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ABSTRACT

The increased adoption of diffusion models in text-to-image generation has trig-
gered concerns on their reliability. Such models are now closely scrutinized under
the lens of various metrics, notably calibration, fairness, or compute efficiency.
We focus in this work on two issues that arise when deploying these models: a
lack of diversity when prompting images, and a tendency to recreate images from
the training set. To solve both problems, we propose a method that coaxes the
sampled trajectories of pretrained diffusion models to land on images that fall out-
side of a reference set. We achieve this by adding repellency terms to the dif-
fusion SDE throughout the generation trajectory, which are triggered whenever
the path is expected to land too closely to an image in the shielded reference set.
Our method is sparse in the sense that these repellency terms are zero and inac-
tive most of the time, and even more so towards the end of the generation trajec-
tory. Our method, named SPELL for sparse repellency, can be used either with
a static reference set that contains protected images, or dynamically, by updating
the set at each timestep with the expected images concurrently generated within
a batch. We show that adding SPELL to popular diffusion models improves their
diversity while impacting their FID only marginally, and performs comparatively
better than other recent training-free diversity methods. We also demonstrate how
SPELL can ensure a shielded generation away from a very large set of protected
images by considering all 1.2M images from ImageNet as the protected set.

Stable Diffusion 3
A close-up of an apple

Simple Diffusion
The Eiffel Tower

MDTv2
ImageNet class 145

+ SPELL (Ours) + SPELL (Ours) + SPELL (Ours)

Figure 1: SPELL interventions can change the diffusion trajectory of any pre-trained diffusion
model, by self-avoiding other images generated within the same batch (here of size 6). SPELL
achieves a higher intra-batch diversity using the same models, prompts and noise seeds.
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1 INTRODUCTION

Diffusion models (Song et al., 2021; Ho et al., 2020) are by now widely used for engineering and
scientific tasks, to generate realistic signals (Esser et al., 2024) or structured data (Jo et al., 2022;
Chamberlain et al., 2021). Diffusion models build upon a strong theoretical foundation used to
guide parameter tuning (Kingma & Gao, 2023) and network architectures (Rombach et al., 2022),
and are widely adopted thanks to cutting-edge open-source implementations. As these models gain
applicability to a wide range of problems, their deployment reveals important challenges. In the
specific area of text-to-image diffusion (Nichol et al., 2022; Saharia et al., 2022), these challenges
can range from an expensive compute budget (Salimans & Ho, 2022) to a lack of diversity (Ho &
Salimans, 2022; Shipard et al., 2023) and/or fairness (Cho et al., 2023; Shen et al., 2024).

Controllable Generation. We focus on the problem of ensuring that images obtained from a model
are sufficiently different from a reference set. This covers two important use-cases: (i) the purveyor
of the model wants images generated with its model to fall outside of a reference set of protected im-
ages; (ii) the end-user wants high diversity when generating multiple images with the same prompt,
in which case the reference set could consist of all previously generated images, or even other im-
ages generated concurrently in a batch. While the problem of avoiding generating images in a pro-
tected training set (Carlini et al., 2023) originates naturally when deploying products, that of achiev-
ing diversity within a batch of generated images with the same prompt should not arise, in theory,
if diffusion models were perfectly trained. However, as shown for instance by Sadat et al. (2024),
state-of-the-art models that incorporate classifier-free guidance (Ho & Salimans, 2022, CFG) do a
very good job at outputting a first picture when provided with a prompt, but will typically resort to
slight variations of that same image when re-prompted multiple times. This phenomenon is illus-
trated in Figure 1 for three popular diffusion models, Stable Diffusion 3 (Esser et al., 2024), Simple
Diffusion (Hoogeboom et al., 2023) and MDTv2 (Gao et al., 2023).

Contributions. We propose a guidance mechanism coined sparse repellency (SPELL), which repels
the backward diffusion at generation time away from a reference set of images.

• The SPELL mechanism adjusts diffusion trajectories when the generation of an image is expected
to land close to a shielded region (defined as balls around the latent representation of images in the
reference set). These regions can be static or updated dynamically, when used to obtain diversity,
by using the expectation of other generation trajectories within the same batch.

• SPELL interventions are sparse in that they only consider by design very few active shielded
images (typically one) in the reference set at each time t, and make these changes rarely throughout
diffusion trajectory. Because they are driven by geometric considerations on the expected final
generation output at time 0, these interventions happen mostly early in the backward diffusion.

• We show that applying SPELL to numerous state-of-the-art open-sourced diffusion models leads
to images that better reflect the diversity of the true data (see Figure 1) with a marginal or even no
increase in the Fréchet inception distance (FID) between generated images and training dataset.

• SPELL is simply parameterized by r, the shields’ radius. We show that increasing r increases
accordingly the output’s diversity, with a better diversity-precision trade-off than other recently
proposed methods (Sadat et al., 2024; Corso et al., 2024; Kynkäänniemi et al., 2024).

• We showcase that SPELL can be scaled to a static reference set of millions of images, thanks to
fast nearest-neigbor search tools. We use the whole ImageNet-1k dataset as the protected reference
set, and generate images that are novel, without ever requiring to filter and/or regenerate images.

