
A Proofs and Additional Analysis

As a “warm-up” and because it is of independent interest, we will first study an adaptation algorithm
which picks the single best kernel from the meta tasks:
Definition 7 (Adaptation by choosing-one-best kernel). With the set of base kernels {k1, . . . , kN},
k̂ = arg maxi Ĵλne(S

tr
P , S

tr
Q ; ki) is said to be the best kernel adaptation.

Proposition 3 shows uniform convergence of Ĵλ for direct adaptation of a kernel class, whether a
deep kernel or multiple kernel learning. For our analysis of choosing the best single kernel, however,
we only need uniform convergence over a finite set, where we can obtain a slightly better rate.
Lemma 8 (Generalization gap for choosing-one-best kernel adaptation). Let ki be a set of base
kernels, whose power criteria on the corresponding distributions are Ji = J(P,Q; ki), and let s′ =

mini∈[N ] σ
2
H1

(P,Q; ki). Denote the regularized estimates of these values as Ĵi = Ĵλ(SP, SQ; ki),
where |SP| = |SQ| = m and λ = m−1/3. Then, with probability at least 1− δ,
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Proof. To bound maxi∈[N ]|Ĵi−Ji|, we consider high-probability bounds for concentration of η̂ω and
σ̂2
ω with McDiarmid’s inequality and a union bound, as developed within the proofs of Propositions

15 and 16 of Liu et al. [16]. With probability at least 1− δ, we have
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Then, taking σ2
i,λ = σ2

i + λ, we can decompose the worst-case generalization error as
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Taking the upper bound on the kernel to be constant, in our case ν = 1, the above equation reads
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Taking the regularizer λ = m−1/3 to achieve the best overall rate,
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|Ĵi − Ji| = O

(
1

s′2m1/3

[√
log

N

δ
+

1√
m

]
+

1

s′3m1/3
+

1

s′
√
m

√
log

N

δ

)

= O

(
1

s′2m1/3

[
1

s′
+

√
log

N

δ
+

1√
m

])
.

Since the adaptation step is based on m samples from the actual testing task, our generalization result
is derived based on the sample size m. As explained in the main text, even though the sample size is
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still small, the adaptation result benefits from a much better trained base kernel set, giving rise to
large s′ compared to s from directly training from the deep kernel parameters with m samples.

Given this building block, we proceed to state and prove the choosing-one-best kernel adaptation,
Theorem 10.
Lemma 9. Let (P,Q) and (Pi,Qi) be two testing tasks which are γ-related (Definition 4), and let
k∗ ∈ arg maxk∈K J(P,Q; k) and k∗i ∈ arg maxk∈K J(Pi,Qi; k). Then

|J(P,Q; k∗)− J(Pi,Qi; k∗i )| ≤ γ.

Proof. We know that J(Pi,Qi; k∗) ≤ J(Pi,Qi; k∗i ) by the definition of k∗i , and that J(Pi,Qi; k∗) ≥
J(P,Q; k∗)− γ by γ-relatedness. Putting together we have

J(P,Q; k∗)− γ ≤ J(Pi,Qi; k∗) ≤ J(Pi,Qi; k∗i ),

and so J(P,Q; k∗)− J(Pi,Qi; k∗i ) ≤ γ.

Similarly, we have
J(Pi,Qi; k∗i )− γ ≤ J(P,Q; k∗i ) ≤ J(P,Q; k∗)

and so −γ ≤ J(P,Q; k∗)− J(Pi,Qi; k∗i ).

Theorem 10 (Adaptation by choosing one best base kernel). Suppose we have N meta-training tasks
{(Pi,Qi)}i∈[N ], each with corresponding optimal kernels k∗i ∈ arg maxk∈K J(Pi,Qi; k), and learn
kernels k̂i ∈ arg maxk∈K Ĵλ(SPi , SQi ; k) based on n samples in the setting of Proposition 3. Let
(P,Q) be a test task from which we observe m samples SP, SQ. Let j be the index of a task (Pj ,Qj)
which is γ-related to (P,Q). Then, with probability at least 1− 2δ,

J(P,Q; k∗)− J(P,Q; k̂) ≤ 2(γ + ξjn + ζm)

where ξjn is the bound of Proposition 3 for (Pj ,Qj), while ζm is the bound of Lemma 8 for (P,Q).

