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ABSTRACT

This supplementary material provides additional implementation details, further
information for better reproducibility, additional quantitative and qualitative results
as well as license information.
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A IMPLEMENTATION DETAILS
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Figure A: The creation of input features. Left: The creation of feature pyramids from the last feature of the
plain backbone, ViT, in SimpleFPN (Li et al., 2022) where different stacks of convolutional layers are used to
create features at different scales. Right: The design of our single-scale feature map with only one layer.

The creation of input features. In Fig. A, we compare the creation of input features to detection
head between SimpleFPN and our method. In Li et al. (2022), the multi-scale feature maps are
created by different sets of convolution layers. Instead, SimPLR simply applies a deconvolution layer
following by a GroupNorm layer (Wu & He, 2018).

Masked Instance-Attention. The masked instance-attention follows the grid sampling strategy of
the box-attention in Nguyen et al. (2022), but differs in the computation of attention scores to better
capture objects of different shapes. To be specific, the region of interest r′i is divided into 4 bins
of 2× 2 grid, each of which contains a m

2 × m
2 grid features sampled using bilinear interpolation.

Instead of assigning an attention weight to each feature vector, a linear projection (Rd → R2×2) is
adopted to generate the 2× 2 attention scores for 4 bins. The m

2 × m
2 feature vectors within the same
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Figure B: Masked Instance-
Attention. Left: The box-
attention (Nguyen et al., 2022)
which samples 2× 2 grid features
in the region of interest. Right:
Our masked instance-attention for
dense grid sampling that employs
masking strategy to capture object
boundary. The 2 × 2 attention
scores are denoted in four colours
and the masked attention score is
shown in white.

bin share the same attention weight. This is equivalent to the average aggregation of feature values
covered by each bin, which shows to reduce misalignments in RoIAlign (He et al., 2017):

headi =
2×2∑
k=0

m
2 ×m

2∑
j=0

αk
m
2 · m

2

vik,j
, (1)

where ak is the attention weight corresponding to k-th bin and vik,j
is the j-th feature vector inside

k-th bin.

Inspired by Cheng et al. (2022), we utilize the mask prediction of the previous decoder layer
Mq ∈ RHm×Wm corresponding to the object query q. Given the coordinates of grid features within
the region of interest r′i, we sample the corresponding mask scores using bilinear interpolation. The
sampled mask scores are binarized with the 0.5 threshold before softmax in the attention computation.
Note that in masked instance-attention, we sample the feature grid of 14× 14.

Fig. B shows the difference between box-attention (Nguyen et al., 2022) and masked instance-
attention. By utilizing the mask prediction from previous decoder layer, masked instance-attention
can effectively capture object of different shapes.

Losses in training of SimPLR. We use focal loss (Lin et al., 2017) and dice loss (Milletari et al.,
2016) for the mask loss: Lmask = λfocalLfocal + λdiceLdice with λfocal = λdice = 5.0. The box loss
is the combination of ℓ1 loss and GIoU loss (Rezatofighi et al., 2019), Lbox = λℓ1Lℓ1 + λgiouLgiou,
with λℓ1 = 5.0 and λgiou = 2.0. The focal loss is also used for our classification loss, Lcls. Our
final loss is formulated as: L = Lmask + Lbox + λclsLcls (λcls = 2.0 for object detection and instance
segmentation, λcls = 4.0 for panoptic segmentation).

Hyper-parameters of SimPLR. SimPLR contains 6 encoder and decoder layers. The adaptive-scale
attention in SimPLR encoder samples 2× 2 grid features per region of interest. In the decoder, we
compute attention on a grid of 14× 14 features within regions of interest. The dimension ratio of
feed-forward sub-layers to 4. The number of object queries is 300 in the decoder as suggested in
Nguyen et al. (2022). The size of input image is 1024× 1024 in both training and inference. Note
that we also use this setting for the baseline (i.e., BoxeR with ViT backbone).