2 BACKGROUND

Diffusion Models, also known as score-based generative models (Song et al., 2021; Song & Ermon,
2019; Ho et al., 2020), enable sampling from data distribution pdata on support X ⊂ Rd, such as
an image dataset, by simulating the reverse stochastic differential equation (SDE) (Haussmann &
Pardoux, 1986; Anderson, 1965), initialised from some easy to sample prior p1 ∈ P(Rd):

dXt = [f(t,Xt)− g2(t)∇ log pt(Xt)]dt+ g(t)dBt X1 ∼ p1, (1)

where (Bt)t denotes Brownian motion and pt is defined as the density of Xt from forward process:

dXt = f(t,Xt)dt+ g(t)dBt X0 ∼ p0 := pdata, (2)
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for drift f : [0, 1] × X → X and diffusion scale g : [0, 1] → R, where the time t is increasing in
equation 2 and time decreasing in equation 1. The score term∇ log pt(Xt) is typically approximated
by a neural network through denoising score matching (Vincent, 2011).

Training. The solution to forward diffusion in equation 2 for an affine drift is of the form Xt =
αtX0 + σtε, where ε ∼ N (0, I) for some coefficients αt ∈ R, σt ∈ R (Song et al., 2021; Särkkä
& Solin, 2019). The intractable score term may be expressed via denoiser using Tweedie’s formula
(Efron, 2011; Robbins, 1956): ∇ log pt(xt) =

αtE[X0|Xt=xt]−xt

σ2
t

. Hence rather than estimating the
score directly, one may approximate E[X0|Xt = xt] via regression, by minimizing:

θ⋆ := argmin
θ

EXt,X0∥Dθ(t,Xt, y)−X0∥2 (3)

known as mean-prediction, for optional condition denoted y, then estimate the score via
∇ log pt(xt | y) ≈ sθ⋆(t, xt, y) := (αtDθ⋆(t, xt, y) − xt)/σ

2
t . Notice that we do not train model

parameters in this work, and will always assume that θ⋆ is given by the purveyor of a model.

Conditioning and Guidance. Conditional generation of diffusion generative models requires access
to the conditional score ∇ log pt(xt | y) for some condition y such as text or label. It is typically
approximated either with explicit conditioning during training of the score / denoising network using
equation 3 or as post-hoc additional guidance term added to the score. Given diffusion models have
lengthy training procedures, likely due to their high variance loss (Jeha et al., 2024), it is desirable to
guide diffusion models with inexpensive post-training guidance (Dhariwal & Nichol, 2021; Zhang
et al., 2023; Denker et al., 2024), using e.g. classifier guidance (Dhariwal & Nichol, 2021)

∇ log pt(xt | y) = ∇ log pt(xt) + γ∇ log pt(y | xt) (4)

whereby the gradient ∇ log p(y | xt) of classifier p(y | xt) for label y is added to the score, heuris-
tically multiplied by a scalar γ ≥ 1 for increased guidance strength. Another approach which cir-
cumvents training a time-indexed classifier is using the approximation p(y | xt) ≈ p(y|X0 =
Dθ⋆(t, xt)), for a pretrained denoiser Dθ⋆ alias Diffusion Posterior Sampling (Chung et al., 2023).

Classifier-Free Guidance and Lack of Diversity in text-to-image Diffusion Models. Classifier-
free guidance (CFG) (Ho & Salimans, 2022) is the dominant conditioning mechanism in text-to-
image diffusion models, sharing properties with both explicit training and guidance. Similar to clas-
sifier guidance, CFG may be used to increase guidance strength but without resorting to approxi-
mating density p(y | xt). Instead, the difference ∇ log p(y | xt) = ∇ log p(xt | y) − ∇ log pt(xt)
is used as a guidance term, where each term is approximated with the same conditional network:
∇ log p(xt | y) ≈ sθ(t, xt, y) and ∇ log p(xt) ≈ sθ(t, xt, ∅), for null condition ∅, trained as in
equation 3. Adding CFG to the unconditional score yields ∇ log pt(xt | y) ≈ γsθ(t, xt, y) − (γ −
1)sθ(t, xt, ∅). Despite its widespread popularity and good performance, CFG weighting is heuristic.
It is not clear what final distribution is being generated; and practitioners observe a lack of diversity
in generated samples (Somepalli et al., 2023; Chang et al., 2023; Wang et al., 2024b). In order to
combat the lack of diversity from CFG, Corso et al. (2024) add to the score a repulsive interacting po-
tential Φ evaluated on the whole batch, (x(i)

t )i, coined particle guidance: ∇ log Φt((x
(i)
t )i). This re-

pulsive potential is parameterised through a kernel as log Φt((x
(i)
t )i) = −

∑
i,j kt(x

(i)
t , x

(j)
t ). They

specifically study the Gaussian kernel, Green’s function k(x, y) ∝ 1/∥x−y∥N or kernels combined
with a feature extractor eϕ such as DINO (Caron et al., 2021) kt(x, y) = ket (eϕ(x

(i)), eϕ(y
(j))).

