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ABSTRACT

Recent deep learning applications, exemplified by text-to-image tasks, often in-
volve high-dimensional inputs and outputs. While several studies have investi-
gated the function estimation capabilities of deep learning, research on dilated
convolutional neural networks (CNNs) has mainly focused on cases where in-
put dimensions are infinite but output dimensions are one-dimensional, similar to
many other studies. However, many practical deep learning tasks involve high-
dimensional (or even infinite dimensional) inputs and outputs. In this paper, we
investigate the optimality of dilated CNNs for estimating a map between infinite-
dimensional input and output spaces by analyzing their approximation and estima-
tion abilities. For that purpose, we first show that approximation and estimation
errors depend only on the smoothness and decay rate with respect to the infinity
norm of the output, and their estimation accuracy actually achieve the minimax
optimal rate of convergence. Second, we demonstrate that the dilated CNNs out-
perform any linear estimators including kernel ridge regression and k-NN esti-
mators in a minimax error sense, highlighting the usefulness of feature learning
realized by deep neural networks. Our theoretical analysis provide a theoretical
basis for understanding the success of deep learning in recent high-dimensional
input-output tasks.

1 INTRODUCTION

In recent years, deep learning has found applications in a wide array of fields, leading to remarkable
progress. Some noteworthy breakthroughs include Stable Diffusion (Rombach et al. (2022)) for text-
to-image applications, and Whisper (Radford et al. (2022)) for speech-to-text applications. Despite
their distinctiveness, these technologies have one thing in common: They handle high-dimensional
inputs and outputs. This is quite different from the early days of deep learning, which began with
AlexNet (Krizhevsky et al. (2017)) and mainly focused on classification tasks with high-dimensional
inputs but only one-dimensional outputs.

The theoretical research of deep learning has studied the approximation and estimation capabili-
ties of neural networks. It is well-established that two-layer neural networks can approximate any
continuous function with compact support to arbitrary precision (Cybenko (1989); Hornik (1991)),
while multi-layer networks have been investigated under more practical conditions, such as functions
belonging to Hölder or Besov spaces (Petersen & Voigtlaender (2018); Suzuki (2019)). Estimation
capabilities of multi-layer networks have also been examined using a finite number of samples, with
some studies showing nearly minimax optimal convergence rates (Schmidt-Hieber (2020)).

However, these studies often assume a fixed input dimension significantly smaller than the size
of training data, resulting in the curse of dimensionality where convergence rates depend on the
input data dimension. This limitation is particularly relevant for recent deep learning tasks, such as
processing very long textual, image and audio data, where input dimensions can be extremely large
or even regarded as infinite-dimensional.
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To overcome this challenge, researchers have focused on settings where the data distribution’s sup-
port exhibits low-dimensional structures (Chen et al. (2019; 2022); Nakada & Imaizumi (2020)).
These studies demonstrate that neural networks can avoid the curse of dimensionality by exploiting
low-dimensional data structures. Suzuki & Nitanda (2021) demonstrated the ability to overcome
the curse of dimensionality even when the input data does not lie on a low-dimensional manifold
by considering Besov spaces with direction-dependent smoothness, referred to as anisotropic Besov
spaces. Nevertheless, the performance of neural networks in extremely high-dimensional or infinite-
dimensional settings is still an open question that warrants further investigation.

Okumoto & Suzuki (2021) considered γ-smooth space (Def. 1), demonstrating that dilated CNNs
can achieve approximation and estimation errors that depend only on smoothness, not dimension-
ality, for infinite-dimensional inputs. The γ-smooth space is a function space where different coor-
dinates exhibit different smoothness, which is inspired by the settings in Dũng & Griebel (2016);
Ingster & Stepanova (2011). This research partially explains the great success of dilated CNNs
in tasks involving high-dimensional inputs. However, including this study, theoretical research on
deep learning has primarily focused on one-dimensional outputs, neglecting the situation with high-
dimensional outputs. Given that many recent deep learning applications involve high-dimensional
inputs and outputs, it is essential to conduct theoretical analyses of neural networks in problem
settings where both input and output dimensions are high.

In recent research, while there has been limited investigation on deep learning in the context of
infinite-dimensional inputs and outputs, the study of linear operators in such settings has been exten-
sively explored. For example, Oliva et al. (2013; 2014) proposed a method for estimating mappings
with inputs and outputs as functions or distributions, and showed their convergence rates. In Talwai
et al. (2022), the authors provided convergence rates for estimating linear operators with input and
output spaces being reproducing kernel Hilbert spaces, extending the results of Fischer & Steinwart
(2020) for one-dimensional outputs. Jin et al. (2022) demonstrated a more general form of linear
operator estimation errors by changing the norm used in Talwai et al. (2022), reflecting the structure
of output data spaces. Research on learning a linear operator in infinite-dimensional input-output
settings has also been widely studied in the literature of numerical analysis (Lu et al. (2021); Li
et al. (2021b); de Hoop et al. (2021); Li et al. (2018; 2021a)) and econometrics (Singh et al. (2019);
Muandet et al. (2020); Dikkala et al. (2020)).

Additionally, there are several studies that have conducted analysis using neural networks targeting
nonlinear operators with infinite-dimensional input and output spaces. Chen & Chen (1995) proved
that neural networks have the capability of approximating nonlinear functionals defined on some
compact set of a Banach space and nonlinear operators. Then, Lu et al. (2021) extended the theory to
deep neural networks and proposed DeepONet based on the theory. Lanthaler et al. (2022) conducted
a theoretical analysis of DeepONet, providing its approximation and estimation errors. However,
their analysis is contingent upon the architecture of DeepONet and is confined to a limited scope,
specifically focusing on learning operators between functions.

Our contributions. In this study, we show the optimality of dilated CNNs by analyzing their
approximation and estimation errors in a problem setting where the input and output dimensions
are both infinite, while existing work did not show the statistical optimality of this problem. We
deal with the problem as a nonparametric regression problem with infinite dimensional input-output
spaces where the true function is a nonlinear operator consisting of an infinite sequence of functions
belonging to the so-called γ-smooth space (Dũng & Griebel, 2016; Ingster & Stepanova, 2011;
Okumoto & Suzuki, 2021). The intuition behind this function class can be explained via practical
applications such as audio-data conversion. When we convert audio-data, the input and output
audio data are usually decomposed into the frequency domain (or other audio features such as Mel-
frequency cepstrum) and the input-output relation is often highly sensitive to some frequency bands,
which can be formalized by the non-uniform smoothness with respect to each frequency component.
The γ-smooth space provides a mathematical abstraction of this notion. Then, our purpose is to
explicitly verify how advantageous the CNN structure is to estimate this kind of infinite dimensional
non-linear dependency. More specifically, our contributions can be summarized as follows:

1. We consider a nonlinear operator as a true function with infinite-dimensional inputs and outputs.
In the aforementioned setup, we demonstrate that dilated CNNs achieve approximation and es-
timation errors that depend only on the smoothness and decay rate of the output. Furthermore,
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we show that the estimation errors are minimax optimal. To the best of our knowledge, this is
the first study that establishes the minimax optimality of deep learning models in the setting of
infinite-dimensional input and output. Technically, we show lower bounds on the minimax opti-
mal rate by providing a covering number of spaces that have decay in its L2 norms of the outputs,
and this framework can be applicable to other function classes as well.

2. We show that dilated CNNs are adaptive to the unknown smoothness structure, that is, it auto-
matically achieves the minimax rate without the knowledge of the smoothness structure of the
true target functional. To show how crucial this adaptivity is in terms of the predictive error, we
compare the predictive performance with the class of linear estimators as a counter part of non-
feature learning methods including kernel ridge regression and k-NN estimator. Indeed, we show
that the worst case error of any linear estimator is outperformed by dilated CNNs. This result
highlights the usefulness of neural network-based feature extraction.

These results demonstrate that dilated CNNs achieve the minimax optimality with polynomial order
sample complexity, even when both the input and output dimensions are infinite-dimensional. Fur-
thermore, dilated CNNs are found to be superior to linear estimators. These findings underscore the
significance of dilated CNNs’ feature extraction abilities. This theoretical analysis partially explains
the success of deep learning in recent high-dimensional input-output tasks.

2 PROBLEM SETTING AND NOTATIONS

In this section, we set up our problem setting of the nonlinear operator learning. First, we explain
the notation used throughout this paper. Let R>0 := {s ∈ R : s > 0}, and for a set D, let D∞ :=
{(s1, . . . , si, . . .) : si ∈ D}. For s ∈ D∞, we define supp (s) := # {i ∈ N : si ̸= 0}. We then
define N∞

0 := {l ∈ (N ∪ {0})∞ : supp (l) <∞} and similarly define R∞
0 , Z∞

0 . Furthermore, for
s ∈ N∞

0 , we let 2s := 2
∑∞

i=1 si . For a ∈ R, ⌊a⌋ is the largest integer less than or equal to a, and ⌈a⌉
is the smallest integer greater than or equal to a. Additionally, for L ∈ N, we let [L] := {1, . . . , L}.

Problem setting Let λ be the Lebesgue measure on ([0, 1] ,B ([0, 1])), whereB ([0, 1]) is the Borel
σ-field on [0, 1]. Let λ∞ be the product measure defined on ([0, 1]

∞
,
∏∞
i=1 B ([0, 1])) obtained as

the countably infinite product of λ. Such measures exist uniquely by the Kolmogorov extension
theorem. Let M := [0, 1]

∞. Let PX be a probability measure defined on M that is absolutely
continuous with respect to λ∞, and let its Radon-Nikodym derivative satisfy

∥∥ dPx

dλ∞

∥∥
L∞(M)

< ∞.
Then, we assume that there exists a true nonlinear operator f◦ : M → R∞ such that the in-
put and output have the following nonlinear relation: (1) Y = f◦ (X) + ξ, where X is a ran-
dom variable that takes values in M obeying the distribution PX , and ξ ∈ R∞ is an observation
noise such that each component is independently following a Gaussian distribution with mean 0
and bounded variance. In this study, we discuss (i) how efficiently neural networks can approxi-
mate the true operator f◦, and (ii) how accurately neural networks can estimate the true operator
f◦ from n observation data Dn =

(
x(i), y(i)

)n
i=1
⊂ M × R∞. We use the mean squared er-

ror ∥f − f◦∥2PX
:= EP

[
∥f (x)− f◦ (x)∥2ℓ2

]
= EP

[∑∞
j=1

(
fj (x)− f◦j (x)

)2]
as a performance

metric for learning operators. Here, P denotes the joint distribution of the random variables X and
Y .
Notations. Next, we define the γ-smooth space (Okumoto & Suzuki (2021)). For l ∈ Z∞

0 , x =
(xi)

∞
i=1 ∈M, we define

ψl (x) :=

∞∏
i=1

ψli (xi) , ψli (xi) :=


√
2 cos (2π |li|xi) (li < 0) ,
√
2 sin (2π |li|xi) (li > 0) ,

1 (li = 0) .

Then, let L2 (M) :=
{
f :M→ R :

∫
M f2 (x) dλ∞ (x) <∞

}
equipped with an inner product

⟨f, g⟩ :=
∫
M f (x) g (x) dλ∞ (x) for f, g ∈ L2 (M). Here, the set (ψl)l∈Z∞

0
forms an orthonor-

mal basis of this space (Ingster & Stepanova, 2011), and thus any f ∈ L2 (M) can be expanded
as f (·) =

∑
l∈Z∞

0
⟨f, ψl⟩ψl (·). For s ∈ N∞

0 , we define δs (f) : R∞
0 → R by δs (f) (·) :=∑

l∈Z∞
0 :⌊2si−1⌋≤|li|<2si ⟨f, ψl⟩ψl (·) , which can be interpreted as the frequency components of f

corresponding to frequency of |li| ∼ 2si . Let J (s) :=
{
l ∈ Z∞

0 :
⌊
2si−1

⌋
≤ |li| < 2si

}
.
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For p ≥ 1, if we define ∥f∥p :=
(∫

M |f |
p
dλ∞

) 1
p , then γ-smooth space can be defined as follows:

Definition 1 (γ-smooth space). Let p, q ≥ 1, and γ : N∞
0 → R be a monotonically

increasing function for each component. Then, the γ-smooth space is defined as Fγp,q :={
f ∈ L2 (M) : ∥f∥Fγ

p,q
<∞

}
, whose norm is ∥f∥Fγ

p,q
:=
(∑

s∈N∞
0

(
2γ(s) ∥δs (f)∥p

)q) 1
q

.

