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Abstract
Being able to provide explanations for a model’s
decision has become a central requirement for
the development, deployment, and adoption of
machine learning models. However, we are yet
to understand what explanation methods can and
cannot do. How do upstream factors such as data,
model prediction, hyperparameters, and random
initialization influence downstream explanations?
While previous work raised concerns that explana-
tions (E) may have little relationship with the pre-
diction (Y ), there is a lack of conclusive study to
quantify this relationship. Our work borrows tools
from causal inference to systematically assay this
relationship. More specifically, we study the rela-
tionship between E and Y by measuring the treat-
ment effect when intervening on their causal an-
cestors, i.e., on hyperparameters and inputs used
to generate saliency-based Es or Y s. Our results
suggest that the relationships between E and Y
is far from ideal. In fact, the gap between ‘ideal’
case only increase in higher-performing models–
models that are likely to be deployed. Our work is
a promising first step towards providing a quanti-
tative measure of the relationship between E and
Y , which could also inform the future develop-
ment of methods for E with a quantitative metric.

1. Introduction and Related Work
Being able to provide explanations for a machine learning
(ML) model’s decision has become central to the develop-
ment, deployment, and adoption of ML models. Expla-
nations are important not only to help practitioners bet-
ter understand the model’s underlying rationale to debug
models (Adebayo et al., 2022; Rieger et al., 2020) and
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to influence the model’s decision (Koh et al., 2020; Bau
et al., 2020; Meng et al., 2022), but also to ensure that
models comply with regulatory requirements (Parliament
& of the European Union, 2016). However, Existing tools
for interpretability have however elicited criticisms, often
highlighting computational or qualitative user-study-based
evidence that explanations generated from these tools may
contain critical errors and must be used with care (Poursabzi-
Sangdeh et al., 2018; Chu et al., 2020; Adebayo et al., 2018;
Alqaraawi et al., 2020; Srinivas & Fleuret, 2021; Kinder-
mans et al., 2019).

One focal point in many investigations is the relationship
between explanations (E) and predictions (Y ). In this work,
we seek to formalize this relationship, inspired by the com-
mon cause principle of Reichenbach (1956) that states that
if two variables are statistically dependent, there must be a
common cause influencing both of them, and this common
cause can be chosen such that it explains all the dependence.
We develop a measure of dependence via the Potential Out-
comes framework (Rubin, 2005). Viewed through a lens
of causality, we evaluate the treatment effect of hyperpa-
rameters of the model, H (i.e., H taking on value h′, the
counterfactual antecedent) on E and Y conditioned on a
particular instance x. In other words, by measuring the
treatment effect of each hyperparameter (e.g., choice of acti-
vation, initialization, training budget), we are measuring its
influence on E and Y , and in particular, how the influence
is different or similar in E and Y (Fig. 1; left). Furthermore,
under a careful evaluation, we tease apart the direct influ-
ence of H on E vs. its indirect influence mediated through
Y to better understand the flow of causation (Fig. 1; right).

Why are hyperparameters considered treatments? Under a
fixed random seed, hyperparameters are arguably the only
reasonable causal ancestor of the model because they fully
determine the weights of the resulting model and the behav-
ior thereof. They are also known to influence the inherent
tendencies/performances of the model. For example, mod-
els trained on completely different hyperparameters could
perform similarly under one metric (e.g., training loss), but
have completely different task-specific performance, e.g.,
fairness (D’Amour et al., 2020). One can also use the hy-
perparameters alone to predict the final performance of the
models (Unterthiner et al., 2020) or even use the model’s
weights to predict hyperparameters (Eilertsen et al., 2020).
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Figure 1: Explanation generating process involve three stages: training, predicting, and explaining (left). Intervening on
factors (H , X) allow for studying their treatment effect (i.e., causal influence)on down-stream targets (i.e., Y , E) (right).

Our study reveals a surprising relationship between E and
Y (precisely, measured by how a causal ancestor of the two
influences them). In particular, for top-performing models,
the influence on E from Y decreases compared to relatively
lower-performing models. For some methods, a causal an-
cestor of both Y and E directly influences E much more
than Y , leaving Y ’s influence on E minimal, even though
this ancestor, i.e, hyperparameter, should not inform the
explanation of the model in any way. This finding was
consistent across 30k pre-trained models with different hy-
perparameters across different datasets. Our work informs
practitioners on what different explanation methods can and
cannot be used for: if one’s goal is to findE that is related to
the prediction, Y , methods with little relationship between
E and Y under our framework aren’t the best choices. Our
framework can also be used to drive the development of new
methods by providing a quantitative metric.

Related Works Some studies argue that since many expla-
nation methods claim to reveal a model’s rationale behind its
decision (Y ), there must be a “strong correlation” between
E and Y , e.g., when Y changes significantly, E must do
so as well (Adebayo et al., 2018; Srinivas & Fleuret, 2021),
while others argue that E should also reflect other factors
in addition to Y such as features in data points and data
distribution (Adebayo et al., 2018; Nie et al., 2018; Srinivas
& Fleuret, 2021; Bilodeau et al., 2022). On the one hand,
it has been observed empirically that explanations from an
untrained model and a trained model can be visually and
statistically indistinguishable (Adebayo et al., 2018). On
the other hand, it was proven theoretically that E has no
relation to Y in some cases (Nie et al., 2018; Srinivas &
Fleuret, 2021). However, quantitatively validating the rela-
tionship between E and Y while controlling for potential
confounding factors such as hyperparameters and datasets
remains an open question.

Despite some methodological similarities, our work is fun-
damentally different from using causal inference to gener-
ate counterfactual explanations, e.g., Wachter et al. (2017),

where intervention is on the subset of features in an instance,
rather than on a causal ancestor of E while keeping the
dataset constant. Our goal is to study the relation between
Y and E, and not to generate explanations.

2. Methodology
To understand the relationship between E and Y via H’s
impact on them, we perform an exploratory analysis on a
class of ML models and then analyze their causal effects on
the downstream E and Y .