3 SPARSE REPELLENCY

We propose a mechanism to sample from the data distribution p0 whilst satisfying the important
requirement that generated samples X0 ∼ p0 are distanced from each element of the reference set
of repellency images zi ∈ X , k = 1, . . . ,K. That set may be populated by real-world protected
images, samples generated in earlier batches to increase diversity, images expected to be generated
by other trajectories in the current batch, or a mix of all these types. More formally, we wish to
sample a conditioned trajectory Xt | (X0 /∈ S), where S is the collection of shields, i.e. balls of
radius r > 0 around repellency images, S := (∪kBk) with Bk = {x ∈ X : ∥x− zk∥2 ≤ r}. A
blunt mechanism to guarantee generation outside of S is to generate and discard: resample multiple
times both initial noise and Brownian samples, follow the diffusion trajectory and repeat until a
generated image falls outside of S. In the context of computationally expensive diffusion models,
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(a) shielded generation, static set
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(b) intra-batch repellency (c) both

Figure 2: (a) At time t, by computing E[X0 | Xt = xt], we detect that the trajectory is headed (in
expectation) into the shield of radius r centered around z2. Our sparse repellency (SPELL) term
depicted as a black arrow adds a correction when generating xt−∆t to ensure that the trajectory is
pushed out of the shield. This is again in the case in the next step, when starting from xt−∆t. (b) In
batched generation, the shields are dynamically recreated at every iteration around each trajectory’s
expected output. This prevents two elements in the batch, x(1)

t and x
(2)
t , from generating the same

output. (c) Both approaches can be combined to yield a diverse set of images that won’t fall into
protected images and previously or concurrently generated images.

this would be wasteful and inefficient. We propose instead SPELL, a fairly simple approach that
can be described from geometric principles and linked to DPS (Chung et al., 2023) and particle
guidance Corso et al. (2024).

A Geometric Interpretation of SPELL. To ensure that generation falls outside of the shielded set
S, our aim is to modify the diffusion trajectory at each time step, as presented in Figure 2, without
having to discard any generation. To do so, we will rely at each time t on the expected final output
of the diffusion E[X0 | Xt = xt] given current state xt, as approximated by the diffusion network
Dθ⋆(t, xt). We correct the trajectory whenever that expected vector falls within a shield. Using the
notation x̂0 = Dθ⋆(t, xt), we test whether for any index k one has ∥x̂0 − zk∥2 < r. If that is the
case, the minimal modification δ that can ensure ∥x̂0 + δ − zk∥2 ≥ r is

δk(x̂0) :=
(x̂0 − zk)r

∥x̂0 − zk∥2
− (x̂0 − zk).

Across all k = 1, . . . ,K, we modify the trajectory only for those k that x̂0 is too close to, giving

∆ =

K∑
k=1

1x̂0∈Bk
· δk(x̂0) =

K∑
k=1

ReLU

(
r

∥x̂0 − zk∥2
− 1

)
· (x̂0 − zk) ∈ Rd (5)

where the set of indices k that the ReLU is non-zero for at each individual timestep is usually very
small. Under the assumption that all of their shields Bk are disjoint, for example when the radius
r is small enough, this update strictly ensures that x̂0 + ∆ /∈ S. When shields overlap, we do not
have such a guarantee. While more complicated projection operators might still yield exact updates
in that case, they would involve the resolution of quadratic program. We take the view in this paper
that ∆ strikes a good balance between accuracy and simplicity.

Figure 2(a) visualizes the repellence mechanism away from protected images while Figure 2(b)
shows how it repels from trajectories within the same batch to enhance diversity. The batch gen-
eration produces B samples x(b)

0 in parallel and its repellency mechanism uses a time-evolving set
of repellency points zk,t = E[X0 | Xt = x

(k)
t ] corresponding to the currently predicted end-state
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of each sample in the batch. As we made no further assumptions on zk, these mechanisms can be
mixed as in Figure 2(c) to enable diverse generation across arbitrary numbers of batches. This makes
it possible to generate large numbers of diverse images even when the VRAM for each batch is lim-
ited. Note that SPELL is a post-hoc method that does not require retraining and can be applied to
any diffusion score, in RGB space or latent space, unguided or classifier-free guided. Appendix D
provides pseudo code and further implementation details.

SPELL as a DPS guidance term. We propose to derive SPELL as a guidance mechanism that can
be tightly related to Doob’s h-transform. By Bayes’ rule

∇xt log pt(xt | x0 /∈ S) = ∇xt log pt(xt) +∇xt log p0|t(x0 /∈ S | xt).

Hence, we may sample Xt | x0 /∈ S by adjusting a pretrained score function and simulating:
dXt =

[
f(t,Xt)− g(t)2(∇ log pt(Xt) +∇ log p0|t(X0 /∈ S | xt))

]
dt+ g(t)dBt. (6)

The term log p0|t(x0 /∈ S | xt) in the score adjustment is known as Doob’s h transform, and provides
a broadly applicable approach to conditioning and guiding diffusions. Unfortunately, Doob’s h
transform is generally intractable. We may however appeal to diffusion posterior sampling (Chung
et al., 2023) and approximate p0|t as a Gaussian with mean x̂0 ≈ E[X0 | xt], which is available from
diffusion model pre-training, see Section 2. This approximation results in the following correction:

∇ log p0|t(X0 /∈ S | xt) ≈
K∑

k=1

ω(||x̂0 − zk||2, r) · (x̂0 − zk), (7)

where ω(·, r) is a weighting factor detailed in Appendix A that decreases in its first variable.
This DPS approximation is similar to SPELL in that both push away trajectories in the directions
(x̂0−zk), weighted by a factor that depends on r and the distance ∥x̂0−zk∥2. The difference is that
DPS based on Gaussians provides a soft guidance that slowly vanishes as x̂0 moves away from zk,
and not a hard guarantee that we respect the protection radii around each zk. We have struggled in
preliminary experiments to set hyperparameters of such ”softer” DPS schemes, because the weight
factor to scale the Gaussian by ultimately depends on the magnitude of the likelihood of the shields,
which is unknown, and because the Gaussian’s weight never becomes exactly zero, hindering spar-
sity. This is why we focus our attention on the simpler and much cheaper SPELL.