We can see that the function γ plays a kind of penalty on each frequency component of the functions
in the class; that is, a frequency component with large γ(s) should be suppressed so that the norm
is bounded. In that sense, the design of γ(s) is crucial to control their smoothness. In this study, we
focus on two types of γ functions as in Okumoto & Suzuki (2021).
Definition 2 (Mixed smoothness and anisotropic smoothness). Given a sequence a = (ai)

∞
i=1 ∈

R∞
>0, mixed smoothness is defined as γ (s) = ⟨a, s⟩, where ⟨a, s⟩ =

∑∞
i=1 aisi. Moreover,

anisotropic smoothness is defined as γ (s) = maxi∈N {aisi} .

Intuitively, a represents the strength of penality on each frequency. Indeed, each ai can be interpreted
as the smoothness toward the i-th coordinate. More technically, it is known that when γ has mixed
smoothness or anisotropic smoothness, the γ-smooth space becomes an extension of mixed Besov
space (Schmeisser (1987)) or anisotropic Besov space (Nikol’skii (1975)) to an infinite dimensional
settings, respectively (Okumoto & Suzuki (2021)).

Based on the γ-smooth function class, we define a class of nonlinear operators from M to R∞.
First, let

(
L2 (M)

)∞
:=
{
f :M→ R∞ :

∫
M ∥f (x)∥

2
ℓ2 dλ

∞ (x) <∞
}

equipped with an inner

product ⟨f, g⟩ :=
∫
M
∑∞
i=1 (f (x))i (g (x))i dλ

∞ (x) by an abuse of notation. Then we define a

class of operators
(
Fγp,q

)∞
as follows:

(
Fγp,q

)∞
:=
{
f ∈

(
L2 (M)

)∞
: ∀i ∈ N, ∥fi∥Fγ

p,q
<∞

}
,

which is an extension of the γ-smooth space to an infinite dimensional output setting. In this study,
we mainly discuss nonlinear operators that belong to this space.
Assumptions. Next, we impose assumptions on the true nonlinear operator for theoretical analysis
in this study. The following assumption imposes a norm control on each component f◦i of the target
function:
Assumption 3. We assume that the true nonlinear operator f◦ satisfies the following condition for
some p ≥ 1, q ≥ 11:

f◦ = (f◦i )
∞
i=1 ∈

(
U
(
Fγp,q

))∞
, (2)

where γ is the mixed or anisotropic smoothness. Furthermore, there exist constants B2 > 0, B∞ >
0 and 0 < r < 1 such that

∥f◦i ∥2 ≤ B2i
− 1

r , ∥f◦i ∥∞ ≤ B∞
(∀i ∈ N

)
. (3)

We let Br be the subset of (L2(M))∞ satisfying the condition (3).

Here, we define the Lp-norm as ∥f∥p :=
(∫

M ∥f (x)∥
p
ℓp dλ

∞ (x)
) 1

p for f :M→ R∞ by an abuse
of notation. In particular, we set ∥f∥∞ :=

∑∞
i=1 ∥fi∥∞ when p = ∞. Note that ∥·∥2 ≤ ∥·∥∞.

Since PX satisfies the assumption of absolute continuity and the finiteness of the Radon-Nikodym
derivative with respect to λ∞, we have ∥·∥PX

≲ ∥·∥2 (Okumoto & Suzuki (2021)). We also impose
the following assumption on the observation noise:
Assumption 4. Each component of the observation noise ξ = (ξi)

∞
i=1 ∈ R∞ is assumed to be

independent and follow a Gaussian distribution as ξi ∼ N
(
0, σ2

i

)
where σ2

i is uniformly bounded
by σ̄2 <∞.

These assumptions posit that the true function values tend to approach zero as the index increases.
Without such assumptions, there would be issues such as the accumulation of estimation errors in
the outputs corresponding to each index leading to divergence. It is still a future task to weaken the
assumptions by changing the norm used for evaluation, as in Jin et al. (2022). An intuition behind
this assumption can be obtained by considering a speech synthesis task, for example. Suppose that
the output data is decomposed into the frequency components. Then, the index i corresponds to i-th
frequency. The assumptions above corresponds to a situation where the amplitude of the true signal
decreases as the frequency increases.

1We denote by U(X ) the unit ball of a normed vector space X .
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3 APPROXIMATION AND ESTIMATION ERRORS OF DILATED CNNS

In this section, we analyze the approximation and estimation errors in learning nonlinear operators
using dilated convolutional neural networks (CNNs). First, we define the dilated CNNs, which is a
model that consists of convolutional layers followed by fully connected layers. We begin by defining
the fully connected neural network (FNNs).

Definition 5 (Fully connected neural network (FNNs)). Let L ∈ N be the depth of the network,
and i = 1, 2, . . . , L + 1, di ∈ N be the width of the i-th layer. Then, the model defined by
f (x) = (ALη (·) + bL) ◦ · · · ◦ (Aiη (·) + bi) ◦ · · · ◦ (A1x+ b1) , where η (·) is the ReLU activation
function and Ai ∈ Rdi+1×di , bi ∈ Rdi+1 , η (x) = max {x, 0}. This model is called the fully
connected neural network (FNNs).

We also consider the following collection of FNNs using some constants W ∈ N, S ∈ N, B > 0:

Φ (L,W, S,B) :=
{
f (x) = (ALη (·) + bL) ◦ · · · ◦ (Aiη (·) + bi) ◦ · · · ◦ (A1x+ b1) :

max
i=1,...,L

∥Ai∥∞ ∨ ∥bi∥∞ ≤ B,
∑L

i=1
∥Ai∥0 + ∥bi∥0 ≤ S, max

i=1,...,L+1
di ≤W

}
,

where ∥·∥∞ returns the maximum absolute value of a vector/matrix and ∥·∥0 returns the number of
nonzero elements of a vector/matrix.

This collection of FNNs is an extension of the collection of FNNs for one-dimensional output an-
alyzed in Bölcskei et al. (2019), Suzuki (2019), and Schmidt-Hieber (2020) to the case of multi-
dimensional output. Therefore, unlike these previous studies, the assumption that dL+1 = 1 is not
made, and it is treated similarly to other variables.

Next, we define the dilated CNNs. Let C ∈ N be the number of channels. We define RC×∞ :={
(x1, . . . , xi, . . .) : xi ∈ RC

}
. Let W ′ ∈ N be the filter width, and w ∈ RC×W ′

be a filter and
X = (xi,j)

C,∞
i=1,j=1 ∈ RC×∞ be the input. Then, for an interval h ∈ N, we define the dilated

convolution w ⋆h X ∈ R∞ as (w ⋆h X)k :=
∑C
i=1

∑W ′

j=1 wi,jxi,h(j−1)+k. Note that this coincides
with the usual convolution when h = 1. Here, let C ′ ∈ N be the number of output channels, and
F ∈ RC′×C×W ′

be a filter. Then, we define Convh,F : RC×∞ → RC′×∞ as Convh,F (X) :=

(F1,:,: ⋆h X, · · · , FC′,:,: ⋆h X)
T
. Using these notations, we define the dilated CNNs as follows.

Definition 6 (dilated CNNs). Given constants L′, W ′ ∈ N, and filters Fl ∈ RCl+1×Cl×W ′
with

channel numbers Cl ∈ N for l ∈ [L′], where C1 = 1. Then, we define the dilated CNNs as
f (X) = gFNN ◦

(
ConvW ′L′−1,FL′ ◦ · · · ◦ ConvW ′l−1,Fl

◦ · · · ◦ Conv1,F1 ◦X
)
1
, where gFNN ∈

Φ (L,W, S,B) is a FNNs with input x ∈ RCL′ and output gFNN (x) ∈ RdL+1 . In other words, it is
important to note that f is a function from the input spaceM to RdL+1 .

We also define the set of dilated CNNs with a constant B′ > 0, C ∈ N as follows:

P (L′, B′,W ′, C, L,W, S,B) :=
{
gFNN ◦

(
ConvW ′L′−1,FL′ ◦ · · · ◦ Conv1,F1

◦X
)
1
:

Fl ∈ RC×C×W ′
(l ≥ 2) , F1 ∈ RC×1×W ′

, ∥Fl∥∞ ≤ B
′, gFNN ∈ Φ (L,W,B, S)

}
,

where we assumed Cl = C (l ≥ 2) to fix the number of channels in each layer.

When considering estimation errors, it becomes important to make use of boundedness of the esti-
mated function in terms of ∥·∥∞. Therefore, we define the set of bounded CNNs with B2 > 0 as
P̄ := P̄ (B2, L

′, B′,W ′, C, L,W, S,B), where

P̄ =

{(
f̄ (X)

)
i
=

{
−B2i

− 1
r ∨

(
B2i

− 1
r ∧ (f (X))i

)
(1 ≤ i ≤ dL+1)

0 (dL+1 < i)
: f ∈ P

}
,

where P = P (L′, B′,W ′, C, L,W, S,B). Here, f ∈ P̄ is a function f : M → R∞, which
naturally extends the output of f ∈ P from dL+1 to∞.

5



Under review as a conference paper at ICLR 2024

3.1 APPROXIMATION ERROR OF DILATED CNNS

Here, we analyze the approximation error of nonlinear operators using dilated CNNs. In the case
of the learning of functions with one-dimensional output (f◦ ∈ Fγp,q), the approximation error is
shown in Okumoto & Suzuki (2021). Here, we extend their results to infinite dimensions.

Before doing so, we introduce the following definition for a.
Definition 7 (Definition of smoothness). (i) A sequence a is said to increase in polynomial order
if a = (ai)

∞
i=1 is a monotonically increasing sequence of positive real numbers, and there exists a

constant η > 0 such that ai = Ω(iη), and a1 < a2. (ii) Furthermore, a is said to have sparsity
if a = (ai)

∞
i=1 is a sequence of positive real numbers satisfying ai = Ω(log i), and there exists

a constant η > 0 such that the sequence
(
aij
)∞
j=1

obtained by sorting {ai}∞i=1 in ascending order

satisfies ∥a∥wlη := supj j
ηa−1
ij
≤ 1.

The first setting is the easiest setting where the “importance” of each coordinate monotonically
increases as the index increase, where the importance is measured by the smoothness ai. On the
other hand, the second setting is more challenge where we need to find important features with small
ai from wide range of coordinates. The theorem including this assumption for the approximation
error is shown below.
Theorem 1 (Approximation error of nonlinear operators by dilated CNNs). Suppose the true non-
linear operator f◦ ∈

(
Fγp,q

)∞
satisfies Assumption 3. If a increase in polynomial order, we set

L′ = 1, B′ = 1, W ′ ∼ T
1
η , C ∼ T

1
η and if a has sparsity, we set L′ ∼ T, B′ = 1, W ′ =

3, C ∼ T
1
η . (i) (mixed smoothness) If γ has mixed smoothness, let a† = ai′ , where i′ = 1

when a increases in polynomial order, and i′ = i1 when a has sparsity; (ii) (anisotropic smooth-
ness) If γ has anisotropic smoothness, let a† =

(∑
i=1 a

−1
i

)−1
. Let v := max

{
1
p −

1
2 , 0
}

,

and assume v < a†. Then, for any T > 0, we set L (T ) ∼ max
{
T

2
η , T 2

}
, W (T ) ∼

max
{
T

1
η 2

T

a† , 2r(1−
v

a† )T
}
, S (T ) ∼ T

2
η 2r(1−

v

a† )T+ T

a† , B (T ) ∼ 2(T/2)
1
η
. Then, there exists a

dilated CNNs f ′ ∈ P̄ (B2, L
′, B′,W ′, C, L (T ) ,W (T ) , S (T ) , B (T )) such that the following

evaluation is obtained:
∥f ′ − f◦∥2 ≲ 2−(1−r/2)(1−v/a†)T .

Unlike existing results such as Okumoto & Suzuki (2021), this theorem covers a setting with infinite
dimensional output. As a result, there appears following difference: (i) The first difference is the rate
of convergence. For example, the result in Okumoto & Suzuki (2021) is ∥f ′ − f◦∥2 ≲ 2−(1−v/a

†)T ,

while in this study it is ∥f ′ − f◦∥2 ≲ 2−(1−r/2)(1−v/a†)T , which increases by a factor of r. (ii) The
second difference is the setting of the parameters W and S in the neural network, where the number
of weights in the output layer, 2r(1−v/a

†)T , is newly included compared to Okumoto & Suzuki
(2021). In both cases, these differences arise from the requirement to increase the output dimension
dL+1 significantly, such that

∑∞
i=dL+1+1 ∥fi∥

2
2 can be negligible in comparison to the other errors.

