the parameter used in|Chen| (2022)), the value of the relaxed LP is 0.1238
and its LP-index are (0.199, —0.000, —0.133).

F.4 RANDOM EXAMPLE
To generate random example, we use functions from the library numpy of Python:

» To generate the transition matrices, We generate an array of size S x 2 x S by using the
function np . random. exponential (size=(S, 2, S)) from the library numpy of
python and we then normalize each line so that the sum to 1.

* We generate reward by using np. random. exponential (size=(S, 2))

The example used in Figure [T[a) corresponds to setting the seed of the random generator to 3 by
using np . random. seed (3) before calling the random functions. Its parameters (rounded to 3
digits) are:

0.101 0.155 0.043 0.090 0.281 0.285 0.017 0.029
0.006 0.207 0.076 0.136 0.085 0.299 0.147 0.043
0.317 0.254 0.065 0.013 0.144 0.111 0.061 0.035
0.098 0.183 0.069 0.068 0.218 0.028 0.200 0.136
0.053 0.080 0.009 0.038 0.483 0.036 0.159 0.143
0.018 0.105 0.027 0.397 0.150 0.102 0.161 0.040
0.110 0.050 0.088 0.024 0.023 0.142 0.169 0.393
0.055 0.043 0.017 0.494 0.227 0.034 0.119 0.011

Po=

R® = (0.073,0.087,0.778,0.186, 1.178,0.417, 1.996, 1.351)

0.011 0.124 0.006 0.131 0.224 0.070 0.241 0.191
0.071 0.138 0.033 0.023 0.045 0.250 0.339 0.101
0.093 0.113 0.056 0.061 0.109 0.351 0.157 0.059
0.158 0.176 0.151 0.150 0.060 0.142 0.053 0.109
0.370 0.185 0.261 0.020 0.022 0.064 0.047 0.030
0.199 0.139 0.099 0.050 0.141 0.104 0.082 0.187
0.214 0.088 0.011 0.075 0.295 0.174 0.075 0.068
0.028 0.157 0.126 0.078 0.039 0.127 0.376 0.069

Pl =

R' = (0.059,3.212,1.817,0.302, 2.259, 0.067, 0.344, 0.172).

For « = 0.5, the value of the relaxed problem is 1.3885 and the LP-index are
0.377,3.273,0.846, —0.116, 0.802, , —1.230, —0.562.

For the other randomly generated examples, we compute the average performance over 50 examples
by varying the seed between 0 and 49 for most of the figures except for Figures f[b) where we only
use 20 examples (and vary the seed between 0 and 19) to improve computation time.
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