(Intra-batch) SPELL and Particle Guidance. When using SPELL to promote diversity within the
generation of a single batch (but without the more general protection against arbitary or previously
generated images), SPELL can be related to the self-interacting particle guidance (PG) approach
proposed by Corso et al. (2024). That approach defines an interacting energy potential ϕt at time t,
using the locations in space of all B particles within a batch at time t. The gradient of that potential
w.r.t. each particle, ∆(i) = ∇

x
(i)
t

log Φt(x
(1)
t , . . . , x

(B)
t ) is then used to correct each individual

trajectory to guarantee diversity. In contrast to this approach, SPELL draws insight on the expected
future locations of points, at the end of the trajectory, i.e on the expected denoised images x̂(i)

0 and
x̂
(k)
0 , where x̂0 = Dθ⋆(t, xt). Indeed, the correction for each particle is explicitly given as:

∆(i) :=

K∑
k=1

ReLU

(
r

∥x̂(i)
0 − x̂

(k)
0 ∥2

− 1

)
· (x̂(i)

0 − x̂
(k)
0 ). (8)

The B correction terms ∆(i) considered by SPELL cannot be seen to our knowledge as the gradients
of an interacting potential. While we prove in Appendix C that h(x) = ReLU( r

∥x∥ − 1)x is a
conservative field (i.e. the gradient of a potential), we find no guarantee for the more complex
SPELL updates above which involve compositions of h with the denoiser Dθ⋆ . Even if SPELL
was a conservative field, the biggest difference between PG and SPELL is that PG defines dense
interventions between all particles using soft-vanishing kernels that are never zero and thus always
perturb diffusion trajectories. SPELL, conversely, intervenes sparsely and rarely, both in time and
w.r.t. points in the reference set. As a result, the original diffusion process is less perturbed, notably
towards the end of a trajectory, and SPELL can scale to large reference sets of millions of shields.

Overcompensation. While our method gives the exact weight required to land outside the shielded
areas in Equations (5) and (8), we have experimented with scaling these ∆ terms by an overcompen-
sation multiplier λ. Intuitively, the larger that multiplier, the earlier the trajectory will be lead out of
the shielded areas, with the possible downside of getting more hectic dynamics. We illustrate this
addition in Figure 5 with a value λ = 1.6, which we find to work favorably across multiple models.
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Table 1: SPELL improves the diversity of text-to-image and class-to-image diffusion models con-
siderably, at only a small trade-off in terms of precision. The results are reported as mean ± std,
computed over 5 independent runs with different seeds over the full dataset.

Model Setup Recall ↑ Vendi ↑ Coverage ↑ Precision ↑ Density ↑ FID ↓ FDDINOv2 ↓
Latent Diffusion text-to-image 0.236 ± 0.003 2.527 ± 0.005 0.447 ± 0.001 0.559 ± 0.000 0.768 ± 0.002 9.501 ± 0.024 106.244 ± 0.384
+ SPELL (Ours) text-to-image 0.289 ± 0.003 2.695 ± 0.002 0.457 ± 0.001 0.551 ± 0.001 0.745 ± 0.002 9.554 ± 0.043 98.761 ± 0.441

SD3-Medium text-to-image 0.379 ± 0.004 3.749 ± 0.005 0.294 ± 0.000 0.313 ± 0.001 0.345 ± 0.001 20.103 ± 0.090 230.248 ± 0.812
+ SPELL (Ours) text-to-image 0.483 ± 0.002 4.711 ± 0.013 0.229 ± 0.001 0.211 ± 0.002 0.213 ± 0.002 35.174 ± 0.153 482.246 ± 0.948

Simple Diffusion text-to-image 0.230 ± 0.003 2.799 ± 0.006 0.355 ± 0.002 0.441 ± 0.001 0.556 ± 0.002 19.879 ± 0.003 245.138 ± 0.586
+ SPELL (Ours) text-to-image 0.248 ± 0.002 2.886 ± 0.005 0.355 ± 0.001 0.433 ± 0.002 0.541 ± 0.002 19.959 ± 0.033 245.748 ± 0.562

EDMv2 class-to-image 0.589 ± 0.002 11.645 ± 0.022 0.551 ± 0.002 0.518 ± 0.002 1.404 ± 0.005 3.377 ± 0.022 68.452 ± 0.298
+ SPELL (Ours) class-to-image 0.600 ± 0.002 11.806 ± 0.013 0.547 ± 0.001 0.508 ± 0.001 1.364 ± 0.005 3.456 ± 0.021 68.909 ± 0.161

SD3-Medium-Class class-to-image 0.143 ± 0.002 8.861 ± 0.028 0.202 ± 0.002 0.323 ± 0.002 0.801 ± 0.005 22.246 ± 0.020 328.032 ± 0.571
+ SPELL (Ours) class-to-image 0.206 ± 0.002 12.190 ± 0.032 0.146 ± 0.001 0.181 ± 0.002 0.420 ± 0.006 38.709 ± 0.054 478.286 ± 0.553

MDTv2 class-to-image 0.623 ± 0.002 12.546 ± 0.021 0.505 ± 0.001 0.401 ± 0.002 1.020 ± 0.002 4.884 ± 0.052 133.175 ± 0.721
+ SPELL (Ours) class-to-image 0.634 ± 0.002 12.772 ± 0.027 0.505 ± 0.001 0.407 ± 0.001 1.029 ± 0.005 4.381 ± 0.047 122.125 ± 0.291

4 EXPERIMENTS

We now show that SPELL increases the diversity of modern text-to-image and class-to-image diffu-
sion models (Section 4.2), with a better trade-off than other recent diversity methods (Section 4.3).
We quantify the sparsity of SPELL interventions in Section 4.4 and utilize it to scale up to using all
1.2 million ImageNet-1k train images as a shielded set in Section 4.6.