Notation Let X ∈ X ⊆ Rd be a random variable rep-
resenting a data instance and H ∈ H a random variable
representing a hyperparameter vector. For x ∈ X and
h ∈ H, let Y ∗h (x) and E∗h(x) be random variables rep-
resenting respectively prediction and explanation associated
with the hyperparameter value h and data instance x. That
is, Y ∗h (x) and E∗h(x) correspond to the potential prediction
and explanation when the model, trained with the hyperpa-
rameter vector H = h, is applied on the data point X = x.
Put differently, the outcomes Y ∗h (x) and E∗h(x) are real-
ized by assigning the treatment (or intervention) H = h
(and the associated model) to the individual data X = x.
We distinguish Y ∗h (x) and E∗h(x) from the notation of ob-
served prediction Yh(x) = Y ∗h (x) |H = h and explanation
Eh(x) = E∗h(x) |H = h because in practice we cannot
observe Y ∗h (x) and E∗h(x) for all values of h. The observed
values of the prediction and explanation will be denoted by
ŷh(x) and êh(x), respectively.

2.1. Explanation Generating Process

At a high level, the explanation generating process (EGP)
shown in Figure 1 describes a mechanical system that is
engineered to train an ML model given an initial set of hy-
perparameters, h, which yields a prediction ŷh(x) and an
explanation êh(x) given a test instance x. Formally, a super-
vised ML model is obtained through a training procedure
T : H × D → F given a set of training hyperparameters
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and a dataset D := (X ,Y). The training procedure typi-
cally contains initialization, optimization, and regularization.
Once trained, the model can predict the target of a given
test instance x via a prediction procedure P : F × X → Y .
Finally, local explanations e are the result of an explanation
procedure E : F×X×Y → E applied to a tuple of a trained
model, test instance, and predicted target, ŷh(x). Note the
absence of noise variables; under a fixed random seed, the
procedures above are deterministic.

Although these procedures may not be expressible in closed-
form, e.g., one may not conclusively infer the trained
weights of a neural network by only looking at the hyperpa-
rameters, each procedure is executable on a computer, e.g.,
the model weights can be obtained by training procedure
under a training setting and given budget.

2.2. Potential Outcomes Framework

To study the causal effects of hyperparameters, we adopt the
Potential Outcomes (PO) framework (Rubin, 2005). Given
the temporal precedence of hyperparameters over the trained
model parameters and in turn over the prediction and expla-
nation, one may alternatively view the mechanical system
in Figure 1a as the causal system shown in Figure 1b (with
graphical and structural components). In this framing, the
causal influence of up-stream factors (e.g., H,X) on down-
stream targets (e.g., Y,E) can be measured as the treatment
effect of a factor (e.g., treatmentH = h vs. controlH = h′),
on the down-stream target.

In what follows, we will refer to Y ∗h (x) and E∗h(x) as po-
tential prediction and explanation on an instance x when
the model is trained with the hyperparameter h. For any
pair h, h′ ∈ H, the individual treatment effect (ITE), which
quantifies the treatment effect of assigning two different
parameters, can be defined as

ITEY (x) = Y ∗h (x)− Y ∗h′(x). (1)

Similarly defined, the treatment effect for explanation is
denoted as ITEE . In principle, it is possible to realize Y ∗h (x)
and E∗h(x) for all h ∈ H given unlimited computational
resources. As a result, one can evaluate ITE(x) in prac-
tice by contrasting the predictions of models trained on
hyperparameters h and h′. However, when this process
becomes computationally prohibitive, we might face the
so-called fundamental problem of causal inference, i.e., for
each x ∈ X , we can only observe Y ∗h (x) and E∗h(x) for
a small number of hyperparameters h, but not the other
h′ 6= h. Furthermore, we may not be able to interpret the
observed differences between Y and E that arise from two
different H as a causal effect unless the assumption of ce-
teris paribus, i.e., all else being equal, is fulfilled. Retraining
almost identical neural networks with all possible values
of hyperparameters is however computationally prohibitive.
Instead, we perform an observational study on a model zoo,

a large collection of pre-trained models (Unterthiner et al.,
2020; Jiang et al., 2019), to study the relationship between
E and Y ; see Section 2.3 for further discussion.

Since our research question seeks to investigate the im-
pact of multiple, potentially-non-binary treatments (e.g.,
set of numerical and categorical H) on the target predic-
tion/explanation (see Figure 1a), we amend the treatment
definitions above as follows:

Y ∗h=1(x)− Y ∗h=0(x)

effect of h = 1 w.r.t h = 0 on x ∈ X
(single binary treatment)

(2)

Em 6=n [Y
∗
h=n(x)− Y ∗h=m(x)]

effect of h = n w.r.t h 6= n on x ∈ X
(single non-binary treatment)

(3)

Eh\i

[
Em 6=n

[
Y ∗[hi=n,h\i]

(x)− Y ∗[hi=m,h\i]
(x)

]]
effect of hi = n w.r.t hi 6= n on x ∈ X
(multiple non-binary treatments)

(4)

which allows for answering queries of the form “what is the
treatment effect of optimizer choice ν1 as opposed to ν2 on
the local prediction of x?”. Were the optimizer choice, ν, to
be the only hyperparameter in the system, this query would
be answered by (3). In the setting of Figure 1a, however, (4)
is employed to also marginalize out the effect of other Hs.
Although these expressions average over multiple set of Hs,
they all refer to the prediction of the same individual (ITE);
extensions to CATE and ATE, aggregated over x ∼ X ,
follow naturally. To give (2), (3), (4) a causal interpretation,
the following assumption is required.

Assumption 2.1 (Full exchangeability). Y ∗h ⊥⊥ H and
E∗h ⊥⊥ H for all h ∈ H.

For example, random assignment of h within a given range
of values h makes Y ∗h ⊥⊥ H and E∗h ⊥⊥ H . Although
the treatment effects are identifable, evaluating them is
computationally expensive. To understand why, it helps
to compare with with the setting of counterfactual expla-
nations (Wachter et al., 2017). Whereas Wachter et al.
(2017) contrast Y ∗h (x) with Y ∗h (x

′), which only requires
the invocation of the predicting procedure given a new
instance (e.g., a forward pass through a neural network),
our work instead contrasts Y ∗h (x) with Y ∗h (x

′), which in-
vokes the training procedure given a new H setting (i.e., a
full re-training). In practice, computing power is limited and
we may only have access to the predictions under a single
model, say, Y ∗h (x) and it can be prohibitively expensive
to produce the prediction under a different model, Y ∗h′(x),
especially for large neural networks.