Despite these differences, the core message from the theory remains the same: by assuming the
decay of the output, the approximation error can be of polynomial order even when the output is in
an infinite-dimensional space.

We also discuss the differences between existing work on estimating linear operators and our ap-
proach. According to Fischer & Steinwart (2020), the rate of approximation error for a function
in a certain RKHS with respect to the true function f∗P := E [Y |X = x] defined on the data space
X×Y is given as λβ−γ (Lemma 14 of Fischer & Steinwart (2020)). On the other hand, Talwai et al.
(2022) extended this result to the case where the true function is represented by a linear operator
CY |X : HK → HL. In this case, the approximation error is given as λ

β−γ
2 (Lemma 6 of Talwai

et al. (2022)). Here, it is assumed that λ is sufficiently smaller than 1 and β − γ > 0. Therefore, it
can be said that the rate deterioration due to the extension to infinite dimensions occurs in the case
of linear operators, similar to our results. Although the specific changes may differ due to vary-
ing assumptions and problem settings, the shared characteristic of deterioration in both cases is an
intriguing implication.
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3.2 ESTIMATION ERROR OF DILATED CNNS

Here, we analyze the estimation error of dilated CNNs based on the approximation error anal-
ysis in the last section. Now, suppose that we are given n observation data points Dn =(
x(i), y(i)

)n
i=1

following the model (1). We consider the following empirical risk minimization
(ERM) estimator: f̂ ∈ argminf∈P̄

1
n

∑n
i=1 ∥f (xi)− yi∥

2
ℓ2 . As mentioned earlier, we use the

mean squared error
∥∥f̂ − f◦∥∥2

PX
as the evaluation metric for this estimator. Since f̂ depends

on the data Dn, we calculate the expected value with respect to Dn: EPn

[∥∥f̂ − f◦∥∥2
PX

]
:=

E(x(i),y(i))
n

i=1
∼Pn

[∥∥f̂ − f◦∥∥2
PX

]
.

First, we give a lower bound of the minimax optimal rate in the following theorem.

Theorem 2 (Minimax optimal rate for estimating a function in the
(
Fγp,q

)∞
). Assume that p ≥ 2,

PX is a uniform distribution overM. In accordance with the definition used in Theorem 1, we use
the same notation. Then, the minimax optimal rate is lower bounded as follows:

inf
f̂

sup
f∗∈(U(Fγ

p,q))
∞∩Br

EDn

[∥∥f̂ − f∗∥∥2
L2(PX)

]
≳ n

− (2−r)a†

2a†+1 ,

where “inf” is taken over all estimators based on Dn and the expectation is taken for the sample
distribution.

We see that the minimax rate is merely characterized by the smoothness parameter a† and the decay
rate r. To prove this theorem, we utilized the classic information theoretic lower bound (Yang &
Barron, 1999; Raskutti et al., 2012). To do so, we carefully evaluated the covering number of the
function space by taking the decay of L2-norms (∥f◦i ∥2)∞i=1 into account, which is very unique to
our problem. We believe that this framework can be extended to Cartesian product spaces consisting
of other function spaces as well.

Then, we derive the upper bound of the estimation error of the ERM estimator on the class of dilated
CNNs and see its optimality.
Theorem 3 (Estimation error of nonlinear operators by dilated CNN). Assume that the true
nonlinear operator f◦ ∈

(
Fγp,q

)∞
satisfies Assumption 3. If a increases in polynomial order,

set L′ = 1, B′ = 1, W ′ ∼ (log n)
1
η , C ∼ (log n)

1
η , Otherwise, if a has sparsity, set

L′ ∼ log n, B′ = 1, W ′ = 3, C ∼ (log n)
1
η . In accordance with the definition used in The-

orem 1, we use the same notation for a†, v, L(T ),W (T ), S(T ), and B(T ). For T ∼ log2 n, let
(L,W, S,B) = (L (T ) ,W (T ) , S (T ) , B (T )). Then, the ERM estimator f̂ achieves the following
estimation error:

EPn

[∥∥f̂ − f◦∥∥2
PX

]
≲ n

−
(2−r)(a†−v)
2(a†−v)+1 (log n)

2
η+2

max
{
(log n)

4
η , (log n)

4
}
.

Because of this theorem, we can see that dilated CNNs can achieve the minimax optimal rate in the
regime of p ≥ 2 (i.e., v = 0) up to poly-log order. Comparing with the single output setting (The-
orem 10 in Okumoto & Suzuki (2021)), we can see that there appears r in the rate of convergence
while that for the single output achieves n−2(a†−v)/(2(a†−v)+1)polylog(n). As r increases (i.e., the
decay is slower), the rate becomes slower, which is intuitively natural because we need to estimate
more output functions accurately leading to more difficult problem. We emphasize that our result
shows the minimax optimality of dilated CNNs including the effect of r, which is not trivial.

Lanthaler et al. (2022) provided an upper bound on the estimation error using DeepONet, solving
infinite-dimensional problems based on the assumption of Lipschitz continuity, with the additional
condition of input decay. Their approach relies on the assumption of the DeepONet model. In
contrast, we demonstrated estimation errors in a more general and widely applicable context using
dilated CNNs. Importantly, we established that our approach shows the minimax optimality.

According to these theorems, we found that, dilated CNNs can achieve dimension independent es-
timation error depending only on a†. It means that dilated CNNs can extract the feature whose
direction has small values of ai even when (ai)

∞
i=1 is not monotonically sorted. This is due to the

7
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feature extraction ability of dilated CNNs that can adatipvely find important features by training
data. In the following section, we will discuss how this intuition serves to contrast dilated CNNs
with linear estimators such as kernel ridge regression.
Limitations. One of the limitations of our research is that all of the aforementioned theorems de-
pend on the assumption that p ≥ 2. This arises directly from the proof of Lemma 11 in Appendix
B.2, specifically from the evaluation of δs(f). The difficulty in evaluating δs(f) has also impacted
prior research. For instance, in Okumoto & Suzuki (2021), which presented the approximation error
of one-dimensional output in dilated CNNs, the term v used in our study is incorporated due to this
evaluation. In this study, we consistently used the assumption p ≥ 2 to align with previous research,
but revisiting this assumption will be part of our future work.

4 COMPARISON WITH LINEAR ESTIMATORS

In this section, we compare the estimation error of the dilated CNNs obtained in the previous sec-
tion with those of the linear estimators (Korostelev & Tsybakov (1993); Imaizumi & Fukumizu
(2019)). An estimator f̂ based on (xi, yi)

n

i=1 is said to be linear if it can be expressed in the form
of
(
f̂ (x)

)
j
=
∑n
i=1 y

(i)
j φj,i (x;x

n) (∀j ∈ N). This estimator class includes several practical es-
timators such as kernel ridge regression and the Nadaraya–Watson estimator; indeed, kernel ridge
estimator is given as f̂(x) = Kx(K + λI)−1Y which is linear to Y . Then, we demonstrate that
under certain conditions, the dilated CNNs outperforms linear estimators.

The biggest drawback of linear estimators is that they cannot perform feature learning. To investigate
this properly rigorously, we parameterize the range of important features and how it affects the
estimation accuracy. It is expected that as the range of important features becomes wider, the linear
estimator suffers sub-optimality due to their disability of feature learning. To justify this intuition,
we introduce the following set of a, denoted by Γ.
Definition 8. Let 0 < ϵ < 1 and η > 1 be given and fixed. (i) For mixed smoothness, suppose that
a and c be constants such that a > 1

2 , 0 < c < 2a− 1, and define

Qmϵ := a(a− 1/2)/
(
c log2 ϵ

−1
)
. (4)

(ii) For anisotropic smoothness, suppose that constants a and c satisfy 2ζ (η) < a and 0 < c <
ã/2− 1 where ã := a/ζ(η) and ζ(η) :=

∑∞
n=1 n

−η . Then, we define

Qaϵ := 2ηaã/

((
2 (1 + c) (ηã+ 1)

ã
− 1

)
log2 ϵ

−1 + a1−1/η
(
log2 ϵ

−1
)1/η)

. (5)

For Q = Qmϵ or Q = Qaϵ , we define the set of possible values of a as Γ (Q) :={
a : ai ≥ Q log2 i, ∥a∥wlη ≤ a−1

}
.

This definition extends the concept of sparsity for a (see Definition 7). In essence, Γ represents a
set of a values that exhibit sparsity and are greater than a specific minimum value. We can see that
the parameter c controls the minimum value of a through Q(= Qmϵ , Q

a
ϵ ). Indeed, as c becomes

large, the lower bound of ai becomes smaller, which indicates that the range of coordinates i with
small smoothness parameter ai (in other words, important features) is widely spread out. Such
a situation is more difficult for the linear estimators while deep learning approach can adaptively
specify important features from wide range of coordinates. This yields separation between deep
learning and linear estimators.

Using the Γ defined above, we define the union of γ-smooth spaces over the choice of a in Γ.
By considering such a set as the space containing the true function, it is expected that the feature
extraction abilities of dilated CNNs will be demonstrated.
Definition 9. Let the set of possible values for a be Γ, and define (Fp,q (Γ))

∞ as follows:
(Fp,q (Γ))

∞
:=
⋃
a∈Γ

(
Fγap,q

)∞
. Also, let U ((Fp,q (Γ))

∞
) :=

⋃
a∈Γ

(
U
(
Fγap,q

))∞
.

It is known that the minimax rate in the class of linear estimators is same as that on the convex
hull of the target function class (Theorem 3.3 of Hayakawa & Suzuki (2020)). Since the union of
γ-smooth spaces over different values of a becomes highly non-convex, it is expected that the linear
estimators suffer from sub-optimal rate on the space (Fp,q (Γ))

∞. Indeed, we obtain the following
lower bound of estimation errors for linear estimators.

8
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Theorem 4 (Estimation error of linear estimators in (F2,2 (Γ))
∞). Let Γ = Γ (Qmϵ ) and a⋆ = a

when γ is mixed smoothness (γ (s) = ⟨a, s⟩), and let Γ = Γ (Qaϵ ) and a⋆ = ã when γ is anisotropic
smoothness (γ (s) = maxi {aisi}). Then, the minimax rate over the class of linear estimators is
given as follows:

inf
f̂ :linear

sup
f◦∈U((F2,2(Γ))

∞)∩Br

EDn

[∥∥f̂ − f◦∥∥
L2(PX)

]
≳ n−

2a⋆

2a⋆+1+c .

This result achieves a rate that is larger by a factor of c, which has not been seen in existing analyses
such as for Besov spaces (Donoho & Johnstone, 1998; Zhang et al., 2002). As we have mentioned,
this is due to the fact that the linear estimators cannot perform feature learning. More technically,
the convex hull of the class U ((F2,2 (Γ))

∞
) become much larger than it as c becomes larger.

Remark 5. In the finite dimensional Besov space setting, it has been shown that DNN approach
achieves the rate independent of v due to the adaptivity of DNNs to a local smoothness structure
while the linear estimator suffers from sub-optimal rate due to the term v (Suzuki, 2019; Suzuki &
Nitanda, 2021). However, it is still an open problem whether DNNs can achieve the rate without
the term v in our infinite dimensional setting. Then, we employed a different strategy to show the
separation between the dilated CNNs and linear estimators, that is, we considered a larger function
class by controlling Γ.

As in Theorem 3, we can easily show the following upper bound for the extended class (F2,2 (Γ))
∞.

Corollary 6 (Estimation error of extended CNNs for (F2,2 (Γ))
∞). In accordance with the definition

used in Theorem 4, we define and utilize Γ, γa (s), and a⋆. Also, if the true nonlinear operator f◦
satisfies f◦ ∈ U ((F2,2 (Γ))

∞
) and Eq (3), the estimation error of dilated CNNs is given as follows:

EPn

[∥∥f̂ − f◦∥∥2
PX

]
≲ n−

(2−r)a⋆

2a⋆+1 (log n)
2
η+6

.

From the above corollary, we can compare with the estimation error of linear estimators obtained in
Theorem 4. The following theorem states this comparison.