4.1 EXPERIMENTAL SETUP

We add SPELL to both class-to-image and text-to-image diffusion models. In the class-to-image
setup, we use Masked Diffusion Transformers (MDTv2) (Gao et al., 2023), EDMv2 (Karras et al.,
2024), and Stable Diffusion 3 Medium (SD3) (Esser et al., 2024). Since SD3 is a text-to-image
model, we follow their template “a photo of a class name”. We use the pretrained model check-
points to generate 50,000 256x256 images of ImageNet-1k classes(Deng et al., 2009) without and
with SPELL and compare them to the original ImageNet-1k images. We use the validation dataset as
a comparison, since we will conduct experiments that repel from the training dataset in Section 4.6,
which would render comparisons to the training dataset meaningless. In our text-to-image setup, we
use SD3, Latent Diffusion (Rombach et al., 2022), and RGB-space Simple Diffusion (Song et al.,
2021) in resolution 256x256. For the latter two, we use the checkpoints of Gu et al. (2023). Details
on hyperparameters are provided in Appendix D. We evaluate these models on CC12M (Chang-
pinyo et al., 2021). As we target the ground truth diversity of images related to each prompt, we se-
lect a subset of captions with multiple corresponding images. This gives a one-to-many setup with
5000 captions and 4 to 128 images each (in total 41,596 images). We explain the construction of this
dataset in Appendix E. To evaluate diversity, we track the recall (Kynkäänniemi et al., 2019), cov-
erage (Naeem et al., 2020), and Vendi score (Friedman & Dieng, 2023). To evaluate image quality,
we use precision (Kynkäänniemi et al., 2019) and density (Naeem et al., 2020). We track these met-
rics per class/prompt and average across classes/prompts. To measure whether the generated images
match the true image distributions, we use the marginal FID (Heusel et al., 2017) and the marginal
Fréchet Distance with DINOv2 features (FDDINOv2, Stein et al. (2024); Oquab et al. (2024)).

4.2 BENCHMARK

We first examine whether adding SPELL post-hoc increases the diversity of trained diffusion models.
To this end, we quantitatively compare each diffusion model to the same model run with the same
random generation seeds but with SPELL. In particular, we use intra-batch repellency together with
repellency from previously generated batches, to enable repellency across the up to 128 images per
prompt/class. Table 1 shows that SPELL consistently increases the diversity, both in terms of recall
and Vendi score, across all text-to-image and class-to-image diffusion models. This demonstrates
that SPELL works independent of the model architecture and the space the models diffuse in (RGB
space for Simple Diffusion, VAE space for all others). Coverage remains within -1% to +2% of
its original value in all models except SD3. The difference between coverage and recall is that
coverage uses a more tight neigborhood radius to determine whether an image of the original dataset
is covered by the generated ones. In other words, coverage measures a form of dataset match, which
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Figure 3: Effect of SPELL’s hyperparameter r on Latent Diffusion metrics on CC12M. A small
radius (r = 15) improves the Vendi score, recall, and FDDINOv2 without compromising precision.
The radius can be further increased to trade-off precision for additional diversity.
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Figure 4: Latent Diffusion on CC12M. The three plots on the left highlight how the hyperparame-
ters of diversity methods trade off image quality (x-axes) and diversity metrics (y-axes). SPELL pro-
vides a better trade-off than other concurrent approaches. In the rightmost plost, highlighting 2 qual-
ity metrics, SPELL also shines. IG is not visible on all plots as it strongly decreases image quality.

can counter-intuitively be decreased by more diverse outputs if the diversity takes different forms or
is higher than in the reference dataset. This stands out most for SD3, which was not trained on the
reference datasets ImageNet-1k/CC12M. We find that SPELL correctly helps SD3 generate images
that are generally more diverse, as evidenced by the 26% and 37% increases in the reference-dataset-
free Vendi score, but in other attributes than in the reference datasets, explaining the decrease in
coverage. Out of the six experiments, precision and density decrease very slightly in three of them,
increase for one, and decrease more clearly in 2 (when using SD3). This tradeoff between diversity
and precision is common in the literature (Kynkäänniemi et al., 2024; Sadat et al., 2024; Corso
et al., 2024), and we show in the next section that SPELL provides more favorable Pareto fronts
than alternative recent methods. This tradeoff improves the overall FDDINOv2 score considerably in
Latent Diffusion and MDTv2, while staying within 3% of the original value on Simple Diffusion and
EDMv2, and increasing on SD3. Overall, we find that SPELL increases the diversity considerably
across all models, with only minor tradeoffs in precision.