Proof. We will assume that (SP, SQ) satisfies the uniform convergence condition of Lemma 8,
and (SPj , SQj ) that of Proposition 3, which happens with probability at least 1 − 2δ. We use the
decomposition

J(P,Q; k∗)− J(P,Q; k̂) = J(P,Q; k∗)− J(Pj ,Qj ; k∗j )︸ ︷︷ ︸
(a)

+ J(Pj ,Qj ; k∗j )− J(Pj ,Qj ; k̂j)︸ ︷︷ ︸
(b)

+ J(Pj ,Qj ; k̂j)− J(P,Q; k̂j)︸ ︷︷ ︸
(c)

+ J(P,Q; k̂j)− Ĵλ(SP, SQ; k̂j)︸ ︷︷ ︸
(d)

+ Ĵλ(SP, SQ; k̂j)− Ĵλ(SP, SQ; k̂)︸ ︷︷ ︸
(e)

+ Ĵλ(SP, SQ; k̂)− Jλ(SP, SQ; k̂)︸ ︷︷ ︸
(f)

.

Lemma 9 upper-bounds (a) by γ, while Proposition 3 upper-bounds (b) by 2ξjn, and (c) is at most γ
by the definition of γ-relatedness. The terms (d) and (f) are each at most ζm by Lemma 8, while (e)
is at most 0 by the definition of k̂. The desired bound follows.

Proof of Theorem 6 in the main text

Proof. Let β∗ ∈ arg maxβ∈RN≥0
J(P,Q;

∑
i β
∗
i k̂i), and then make the decomposition

J(P,Q; k∗)− J(P,Q; k̂β̂)

= J(P,Q; k∗)− J(P,Q; k̂j)︸ ︷︷ ︸
(i)

+ J(P,Q; k̂j)− J(P,Q; k̂β∗)︸ ︷︷ ︸
(ii)

+ J(P,Q; k̂β∗)− J(P,Q; k̂β̂)︸ ︷︷ ︸
(iii)

.

Term (i) is identical to terms (a) through (c) of Theorem 10, and is upper-bounded by 2(γ + ξjn)

conditional only on the convergence event for (SPj , SQj ). Term (ii) is at most 0, since k̂j corresponds
to choosing the jth standard unit vector for β, so β∗ is at least as good as that choice of β. Finally,
term (iii) is covered by Proposition 3, as in Proposition 8 of Liu et al. [16], giving an upper bound
with probability 1− δ on (SP, SQ).
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B Experimental Details and Additional Experiments

B.1 Datasets and Configurations

Figure 5 shows samples from CIFAR-10 and CIFAR-10.1. CIFAR-10.1 is available
from https://github.com/modestyachts/CIFAR-10.1/tree/master/datasets (we use
cifar10.1_v4_data.npy). This new test set contains 2, 031 images from TinyImages [54].

We implement all methods with Pytorch 1.1 (Python 3.8) using an NIVIDIA Quadro RTX 8000 GPU,
and set up our experiments according to the protocol proposed by Liu et al. [16]. In the following,
we demonstrate our configurations in detail. We run ME and SCF using the official code [5], and
use Liu et al.’s implementations of most other tests. We use permutation test to compute p-values
of C2ST-S, C2ST-L, MMD-O, MMD-D, AGT-KL, Meta-KL, Meta-MKL and all tests in Table 3.
We set α = 0.05 for all experiments. We use a deep neural network g ◦ φ as the classifier in C2ST-S
and C2ST-L, where g is a two-layer fully-connected binary classifier, and φ is the feature extraction
architecture also used in the deep kernels in MMD-D, AGT-KL, Meta-KL, Meta-MKL, and methods
in Table 3 and Table 4.