Theorem 7 (Superiority of dilated CNNs over linear estimators). Assuming the same conditions as
in Corollary 6, when condition c > (2a⋆+1)r

2−r is satisfied, dilated CNNs outperform linear estimators.
However, note that it is necessary for r < 2a⋆−1

2a⋆ , a⋆ > 1
2 to exist such c for Γ = Γ (Qmϵ ) , γa (s) =

⟨a, s⟩ and a⋆ = a. Also, it is necessary for r < 2
5 ·

a⋆−2
a⋆ , a⋆ > 2 to exist such c for Γ =

Γ (Qaϵ ) , γa (s) = maxi {aisi}, and a⋆ = ã.

In previous studies, the superiority of deep learning over linear estimators, among others, has been
attributed to the adaptivity of deep learning to spatial inhomogeneity (Imaizumi & Fukumizu (2019);
Suzuki (2019)). However, as mentioned at the beginning of Section 4.1, the approximation error of
dilated CNNs is derived using a non-adaptive approach in this work. Even in such cases, demon-
strating the superiority by leveraging the feature extraction abilities of dilated CNNs represents a
novel perspective to highlight the advantages of deep learning.

5 CONCLUSION

In this study, we investigated the performance of dilated CNNs in infinite-dimensional input and out-
put spaces. Our primary findings revealed that the convergence rates of dilated CNNs depend solely
on the smoothness and decay rate of the output, when considering nonlinear operators composed
of a countably infinite sequence of functions belonging to the γ-smooth space, and the convergence
rate achieves minimax optimality. Additionally, we showed that dilated CNNs outperform linear
methods in cases where the smoothness of the γ-smooth space varies, emphasizing the advantages
of neural network-based feature extraction. These results provide a theoretical basis for the success
of deep learning in high-dimensional input-output tasks and highlight the potential of dilated CNNs
in handling complex data. As for future work, several directions can be pursued, including: (i)
demonstrating the rate of approximation errors for dilated CNNs using adaptive methods, and (ii)
extending the analysis to models other than dilated CNNs, exploring their performance in similar
infinite-dimensional input and output settings.
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A PROOFS OF THEOREM 1 AND 3

Here, we present the proof of the theorem that provides an approximation error and estimation error
using dilated CNNs. These proofs are essentially an extension of the results in Okumoto & Suzuki
(2021), which demonstrate the approximation error and estimation error in one-dimensional output,
to the case of infinite-dimensional output.

A.1 PROOF OF THEOREM 1

We begin by showing the proof of Theorem 1, which demonstrates the approximation error of di-
lated CNNs. Before delving into the main topic, we introduce several symbols and provide their
definitions.
Definition 10 (Axial complexity and frequency direction complexity). Let T > 0 be a constant and
γ : N∞

0 → R>0 be a smoothness function. We define the set

I (T, γ) := {i ∈ N : ∃s ∈ N∞
0 , si ̸= 0, γ (s) < T} ,

and we define the axial complexity for I(T, γ) as follows:

dmax (T, γ) := |I (T, γ)| .
Furthermore, the frequency direction complexity is defined as:

fmax (T, γ) := max
s∈N∞

0 :γ(s)<T
max
i∈N

si.

The axial complexity represents the number of necessary inputs when evaluating the restricted
infinite-dimensional space where γ(s) < T . Similarly, the frequency direction complexity indi-
cates how far the evaluation needs to extend in terms of frequency when the space is restricted.

Furthermore, we introduce the following symbols:

v :=

(
1

p
− 1

2

)
+

, α (γ) := sup
s∈N∞

0

∑∞
i=1 si
γ (s)

, G (T, γ) :=
∑

s∈N∞
0 :γ(s)<T

2s,

where (x)+ = max {x, 0}.
Now, in order to provide a proof for Theorem 1, we show the following theorem:
Theorem 8 (Approximation error of FNNs). Let γ, γ′ : N∞

0 → R>0 satisfy

γ′ (s) < γ (s) , vα (γ) < 1, vα (γ′) < 1

and assume that the true nonlinear operator f◦ ∈
(
Fγp,q

)∞
satisfies Assumption 3. For any T > 0,

define (dmax, fmax, G) as follows:

(dmax, fmax, G) =

{
(dmax (T, γ) , fmax (T, γ) , G (T, γ)) (1 ≤ q ≤ 2) ,

(dmax (T, γ
′) , fmax (T, γ

′) , G (T, γ′)) (2 < q) .

And for constants K,K ′ > 0 depending on B2 and r, we set:

L = 2Kmax
{
d2max, T

2, (logG)
2
, log fmax

}
, W = max

{
21dmaxG, (B2)

r
2r(1−vα)T

}
,

S = 1764K (B2)
r
d2max max

{
d2max, T

2, (logG)
2
, log fmax, 2

r(1−vα)T
}
G, B =

(√
2
)dmax

K ′.

In this case, there exists an FNNs R̂T ∈ Φ (L,W, S,B) that takes dmax-dimensional inputs and
returns dL+1-dimensional outputs, and for x = (xi)

∞
i=1 ∈ M, we define f ′ (x) : M → R∞ as

follows:

(f ′ (x))i =

{(
R̂T

(
(xi)i∈I(T,γ)

))
i

(1 ≤ i ≤ dL+1) ,

0 (dL+1 < i) ,

where dL+1 = ⌊(B2)
r
2r(1−vα)T ⌋. Then, we obtain the following inequality:

∥f ′ − f◦∥2 ≲

2−(1−
r
2 )(1−vα(γ))T (1 ≤ q ≤ 2) ,

2−(1−
r
2 )(1−vα(γ

′))T
(∑

T≤γ′(s) 2
2q

q−2 (γ
′(s)−γ(s))

)1/2−1/q

(2 < q) .
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The proof of this theorem is given in A.1.1.

Note that, in Theorem 1, the symbols L′, B′, W ′, C, a† should be defined depending on the
conditions on a and γ. Indeed, remember that there are two different settings regarding to a: (i)
polynomial-order-increasing setting, and (ii) sparse setting; and as for γ, there are two settings:
(i) mixed smoothness and (ii) anisotropic smoothness. Then, each quantity should have different
definition according to the combination of the conditions on a and γ.

However, it is worth noting that the proof itself is nearly identical to that presented in Okumoto
& Suzuki (2021), with the only difference being the use of Theorem 8 instead of Theorem 7 in
Okumoto & Suzuki (2021). Therefore, in this paper, we provide only the proof for the case where a
increases in polynomial order and γ is of mixed smoothness. The same argument is also applied to
the other settings.

Proof of Theorem 1. (In the case where a increases in polynomial order and γ is of mixed smooth-
ness). First, we discuss the case of 1 ≤ q ≤ 2. According to Lemma 18 in Okumoto & Suzuki
(2021), we obtain the following bound:

G (T, γ) =
∑

s∈N∞
0 :γ(s)<T

2s =
∑

s∈N∞
0 :⟨ a

a1
,s⟩< T

a1

2s ≤ 8

( ∞∏
i=2

1

1− 2
−(ai−a1)

a1

)
2

T
a1

Furthermore, since a is monotonically increasing and ai = Ω(iη), we obtain:

α = sup
s∈N∞

0

∑∞
i=1 si
⟨a, s⟩

=
1

a1
, dmax ∼ T

1
η , fmax ∼ T.

Now, by using the filter w ∈ RC×1×W ′
with the width W ′ = dmax, the number of output channels

C = dmax and the number of input channels C ′ = 1 given by

wi,1,j =

{
1 (i = j) ,

0 (i ̸= j) ,

for i, j ∈ [dmax], we can see that

(Conv1,w (X))1 =

 x1
...

xdmax

 .

By Theorem 8, if we set

L = 2Kmax
{
T

2
η , T 2

}
,

W = max

{
21

( ∞∏
i=2

1

1− 2
−(ai−a1)

a1

)
T

1
η 2

T
a1 , (B2)

r
2
r
(
1− v

a1

)
T

}
,

S = 1764K (B2)
r

( ∞∏
i=2

1

1− 2
−(ai−a1)

a1

)
T

2
η 2

r
(
1− v

a1

)
T
2

T
a1 ,

B =
(√

2
)T 1

η

K ′,

where K,K ′ > 0 are constants, for a true function f◦ ∈
(
U
(
Fγp,q

))∞
satisfying Assumption 3,

there exists an FNNs R̂T ∈ Φ (L,W, S,B) such that

(f ′′ (X))i =

{(
R̂T (Conv1,w (X))1

)
i

(1 ≤ i ≤ dL+1) ,

0 (dL+1 < i) ,

where dL+1 = ⌊(B2)
r
2r(1−vα)T ⌋, satisfies

∥f ′′ − f◦∥2 ≲ 2
−(1− r

2 )
(
1− v

a1

)
T
.
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Here, by defining (f ′ (X))i := −B2i
− 1

r ∨
(
B2i

− 1
r ∧ (f ′′ (X))i

)
(∀i ∈ N), f ′ can be represented

as a dilated CNNs f ′ ∈ P̄ (B2, L
′, B′,W ′, C, L,W, S,B), where L′ = 1, B′ = 1, and W ′ = C =

dmax.

Furthermore, from Assumption 3, we obtain a following relationship:

∥f ′ − f◦∥2 ≤ ∥f
′′ − f◦∥2 ≲ 2

−(1− r
2 )

(
1− v

a1

)
T
.

Thus, the theorem’s statement is proven.

Next, we consider the case of q > 2. In this case, let a′1 = a1
2 , δ = a2 − a1 (where δ > 0 by

definition of a), and a constant u satisfying 2 < u < 2 + 2δ
a1

. For i ≥ 1, we define a′i =
ai
u . Then,

as shown in the proof of Theorem 9 in Okumoto & Suzuki (2021), we have: ∑
T≤γ′(s)

2
2q

q−2 (γ
′(s)−γ(s))

1/2−1/q

≤
(
2−

2q
q−2T

)1/2−1/q

= 2−T ≤ 2−(1−
r
2 )T .

Therefore, similarly to the case of 1 ≤ q ≤ 2, using Theorem 8, we can conclude that for a true
function f◦ satisfying Assumption 3, there exists f ′ ∈ P̄ such that:

∥f ′ − f◦∥2 ≲ 2−(1−
r
2 )(1−vα)T

 ∑
T≤γ′(s)

2
2q

q−2 (γ
′(s)−γ(s))

1/2−1/q

≤ 2
−2(1− r

2 )
(
1− v

a1

)
T
,

where α (γ′) = 2
a1

. Now, using Lemma 18 from Okumoto & Suzuki (2021) again, we have:

G (T, γ′) ≤ 8

 ∞∏
i=2

1

1− 2
−(a′

i
−a′

1)
a′
1

 2
T
a′
1 ≤ 8

( ∞∏
i=2

1

1− 2
−(ai−a1)

a1

)
2

2T
a1 .

Therefore, by setting T ← 2T , we can establish the result for the case of 1 ≤ q ≤ 2. ■

A.1.1 PROOF OF THEOREM 8

To prove this theorem, we first introduce the following function as an approximation of f̃ ∈ Fγp,q:

R̃T (f̃) :=

{∑
s∈N∞

0 :γ(s)<T δs(f̃) (1 ≤ q ≤ 2) ,∑
s∈N∞

0 :γ′(s)<T δs(f̃) (2 < q) .

Based on this notation, we also define RT (f) :M→ R∞ for any dout ∈ N as an approximation of
f ∈

(
Fγp,q

)∞
as

(RT (f) (x))i =

{
R̃T (fi) (x) (1 ≤ i ≤ dout) ,
0 (dout < i) .

To establish the proof of Theorem 8, we present the following lemma.
Lemma 9. Assume that γ, γ′ : N∞

0 → R>0 satisfy:

γ′ (s) < γ (s) , vα (γ) < 1, vα (γ′) < 1,

and a true nonlinear operator f ∈
(
Fγp,q

)∞
satisfies Assumption 3.

Under these conditions, we obtain the following inequality:
1 ≤ q ≤ 2

∥f −RT (f)∥2 ≤ 2−(1−vα(γ))T
√
dout +B2

√
r

2− r
d

1
2−

1
r

out .

2 < q

∥f −RT (f)∥2 ≤ 2−(1−vα(γ
′))T

 ∑
T≤γ′(s)

2
2q

q−2 (γ
′(s)−γ(s))

1−2/q√
dout +B2

√
r

2− r
d

1
2−

1
r

out .
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This proof is provided in A.1.2.

Now, using this lemma, we proceed with the proof of Theorem 8. The strategy is as follows: since
Lemma 9 gives us the error when approximating the true function f◦ by RT (f◦), we aim to obtain
the approximation error when approximating RT (f◦) using FNNs. By summing up these errors,
we can obtain the approximation error when approximating f◦ using FNNs.