4.3 COMPARISON TO OTHER DIVERSITY-INDUCING METHODS

We now take a closer look at SPELL’s hyperparameter, the repellency radius r. Figure 3 shows that
we can use repellency in two ways. A low radius (r = 15) increases the diversity (Vendi score and
recall) without compromising on precision. Intuitively, such a small radius only serves to prevent
generating the nearly-same image twice. The resulting output set also better reflects the true image
distribution, yielding an enhanced FDDINOv2. The second option is to further increase the repellency
radius, which as Figure 3 shows further enhances diversity at the cost of precision. There are other
current proposals in the literature that enable to control this trade-off. Namely, Interval Guidance
(Kynkäänniemi et al., 2024, IG) only applies CFG in a limited time interval in the middle of the
backward diffusion. Condition-annealed diffusion sampling (Sadat et al., 2024, CADS) noises the
text or class condition that guides the CFG, lowering the noise in later timesteps. Closer in spirit to
our proposal, particle guidance (Corso et al., 2024, PG) adds a gradient potential to the backward
diffusion at every timestep, such that the diversity of a batch as a whole is increased. We reimplement
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Figure 5: (a) The gradient that SPELL adds is only a fraction of the magnitude of the diffusion’s
score, thus adjusting it without drowning it out. (b) Repellency happens primarily in early back-
wards steps (t ∈ [0.6, 1.0]) and then often remains zero, thus making it sparse. Overcompensation
allows finishing the repellency earlier, whereas runs with high repellency radius repel longer. Latent
Diffusion trajectories with repellency from both previous generations and intra-batch.

and tune all approaches and compare them against SPELL. Figure 4 shows that SPELL achieves
a more favorable trade-off curve than each of these methods, in three different diversity vs quality
Pareto fronts, namely recall vs precision, coverage vs density, and Vendi score vs CLIP Score, as
well as a quality/quality plot displaying CLIP/FDDINOv2. One reason for this is SPELL’s sparsity.
SPELL only intervenes if images are going to be too similar to one another. Due to it’s ReLU
weighting, it remains exactly zero if an image’s trajectory is already headed to a diverse output. This
leads to increased diversity while leaving high-precision images unchanged. We study this sparsity
further in the following section.

4.4 SPARSITY ANALYSIS

We focus in this section on the dynamics of SPELL interventions and investigate when and how
SPELL corrective terms arise. Figure 5a tracks the magnitude of the SPELL correction vector ∥∆∥2
normalized by that of the diffusion score vector ∥∇ log pt(xt|y)∥2. We track this relative magnitude
throughout 452 backward trajectories for 50 prompts of CC12M with both intra- and inter-batch
repellency (Equations (5) and (8)). Appendix H adds further setups. First, we find that repellency
only adds a small correction term in most cases. Its magnitude is most often less than 5% of the
magnitude of the diffusion score and never exceeds 35%. This explains why our repellency does
not reduce image quality or introduce artifacts. A second reason for this is that SPELL corrections
happen mostly in the early stages of the backward diffusion, which literature claims to be when the
rough image is outlined, rather than in late steps, where the image is refined (Biroli et al., 2024;
Kynkäänniemi et al., 2024). Recall that the backwards diffusion starts at t = 1 and outputs the final
image at t = 0. Figure 5b shows that at t = 0.8, only 40% of the trajectories have a non-zero
repellency term anymore, further declining to 21% at t = 0.6. If we impose a higher repellency
radius, the repellency acts for longer. Especially in this cases, adding overcompensation helps. As
intended, the repellency strength is increased and in return stops earlier. These stops are often final:
The repellency stays zero for the remainder of the generation, verifying that the trajectories do not
bounce back into the repellency radii, as shown in Appendix H, and reaffirming SPELL’s sparsity.

4.5 QUALITATIVE EXAMPLE OF SPELL INTERVENTIONS

Figure 6 shows 16 images generated iteratively using SD3 with and without SPELL interventions.
Images are generated one by one (B = 1), and when generating the i + 1-th image, SPELL repels
from the reference set of all images 1 to i it has generated thus-far. Images are highlighted in orange
if SPELL enforced changes during their generation trajectory. When SPELL does not intervene, the
SD3 + SPELL image (bottom row) coincides with the SD3 output (top row), since we use the same
seeds. For images 1 to 3, SPELL did not intervene as it did not detect similarities when generating
the 2nd image when compared to the 1st, nor when generating the 3rd w.r.t. 1st and 2nd. The 4th
image was expected to come out too close to the 3rd at some time during generation, triggering
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Figure 6: Images for the prompt “a dog plays with a ball” generated one-by-one (B = 1) with SD3
(top) and SD3 + SPELL (bottom), using the same random seeds. SPELL intervenes on 10 of the 16
images, marked with orange borders, because they are too similar to previously generated images.
Early images are adjusted less often and mostly in details because they are still novel enough. Later
images repel from more previous images and more strongly to ensure they are different enough.

SPELL to alter the ball color, dog, and background. As more images are added to the reference set,
SPELL intervenes more often. For example, image 14 is headed towards an image of a dog on a
grassy ground with trees in the background, which is too similar to multiple previous images. Hence,
SPELL intervenes and leads the diffusion trajectory to an entirely new mode, with both a new dog
race and a previously unseen tartan surface. A similarly strong intervention happens in image 15.
Still, SPELL’s sparsity means that it not intervene if it does not have to, even when there are already
many shielded images. This is the case for image 16, which is novel enough to remain unchanged.

4.6 IMAGE PROTECTION BENCHMARK

We scale SPELL to a repellency set of 1.2 million ImageNet-1k train images via approximate near-
est neighbor search (Douze et al., 2024), with the goal of generating novel images. We generate 50k
images, track how often they fall into a protected shield, as well as the precision, recall, and run-
time. This is similar to machine unlearning for generative models (Wang et al., 2024a; Liu et al.,
2024), with the main differences that we wish to shield a set of specific images rather than global
concepts (Wu et al., 2024; Park et al., 2024), and that SPELL is a training-free intervention.