For HDGM, φ is a five-layer fully-connected neural network. The number of neurons in hidden and
output layers of φ are set to 3× d, where d is the dimension of samples. These neurons use softplus
activations, log(1 + exp(x)). For CIFAR, φ is a convolutional neural network (CNN) with four
convolutional layers and one fully-connected layer. The structure of the CNN follows the structure of
the feature extractor in the discriminator of DCGAN [55] (see Figures 6 and 7 for the structure of φ
in our tests, MMD-D, C2ST-S and C2ST-L). We randomly select data from two different classes to
form the two samples (ni is 100) as meta-samples in CIFAR-10/CIFAR-100. Thus, there are C2
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and C2
100 tasks when running Algorithm 1 on training sets of CIFAR-10 and CIFAR-100. For each

task, we have 200 instances. Note that, for results on synthetic data, we repeat experiments 20 times
to avoid the effects caused by the generation noise. DCGAN code is from https://github.com/
eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py.

We use the Adam optimizer [56] to optimize network and/or kernel parameters. Hyperparameter se-
lection for ME, SCF, C2ST-S, C2ST-L, MMD-O and MMD-D follows Liu et al. [16]. In Algorithm 1,
λ is set to 10−8, and the update learning rate η (line 2) is set to 0.8, and the meta-update learning
rate is set to 0.01. Batch size is set to 10, and the maximum number of epoch is set to 1, 000. In line
6 in Algorithm 1, we use Adam optimizer with default hyperparameters. In line 1 in Algorithm 3,
we adopt Adam optimizer with default hyperparameters and set learning rate to 0.01. Besides, we
use the algorithm from Algorithm 1 to initialize parameters in the optimization algorithm. To avoid
the computational cost caused by the large number of meta-tasks, we randomly select 10 tasks in
Meta-MKL rather than all N tasks. Meanwhile, to ensure that we can get help from all tasks, we will
use the algorithms outputted by Meta-KL to optimize the deep kernels (line 1 in Algorithm 3) in the
selected 10 tasks. The algorithms outputted by Meta-KL are helpful to find the best deep kernel for
each task. Note that we do not use dropout.

B.2 Analysis of the Number of Tasks

We report the test power±standard error of Meta-KL and Meta-MKL when increasing the number of
tasks N from 20 to 150 in this subsection. Tables 5 and 6 show that the test power will increase in
general when increasing N from 20 to 150. When mte = 250, the lowest test power appears when
N = 20 (0.333 for Meta-KL and 0.459 for Meta-MKL), and the highest test power appears when
N = 150 (0.771 for Meta-KL and 0.907 for Meta-MKL). This means that increasing the number of
meta tasks will help improve the test power on the target task.

B.3 Distinguishing CIFAR-10 or -100 from CIFAR-10.1 Using CIFAR-100-based Meta-tasks

In this subsection, we report results when meta-samples are generated by the training set of CIFAR-
100 dataset, which are shown in Tables 7 and 8. It can be seen that our methods still have high test
powers compared to previous methods. Besides, we can get higher test power on the task CIFAR-100
vs CIFAR-10.1 compared to results in Table 2, since meta-samples used here are closer to the target
task. This phenomenon also appears in Section 5.3.
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(a) CIFAR-10 test set (b) CIFAR-10.1 test set

Figure 5: Images from CIFAR-10 test set and the new CIFAR-10.1 test set [53].
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Figure 6: The structure of φ in our tests and MMD-D on CIFAR. The kernel size of each convolutional
layer is 3; stride (S) is set to 2; padding (P) is set to 1. We do not use dropout in all layers. In the first
layer, we will convert the CIFAR images from 32× 32× 3 to 64× 64× 3. Best viewed zoomed in.
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Figure 7: The structure of classifier F in C2ST-S and C2ST-L on CIFAR. The kernel size of each
convolutional layer is 3; stride (S) is set to 2; padding (P) is set to 1. We do not use dropout. Best
viewed zoomed in.