Note that the full exchangeability condition in Assump-
tion 2.1 involves the “counterfactual” prediction Y ∗h and
explanation E∗h rather than the “observed” counterparts Yh
and Eh. The counterfactual variables Y ∗h and E∗h describe
the prediction and explanation one would observe had all
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instances in the entire population received the hyperparam-
eters h as a treatment. Therefore, while in general, Yh(x)
= Y ∗h (x) and Eh(x) = E∗h(x) can be random as well, e.g.,
if there is an exogenous noise, in our setting they are deter-
ministic and randomness in the system arises only from the
distribution of X (sampled from some dataset). As an anal-
ogy, imagine a treatment assigned to a patient: an individual
outcome Y ∗h (x) for each patient x and the population out-
come Y ∗h can both be random, but the former (randomness
in Y ∗h (x)) is missing in our setting.

Kernelized treatment effect (KTE) In addition to non-
binary treatments, our work studies the effect of treatments
on non-binary target variables (Y ∗h (x) and E∗h(x)) with di-
mensionality higher than that typically studied in the liter-
ature. For example, when x is an image of size d1 × d2,
E∗h(x) ∈ Rd1×d2 . This means that (2) will yield a treat-
ment effect vector (or map) as opposed to a scalar treatment
effect. In order to compare the relative effect of hyperparam-
eters in various settings, we extend the standard definitions
of treatment effects once again, by replacing the subtraction
operator in (2) with an alternative notion of dissimilarity
between counterfactuals, i.e.,

‖φ(Y ∗h (x))− φ(Y ∗h′(x))‖2G = k(Y ∗h (x), Y
∗
h (x))

− 2k(Y ∗h (x), Y
∗
h′(x))

+ k(Y ∗h′(x), Y ∗h′(x))

(5)

where φ : Y → G is the canonical feature map associ-
ated with a positive definite kernel k : Y × Y → R, i.e.,
k(y, y′) = 〈φ(y), φ(y′)〉G for y, y′ ∈ Y , and G is a repro-
ducing kernel Hilbert space (RKHS) associated with the
kernel k; see, e.g., Schölkopf & Smola (2002); Muandet
et al. (2021); Park et al. (2021) for detailed exposition. Sim-
ilar extensions can be applied to explanations as well as
to (3) and (4) for multiple non-binary treatments. In Sec-
tion 3, we test various kernels k to test the sensitivity of our
analysis to the choice of kernel. This enables us not only
to work with the high-dimensional multivariate outcomes
through positive definite kernels, but also to capture subtle
effects of the hyperparameters on prediction and explanation
that are beyond the mean effect. Applying kernel is espe-
cially important when we compare E∗h(x), as comparing
each spatially-related pixel value across different images is
likely to not lead to a meaningful result. Although Zhao &
Hastie (2021) propose an alternative approach that might
be suitable for analyzing the causal effects of interest in our
work (i.e., using partial dependency plots), they emphasize
that it should not replace a random experiment or a carefully
designed observational study.

2.3. Observational Study

In practice, we may not be able to compute Y ∗h (x) and
E∗h(x) for all h ∈ H because of the limit on computational
resources. Hence, we face the fundamental problem of

causal inference that prohibits us to exactly evaluate the
ITE in (1). To this end, we will denote the observed pre-
diction and explanation by Yh(x) = Y ∗h (x) |H = h and
Eh(x) = E∗h(x) |H = h, respectively. Both (3) and (4) can
be defined in terms of Yh(x) and Eh(x), but the empirical
estimates of these quantities may not correspond to the true
treatment effects as Assumption 2.1 may not hold. We also
state the common assumptions in the PO framework:

Assumption 2.2 (Unconfoundedness). There exists no un-
observed confounder between Yh and H (and Eh and H).

Since we will use a large collection of pre-trained models
to assess the impact of hyperparameters on prediction and
explanation, Assumption 2.2 guarantees that no unobserved
common factors could have influenced the choice of hyper-
parameters and outcomes (i.e., prediction and explanation).

Model zoos as data: In order to study the effect of hyper-
parameters on downstream Y and E, one must first obtain
a large collection of models which are the result of com-
binations of the hyperparameters under study. Fortunately,
such datasets already exist, namely, model zoos (Unterthiner
et al., 2020; Jiang et al., 2019). We use the dataset provided
by Unterthiner et al. (2020), a large collection of existing
models that have already been trained with pre-specified
hyperparameters (see Section 3.1 for more detail).

Direct vs. indirect influences: As we can see from Fig-
ure 1b, given the data instance x, there are two different
paths from the hyperparameters H to explanation E. The
former is a direct influence of H on E, whereas the latter
is an indirect influence mediated by the prediction Y . To
tell them apart, we propose the following simple analysis.
Let (Hi(x), Yi(x), Ei(x))

n
i=1 be a collection of hyperpa-

rameters, corresponding predictions, and explanations, re-
spectively. Then, we conduct the correlation analysis on
this dataset, in particular, comparing the total influence of
H on E vs. that of H on Y (Equation (4)). Next, we
construct an artificial dataset by randomly permuting the
predictions Yi(x) in the original data and recomputing the
corresponding explanations. This gives us a new data set
(Hi(x), Yi(x), Ẽ[i](x)) where Ẽ[i](x) is the recomputed ex-
planation based on Y[i](x), the permuted version of Yi(x).
Finally, we conduct the same correlation analysis on the
permuted data set. Because Y[i](x) (random permutation
of Yi(x)) weakens the direct influence of Hi(x) on Yi(x)
as well as the direct influence of Yi(x) on Ei(x), careful
comparisons between these correlations can reveal the ex-
tent to which the explanation E relies on the prediction Y
(or on H); see Section 3.2 for further details. Since the
underlying relationships can potentially be non-linear, and
we are comparing high-dimensional outcomes, i.e., Y and
E, in feature spaces, it is unclear how to adopt the classical
mediation analysis (Pearl, 2022). Our analysis only serves
as an approximation thereof.
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Figure 2: Comparison of the ITEE values with kernelized version of (4) obtained for 100 instances from CIFAR10 for
different choices of kernel (each column) shows that relative KTE values are not sensitive to the choice of kernels.