Proof of Theorem 8. Now, according to Theorem 4.1 in Perekrestenko et al. (2018), for any ϵ > 0
and some constants C1, C2 > 0, if we let

Lψ̃ = C1

[(
log

1

ϵ

)2

+ log (fmax)

]
,

there exists a neural network ψ̃li ∈ Φ(Lψ̃, 21, C2, 21
2Lψ̃) that approximates ψli with the following

accuracy: ∥∥∥ψli − ψ̃li∥∥∥
L∞([0,1])

≤ ϵ.

For such ψ̃li , we define:

ψ̂li = max
{
−
√
2,min

{√
2, ψ̃li

}}
, Lψ̃li

= C1

[(
log

1

ϵ

)2

+ log (fmax)

]
+ 2.

Moreover, according to Proposition 3 in D.Yarotsky (2017), for any ϵ > 0 and a constant B× > 0,
if we let

L× =

⌈
log

(
3dmax

ϵ
+ 5

)⌉
⌈log dmax⌉,W× = 6dmax, S× = L×W

2
×,

there exists a neural network ϕ× ∈ Φ(L×,W×, B×, S×) satisfying:∥∥∥∥∥ϕ× −
dmax∏
i=1

xi

∥∥∥∥∥
L∞([−1,1]dmax )

≤ ϵ.

Now, according to the proof of Theorem 7 in Okumoto & Suzuki (2021), for fi ∈ Fγp,q , we define:

R̂T (fi) :=
∑

γ(s)<T

∑
l∈J(s)

(√
2
)dmax

⟨fi, ψl⟩ϕ×

(
ψ̂l1√
2
, . . . ,

ψ̂ldmax√
2

)
,

where J (s) :=
{
l ∈ Z∞

0 : ⌊2si−1⌋ ≤ |li| < 2si
}

. Then, we obtain that∥∥∥R̂T (fi)−RT (fi)
∥∥∥
L∞([0,1]dmax)

≤ B2i
− 1

rG (T, γ)
(√

2
)dmax

(dmax + 1) ϵ,

where we used the fact ⟨fi, ψl⟩ ≤ ∥fi∥2 ≤ B2i
− 1

r . Therefore, as a approximation of RT (f), for
any dout ∈ N, we define R̂T (f) : [0, 1]

dmax → Rdout as follows:

∀i ∈ [dout] :
(
R̂T (f)

)
i
:= R̂T (fi) .

This yields a neural network with the same intermediate layer ϕ×

(
ψ̂l1√

2
, . . . ,

ψ̂ldmax√
2

)
, but with an

output dimension increased from one to dout = dL+1.

Then, by using this R̂T (f), for x = (xi)
∞
i=1 ∈M, we define f ′ (x) :M→ R∞ as follows:

(f ′ (x))i =

{(
R̂T

(
(xi)i∈I(T,γ)

))
i

(1 ≤ i ≤ dout) ,
0 (dout < i) .

16
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With this f ′, the approximation of RT (f) results in the following error:

∥RT (f)− f ′∥L∞([0,1]dmax) ≤
dout∑
i=1

B2i
− 1

rG (T, γ)
(√

2
)dmax

(dmax + 1) ϵ

≤ doutB2G (T, γ)
(√

2
)dmax

(dmax + 1) ϵ.

Therefore, in the case of 1 ≤ q ≤ 2, with the result of Lemma 9, we get the following inequality:

∥f − f ′∥2 ≤ ∥f −RT (f)∥2 + ∥RT (f)− f ′∥L∞([0,1]dmax)

≤ 2−(1−vα)T
√
dout +B2

√
r

2− r
d

1
2−

1
r

out + doutB2G (T, γ)
(√

2
)dmax

(dmax + 1) ϵ.

Here, we put

ϵ =
2−(1−vα)T√dout −B2

√
r

2−rd
1
2−

1
r

out

doutB2G (T, γ)
(√

2
)dmax

(dmax + 1)
.

From the condition of ϵ > 0, dout need to satisfy the following inequality:

2−(1−vα)T
√
dout −B2

√
r

2− r
d

1
2−

1
r

out > 0 ⇐⇒ dout >

(
B2

√
r

2− r

)r
2r(1−vα)T

Now, since 0 < r < 1, we have 0 < r
2−r < 1. Then, we define dout as

dout = (B2)
r
2r(1−vα)T .

Then, we can obtain the following inequality:

∥f − f ′∥2 ≲ 2−(1−vα)T
√
dout ≲ 2−(1−

r
2 )(1−vα)T .

The case of 2 < q can be proved in the same manner.

Finally, we evaluate the size of the neural network. As mentioned earlier, since RT (f) is a linear

combination of the neural network ϕ×

(
ψ̂l1√

2
, . . . ,

ψ̂ldmax√
2

)
, if we let

L = Lϕ̂ + L× + 1,

W = max {21dmaxG (T, γ) , dout} ,

S =
(
212dmaxLϕ̂ + L×W

2
× + dout

)
G (T, γ) ,

B = max

{
C2, B×,

(√
2
)dmax

Bf

}
,

R̂T (f) satisfies R̂T (f) ∈ Φ (L,W, S,B).

First, we evaluate Lϕ̂ as follows:

Lϕ̂ =C1

⌊((
log

1

ϵ

)2

+ log (fmax)

)
+ 2

⌋

=C1

⌊(
r

2
logB2 + r (1− vα)T log 2 + logB2 + logG (T, γ) +

dmax

2
log 2

+ log (dmax + 1) +
(
1− r

2

)
(1− vα)T log 2 + log

1

1−
√

r
2−r

)2

+ log (fmax) + 2

⌋
.

Now, considering that 0 < r < 1, we note that:

1

1−
√

r
2−r

=
2− r +

√
r (2− r)

2 (1− r)
≤ 1 +

1

1− r
≤ 2

1− r
.
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Using this, we can obtain the following upper bound for Lϕ̂:

Lϕ̂ ≤

⌊
C1

(
7max

{
logB2, log

2

1− r

})2
⌋⌊

max
{
d2max, T

2, (logG (T, γ))
2
, log fmax, 2

}⌋
Similarly, we can evaluate L× as:

L× ≤
⌊
7max

{
logB2, log

2

1− r
, log 5

}⌋
⌊max {dmax, T, logG (T, γ)}⌋ ⌊log dmax⌋ .

Then, if we let

K = 2max

{⌊
C1

(
7max

{
logB2, log

2

1− r

})2
⌋
, ⌊7max

{
logB2, log

2

1− r
, log 5

}
⌋

}
,

we can obtain the following upper bound for L:

L ≤ 2K
⌊
max

{
d2max, T

2, (logG (T, γ))
2
, log fmax

}⌋
.

Similarly, we can evaluate S as:

S =
(
212dmaxLϕ̂ + L×W

2
× + dout

)
G (T, γ)

≤ max
{
4× 212Kd2max max

{
d2max, T

2, (logG (T, γ))
2
, log fmax

}
, (B2)

r
2r(1−vα)T

}
G (T, γ)

≤ 4× 212K (B2)
r
d2max max

{
d2max, T

2, (logG (T, γ))
2
, log fmax, 2

r(1−vα)T
}
G (T, γ) .

■

A.1.2 PROOF OF LEMMA 9

Proof of Lemma 9. Now,

∥f −RT (f)∥22 =

∫
M
∥f (x)−RT (f) (x)∥2ℓ2 dλ

∞ (x)

=

∫
M

∞∑
i=1

(fi (x)− (RT (f) (x))i)
2
dλ∞ (x)

=

∫
M

(
dout∑
i=1

(
fi (x)− R̃T (fi) (x)

)2
+

∞∑
i=dout+1

fi (x)
2

)
dλ∞ (x)

≤
dout∑
i=1

∥∥∥fi − R̃T (fi)
∥∥∥2
2
+ (B2)

2
∞∑

i=dout+1

i−
2
r

holds. Here, the last inequality is derived using Eq (3). Now, with regard to
∥∥∥fi − R̃T (fi)

∥∥∥2
2
,

Lemma 17 from Okumoto & Suzuki (2021) states that, for example, when 1 ≤ q ≤ 2,∥∥∥fi − R̃T (fi)
∥∥∥2
2
≤ 2−2(1−vα)T ∥fi∥2Fγ

p,q

is valid. Combining this with Eq (2) in Assumption 3, we have
dout∑
i=1

∥∥∥fi − R̃T (fi)
∥∥∥2
2
≤
dout∑
i=1

2−2(1−vα)T = 2−2(1−vα)T dout.

This is also true for q > 2. Additionally, in general,
∞∑

i=m+1

i−s ≤
∫ ∞

m

1

xs
dx =

m1−s

s− 1

18
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can be obtained through simple integration calculations. Thus,
∞∑

i=dout+1

i−
2
r ≤ r

2− r
d
1− 2

r
out

is obtained. Hence, in the case of 1 ≤ q ≤ 2, we obtain the following inequalities:

∥f −RT (f)∥22 ≤ 2−2(1−vα)T dout + (B2)
2 r

2− r
d
1− 2

r
out .

∴ ∥f −RT (f)∥2 ≤
(
2−2(1−vα)T dout + (B2)

2 r

2− r
d
1− 2

r
out

) 1
2

≤ 2−(1−vα)T
√
dout +B2

√
r

2− r
d

1
2−

1
r

out .

The desired inequality can be obtained in a similar manner for the case when q > 2. ■

A.2 PROOF OF THEOREM 2

Proof of Theorem 2. First, EPn

[∥∥f̂ − f◦∥∥2
PX

]
can be decomposed into two partial sums as follows:

EPn

[∥∥f̂ − f◦∥∥2
PX

]
= EPn

[
EPX

[∥∥f̂ (X)− f◦ (X)
∥∥2
ℓ2

]]
= EPn

[
EPX

[ ∞∑
i=1

(
f̂i (X)− f◦i (X)

)2]]

=

∞∑
i=1

EPn

[
EPX

[(
f̂i (X)− f◦i (X)

)2]]

=

∞∑
i=1

EPn

[∥∥f̂i − f◦i ∥∥2PX

]
≲
dout∑
i=1

EPn

[∥∥f̂i − f◦i ∥∥2PX

]
+

∞∑
dout+1

EPn

[∥∥f̂i − f◦i ∥∥22] ,
where we utilize the assumption of the Radon-Nikodym derivative, which implies ∥·∥PX

≲ ∥·∥2.

First, for the second term, according to Assumption 3, we can evaluate it as follows:
∞∑

dout+1

EPn

[∥∥f̂i − f◦i ∥∥22] ≤ ∞∑
dout+1

EPn

[
4 (B2)

2
i−

2
r

]
≤ 4r

2− r
(B2)

2
d
1− 2

r
out .

This provides an upper bound for the second term.

For the first term, we can utilize the results from Theorem 10 and 14 in Okumoto & Suzuki (2021).
Thus, we have:

dout∑
i=1

EPn

[∥∥f̂i − f◦i ∥∥2PX

]
≲
dout∑
i=1

n
−

2(a†−v)
2(a†−v)+1 (log n)

2
η+2

max
{
(log n)

4
η , (log n)

4
}

≲ doutn
−

2(a†−v)
2(a†−v)+1 (log n)

2
η+2

max
{
(log n)

4
η , (log n)

4
}
.

Here, Okumoto & Suzuki (2021) choose T such that T = a†

2(a†−v)+1
log2 n. Furthermore, from

Theorem 1, we have dout = (B2)
2
2r(1−

v

a† )T . Substituting these values into the above equation,
we obtain:

EPn

[∥∥f̂ − f◦∥∥2
PX

]
≲ n

−
(2−r)(a†−v)
2(a†−v)+1 (log n)

2
η+2

max
{
(log n)

4
η , (log n)

4
}
.

■
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B PROOF OF THEOREM 2

To prove this theorem, we first define several concepts. First, consider a totally bounded metric
space (F , ρ) consisting of a set F and a metric ρ : F ×F → R+. We define a set in F that satisfies
the following condition: for any ϵ > 0, there exists a collection of functions

{
f1, . . . , fN

}
such

that for any f ∈ F , there exists k ∈ [N ] satisfying ρ(f, fk) ≤ ϵ. We refer to such a collection as
an ϵ-covering set of F , and the ϵ-covering number N (ϵ,F , ρ) is defined as the size of the smallest
ϵ-covering set.

