
Appendix

A RELATED WORKS

Three types of methods have been proposed for Parameterized Markov Decision Processes(PAMDP). The methods of the
first type convert the heterogeneous action space into a homogeneous one by either discretizing continuous action space
([Massaroli et al., 2020]) or transferring discrete actions into continuous space[Hausknecht and Stone, 2016]. By doing this,
conventional RL algorithms can be straightly applied in this setting. However, discretizing all dimensions of the continuous
action suffers from the loss of control accuracy and the scalability issue (due to the exponentially exploring number of
discretized actions); while casting all discrete actions into continuous ones enlarges the original action space, resulting in
additional difficulties in approximation and generalization[Li et al., 2021].

In order to avoid the problems caused by direct homogeneous motion space. The methods of the second type directly
build separate policies for the discrete actions and the continuous ones. Hybrid PPO (HPPO) [Fan et al., 2019] builds
multiple network heads (one for discrete actions and the others for the continuous parameters of each discrete action) to
learn the hybrid policy. A similar idea is also adopted in Action Branching PPO. However, building a separate continuous
policy network for each discrete action will significantly enlarge the model size, resulting in additional difficulties in
optimization. Besides, both these two types of methods neglect the natural dependence between each discrete action and the
corresponding continuous parameters, thus their learning processes are inefficient especially when the hybrid action space
becomes high-dimensional.

To improve the sample efficiency, The methods of the third type explicitly incorporate such dependencies into the model
design. Parameterized DQN (PDQN) [Xiong et al., 2018] proposes a hybrid structure by combining DQN [Silver et al.,
2016] with DDPG [Lillicrap et al., 2016], where the Q-network of DQN directly takes the actor’s outputs of DDPG (i.e.,
the continuous parameters for all discrete actions) as additional inputs. However, the dependence of PDQN’s Q-values
on all parameters actions causes a false gradients issue and can lead to suboptimal action selection. To address the false
gradients issue. False gradients means that due to the serial training of discrete action strategies and all continuous action
strategies, the gradient of discrete action policy affects the training of unrelated continuous action modules, making the
overall strategy suboptimal. Bester et al. [2019] further design a Multi-Pass Q-Network (MP-DQN), making each discrete
action’s Q-value only depends on its corresponding continuous parameters. Similar ideas also have been applied to Soft
Actor Critic (SAC) based methods [Delalleau et al., 2019] and PPO based methods [Ma et al., 2021]. And [Fu et al., 2019]
further extends PDQN to multi-agent RL settings. Most recently, Li et al. [2021] propose Hybrid Action Representation
(HyAR), which uses an embedding table and a conditional Variational Auto-Encoder (VAE) to convert both the discrete
and the continuous actions into a more compact latent space. Then, the policy is trained in the latent action space via Twin
Delayed Deep Deterministic policy gradient (TD3) algorithm [Fujimoto et al., 2018]. HyAR achieves state-of-the-art (SOTA)
performance on typical hybrid control tasks with higher sample efficiency, especially for high-dimensional action spaces.
However, the embedding table and the VAE have to be periodically re-trained with the policy updating. Thus, HyAR is
unstable and difficult to train due to the co-evolution of the latent action embedding and the RL policy. Apart from the
action-dependency modeling, another challenge affecting learning efficiency is the hard exploration problem. As far
as we know, this problem has not been discussed in the previous work, and our work is devoted to solving this problem so as
to further improve the learning efficiency of hybrid action space control tasks.
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B EXPERIMENTAL DETAILS

Our codes are implemented with Python 3.7 and Torch 1.7.1 experiments were run on a single NVIDIA GeForce GTX
2080Ti GPU. Each single training trial ranges from 4 hours to 10 hours, depending on the algorithms and environments.

(a) Chase (b) Platform (c) Hard Goal (e) Move

(e) Chase (f) Chase 3v1 (g) Chase 6v2 (g) Chase 9v3

Figure 1: Benchmarks

The multi-agent hybrid control tasks (Figure 1 (f) 3v1,(g) 9v3, require cooperation among agents to achieve goals. The
action space of the agent is the same as single agent Chase, but multiple agents need to cooperate to catch all the targets.
And need to bypass roadblocks. Both environments are divided into easy and hard tasks, with the harder tasks having targets
that move faster and are smaller and harder to capture.

Single agent Environments. We conduct our experiments on several hybrid action environments and a detailed experiment
description is below.

• Platform: The agent needs to reach the final goal while avoiding the enemy or falling into the gap. The agent needs to
select the discrete action (run, hop, leap) and determine the corresponding continuous action (horizontal displacement)
simultaneously to complete the task. The horizon of an episode is 20.