Figure 3: Comparison of ITEY and ITEE for CIFAR10 shows that different types of H influence E and Y in a similar way.

3. Analysis and Results
This section provides details of our analysis and results of
our observational study in both global setting (all models)
and local setting (models in each performance buckets).

3.1. Details of Observational Study

Model zoo dataset and pre-processing explanations The
dataset provided by Unterthiner et al. (2020) contains
30,000 3-layer CNNs (4,970 parameters; weights and bi-
ases) that were trained until convergence (or a maximum of
86 epochs) for multiple datasets. The hyperparameters are
drawn “independently at random” from pre-specified ranges.
Both the ranges and the training procedure are natural and
resemble standard practice in machine learning, and the
models are trained on commonly used CIFAR10, SVHN,
MNIST, and FASHION MNIST datasets. The random seed
(for mini-batch GD sampling and for weight initialization)
and the architecture of the base models are fixed throughout.
The diversity of hyperparameters allows for a representative
study of treatment effects (details in Appendix A.3; code).

We study four commonly deployed saliency methods: gra-
dient (Simonyan et al., 2013; Erhan et al., 2009; Baehrens
et al., 2009), SmoothGrad (Smilkov et al., 2017), Inte-
grated Gradients (IG) (Sundararajan et al., 2017), and Grad-
CAM (Selvaraju et al., 2016). Note that many widely used
methods are built based on these four methods (Xu et al.,
2020; Wang et al., 2021; Simonyan et al., 2013). The gen-
erated explanation maps are preprocessed as in Adebayo
et al. (2018) (see Appendix A.3). Since some methods only
produce positive attributions, we zero out any negative at-
tributions for the methods that produce both positive and

negative values; this is so that we can compare all methods
on an equal footing. Finally, to measure the goodness of
treatment effect values, we introduce and evaluate a refer-
ence explanation method, namely Identity, whereby E is set
to be identical to Y . Clearly, this is not a useful explanation
for humans, but our goal here is to create an ideal E that
provides a point of comparison for our results.

3.2. Results

KTE is not sensitive to the choice of kernel: KTE re-
quires a decision on the type of kernel functions k(·, ·) (Sec-
tion 2.2). A natural question is whether in this context
KTE is sensitive to the choice of kernel. We empirically
compare the distribution of ITEs obtained (as per (4)) for
4 choices of kernels: (i) linear: k(a, b) = aT b; (ii) poly-
nomial: k(a, b) = (γaT b + 1)3 (with γ = 1/dim(a));
(iii) RBF: k(a, b) = exp(−γ‖a − b‖2); and (iv) cosine:
k(a, b) = aT b/(‖a‖ ‖b‖). The results in Figure 2 suggest
that the explanation ITE distributions are not sensitive to
the choice of kernels that we tested. Note that similar trends
hold for other hyperparameters in Figure 3. We use the RBF
kernel for the remainder of the paper.

Most types of H influence E and Y in a similar way:
Again, our goal is to measure the treatment effect of a causal
ancestor (H) on E and Y . The H has different types (e.g.,
initialization, activation, etc), and each type takes on multi-
ple unique values (i.e., treatment values) whose treatment
effect on Y or E can be evaluated via (4). As shown in
Figure 3, this effect is similar across different types of H
for both ITEs of Y and E. Stratifying the results per unique
value of treatments also shows no apparent pattern, across
all datasets considered (see Figure 11).
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Figure 4: Comparison of ITE values of hoptimizer on Y (left) and E (right) for models across different performance buckets,
showing the discrepancy in the effect of H on Y vs. that on E (top: CIFAR10; bottom: SVHN). Interestingly, there is a
difference of ITEE across accuracy buckets, and more importantly, none of the explainability methods resemble ITEY.

While this phenomenon may suggest that there is some
meaningful relationship between E and Y , the pattern of
H’s influence seems similar across different H . However,
we notice that these ‘meaningful’ relationships should only
exist when Y is meaningful (i.e., a trained network). In
the next section, we divide these results into low/mid/high-
performance buckets for further investigation.

H influences Y (and E) differently across performance
buckets: The relationship between E and Y when Y is
from an untrained model v.s. a trained model should be
qualitatively different. Teasing out how much Y influences
E is one of the long-standing questions in interpretabil-
ity; some have argued that E is visually indistinguishable
when Y is from trained or untrained models (Adebayo et al.,
2018). How the relationship between E and Y changes
as a function of the performance of the model is impor-
tant for practitioners in deciding when E can or cannot be
used. Thus, we conduct the remaining analysis by stratify-
ing models into different accuracy buckets. In particular,
we stratified the 30,000 models into 8 buckets according
to their accuracies to observe the treatment effect in each
group (Figure 4). We use 0-20th, 20-40th, 40-60th, 60-80th

and 80-90th, 90-95th, 95-99th and 99-100th percentiles as
groups for all four datasets (finer granularity for top models
that are more likely to be deployed; summarized in Table 2).

The control group: Calculating ITE for each performance
bucket requires a decision on control groups, i.e., the point
of comparison. There are two natural choices 1) select a
control group within each accuracy bucket or 2) use the same
control group across all buckets. Each choice means we are
answering slightly different questions; (1) answers “the

effect of hi = n w.r.t. hi 6= n on x ∈ X such that training
on hi 6= n gives a similarly performing model” while (2)
answers “the effect of hi = n w.r.t hi 6= n on x ∈ X
such that training on hi 6= n gives a model with baseline
performance”. Although the latter enables comparison of
performance buckets on similar footing, two factors are
changing simultaneously: a) hi = n to hi 6= n and b)
the change in performance bucket, making it difficult to
tease apart hyperparameters’ contributions to the ITE values.
Therefore, we continue with within-accuracy-bucket control
groups, and refrain from comparing absolute values of ITE
(for Y or E) across buckets, but instead, look to relative
ITE values of H on Y and E across buckets.