Table 2 shows that 7.6% of the 50k images that MDTv2 generates without SPELL are within an L2

distance of r = 60 of their nearest neighbor on ImageNet. Figure 7 shows examples and verifies
that such images indeed are nearly copies of existing images. Adding SPELL with r = 60 reduces
this rate down to 0.16%. Figure 7 shows that the images are indeed changed in such a way that
they are not too close to their ImageNet neighbors anymore. Searching for shields in less Voronoi
cells of the approximate nearest neighbor algorithm allows to speed up the generation time, at the
cost of a catching less shields. This runtime, and the fact that there are still images within the
shields, can largely be attributed to the approximate next neighbor search algorithm over the K =
1.2M images. Appendix G shows that in the diversity experiments with smaller protection sets of
K ≤ 128, SPELL does not increase runtime. Further improvements in L2 based neighbor search
techniques will further increase SPELL’s protection rate and compute overhead. Expectedly, the
recall decreases when repelling from all training images, because validation images may fall into
the shield radius around train images. However, the precision remains largely unaffected. This
demonstrates again that SPELL does not introduce visual artifacts, even when repelling from many
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Table 2: SPELL almost always generates images outside the shields of the ImageNet-1k train set.
Searching for shields in more Voronoi cells during the nearest neighbor lookup improves the protec-
tion rate at a higher inference-time runtime. The runtime is reported on a single A100-40GB GPU.

Model Searched
cells

Generated images too close
to ImageNet neighbors ↓ Precision ↑ Recall ↑ Time per image (s) ↓

EDMv2 7.60% 0.792 0.242 2.434
+ SPELL 1 1.08% 0.792 0.181 4.633
+ SPELL 2 0.55% 0.788 0.175 6.057
+ SPELL 3 0.33% 0.777 0.162 7.790
+ SPELL 5 0.22% 0.771 0.163 9.949
+ SPELL 10 0.16% 0.768 0.160 13.545

EDMv2
samples

ImageNet
neighbor

EDMv2
+ SPELL

ImageNet
neighbor

Figure 7: The images generated by EDMv2 in the first row are too close to existing images in the
ImageNet-1k train set, which EDMv2 was trained on. SPELL adapts their diffusion trajectories to
ensure that they maintain a protection radius. The images in third row, generated from the same
seeds but with SPELL, are sufficiently different from their nearest neighbor.

images. To add qualitative evidence to this point, we show a random set of images where SPELL
intervened in Appendix J. Finally, the last two images in Figure 7 give more insight into the workings
of the L2 similarity in the VAE latent space that MDTv2 diffuses in. Apparently, image distances
inside the VAE space encode a visual similarity where images with similar colors and compositions
are close to one another. SPELL could also create shields in semantic spaces, e.g., by comparing the
DINOv2 embeddings of expected image outputs, which we leave for future works.

5 DISCUSSION

This work introduces sparse repellency (SPELL), a training-free post-hoc method to guide diffusion
models away from a certain set of images. This both prevents repeating images that were already
generated, thereby increasing diversity, and allows protecting a certain set of reference images, with
applications like machine unlearning. SPELL can be applied to any diffusion model, whether it is
class-to-image or text-to-image, and whether it is unconditional or classifier(-free) guided. We see
two main ways in how future work can extend SPELL. First, SPELL can currently be proven to
guarantee to generate images outside the shields if all shields are disjoint. If there are overlapping
shields, there can be cases where the guarantee is not strict anymore, and the algorithm could be
improved to find a direction that points out of the convex hull of all points, at the cost of decreased
scalability. Second, we currently apply SPELL with respect to the L2 distance inside the diffusion
model’s latent spaces, which lead to visually different outputs. Using a distance inside a semantically
structured space could lead to generating more semantically different images. This has the potential
to further increase metrics like FID and recall, which evaluate generated images in semantic spaces.
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A GUIDANCE VIA DOOB’S H-TRANSFORM

Doob’s h-transform provides a definitive approach to conditioning and guiding diffusions. In the
context of avoiding points let S = ∪kBk = where Bk = {x ∈ X : ∥x − zk∥2 ≤ r} are balls of
radius r around centers (zk)k. We may approximate Doob’s h transform with some simplifying as-
sumptions based on diffusion posterior sampling (DPS (Chung et al., 2023)). DPS entails approxi-
mating p0|t(x0 | xt) with p̃0(|D(xt)), where D(xt) = E[X0 | xt] for some choice of density p̃.

Let us observe that

∇ log p0|t(X0 /∈ ∪kBk | xt) =
∑
k

∇ log p0|t(X0 /∈ Bk | xt).

For simplicity, we approximate the conditional density p0|t(· | xt) with a Gaussian density with
mean E[X0 | xt] and variance Σt = Id. Since, for X ∼ N (µ, Id), the random variable ∥X − zk∥2
follow a non-centered chi-square distribution χ2

nc,d(λ) where λ := λ(µ) = ∥µ− zk∥2. As such

∇ log p0|t(X0 /∈ Bk | xt) ≈
−∇µFχ2

nc,d(λ)
(r2)

1− Fχ2
nc,d(λ)

(r2)
= (µ− zk)× ω(λ(µ), r)

with weights function

ω(λ, r) =
2

Fχ2
nc,d(λ)

(r2)− 1
×

∂Fχ2
nc,d(λ)

∂λ
(r2).