Table 5: The test power of Meta-KL on the synthetic dataset given very limited training data
(α = 0.05, mtr = 50) when increasing N from 20 to 150. The mte represents number of samples
when testing. Bold represents the highest mean per column.

mte 50 80 100 120 150 200 250

N = 20 0.095±0.008 0.131±0.010 0.151±0.013 0.170±0.018 0.212±0.020 0.269±0.032 0.333±0.041
N = 50 0.121±0.010 0.203±0.015 0.244±0.019 0.302±0.022 0.368±0.024 0.523±0.029 0.650±0.030
N = 80 0.144±0.015 0.226±0.021 0.272±0.030 0.328±0.033 0.416±0.041 0.551±0.048 0.659±0.048
N = 100 0.146±0.014 0.222±0.023 0.281±0.030 0.340±0.034 0.424±0.037 0.556±0.043 0.677±0.043
N = 120 0.131±0.011 0.216±0.019 0.278±0.023 0.333±0.025 0.422±0.033 0.565±0.035 0.692±0.036
N = 150 0.152±0.010 0.252±0.016 0.323±0.021 0.402±0.023 0.502±0.032 0.656±0.033 0.771±0.029

Table 6: The test power of Meta-MKL on the synthetic dataset given very limited training data
(α = 0.05, mtr = 50) when increasing N from 20 to 150. The mte represents number of samples
when testing. Bold represents the highest mean per column.

mte 50 80 100 120 150 200 250

N = 20 0.107±0.008 0.148±0.011 0.169±0.012 0.195±0.015 0.260±0.020 0.361±0.020 0.459±0.033
N = 50 0.172±0.010 0.262±0.013 0.338±0.018 0.411±0.022 0.506±0.026 0.688±0.029 0.795±0.024
N = 80 0.172±0.013 0.294±0.018 0.379±0.020 0.450±0.024 0.555±0.026 0.718±0.029 0.834±0.022
N = 100 0.186±0.011 0.321±0.019 0.396±0.023 0.493±0.023 0.602±0.027 0.759±0.027 0.872±0.021
N = 120 0.185±0.010 0.331±0.017 0.426±0.019 0.501±0.022 0.426±0.023 0.793±0.017 0.901±0.011
N = 150 0.200±0.010 0.330±0.012 0.424±0.015 0.520±0.016 0.641±0.018 0.807±0.016 0.907±0.011

B.4 Experiments regarding Closeness vs γ-relatedness

In this subsection, we introduce how to estimate the γ-relatedness between the target task T = (P,Q)
and the meta-tasks T i = (Pi,Qi).
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Table 7: Test power of tests on CIFAR-10 vs CIFAR-10.1 given very limited training data (α = 0.05,
mtr = 100, 200). The mte represents number of samples when testing. Bold represents the highest
mean per column.

Methods
mtr = 100 mtr = 200

mte = 200 mte = 500 mte = 900 mte = 200 mte = 500 mte = 900

ME 0.084±0.009 0.096±0.016 0.160±0.035 0.104±0.013 0.202±0.020 0.326±0.039
SCF 0.047±0.013 0.037±0.011 0.047±0.015 0.026±0.009 0.018±0.006 0.026±0.012

C2ST-S 0.059±0.009 0.062±0.007 0.059±0.007 0.052±0.011 0.054±0.011 0.057±0.008
C2ST-L 0.064±0.009 0.064±0.006 0.063±0.007 0.075±0.014 0.066±0.011 0.067±0.008
MMD-O 0.091±0.011 0.141±0.009 0.279±0.018 0.084±0.007 0.160±0.011 0.319±0.020
MMD-D 0.104±0.007 0.222±0.020 0.418±0.046 0.117±0.013 0.226±0.021 0.444±0.037