As seen in Figure 4, while both ITEY s (first column) and
ITEEs (the remainder of columns) vary across accuracy
buckets, they appear not to follow the same pattern. This
raises an important question: how does the relationship
between Y and E (measured by treatment effect of H on
both) change as models’ performance changes?

Understanding the (odd) relationship between ITEY

and ITEE: We first investigate the extent of the relation-
ship between ITEY and ITEE by measuring their relative
changes, before separating the direct influence of H on E
from the indirect influence mediated through Y .

One way to compare ITEY and ITEE is using scatterplots.
Figure 5 (left) shows scatterplots for different performance
buckets and explanation methods. Since the absolute value
of each ITE is not directly comparable (due to different
domains for Y and E, and different baseline control groups,
as explained above), we summarize the scatter plot trends
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Figure 5: (left) Each column is a subset of models at each accuracy bucket, each row is a different explanation method.
Whereas low-performing CIFAR10 models (first column) show little change in predictions as their explanations differ,
top-performing models show the reverse of this trend. (right) Correlation measures of the scatter plots on the left show a
decreased correlation in the top 1% models.

by measuring the Pearson and Spearman Rank correlations
between the raw ITE values (Figure 5; right).

We observe that compared to the case of the Identity
method,1 whereby there is a perfect correlation between
ITEY and ITEE (the diagonal x = y line), no other method
seems to remotely follow a similar pattern. For most of the
methods, the range of ITEE values varies similarly regard-
less of low/mid/high accuracy models, while ITEY naturally
shrinks in high accuracy models, which can be explained
by the models becoming similar in their predictions. The
correlation coefficient tells a similar, but more concise, story.
While the correlation increases for Grad and IG in the higher
accuracy bucket, both show only moderate correlation com-
pared to the reference point (Identity). It is also unclear how
the relationship betweenE and Y is similar in mid-accuracy
(e.g., 33%) and top-accuracy models. The pattern described
above is shared across all types of hyperparameters across
four datasets (see Figure 17 and Figure 18).

To summarize, the corr(ITEY , ITEE) increases as the model
accuracy increases, suggesting that E (for Grad and IG)
becomes a better reflection of Y in higher-performing mod-
els,2 which is desired. Despite this, the correlation values
are substantially lower than a maximally informative expla-
nation (i.e., the Identity method) suggests that explanations
may still be explaining something other than the prediction.

1We remind that while the Identity explanation is not useful
for humans in any way, it helps us to understand what a “good”
explanation (where Y is a major factor in deciding E) may look
like through the lens of the proposed ITE analysis.

2At least in the manner in which changes in E reflect changes

Direct vs. indirect influences: To understand how much
of the explanation is reflecting the prediction, we can tease
apart the effect of H on E that flows directly vs. indirectly
through the prediction Y .3 Intuitively, if explanations were
only sensitive to Y , one would observe a low direct effect
and a high indirect effect. Conversely, a high direct effect
of H on E hints at the sensitivity of explanations to factors
not related to the prediction. Unlike all ITEE values we
discussed so far that measures the total effect of H on E
(arising both directly and indirectly through Y ), we “sever”
the influence that H has on Y while retaining its effect on
E. As described in Section 2.3, we compare H’s treatment
effects on E when Y is and is not randomly permuted.

In the first column in Figure 6, we first observe that none
of explanations seem to follow the ‘ideal case’ (Identity,
E is maximally informative of Y ). The second column
simply plots the difference between total and direct effects
by subtracting direct effect from total effect (dotted line
− solid line in the first column). This quantity roughly
corresponds to the effect of H on E mediated through Y
(ideally, this value should be high in higher-performing
buckets).

What is even more concerning is how much the difference
between ideal case v.s., actual case worsens in higher per-
forming models. The third column plots this value: the
difference between the ideal case (blue dotted line in the

in Y as a result of changes in upstream H
3Since the individual for which E is sought is fixed through-

out (i.e., X does not change; see discussion on identifiability at
Appendix A.2), we disregard the effect of X on E in this study.
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Figure 6: Pearson correlation between ITEY and ITEE in total and direct effect (first column). The second column is the
difference between total and direct effect, where higher values mean that the influence of H on E flows more through Y
(ideal). The third column plots the difference of delta correlations between ideal case (Identity) and each method. In other
words, it indicates how far each method moves away from ideal case, as a model performs better.

second column) and others. In other words, the higher a
model performs, the more information for E comes from
something other than Y . This is particularly concerning
because these are models that are more likely to be deployed.
For the case of SG and Grad-CAM, the influence of H on
E mostly comes from H , not from the trained model or the
prediction from it Y . Putting it together, our comparison of
direct and indirect influence reveals that the pattern of how
Y mediates the total influence of H on E is surprising and
undesirable at times.

4. Discussion and Conclusions
Our work investigates the relationship between E and Y
using tools from causal inference. In analyzing the treatment
effect of a causal ancestor (i.e., H , determined prior to
model training) of E and Y on them, the patterns observed
for the direct and indirect influence reveals an undesirably
high direct influence of H on E relative to influce of Y on
E. Our results suggest that the relationships between E and
Y is far from ideal. In fact, the gap between ‘ideal’ case
only increases in higher-performing models–models that
are likely to be deployed. This means that there are other
factors that influence E more than the prediction of the
model, Y , and their influence becomes bigger and bigger as
a model performs better. If the users’ goal is to understand
the model’s prediction, then most of the influence of H
on E should be through Y (note that which H should not
influence E is a decision by a user). The goal of our work
is to first show that such influence exists in current models
and present methods to perform quantitative analysis via the
lens of the causal inference framework.

One can view our analysis as a more extensive, causal edi-
tion of Adebayo et al. (2018); we measure the treatment
effect of H on E and Y across 30,000 models, while they
quantitatively measure visual similarities of Es as varying
the quality of Y in a single pair of models (trained and un-
trained). Furthermore, our analysis reveals that Grad-CAM
(which arguably ‘passed’ the sanity check in Adebayo et al.

(2018)) shows a worse correlation between the two ITEs
across the buckets, meaning that the hyperparameters affect
Y and E differently, hinting that no methods concretely
outperform others. Our results should be taken as a strong
encouragement for practitioners to review other evidence
instead of taking explanations at face value in their final
decision-making.