In Tab. 2d, we show that the decouple between feature scale and dimension of the ViT backbone and
the detection head helps to boost the performance of our plain detector while keeping the efficiency.
This comes from the fact that the complexity of global self-attention in the ViT backbone increase
quadraticaly w.r.t. the feature scale and the detection head enjoys the high-resolution input for object
prediction. Note that with ViT-H as the backbone, we follow Li et al. (2022) to interpolate the kernel
of patch projection into 16 × 16. The hyper-parameters for each SimPLR size (Base, Large, and
Huge) are in Tab. A.

B ADDITIONAL RESULTS

More panoptic segmentation comparison. Here, we provide more results of SimPLR with ViT-B
pre-trained using MAE on COCO panoptic segmentation in Tab. B. SimPLR with MAE pre-trained
backbone continues to show strong segmentation performance when using only single-scale input.
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model size
backbone detection head

dim. # heads feature scale encoder dim. decoder dim. # heads feature scale
Base 768 12 1

16
384 256 12 1

8

Large 1024 16 1
16

768 384 16 1
8

Huge 1280 16 1
16

960 384 16 1
8

Table A: Hyper-parameters of backbone and detection head for different sizes of SimPLR (base – large – huge
models). Note that these settings are the same for all three tasks.

method backbone pre-train
Panoptic Segmentation

FPS
PQ PQth PQst

MaskFormer Swin-B sup-1K 51.1 56.3 43.2 -
Mask2Former Swin-B sup-1K 55.1 61.0 46.1 -
SimPLR ViT-B MAE 55.3 61.6 45.8 13

Table B: More panoptic segmentation comparison between SimPLR with ViT-B backbone pre-trained using
MAE and other methods with Swin-B backbone. All backbones are pre-trained on ImageNet-1K. SimPLR still
shows competitive results when using only single-scale input.

Ablation on pre-training strategies. Tab. C compares the ViT backbone when pre-trained using
different strategies with different sizes of pre-training data. SimPLR with the ViT backbone benefits
from better pre-training methods even with supervised approaches. Specifically, ViT pre-trained
with DEiTv3 (Touvron et al., 2022) is better than one with DEiT (Touvron et al., 2021), and the
pre-training on ImageNet-21K further improves the performance of DEiTv3.

However, the self-supervised method like MAE (He et al., 2022) provides strong pre-trained back-
bones when only pre-trained on ImageNet-1K. This further confirms that our plain detector, SimPLR,
enjoys the significant progress of self-supervised learning and scaling ViTs. A similar observation is
also pointed out in ViTDet (Li et al., 2022) where the ViT backbone initialized with MAE improves
the upper-bound of object detection compared to the long and optimal training recipe from scratch.

pre-train
Object Detection Instance Segmentation

APb APb
S APb

M APb
L APm APm

S APm
M APm

L

IN-1K, DEiT 53.6 33.7 58.1 71.5 46.1 24.5 50.4 67.2
IN-1K, DEiTv3 54.0 34.3 58.8 70.5 46.4 24.8 51.1 66.7
IN-21K, DEiTv3 54.8 35.4 59.0 72.4 47.1 25.8 51.2 68.5
IN-1K, MAE 55.4 36.1 59.1 70.9 47.6 26.8 51.4 67.1

Table C: Ablation on pre-training strategies of the plain ViT backbone using SimPLR evaluated on COCO
object detection and instance segmentation. We compare the ViT backbone pre-trained using supervised methods
(top row) vs. self-supervised methods (bottom row) with different sizes of pre-training dataset (ImageNet-1K vs.
ImageNet-21K). Here, we use the 5× schedule as in Nguyen et al. (2022). It can be seen that SimPLR with the
plain ViT backbone benefits from better pre-training approaches and with more pre-training data.

C QUALITATIVE RESULTS

We provide qualitative results of the SimPLR prediction with ViT-B backbone on three tasks: COCO
object detection, instance segmentation, and panoptic segmentation in Fig. C.

D ASSET LICENSES

Dataset License
ImageNet (Deng et al., 2009) https://image-net.org/download.php
COCO (Lin et al., 2014) Creative Commons Attribution 4.0 License
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Figure C: Qualitative results for object detection, instance segmentation, and panoptic segmentation generated
by SimPLR using ViT-B as backbone on the COCO val set. In each pair, the left image shows the visualization
of object detection and instance segmentation, while the right one indicates the panoptic segmentation prediction.
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