Furthermore, an ϵ-packing set of F is a collection of functions
{
f1, . . . , fM

}
⊂ F such that

ρ(f i, f j) ≥ ϵ for all i ̸= j. The ϵ-packing numberM(ϵ,F , ρ) is defined as the size of the largest
ϵ-packing set.

Now, with the definition of the ϵ-packing number, we can establish the following lemma.

Lemma 10. Consider
(
U
(
Fγp,q

))d ⊂ (U (Fγp,q))∞ for any d ≥ 4. In accordance with the defini-

tion used in Theorem 1, we define and utilize a†. For any f ∈
(
U
(
Fγp,q

))d
subject to the constraint

∥fi∥2 ≤ B2i
− 1

r (∀i ∈ [d]), the following inequality holds for any s ≤ d
4 , p ≥ 2:

logM
(
δ,
(
U
(
Fγp,q

))d
, ∥·∥2

)
≳ s log

d

s
+ sd

1

ra† log

(
d−

1
r
√
s

δ

)
.

The proof of this lemma is provided in B.1.

Now, by utilizing this lemma, we can establish the proof of Theorem 2. However, it is important to
note that the following proof is an extension of the proofs presented in Suzuki (2019); Raskutti et al.
(2012) adapted to the the setting in this paper.

Proof of Theorem 2. Now, considering that PX is the uniform distribution, we note that
∥·∥L2(PX) = ∥·∥2. Furthermore, for any d ≥ 4, δn > 0, and ϵn > 0, we define:

M :=M
(
δn,
(
U
(
Fγp,q

))d
, ∥·∥2

)
,

N := N


√√√√ d∑

i=1

σ2
i ϵn,

(
U
(
Fγp,q

))d
, ∥·∥2

 .

Here, the covering set
{
g1, . . . , gN

}
is constructed such that for any g ∈ (U(Fγp,q))d, there ex-

ists k ∈ [N ] satisfying
∥∥gi − gki ∥∥2 ≤ σiϵn. Moreover, let

{
f1, . . . , fM

}
be a δn-packing of

(U(Fγp,q))d.

Now, according to the proof of Theorem 2 in Raskutti et al. (2012), if we let Θ be a random uniformly
distributed over the index set [M ] and let Xn

1 :=
{
x(i)
}n
i=1

and Y n1 :=
{
y(i)
}n
i=1

, we can obtain
the following lower bound:

inf
f̂

sup
f∗∈(U(Fγ

p,q))
∞
EDn

[∥∥f̂ − f∗∥∥2
L2(PX)

]
≥ inf

f̂
sup
f∗∈F

EDn

[∥∥f̂ − f∗∥∥2
L2(PX)

]
≥ inf

f̂
sup
f∗∈F

δ2n
2
P
[∥∥f̂ − f∗∥∥2

L2(PX)
≥ δ2n/2

]
≥ δ2n

2

(
1−

EXn
1

[
IXn

1
(Θ;Y n1 )

]
+ log 2

logM

)
.

where, for simplicity, we define F :=
(
U
(
Fγp,q

))d
.

Here, we evaluate the mutual information IXn
1
(Θ;Y n1 ). This can be done by considering the KL-

divergence, as discussed in Yang & Barron (1999); Raskutti et al. (2012):

IXn
1
(Θ;Y n1 ) ≤ 1

M

M∑
k=1

logN +
n

2

d∑
i=1

∥∥gl∗i (k)i − fki
∥∥2
n

σ2
i

 ≤ logN +
nd

2
ϵ2n,
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where l∗i (k) ∈ argminl∈[N ]

∥∥gli − fki ∥∥2, and ∥f∥2n := 1
n

∑n
i=1 f

2(x(i)). Therefore, we can obtain
the following lower bound:

inf
f̂

sup
f∗∈(U(Fγ

p,q))
∞
EDn

[∥∥f̂ − f∗∥∥2
L2(PX)

]
≥ δ2n

2

(
1−

logN + nd
2 ϵ

2
n + log 2

logM

)
.

Thus, as shown in the proof of Theorem 4 in Suzuki (2019), by taking δn and ϵn to satisfy
nd

2
ϵ2n ≤ logN, 8 logN ≤ logM, 4 log 2 ≤ logM,

the minimax rate is lower bounded by δ2n
4 .

To choose δn and ϵn satisfying this condition, let us first consider nd2 ϵ
2
n ≤ logN . For simplicity, let

σ = maxi∈[d] σi, and we have

logN


√√√√ d∑

i=1

σ2
i ϵn,F , ∥·∥2

 ≥ logN
(√

dσϵn,F , ∥·∥2
)
.

Now, since p ≥ 2 by assumption, according to Lemma 10, we have

logN
(√

dσϵn,F , ∥·∥2
)
≳ s log

d

s
+ sd

1

ra† log

(
d−

1
r
√
s√

dϵ

)
.

Thus, we obtain

ndϵ2n ∼ s log
d

s
+ sd

1

ra† log

(
d−

1
r
√
s√

dϵ

)

⇐⇒ ϵ2n ∼
1

n

(
s

d
log

d

s
+
s

d
d

1

ra† log

(
d−

1
2−

1
r
√
s

ϵ

))
.

We want to choose ϵ2n that satisfies this equation. Let’s consider s first. A larger s gives a better
lower bound, so we set s ∼ d. In this case, we have

ϵ2n ∼
1

n

(
d

1

ra† log

(
d−

1
r

ϵ

))
.

Therefore, ϵn ∼ n
− a†

2a†+1 , d ∼ ϵ−rn ∼ n
ra†

2a†+1 would be the optimal choice.

Finally, we need to determine the relationship between ϵn and δn to satisfy 8 logN ≤ logM , which

can be achieved by setting
√∑d

i=1 σ
2
i ϵn ∼ δn. Thus, we obtain δn ∼ n

− (1− r
2 )a†

2a†+1 .

In conclusion, the lower bound is given as follows:

inf
f̂

sup
f∗∈(U(Fγ

p,q))
∞
EDn

[∥∥f̂ − f∗∥∥2
L2(PX)

]
≳ n

− (2−r)a†

2a†+1 .

■

B.1 PROOF OF LEMMA 10

This theorem is an extension of Lemma 4 (a) from Raskutti et al. (2012) to our settings. In order to
prove this lemma, we make use of the following lemma.
Lemma 11. In accordance with the definition used in Theorem 1, we define and utilize a†. For any
i ∈ [d] and p ≥ 2, we have

logN
(

δ
√
si
,
(
U
(
Fγp,q

))
i
, ∥·∥2

)
≳ d

1

ra† log

(
d−

1
r
√
si

δ

)
,

where
(
U
(
Fγp,q

))
i

denotes the space U
(
Fγp,q

)
with the constraint ∥fi∥2 ≤ B2i

− 1
r .
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The proof of this lemma is provided in B.2.

Lemma 11 provides an evaluation of the covering number for a constrained γ-smooth space. On the
other hand, Lemma 10 provides an evaluation for the product space formed by combining multiple
such spaces. The proof of Lemma 10 is more general, allowing for evaluations in various settings.
Therefore, it is reasonable to expect that by providing the corresponding evaluations appearing in
Lemma 11 in other settings, similar evaluations can be obtained for product spaces.

Proof of Lemma 10. First, we define

Ni =M
(

δ
√
si
,
(
Fγp,q

)
i
, ∥·∥2

)
− 1.

Next, we introduce Ii = {0, 1, 2, . . . , Ni} and define

S =

u ∈
d∏
i=j

Ii

∣∣∣∣∣ ∥u∥0 = s

 ,

where we set s = maxi∈[d] si.

Now, from Lemma 11, we can obtain

Ni =M
(

δ
√
si
,
(
Fγp,q

)
i
, ∥·∥2

)
− 1 ≳ d

1

ra† log

(
d−

1
r
√
si

δ

)
− 1.

Therefore, si = d
2
r s̄ implies that we can set

Ni ≳ d
1

ra† log

(√
s̄

δ

)
− 1 =: N

which results in a value independent of i. Note that s = maxi si = d
2
r s̄ holds.

Now, we have |S| ≳
(
d
s

)
Nd.

For i = [d], we select
{
0, f1i , f

2
i , . . . , f

N
i

}
as a δ√

si
-packing of

(
Fγp,q

)
i
, and for any u ∈ S, we

define

gu := (gu1
1 , gu2

2 , . . . , gud

d ) ∈
(
Fγp,q

)d
,

where if ui ̸= 0, then gui
i = fui

i , and if ui = 0, then gui
i = 0.

Next, let’s consider gu and hv that belong to {gu, u ∈ S} . From the definition, we have

∥gu − hv∥22 =

d∑
i=1

∥fui
i − f

vi
i ∥

2
2 ≥

d∑
i=1

δ2

si
I [ui ̸= vi] ≥

δ2

s

d∑
i=1

I [ui ̸= vi] .

Moving forward, we can follow the same reasoning as in the proof of Lemma 4 (a) in Raskutti et al.
(2012), and obtain the following bound for s ≤ d

4 :

logN
(
δ,
(
Fγp,q

)d
, ∥·∥2

)
≳ s log

d

s
+ sd

1

ra† log

(
d−

1
r
√
s

δ

)
.

Here, we substitute s̄ = d−
2
r s into N to obtain this result. ■

B.2 PROOF OF LEMMA 11

Proof of Lemma 11. First, we choose the value s to satisfy 2γ(s) = (B2)
−1
d

1
r . Then, for this value

of s, we consider the corresponding ball:{
δs (f) | ∥δs (f)∥Fγ

p,q
≤ 1
}
.
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This ball satisfies the decay assumption ∥fi∥2 ≤ B2i
− 1

r . In fact,

∥δs (f)∥Fγ
p,q

=

(∑
s

(
2γ(s) ∥δs (δs (f))∥p

)q) 1
q

= 2γ(s) ∥δs (f)∥p ≤ 1

holds because of f ∈ U
(
Fγp,q

)
. Therefore, if p ≥ 2,

∥δs (f)∥2 ≤ ∥δs (f)∥p ≤ 2−γ(s) = B2d
− 1

r ≤ B2i
− 1

r .

Because this ball is topologically equivalent to a Euclidean ball with dimension 2s and radius
B2d

− 1
r , we have

N
(

δ
√
si
,
(
Fγp,q

)
i
, ∥·∥2

)
≥ N

(
δ
√
si
, B2d

− 1
rB2s , ∥·∥2

)
= N

(
δ

B2d−
1
r
√
si
,B2s , ∥·∥2

)

≥

(
B2d

− 1
r
√
si

δ

)2s

.

Next, let us consider a specific value for s. In the case of mixed smoothness, we assign values to s
only for the index corresponding to the minimum value of a, while setting the rest of the indices to
si = 0 in order to maximize the right-hand side of the inequality. In this scenario, we obtain

2s =
(
2γ(s)

) 1

a†
= (B2)

− 1

a† d
1

ra† .

Similarly, in the case of anisotropic smoothness, by choosing i′ as the index corresponding to the
minimum value of a, we set si = si′

ai′
ai

to maximize 2s. Therefore, we have

2s = 2
si′ai′

∑∞
i=1

1
ai = 2

γ(s)

a† ,

which coincides with the case of mixed smoothness. Thus, we can conclude that

logN
(

δ
√
si
,
(
Fγp,q

)
i
, ∥·∥2

)
≥ 2s log

(
B2d

− 1
r
√
si

δ

)
≳ d

1

ra† log

(
d−

1
r
√
si

δ

)
.

■

C PROOF OF THEOREM 4

Before delving into the discussion of this theorem, we present here the precise definition of linear
estimators briefly introduced at the beginning of Section 4.

Definition 11 (Definition of Linear Estimators). Let Dn =
(
x(i), y(i)

)n
i=1

be the data set. An
estimator f̂ based on Dn is said to be a linear estimator if it can be expressed in the following form:

∀i ∈ N :
(
f̂ (x)

)
i
=

n∑
j=1

y
(j)
i φi,j (x;x

n) .

Here, we assume E
[
∥φi,j (·;xn)∥22

]
<∞.