Limitations and Future Work

The problem framing in Figure 1, the formulations in Sec-
tion 2, and the analytical framework presented over hyper-
parameter settings above naturally extend to any ML system
(white-box or black-box) which have hyperparameters,H,
or more generally, any upstream factors, that affect a final
model. The specific analyses presented in our paper, how-
ever, are bound by the choices made during the model zoo
construction in Unterthiner et al. (2020), e.g., choice and
range/values of hyperparameters, and thus, the interpreta-
tion must be limited to the domain ofH that we tested. For
instance, while the model zoo offers an extensive number
of models, their architecture is kept constant in all models
(3 CNN layers, O(1e3) parameters).

Further studies on larger and complex models (e.g., (Frankle
& Carbin, 2018; Jiang et al., 2019)) or similar analysis when
the training dataset is (adversarially) changed (e.g., (Wang
et al., 2021)) across different stages of training could reveal
interesting insights. Another valuable extension to our study
is the analysis of our metric with other explainability met-
rics. We remark that our proposed metric assesses “how
much of the explanation is actually explaining the predic-
tion,” which, at least from an intuitive standpoint, is neither
implied by nor implies other such metrics as intelligibil-
ity, transparency, complexity, or user-friendliness. Finally,
extending our work to uncover the effect of hyperparam-
eters on other types of explanations would be interesting,
e.g., influential samples (Koh & Liang, 2017), Shapley val-
ues (Lundberg & Lee, 2017), concept-based methods (Kim
et al., 2018) surrogate-based methods, and recourse-based
explanations and recommendations (Karimi et al., 2020).
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We believe the tools presented in our work may also be used
to study the effect/influence of individual hyparparameters
on model predictive performance prior to training.
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Figure 7: Extended version of explanation generating process from Figure 1b, now with weights W and dataset D made
explicit.

A. Additional background material
A.1. The explanation generating process

To ease understandability, we refer to Figure 7 as the extended graph of Figure 1b which makes the weights W and data D
explicit variables. Similar to Figure 1, diamond nodes are considered factors whose effect we study, and circle nodes are
random variables. In this extended graph, we clarify that H is not the model or trained weights. In other words, what we
call hyperparameters (H) are sets like “method of optimization: SGD or AdaGrad” or “regularizer coefficients: 0.1 or 0.01
etc”. All Hs can be assigned a value before we train any model and before observing any data. Note that we do not have
weights (denoted by W ) in Figure 1b, as they are not the focus of our study; instead, we are interested in whether and how
decisions made prior to training a model (i.e., assignments of H) influence downstream Y and E.

Furthermore, considering the manner in which the model zoo was constructed whereby hyperparameters are sampled
independently from some domain, there are no edges (no backdoors) from X (or D) to H . On the other hand, W may be
affected by the data distribution D, directly and/or through the training samples, but W is not the focus of our work. Since
we focus on the causal effect of hyperparameters H on Y and E (not the weights W on Y and E), the formulations in
Section 2.2 remain unchanged.

A.2. On the identifiability and computability of treatment effects

An astute reader may notice that evaluating the treatment effects above as the difference between counterfactual contrasts
bears a resemblance to another common explainability method, namely counterfactual explanations (Wachter et al., 2017).
This parallel is evident when thinking of Figure 1 in a coarser manner, i.e.,H,X → Y , whereby the hyperparameters and
dataset instance enter a potentially blackbox but queriable procedure and yield a prediction. Whereas the counterfactual
explanations of Wachter et al. (2017) aim to identify minimal feature perturbations of the dataset instance under a fixed
model (i.e., the hyperparameters do not change; procedure: model prediction), evaluating treatment effects as in Equation (1)
is done by iterating over values of hyperparameters to contrast resulting predictions given a fixed dataset instance (procedure:
model training).

Due to our mechanical setup, a number of interesting observations arise. Although the training (T), predicting (P), and
explaining (E) procedures may not be expressible in closed-form, the prediction Yh in Equation (1) is exactly computable
on a computer through forward simulation. In other words, upon selecting a set of hyperparameters, H = h, and under a
fixed seed, all sources of randomness are controlled for and the procedures T, P, E deterministically yield a trained model, a
prediction for a given instance, and the explanation for the said instance and model. This is significant as it allows for the
exact computation of both YTREATMENT and YCONTROL which is all that is needed to yield the value of the ITE exactly. In other
words, we can view both YTREATMENT and YCONTROL as factual outcomes. Therefore, unlike real-world settings (e.g., taking a
headache medication) where one cannot measure the ITE exactly (due to the impossibility of observing both factual and
counterfactual outcomes simultaneously; whereby in such cases, the ITE is either approximated or the ATE is used instead.)
the effect of all treatments, on both individual-level or population-level, are identifiable.

Although the treatment effects are identifable, evaluating them is computationally expensive. To understand why, it helps to
illustrate a parallel with the setting of counterfactual explanations (Wachter et al., 2017). Whereas the treatment effects in
our setting (see Equation (1)) contrasts Y ∗h (x) and Y ∗h′(x), the work of Wachter et al. (2017) contrasts Y ∗h (x) and Y ∗h (x

′).
Unlike the latter which only requires the invocation of the predicting procedure given a new instance x (e.g., a forward
pass through a neural network), the former invokes the training procedure given a new hyperparameter setting (i.e., a full
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Table 1: Comparison of the classical and mechanical (our) setting for computing ITE values.

(a) In the classical setting for computing treatment effects, only
one of the potential outcomes for each individual, i, is observable.
The average treatment effect is defined as the average difference
between individual treatment effects ATE = E[Y (i)

1 ]−E[Y (i)
0 ].

i Y0 Y1 Y2
1 a - -
2 - f -
3 - - k
4 - h -
...

...
...

...

(b) In our mechanical setting, given a model, f̂h, the potential out-
come for any and all instances is computable (i.e., ∃ Yh(Xi), i ∈
I =⇒ ∃ Yh(Xk) ∀ k ∈ I). Instead, one asks how to compute the
treatment effect for h′ when no data is available for this hyperparam-
eter.

i Y0 Y1 Y2
1 a e -
2 b f -
3 c g -
4 c h -
...