• Hard Goal: Three types of hybrid actions are available to the agent including kick-to (x, y), shoot-goal (h). The
shot-goal action and split into ten parameterized actions by dividing the goal line equidistantly. The continuous action
parameters of each shot action will be mapped to a region in the goal line. The horizon of an episode is 50.

• Catch Point: The agent should catch the target point (orange) in limited opportunity (10 chances). There are two hybrid
actions move and catch. Move is parameterized by a continuous action value which is a directional variable and catch
is to try to catch the target point. The horizon of an episode is 20.

• Chase (designed by us): The agent needs to control n equally spaced actuators to reach the target area (orange). The
agent can choose whether each actuator should be on or off. Thus, the size of the action set is exponential in the number
of actuators that is 2n. Each actuator controls the moving distance in its own direction. n controls the scale of the action
space. As n increases, the dimension of the action will increase. The horizon of an episode is 25.

• Multi-agent Chase (designed by us): The action space of the agent is the same as Chase, but multiple agents need to
cooperate to catch all the targets. And need to bypass roadblocks.

C MULTI-AGENT HYBRID CTRLFORMER

Hybrid CtrlFormer is an actor-critic framework and can be easily combined with existing value-based or actor-critic
based multi-agent algorithms. The most straightforward way to introduce Hybrid CtrlFormer into multi-agent RL is using
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Figure 2: Multi-agent Hybrid CtrlFormer

independent Q-learning (IQL) [Tan, 1993]. However, this simple approach suffers from the non-stationarity issue caused by
the changing policies of the learning agents, and thus the learning process is unstable. Recently, a great deal of work has
shown that using centralised training can naturally handle the non-stationary problem [Yang et al., 2020, Wang et al., 2020].
Inspired by FACMAC [Peng et al., 2021], we utilize the value decomposition mechanism to coordinate the policy update
over hybrid action spaces among agents.

The overall architecture of MA Hybrid CtrlFormer is shown in Figure 2. In MA-Hybrid CtrlFormer, each agent’s continuous
policy is µi(e(s, k, w); θ) and each agent’s Q-network is Qi(e(s, k, w), xkw;ω) and all agents share the same parameters (θ
and ω) to facilitate training. All agents share a centralised critic Qtot which can be factored as:

Qtot(τ ,u, s;ψ) = hψ(s, {Qi(e(s, k, w), xkw), i ∈ {1, . . . , N}}) (1)

where τ denotes local action observation histories and s means the global state, u denotes all agents’ hybrid actions,
{Qi(e(s, k, w), xkw), i ∈ {1, . . . , N}} are the individual Q-values of all agents (N is the agent number), and hψ is a
non-linear monotonic function parameterized as a mixing network with parameters ψ, as in QMIX [Rashid et al., 2018]. The
centralised but factored critic is trained by minimizing the following loss:

L(ψ;ω) = ED
[(
ytot −Qtot(τ ,u, s;ψ)

2
]

(2)

where ytot = r+γQtot(τ
′,µ′, s′, ψ−)), and µ′ represents the target hybrid actions generated by all agents’ target individual

Q-networks and target individual actors. The individual continuous policy is optimized according to the following loss:

Lµ(θ) = −Qtot(s, {Qi(e(s, k, w), µ(e(s, k, w); θ);ω), . . . }) (3)

D MULTI-AGENT EXPERIMENTS

In multi-agent tasks, five SOTA approaches are selected as baselines: Independent PDQN [Xiong et al., 2018], MAPDQN
[Fu et al., 2019], Independent HPPO [Fan et al., 2019], Independent HyAR [Li et al., 2021] and CTDE-HyAR [Li et al.,
2021]. Hybrid CtrlFormer contains one layer transformer( with one MLP, and a unique attention mechanism). Thus the
network depth of algorithms is the same. PDQN, HHQN, HyAR, and Hybrid CtrlFormer are all implemented based on the
same architecture DDPG. CTDE-HyAR is based on FACMAC [Peng et al., 2021].

The experimental results are shown in Figure 3, in which the total average reward curves are smoothed for visual clarity.
The results show that MA Hybrid CtrlFormer, denoted as MAHT in the figure, significantly outperforms all baselines in
all six scenarios. Cooperative tasks cause the environment to be unstable [Rashid et al., 2018] (the environment can be
changed by the actions of other agents), which makes the state information more complex. This phenomenon reinforces the
need for exploration efficiency. Moreover, the performance of our method is stable in the large-scale agent scenarios, which
proves that MA Hybrid CtrlFormer can not only realize effective exploration but also overcome the factors of environmental
instability to achieve efficient coordination between agents by combining the value decomposition method.
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Figure 3: Comparisons of algorithms in multi-agent environments. y−axis denotes the average reward. The curve and shade
denote the mean and a standard deviation over 5 runs. We abbreviate Multi-agent Hybrid CtrlFomer to MAHT.