The theorem is grounded in the notion that, as stated at the outset of Section 4.1, the non-convex
nature of the union of γ-smooth spaces for varying values of a implies that linear estimators are
likely to experience sub-optimal performance. This intuition is based on Theorem 3.3 in Hayakawa
& Suzuki (2020). Here, we present this theorem as an extension applicable to the setting of linear
estimators in this paper.
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Theorem 12 (Extension of Theorem 3.3 in Hayakawa & Suzuki (2020)). For linear estimators
(Definition 11) in a certain space F∞, the estimation error has the following relationship:

inf
f̂ :linear

sup
f◦∈F∞

R
(
f̂ , f◦

)
= inf
f̂ :linear

sup
f◦∈Conv(F∞)

R
(
f̂ , f◦

)
,

where R
(
f̂ , f◦

)
:= EPn

[∥∥f̂ − f◦∥∥2
PX

]
.

The proof is provided in C.1.

In order to utilize this theorem in the current proof, we require the result of taking the Convex Hull
of the space U ((F2,2 (Γ))

∞
). The following lemma presents the result that provides it.

Lemma 13. The Convex Hull of U (F2,2 (Γ)) is given by:

Conv (U (F2,2 (Γ))) = U
(
Fmina∈Γ γa

2,1

)
.

Here, γ = mina∈Γ γa is denoted as γ (s) := mina∈Γ γa (s), indicating that the minimum is taken
over a for each s.

The proof is provided in C.2.

This lemma provides a result for the space U (F2,2 (Γ)), but the space of interest in our discussion,
U ((F2,2 (Γ))

∞
), is simply a Cartesian product of the spaceU (F2,2 (Γ)). Therefore, we can observe

that

Conv (U ((F2,2 (Γ))
∞
)) =

(
U
(
Fmina∈Γ γa

2,1

))∞
.

Furthermore, following the approach used in the proof of Theorem 2, we also seek to establish
a lower bound using the techniques from Suzuki (2019); Raskutti et al. (2012). To this end, we
require a lower bound on the covering number for the space under consideration, and we present the
following lemma regarding that.
Lemma 14 (Covering Number of Fγ2,1). From Definition 8, let Γ = Γ (Qmϵ ), and let γa (s) = ⟨a, s⟩
and a⋆ = a. Also, let Γ = Γ (Qaϵ ), γa (s) = maxi {aisi}, and a⋆ = ã. Here, γ = mina∈Γ γa. In
this case, the lower bound on the covering number of Fγ2,1 is given by:

logN
(
ϵ, U

(
Fγ2,1

)
, ∥·∥2

)
≳ ϵ−

1+c
a⋆ .

The proof is provided in C.3.

By combining these lemmas and theorem, we can prove Theorem 4 as follows.

Proof of Theorem 4. First, the estimation error we want to evaluate can be transformed as follows:

inf
f̂ :linear

sup
f◦∈U((F2,2(Γ))

∞)

EDn

[∥∥f̂ − f◦∥∥
L2(PX)

]
= inf
f̂ :linear

sup
f◦∈Conv(U((F2,2(Γ))

∞))

EDn

[∥∥f̂ − f◦∥∥
L2(PX)

]
= inf
f̂ :linear

sup
f◦∈(U(Fγ

2,1))
∞
EDn

[∥∥f̂ − f◦∥∥
L2(PX)

]
≳ inf

f̂
sup

f◦∈U(Fγ
2,1)

EDn

[∥∥f̂ − f◦∥∥
L2(PX)

]
,

where in the second line we used Theorem 12, and in the third line we used Lemma 13.

In other words, we ultimately need to evaluate inf f̂ supf◦∈U(Fγ
2,1)

EDn

[∥∥f̂ − f◦∥∥
L2(PX)

]
. To eval-

uate this, we first let

M :=M
(
δn, U

(
Fγ2,1

)
, ∥·∥2

)
, N := N

(
ϵn, U

(
Fγ2,1

)
, ∥·∥2

)
.
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Then, according to Suzuki (2019), we have:

inf
f̂

sup
f◦∈U(Fγ

2,1)
EDn

[∥∥f̂ − f◦∥∥
L2(PX)

]
≳
δ2n
2

(
1−

logN + n
2σ2

1
ϵ2n + log 2

logM

)
.

If we select δn, ϵn satisfying
n

2σ2
1

ϵ2n ≤ logN, 8 logN ≤ logM, 4 log 2 ≤ logM,

the minimax rate is lower bounded by δ2n
4 .

Here, from Lemma 14, we have:

logN
(
ϵ, U

(
Fγ2,1

)
, ∥·∥2

)
≳ ϵ−

1+c
a⋆ .

Therefore, by choosing ϵn and δn such that:

δn ∼ ϵn ∼ n−
a⋆

2a⋆+1+c ,

we ultimately obtain:

inf
f̂

sup
f◦∈U(Fγ

2,1)
EDn

[∥∥f̂ − f◦∥∥
L2(PX)

]
≳ δ2n ≳ n−

2a⋆

2a⋆+1+c .

■

C.1 PROOF OF THEOREM 12

Proof of Theorem 12. Now, we define

R
(
f̂ , f◦

)
:= EPn

[∥∥f̂ − f◦∥∥2
PX

]
, R̃

(
f̂i, f

◦
i

)
:= EPn

[∥∥f̂i − f◦i ∥∥2PX

]
.

In this case, we obtain:

R
(
f̂ , f◦

)
= EPn

[∥∥f̂ − f◦∥∥2
PX

]
= EPn

[
EPX

[∥∥f̂ (X)− f◦ (X)
∥∥2
ℓ2

]]
= EPn

[
EPX

[ ∞∑
i=1

(
f̂i (X)− f◦i (X)

)2]]
=

∞∑
i=1

EPn

[
EPX

[(
f̂i (X)− f◦i (X)

)2]]

=

∞∑
i=1

R̃
(
f̂i, f

◦
i

)
.

Here, f̂i represents a one-dimensional output linear estimator, defined in Hayakawa & Suzuki
(2020). Therefore, as proven in the proof of Theorem 3.3 in Hayakawa & Suzuki (2020), R̃

(
f̂i, ·

)
is a convex function. In other words, for f◦, g◦ ∈ F∞ and h◦ := tf◦ + (1− t) g◦, we have:

R̃
(
f̂i, h

◦
i

)
≤ tR̃

(
f̂i, f

◦
i

)
+ (1− t) R̃

(
f̂i, g

◦
i

)
.

Hence,

R
(
f̂ , h◦

)
=

∞∑
i=1

R̃
(
f̂i, h

◦
i

)
≤ t

∞∑
i=1

R̃
(
f̂i, f

◦
i

)
+ (1− t)

∞∑
i=1

R̃
(
f̂i, g

◦
i

)
= tR

(
f̂ , f◦

)
+ (1− t)R

(
f̂ , g◦

)
holds. Therefore, R

(
f̂ , ·
)

is a convex function.Therefore,

inf
f̂ :linear

sup
f◦∈F∞

R
(
f̂ , f◦

)
≥ inf
f̂ :linear

sup
f◦∈Conv(F∞)

R
(
f̂ , f◦

)
can be asserted. And since the converse is evident, we can conclude the statement of this theorem.

■
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C.2 PROOF OF LEMMA 13

In order to prove this lemma, we consider an alternative representation of the γ-smooth space using
a method similar to the one employed in describing Besov spaces based on wavelet expansions, as
demonstrated in Donoho & Johnstone (1998) and Meyer (1993). Here, we adapt a similar approach
to redefine the γ-smooth space.
Theorem 15 (Alternative representation of γ-smooth space). For the norm ∥·∥Fγ

p,q
of the γ-smooth

space Fγp,q , the following relationship holds:

∥f∥Fγ
p,q
≍

 ∑
s∈N∞

0

2γ(s)−(
s
p−

s
2 )

 ∑
l∈J(s)

|θl|p
 1

p


q

1
q

,

where J (s) =
{
l ∈ Z∞

0 : ⌊2si−1⌋ ≤ |li| < 2si
}

and θl = ⟨f, ψl⟩.
In other words, by considering the following space, we obtain an alternative representation of the
γ-smooth space Fγp,q:

Θγp,q (C) :=
{
θ : ∥θ∥fγp,q ≤ C

}
,

∥θ∥fγp,q :=

 ∑
s∈N∞

0

2γ(s)−(
s
p−

s
2 )

 ∑
l∈J(s)

|θl|p
 1

p


q

1
q

.

The proof is provided in C.2.1.

Hereafter, based on this theorem, we treat U
(
Fγp,q

)
as Θγp,q := Θγp,q (1).

Proof of Lemma 13. First, the parameter representation of U (F2,2 (Γ)) is described as follows:

⋃
a∈Γ

Θγa2,2 =
⋃
a∈Γ

θ :
 ∑
s∈N∞

0

2γa(s)

 ∑
l∈J(s)

|θl|2
 1

2


2


1
2

≤ 1

 .

Now, let us define θs := (θl)l∈J(s). Next, let us consider fixing a particular s and setting θs′ =

(0)l∈J(s′) for all s′ ̸= s. Then, we have

2γa(s) ∥θs∥2 ≤ 1.

On the other hand, since we are considering
⋃
a∈Γ, as the set of endpoints, we can consider:

2mina∈Γ γa(s) ∥θs∥2 ≤ 1.

Now, let us vary s and consider taking the convex hull over all θs that satisfy the above condi-
tion. Specifically, we consider a convex combination θ =

∑
s∈N∞

0
δsθs using δs ∈ R satisfying∑

s∈N∞
0
δs ≤ 1 and δs > 0. For this θ, we consider the ∥·∥

f
mina∈Γ γa
2,1

norm, and we have:

∥θ∥
f
mina∈Γ γa
2,1

=
∑
s∈N∞

0

2mina∈Γ γa(s) ∥δsθs∥2

=
∑
s∈N∞

0

δs2
mina∈Γ γa(s) ∥θs∥2

≤
∑
s∈N∞

0

δs ≤ 1.

Thus, we obtain the relationship stated in the theorem. ■
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C.2.1 PROOF OF THEOREM 15

Proof of Lemma 15. The proof utilizes the technique presented in Meyer (1993). Now, the norm of
Fγp,q is

∥f∥Fγ
p,q

=

 ∑
s∈N∞

0

(
2γ(s) ∥δs (f)∥p

)q 1
q

.

Therefore, let us proceed to evaluate ∥δs (f)∥p. Let us define θl = ⟨f, ψl⟩. Then, we can express
δs (f) as a

δs (f) =
∑
l∈J(s)

⟨f, ψl⟩ψl =
∑
l∈J(s)

θlψl.

Here, since the following inequality holds:

θl = ⟨δs (f) , ψl⟩ =
∫
M
δs (f) (x)ψl (x) dλ

∞ (x) ,

if we set 1
p +

1
q = 1, then

|θl| ≤
∫
M
|δs (f) (x)| |ψl (x)|

1
p |ψl (x)|

1
q dλ∞ (x)

≤
(∫

M
|δs (f) (x)|p |ψl (x)|dλ∞ (x)

) 1
p
(∫

M
|ψl (x)|dλ∞ (x)

) 1
q

is obtained. Now, by the definition of ψl (x), we obtain following evaluation:

|ψl (x)| =

∣∣∣∣∣
∞∏
i=1

ψli (xi)

∣∣∣∣∣ ≤ √2∥s∥0 = 2
∥s∥0

2 .

Therefore, |θl| is evaluated as follows:

|θl| ≤ 2
∥s∥0

2 ∥δs (f)∥p ,

∴

 ∑
l∈J(s)

|θl|p
 1

p

≤
(
2

p∥s∥0
2 ∥δs (f)∥pp |J (s)|

) 1
p

= 2
∥s∥0

2 |J (s)|
1
p ∥δs (f)∥p .

Furthermore, regarding |J (s)|, considering all possible choices for each li, which amounts to 2si

possibilities, we can conclude that |J (s)| = 2s. Combining the above observations, we can ulti-
mately evaluate it as follows: ∑

l∈J(s)

|θl|p
 1

p

≤ 2
∥s∥0

2 + s
p ∥δs (f)∥p . (6)

We now proceed to establish the reverse inequality in a similar manner. By employing a similar
evaluation as before, we can derive the following inequality:

|δs (f) (x)| ≤
∑
l∈J(s)

|θl| |ψl (x)| ≤

 ∑
l∈J(s)

|θl|p |ψl (x)|

 1
p
 ∑
l∈J(s)

|ψl (x)|

 1
q

≤ 2
∥s∥0
2p

 ∑
l∈J(s)

|θl|p
 1

p (
2

∥s∥0
2 +s

) 1
q

≤ 2
∥s∥0
2p + 1

q

(
∥s∥0

2 +s
) ∑

l∈J(s)

|θl|p
 1

p

≤ 2
∥s∥0
2p +(1− 1

p )
(

∥s∥0
2 +s

) ∑
l∈J(s)

|θl|p
 1

p

≤ 2
∥s∥0

2 − s
p+s

 ∑
l∈J(s)

|θl|p
 1

p

.
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Then, ∥δs (f)∥p is evaluated as follows:

∥δs (f)∥p =
(∫

M
|δs (f) (x)|p

) 1
p

≤ 2
∥s∥0

2 − s
p+s

 ∑
l∈J(s)

|θl|p
 1

p

. (7)

By combining equations Eq (6) and Eq (7), we obtain the following relationship:

2−
∥s∥0

2 − s
p

 ∑
l∈J(s)

|θl|p
 1

p

≤ ∥δs (f)∥p ≤ 2
∥s∥0

2 − s
p+s

 ∑
l∈J(s)

|θl|p
 1

p

∴ ∥δs (f)∥p ≍ 2−
s
p+

s
2

 ∑
l∈J(s)

|θl|p
 1

p

.