...
...

...

re-training). In practice, computing power is limited and we may only have access to the predictions under a single model,
say, Y ∗h (x) and it can be prohibitively expensive to produce the prediction under a different model, Y ∗h′(x), especially for
large neural networks.

In order to reason about Y ∗h′(x), one is compelled to instead ask a counterfactual question: “What would the prediction
have been, had the optimizer been ν′?” which can be answered through causal modeling without conducting real-world
experiments, i.e., retraining with optimizer ν′. Metaphorically, there would have been no need for counterfactuals had one
been able to simulate the entire universe (limited by either identification or computation). It is the physical constraints that
call for these counterfactuals. Unfortunately, the procedures in Figure 1 (left) are not available in closed form. We clarify
that unlike the classical randomized control trial (RCT) setting of evaluating ATE by contrasting average ITE values (where
instances are randomly assigned to control or treatment), the mechanical nature of our setting allows for the target evaluation
of all instances under control (h) or any treatment regime (h′); the challenge lies in the fact that applying a treatment to
any one individual is as expensive as applying it to all individuals (see Table 1a and Table 1b for comparison). In this case,
future research may explore the question of whether one can learn approximate procedures (i.e., approximate structural
equations) to predict the predictions of an untrained classifier, given only its hyperparameters. In this regard, our preliminary
results suggest a promising alternative to training individual models: developing meta-models that estimate a base model’s
prediction and explanation for an instance using only its hyperparameters, without actual training. This idea is derived from
AutoML research, which predicts model accuracy based solely on hyperparameters, without training (Unterthiner et al.,
2020). As this issue rapidly evolves into a complex and multifaceted problem, we only briefly present the preliminary results
here: a simple 3-layer MLP (namely, “meta-model”) trained using X and H from a 10% sample of models in the repository
(i.e., 10% of 30,000 “base-models”), can estimate the predictions Y for the rest of the base-models with an accuracy of
approximately 45%. It is important to note that the input features do not have trained weights and rely on hyperparameters
instead, therefore saving compute. Furthermore, when the training is conducted on a subset comprising 10% of the top-15%
performing models rather than on all models (with a mix of highly and poorly performing base models; refer to Table 2), the
meta-model can predict the predictions Y for the remaining base-models with an accuracy of around 80%. Not only would
this be a fascinating follow-up research project, but it would also hold substantial practical value for our framework.

An implicit assumption made in (4) was that of mutual independence between hyperparameters, i.e., hi ⊥⊥ hj ∀ j 6=
i =⇒ h\i ∼

∏
j 6=i P(hj). This assumption yields an unconditional treatment effect, whereby the causal effect of

hi = TREATMENT vs hi = CONTROL is averaged over all possible combinations of other hyperparameters, even if the
combination rarely occurs in high-performing models. In practice, however, it is conceivable that the hyperparameters are
selected carefully by the system designer and may be interpreted as being sampled from a distribution over hyperparameters,
H, internalized by the designer through prior experience in training desirable models (e.g., accuracy, fairness). Such down-
stream criteria may act as a common child of the hyperparameters, inducing complex inter-dependencies (cf. Berkson’s
paradox, (Pearl, 2009)). In this case (i.e., h\i 6∼

∏
j 6=i P(hj)), the treatment effect answers such a query as “among the

set of hyperparameters that yield models with at least γ performance, what is the treatment effect of optimizer choice ν1
as opposed to ν2 on the local prediction of x?” Therefore, whether or not we assume hyperparameters to be mutually
independent depends on the query being asked and assumptions made of the prediction/explanation generative process.
Finally, one could consider straightforward extensions of (3) and (4) to support distributions over baseline control groups by
adding an outer expectation that weights over the probability control group occurrence.
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Table 2: Test accuracy boundaries for each performance bucket for each dataset in the model zoo (Unterthiner et al., 2020).

percentile 0-20 20-40 40-60 60-80 80-90 90-95 95-99 99-100
CIFAR10 5-15 15-25 25-33 33-38 38-46 46-50 50-52 50-57

SVHN 7-17 17-19.5 19.5-19.6 19.6-33 33-51 51-59 59-65 65-78
MNIST 4-11 11-35 35-73 73-89 89-95 95-96 96-97 97-98

FASHION 1-11 11-47 47-68 68-76 76-82 82-84 84-85 85-88

A.3. Model zoo details

For each of the 4 datasets (CIFAR10, SVHN, MNIST, FASHION) we consider 30,000 pre-trained models, with diverse test
accuracies resulting from the combinations of hyperparameters considered in the zoo (Unterthiner et al., 2020, Fig. 6). We
optionally analyze models stratified by their test performance, over 8 performance buckets; Table 2 shows the boundaries of
these buckets.

As a demonstration, Figure 8 shows the diversity in predictions of 30,000 base models for a subset of CIFAR10 images for 1
randomly sampled datapoint from each class. It is noteworthy that the non-kernelized ITE values of (4) can be read directly
from the figure, by contrasting the mean (shown in diamond) of each pair of nested bar plots (via application of linearity of
expectations to (4)).

Pre-processing explanations and other details To study the effect of hyperparameters on explanations, we generate
explanations, Eh(x), via saliency-based methods. In particular, the Gradient (Simonyan et al., 2013; Erhan et al., 2009;
Baehrens et al., 2009) and its smooth counterpart, SmoothGrad (Smilkov et al., 2017), Integrated Gradient (IG) (Sundararajan
et al., 2017), and Grad-CAM (Selvaraju et al., 2016) methods are used due to their commonplace deployment4 (Adebayo
et al., 2018). Note that many other widely used methods are based on these four methods (Kapishnikov et al., 2021; Xu
et al., 2020; Wang et al., 2021; Simonyan et al., 2013). The generated explanation maps Eh(x) are then processed to first
remove outliers (via percentile clipping the values above 99th percentile), following by normalizing all attributions to fall in
[0, 1]. For Grad-CAM which only generates positive attributes, this is straightforward; for other methods that give positive
and negative attributes (as each carry different semantics; contributing towards/against the prediciton), we first normalize to
[−1, 1] and then clip any value below 0.