Hyperparameter HPPO PADDPG PDQN HHQN HyAR-DDPG Hybrid CtrlFormer

Actor Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3 1e−3 3e−4 3e−4 1e−4

Target Actor Update Rate N 1e−3 1e−3 1e−3 1e−3 5e−3

Target Critic Update Rate N 1e−2 1e−2 1e−2 1e−2 5e−3

Batch Size 128 128 128 128 128 128
Buffer Size 1e5 1e5 1e5 1e5 1e5 1e5

Table 1: Comparisons of the baselines regarding the average win rate at the end of the training process with the corresponding
standard deviation over 5 runs. Values in bold indicate the second-best results in each environment. And Red Values denote
the best performances.

E HYPERPARAMETERS

For all of our experiments, we use the raw state and reward from the environment without any normalization or scaling.
Additionally, no regularization is applied to the actor and critic models in any of the algorithms. To encourage exploration,
an exploration noise sampled from N(0, 0.1) is added to all baseline methods when selecting actions. In the case of Hybrid
CtrlFormer, the continuous action space of each environment is uniformly divided into 8 sub-regions in sequential order.
Concretely, the continuous action space of the environment is [−1, 1], and the 8 sub-regions are defined as follows: [-1,
-0.75), [-0.75, -0.5), [-0.5, -0.25), [-0.25, 0), [0, 0.25), [0.25, 0.5), [0.5, 0.75), and [0.75, 1.0]. The c parameter of the MCTS
is 1/

√
2.0, which is the optimal setting that has been tested extensively and is the general default setting for MCTS. The

number of single agent training episodes is 6000 to ensure that all algorithms converge. The episode number for MARL
frameworks is 10000.The discount factor used is 0.99, and we employ the Adam optimizer for all algorithms. Table 1
summarizes the common hyperparameters used in all of our experiments.

F NETWORK STRUCTURE

PADDPG and PDQN are implemented with reference to https://github.com/cycraig/MP-DQN. For a fair
comparison, all the baseline methods have the same network structure (except for the specific components of each algorithm)
as our HyAR-TD3 implementation. For PDQN, PADDPG, HPPO paper does not provide open-source code and thus we
implemented it by ourselves according to the guidance provided in their paper. For HPPO, the discrete actor and continuous
actor do not share parameters (better than sharing parameters in our experiments). We use a two-layer feed-forward neural
network of 256 and 256 hidden units with ReLU activation (except for the output layer) for the actor network for all
algorithms. For PADDPG, PDQN and HHQN, the critic denotes the Q-network. For HPPO, the critic denotes the V network.
Some algorithms (PADDPG, HHQN) output two heads at the last layer of the actor network, one for discrete action and
another for continuous action parameters. For HyAR-DDPG, we use the author’s open-source code. In order to prove that
the Hybrid CtrlFormer framework is not redundant and will not cause training difficulties due to the division of continuous
motion space, the structure details are shown in Tab 2.
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Model Component Layer(Name) Structure

Critic
Fully Connected (state dim, 128)

Activation ReLU
Fully Connected (128, 1)

Transformer

Fully Connected (state dim, 128)
Activation ReLU

self-attention (128, 128), ReLU
Fully Connected (128, subregion number)

Actor Fully Connected (128, 1)

Table 2: Network structures for the Hybrid CtrlFormer including, the discrete action Q network, one layer transformer, and
the actor-critic architecture

Benchmarks HPPO PADDPG PDQN HHQN HyAR-DDPG Hybrid CtrlFormer

Platform 2h4m57s 2h24m33s 2h56m06s 2h26m17s 3h11m41s 2h48m51s
Chase 20h34m08s 20h28m14s 22h06m36s 22h27m12s 23h20m06s 22h12m35s
Goal 7h12m23s 7h15m57s 7h46m05s 8h03m02s 8h53m26s 8h41m29s

Table 3: The convergence rate of Hybrid CtrlFormer is in the middle among all methods.

G MODEL SCALE AND PERFORMANCE ANALYSIS

Despite utilizing both Transformer and MCTS, Hybrid CtrlFormer does not increase the network depth, and the computational
demand remains at the same order of magnitude as previous methods. We conducted experiments to test the convergence
time of all methods (with Hybrid CtrlFormer sampling 32 times per step) in multiple scenarios on a single NVIDIA GeForce
GTX 2080Ti GPU (see Tab 3). The results demonstrate that the combination of multiple modules has a limited effect on the
time performance of our method, and its convergence speed remains at the same order of magnitude as previous work.
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