Substituting this into the initial expression for ∥f∥Fγ
p,q

allows us to establish the desired relationship.
■

C.3 PROOF OF LEMMA 14

Proof of Lemma 14. Let us consider the case where we define Γ = Γ (Qmϵ ), γa (s) = ⟨a, s⟩, and
a⋆ = a. For simplicity, we denote Qϵ := Qmϵ .

Now, we define the set I (Qϵ) as follows:

I (Qϵ) :=

s ∈ N∞
0

∣∣∣ si =
⌊

T
a ⌋

(
i ∈
[
2

a
Qϵ

])
0

(
i ̸∈
[
2

a
Qϵ

]) .

We now evaluate the restricted subspace corresponding to the coordinates associated with s belong-
ing to this set. In other words, for s ̸∈ I (Qϵ), we set the coordinates θs,l corresponding to s and l to
be 0. The dimension of this subspace, denoted as d, is given by:

d =
∑

s∈I(Qϵ)

∑
l∈J(s)

=
∑

s∈I(Qϵ)

2s.

Then, the restricted subspace of U
(
Fγ2,1

)
can be expressed as:θ :

∑
s∈I(Qϵ)

2γ(s)

 ∑
l∈J(s)

|θl|2
 1

2

≤ 1

 .

On the other hand, by using Cauchy–Schwarz inequality, we obtain

∑
s∈I(Qϵ)

2γ(s)

 ∑
l∈J(s)

|θl|2
 1

2

≤
√ ∑
s∈I(Qϵ)

1

 ∑
s∈I(Qϵ)

2γ(s)

 ∑
l∈J(s)

|θl|2
 1

2


2


1
2

.

Then, if we define d′ :=
∑
s∈I(Qϵ)

1, the spaceθ : ∑
s∈I(Qϵ)

22γ(s)d′
∑
l∈J(s)

|θl|2 ≤ 1

 .

also be a subspace of the restricted subspace of U
(
Fγ2,1

)
.

28



Under review as a conference paper at ICLR 2024

Next, we consider the covering number of this space. To achieve this, we want to determine the
value of T such that a ball with radius ϵ can fit inside this space. Based on the assumption that
2−2γ(s) > 2−2T , we have:

2−2T

d′
≥ ϵ2.

We need to choose the largest possible value of T that satisfies this inequality.

Here, d′ can be derived from the definition of I (Qϵ) as d′ = ⌊2
a

Qϵ ⌋ ≤ 2
a

Qϵ . Therefore, we obtain:

2−2T

d′
≥ 2−2T− a

Qϵ .

By setting T = 2a−1−c
2a−1 log2 ϵ

−1 and substituting this and the definition of Qϵ, we have:

2−2T

d′
≥ 2−2T− a

Qϵ = 2−(2
2a−1−c
2a−1 + 2c

2a−1 ) log2 ϵ
−1

= ϵ2.

This shows that by setting T in this way, a ball with radius ϵ is guaranteed to be contained within
the subspace.

The remaining task is to evaluate the covering number of the ball with radius ϵ. According to (5.9)
in Wainwright (2019), we have:

logN
( ϵ
3
,Bd (ϵ) , ∥·∥2

)
≥ d log 3.

Here, d can be expressed as follows based on the definition:

d =
∑

s∈I(Qϵ)

2s ≃
∑

s∈I(Qϵ)

2
T
a ≃ 2

a
Qϵ

+T
a .

By substituting the values of T and Qϵ, we obtain:

d ≃ 2
a

Qϵ
+T

a = 2(
2c

2a−1+
2a−1−c
a(2a−1) ) log2 ϵ

−1

= ϵ−
1+c
a .

Thus, we obtain the desired result.

In addition, let us consider the case where Γ = Γ (Qaϵ ), γa (s) = maxi {aisi}, and a⋆ = ã. Now, in
order to analyze mina∈Γ(Qϵ), it suffices to consider the case when aij = ajη , because the following
condition

∥a∥wlη ≤ a
−1 ⇐⇒ aij ≥ ajη (∀j = 1, 2, . . . )

holds. Now, let us consider the following setting as a specific example of s satisfying γ(s) < T :

s =

(⌊
T

a

⌋
,

⌊
T

a2η

⌋
,

⌊
T

a3η

⌋
, . . . ,

⌊
T

aKη

⌋
, 0, . . .

)
,

where K =
⌊
2

a
Qϵ

⌋
.

In this case, for each s, the a that achieves the minimum of γ(s) = mina∈Γ(Qϵ) γa(s) corresponds to
a mapping between the elements of s in descending order and the elements of a in ascending order.
Therefore, we have γ(s) = maxj aijsj . Furthermore, considering that

aiη
⌊
T

aiη

⌋
< T (∀i = 1, 2, . . . ),

the defined s satisfies the condition γ(s) < T . Moreover, such s can be rearranged by changing
the indices. If we denote the index corresponding to the minimum value of s as i1, it is sufficient
for i1 to be within the range where a ≥ Qϵ log2 i1 holds. Therefore, there are at least 2

a
Qϵ possible

rearrangements. Let I(Qϵ) represent the set of 2
a

Qϵ rearranged s.

Under this setting, following the previous discussion, we want to choose the largest T that satisfies:

2−2T

d′
≥ ϵ2.
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Now, since d′ ≤ 2
a

Qϵ holds based on its definition, we have 2−2T

d′ ≥ 2−2T− a
Qϵ . Therefore, substi-

tuting T =
(
1− 2(1+c)

ã

)
log2 ϵ

−1 along with the definition of Qϵ, we obtain:

2−2T

d′
≥ 2−2T− a

Qϵ

= 2
− 1

2ηã

(
(4ηã−6η(1+c)+

2(1+c)
ã −1) log2 ϵ

−1+a1−1/η(log2 ϵ
−1)

1/η
)
.

Now, considering the definition of c, we have 2(1+c)
ã − 1 < 0. Additionally, when ϵ is sufficiently

small, the value of log2 ϵ
−1 can be considered sufficiently large compared to

(
log2 ϵ

−1
)1/η

. There-

fore, we have
(
−6η (1 + c) + 2(1+c)

ã − 1
)
log2 ϵ

−1 + a1−1/η
(
log2 ϵ

−1
)1/η

< 0. Therefore, we
obtain:

2−2T

d′
≥ 2

− 1
2ηã

(
(4ηã−6η(1+c)+

2(1+c)
ã −1) log2 ϵ

−1+a1−1/η(log2 ϵ
−1)

1/η
)
≥ 2−2 log2 ϵ

−1

= ϵ2.

Furthermore, as for the evaluation of d, we have:

d =
∑

γ(s)<T

2s ≥ 2
a

Qϵ 2
∑

1≤i≤(T/a)1/η⌊ T
aiη ⌋ ≥ 2

a
Qϵ 2

∑
1≤i≤(T/a)1/η

T
2aiη

≥ 2
a

Qϵ
+ T

2ã
1
η

(
1−(T/a)

1−η
η

)
.

Then, we obtain

d ≳ 2
a

Qϵ
+ T

2ã
1
η

(
1−(T/a)

1−η
η

)

= 2
1

2ηã

(
( 2(1+c)(ηã+1)+ã−2(1+c)

ã −1) log2 ϵ
−1+a1−1/η

(
1−(1− 2(1+c)

ã )
1/η

)
(log2 ϵ

−1)
1/η

)
> ϵ−

1+c
ã ,

where we have utilized the fact that 0 < 2(1+c)
ã < 1, which follows from the definition of c.

Consequently, we obtain the desired result in this case as well. ■

D PROOFS OF COROLLARY 6 AND THEOREM 7

D.1 PROOF OF COROLLARY 6

Proof of Corollary 6. Let us consider the case where we define Γ = Γ (Qmϵ ), γa (s) = ⟨a, s⟩, and
a⋆ = a. For simplicity, we denote Qϵ := Qmϵ .

In this study, we consider Qϵ as a value that varies and is taken to be Qϵ ∼ −1/ log ϵ. Because we
compare the results with those of linear estimators, following the definition in Theorem 4, we set
ϵ ∼ n−

a⋆

2a⋆+1+c . Consequently, we have 1/Qϵ ∼ log n in this case.

Now, the rates for
(
U(Fγa2,2)

)∞
are provided in Theorem 3. By examining its proof, we can observe

that it utilizes Theorem 10 and 14 from Okumoto & Suzuki (2021), which are results concerning
one-dimensional outputs. However, in the proof presented in Okumoto & Suzuki (2021), Qϵ is
treated as a constant and ignored. Therefore, it is necessary to consider the impact of Qϵ not being
a constant in this case.

Specifically, Qϵ is used in the definition of the number of layers L′ = ⌈ TQϵ
⌉. Here, T takes the

value T ∼ log n, meaning that in our setup, we have L′ ∼ (log n)2, which differs from the value of
L′ ∼ log n mentioned in Theorem 14 of Okumoto & Suzuki (2021).

Therefore, we need to consider the influence of the change in L′ on the rate of estimation error. In
Okumoto & Suzuki (2021), the authors obtained an upper bound on the covering number of the class
to which dilated CNNs belong by substituting the values of each neural network’s parameters into
the expression:

(S +W ′C) (L+ L′) log

(
LL′ (B′ ∨ 1) (B ∨ 1)CW ′W

δ

)
.
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By using L = max
{
T

2
η , T 2

}
, it can be seen that even with the modification of L′ as in our case,

L+L′ remains of the same order. Also, the term logLL′ only undergoes a constant scaling. Hence,
the change in L′ in this case does not affect the rate of estimation error for dilated CNNs.

Therefore, the rate for
(
U
(
Fγa2,2

))∞
is already known from Theorem 3. Hence, to determine the

rate for U ((F2,2 (Γ))
∞
), we only need to consider the maxa∈Γ(Qϵ) of the rate for

(
U
(
Fγa2,2

))∞
.

From Theorem 3, we have:

EPn

[∥∥∥f̂ − f◦∥∥∥2
PX

]
≲ max
a∈Γ(Qϵ)

n
−

(2−r)ai1
2ai1

+1 (log n)
2
η+6

= n−
(2−r)a
2a+1 (log n)

2
η+6

,

where, in the last step, we have used the fact that aij ≥ ajη based on the definition of Γ.

The same reasoning can be applied when considering Γ = Γ (Qaϵ ) , γa (s) = maxi {aisi}, and
a⋆ = ã. ■

D.2 PROOF OF THEOREM 7

Proof of Theorem 7. Let us consider the case where we define Γ = Γ (Qmϵ ), γa (s) = ⟨a, s⟩, and
a⋆ = a. The proof for the other case follows a similar argument and is omitted.

First, based on the assumptions of this theorem, Theorem 4 and Corollary 6 hold. This means that the
convergence rate of the estimation error using the linear estimator is n−

2a
2a+1+c , while for the dilated

CNNs, it is n−
(2−r)a
2a+1 . However, we only consider the polynomial order part of n for comparison

with the linear estimator, as the polylogarithmic order terms can be neglected when n is sufficiently
large.

Now, for the extended CNN to dominate the linear estimator, the following condition must hold:

n−
(2−r)a
2a+1 < n−

2a
2a+1+c .

By elementary algebraic manipulations, we can derive c > (2a+1)r
2−r . However, note that the assump-

tion 0 < c < 2a − 1 imposes a constraint on c. From this, we can infer that in order for c to exist,
we need (2a+1)r

2−r < 2a− 1 ⇐⇒ r < 2a−1
2a to hold. ■
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