The set of hyperparameters considered include the choice of optimizer, w0 type, w0 std., b0 type, choice of activation
function, learning rate, `2 regularization, dropout strength, and dataset split (see Unterthiner et al., 2020, Appendix A.2). To
evaluate treatment effects as per (4), continuous features are discretized by (log-)rounding to the nearest predetermined
marker from within the range of the feature.5

Relation to other explainability metrics

There are many such heuristics for rating explainability, and we recognize the absence of such comparisons in our research
study. At the same time, we emphasize that our proposed metric assesses “how much of the explanation is actually
explaining the prediction,” which, at least from an intuitive standpoint, is neither implied by nor implies other such metrics
as intelligibility, transparency, complexity, or user-friendliness. We also recognize that relying solely on the suggested
metric may lead to misleading results and should not be considered adequate for endorsing an explanation approach. As
demonstrated in footnote 1, we provide an instance where the Identity explanation implies an ideal correlation between
ITEE and ITEY , even though it does not offer a meaningful explanation. We encourage further investigation in this
direction for future research.

B. Additional experimental results
In this section, we present additional experimental results to complement those in the main body across different data
dimensions or on new datasets.

As a demonstration, Figure 8 shows the diversity in predictions of 30,000 base models for a subset of CIFAR10 (top) and

4All methods are openly accessible here: https://github.com/PAIR-code/saliency.
5The following markers are used for (log-)rounding continuous features: `2 reg.: [1e−8, 1e−6, 1e−4, 1e−2], dropout: [0, 0.2, 0.45, 0.7],

w0 std.: [1e−3, 1e−2, 1e−1, 0.5], learning rate: [5e−4, 5e−3, 5e−2].
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SVHN (bottom) images for 1 randomly sampled datapoint from each class. It is noteworthy that the non-kernelized ITE
values of (4) can be read directly from the figure, by contrasting the mean (shown in diamond) of each pair of nested bar
plots (via application of linearity of expectations to (4)).

Figure 8: The distribution of Yh(xi) for a subset of 10 random instances(1 per class) on 30,000 base models (row 1:
CIFAR10; row 2: SVHN; row 3: MNIST; row 4: FASHION). For each instance, each column holds the value of hoptimizer
fixed at one ofm unique values pertaining to this hyperparameter, while unconditionally iterating over other hyperparameters.
In this manner, the difference in predictions across values of the hyperparameter, both at an individual (left) and aggregate
level (right) can be attribute to, and only to, changes in this hyperparameter.
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Figure 9: Examples of class predictions (Yh=n(x) and Yh6=n(x)) and their dissimilarities (‖φ(Yh=n(x))− φ(Yh6=n(x))‖2G)
for different accuracy buckets for CIFAR10 (top) and SVHN (bottom). Each row shows 10 random predictions from 3
models in the low- (left), mid- (center), and top- (right) performance buckets, under two different treatment groups for the
dropout value (= 0 and 6= 0). In each performance bucket, there are three subplots. Each subplot is showing 10 randomly
selected samples (each row) and their post-softmax values for one of the 10 classes (hence a 10× 10 grid). The first plot
in each trio shows the RBF kernel evaluation of the center and right predictions. The center and right plots show these
treatment/control groups. This figure is intended to complement Figure 4 to explain why ITE for Y is large for mid-accuracy
buckets and small for high-accuracy buckets. For CIFAR10, the values are small for low-performing models (most models
in this bucket predicting similarly) but for SVHN the values are large due to different diverse predictions.

Figure 10: Comparison of the ITE values with kernelized version of (4) for Eh(x) obtained for 100 instances from CIFAR10
for different choices of the kernel (each column) shows that KTE is not sensitive to the choice of kernels. Contrast this figure
with Figure 2; we conclude that the choice of baseline (i.e., where we contrast optimizer: adam against all other optimizers
as in Figure 2 or against other individual values) does not affect the overall trend and should be chosen according to the
question in mind: to compare the effect of a hyperparameter value against all other possible values, or against a particular
value.
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Figure 11: ITE values for Y (left) and E (right) show similar effect for different types of H across CIFAR10 (row 1), SVHN
(row 2), MNIST (row 3), FASHION (row 4).
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Figure 12: Comparison of ITE values of all hyperparameters (each row)on Y (left) and E (right) for models trained on
CIFAR10 across different performance buckets, showing the discrepancy in the effect of H on Y vs. that on E.
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Figure 13: Comparison of ITE values of all hyperparameters (each row)on Y (left) and E (right) for models trained on
SVHN across different performance buckets, showing the discrepancy in the effect of H on Y vs. that on E.
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Figure 14: Comparison of ITE values of all hyperparameters (each row)on Y (left) and E (right) for models trained on
MNIST across different performance buckets, showing the discrepancy in the effect of H on Y vs. that on E.
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Figure 15: Comparison of ITE values of all hyperparameters (each row)on Y (left) and E (right) for models trained on
FASHION across different performance buckets, showing the discrepancy in the effect of H on Y vs. that on E.
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Figure 16: Scatter plot of ITE values for Y and E (row 1: CIFAR10; row 2: SVHN; row 3: MNIST; row 4: FASHION)
across explanation methods reveals no apparent patterns.
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Figure 17: Each column is a subset of models at each accuracy bucket, each row is different explanation methods (row 1:
CIFAR10; row 2: SVHN; row 3: MNIST; row 4: FASHION). Whereas low-performing models (first column) show little
change in predictions as their explanations differ, top-performing models show the reverse of this trend.
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Figure 18: Pearson correlation and Spearman’s Rank correlation for ITE of Y and ITE of E across different explanation
methods and model performance buckets, for mediated and unmediated Y (row 1: CIFAR10; row 2: SVHN; row 3: MNIST;
row 4: FASHION). Absolute values of correlation values are smaller across both datasets (max around 0.5), suggesting
that E takes influence from H that does not necessarily pass through Y . The final absolute correlation is going down for
top-performing models in both datasets. The increase in delta correlation between mediated and unmediated Y suggests that
the direct impact of Y on E is becoming even more important in top-performing models, even more so for SVHN than for
CIFAR10.
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