AGT-KL 0.172±0.035 0.465±0.044 0.812±0.033 0.143±0.021 0.438±0.073 0.836±0.065
Meta-KL 0.173±0.012 0.476±0.015 0.845±0.019 0.156±0.020 0.458±0.041 0.869±0.021

Meta-MKL 0.187±0.012 0.559±0.014 0.934±0.006 0.185±0.021 0.534±0.026 0.943±0.012

Table 8: Test power of tests on CIFAR-100 vs CIFAR-10.1 given very limited training data (α = 0.05,
mtr = 100, 200). The mte represents number of samples when testing. Bold represents the highest
mean per column.

Methods
mtr = 100 mtr = 200

mte = 200 mte = 500 mte = 900 mte = 200 mte = 500 mte = 900

ME 0.211±0.020 0.459±0.045 0.751±0.054 0.236±0.033 0.512±0.076 0.744±0.090
SCF 0.076±0.027 0.132±0.050 0.240±0.095 0.136±0.036 0.245±0.066 0.416±0.114

C2ST-S 0.064±0.007 0.063±0.010 0.067±0.008 0.324±0.034 0.237±0.030 0.215±0.023
C2ST-L 0.089±0.010 0.077±0.010 0.075±0.010 0.378±0.042 0.273±0.032 0.262±0.023
MMD-O 0.214±0.012 0.624±0.013 0.970±0.005 0.199±0.016 0.614±0.017 0.965±0.006
MMD-D 0.244±0.011 0.644±0.030 0.970±0.010 0.223±0.016 0.627±0.031 0.975±0.006

AGT-KL 0.837±0.011 1.000±0.000 1.000±0.000 0.876±0.009 1.000±0.000 1.000±0.000
Meta-KL 0.938±0.016 1.000±0.000 1.000±0.000 0.962±0.005 1.000±0.000 1.000±0.000

Meta-MKL 0.966±0.006 1.000±0.000 1.000±0.000 0.985±0.005 1.000±0.000 1.000±0.000

Estimation of γ-relatedness. Let SP and SP be samples drawn from P and Q, respectively, and let
SPi and SPi be samples drawn from Pi and Qi, respectively. Then, we split SP into StrP ∪ SteP , and
SQ into StrQ ∪ SteQ , and SPi into StrPi ∪ S

te
Pi , and SQi into StrQi ∪ S

te
Qi . Let the deep kernel k have the

form (8). Next, following Definition 4 and [16], we find a kernel trying to achieve the maximum in γ
as

k̂ = arg max
k

(
Ĵ(StrP , S

tr
Q ; k)− Ĵ(StrPi , S

tr
Qi ; k)

)2

. (13)

Based on Definition 4, we can estimate the γi between T and T i as follows.

γ̂i = |Ĵ(StrP , S
tr
Q ; k̂)− Ĵ(StrPi , S

tr
Qi ; k̂)|. (14)

To try to avoid the local maximum during the the above maximizing process, we will repeat the
above optimization procedure 10 times for estimating γ̂i. Namely, we have 10 values {γ̂it}10

t=1 for γ̂i.
Hence, the estimated γ between T and {T i}Ni=1 is set to γ̂ = mini maxt γ̂it.

Closeness vs γ-relatedness. Given the target task T in synthetic datasets, in this experiment, we set
|StrP | = |SteP | = |StrQi | = |S

te
Qi | = 4, 000 and define tasks T with closeness C as

T (C) = {T i := (P,Q((0.6− C) + 0.1× i/N))}Ni=1. (15)

It is clear that T (0) will contain our target task T (i.e., the closeness is zero). Then, we es-
timate the γ-relatedness between the target task and T (C), where C ∈ {0.1, 0.2, 0.3, 0.4, 0.5},
and the results show that γ ∝ C. Specifically, if we let C be 0.1, 0.2, 0.3, 0.4, 0.5, then the γ̂ is
0.035, 0.067, 0.076, 0.104, 0.134, respectively.
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