We recall that the CDF of χ2
nc,d is a combination of the CDF of standard χ2

d:

Fχ2
nc,d(λ)

(x) =

∞∑
j=0

cj(λ)Fχ2
d+2j

(x)

∂Fχ2
nc,d(λ)

∂λ
(x) =

1

2

∞∑
j=0

cj(λ)
[
Fχ2

d+2(j+1)
(x)− Fχ2

d+2j
(x)
]

∇µFχ2
nc,d(λ)

(x) =
∂F

∂λ
(x)× ∂µλ(µ) =

∂F

∂λ
(x)× 2(µ− zk)

where we denoted cj(λ) =
(λ/2)je−λ/2

j! .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B REPELLENCE GUARANTEE

Consider again our adjusted SDE

dx =

[
f(x, t)− g2(t)

(
∇x log pt(x) +

αt

σ2
t

K∑
k=1

(x̂0 − zk)ReLU
(

r

||x̂0 − zk||2
− 1

))]
dt+ g(t)dw,

where x̂0 :=
xt+σ2

t∇x log pt(x)
αt

is the expected image if we did not intervene.

This section shows that the SDE leads to a output distribution with P0({Br(zk)|k = 1, . . . ,K}) =
0. This ensures that it does not create samples within radius r around the repellence images zk, k =
1, . . . ,K. To this end, assume we have a set of repellence images and that their repellence balls do
not overlap (otherwise, one can merge them and select an according higher radius). Let’s consider
an arbitrary timestep t. Then Tweedie’s formula (Efron, 2011; Bradley & Nakkiran, 2024) gives that

E[X0|xt] =
xt + σ2

t

(
∇x log pt(x) +

αt

σ2
t

∑K
k=1(x̂0 − zk)ReLU

(
r

||x̂0−zk||2 − 1
))

αt

=
xt + σ2

t∇x log pt(x)

αt
+

σ2
t

αt

αt

σ2
t

K∑
k=1

(x̂0 − zk)ReLU
(

r

||x̂0 − zk||2
− 1

)

= x̂0 +

K∑
k=1

(x̂0 − zk)ReLU
(

r

||x̂0 − zk||2
− 1

)

Case 1: ||x̂0−zk||2 ≥ r ∀k = 1, . . . ,K. Then the ReLU term becomes 0 and x̂0 remains unadjusted
and ∥E[X0|xt]− zk∥2 ≥ r.

Case 2: ∃k⋆ ∈ {1, . . . ,K} : ||x̂0 − z∗k||2 < r. Since the balls are non-overlapping,

K∑
k=1

(x̂0 − zk)ReLU
(

r

||x̂0 − zk||2
− 1

)
= (x̂0 − z∗k)ReLU

(
r

||x̂0 − z∗k||2
− 1

)
.

Then

∥E[X0|xt]− zk∥2 = ∥x̂0 + (x̂0 − z∗k)ReLU
(

r

∥x̂0 − z∗k∥2
− 1

)
− z∗k∥2

= ∥(x̂0 − z∗k) + (x̂0 − z∗k)

(
r

∥x̂0 − z∗k∥2
− 1

)
∥2

= ∥(x̂0 − z∗k) + (x̂0 − z∗k)
r

∥x̂0 − z∗k∥2
− (x̂0 − z∗k)∥2

= ∥r (x̂0 − z∗k)

∥x̂0 − z∗k∥2
∥2

= r

So, in all cases, ∥E[X0|xt] − zk∥2 ≥ r, for any t. Especially, for t = 0, the SDE does not add any
noise anymore and the sampled x0 is equal to the expectation.

Hence ∥x0 − zk∥2 ≥ r ∀k = 1, . . . ,K.
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C CONSERVATIVE FIELD INTERPRETATION

The function h(x) = ReLU( r
∥x∥−1)x is the conservative field associated to the (family of) potential

H : Rd → R:

H(x) =

{
r∥x∥ − 1

2∥x∥
2 when ∥x∥ < r,

r2

2 otherwise,
(9)

where Gauge H(0) is chosen arbitrarily, as illustrated in Figure 8.

Furthermore, observe that the mapping xt 7→ x̂0 defined by x̂0 = 1
αt

(
σ2
t∇ log pt(xt) + xt

)
is a

conservative field given by the potential 1
αt

(
σ2
t log pt(xt) +

1
2∥xt∥2

)
.

Therefore, SPELL guidance in Equation 5 is the composition of two conservative fields. But note
that, in general, conservative fields are not stable by composition, unless the Hessians of their po-
tentials commute everywhere.
Theorem 1. We consider f : Rd → R a twice differentiable function. The Jacobian of the map
ϕ : x 7→ ∇f(x)

∥∇f(x)∥ is given by

Jac(ϕ)(x) =
1

∥g∥
H − 1

∥g∥3
ggTH, with g = ∇f(x) and H = ∇2f(x)

Hence, in the case where H and ggT commute, this Jacobian is locally symmetric. If they commute
everywhere, then this Jacobian is globally symmetric, and ϕ is a conservative field.

Figure 8: Potential function whose gradient field is ReLU( r
∥x∥ − 1)x, displayed for x ∈ R2. Repel-

lence force is dynamic: closer to the center (i.e., when a diffusion trajectory is expected to be close to
a protected image) it applies stronger gradients, as shown by the arrows, while outside the repellecy
radius, it applies no gradient at all, letting the diffusion trajectory continue without any intervention.
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D IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Since SPELL is a training-free post-hoc method, we use the trained checkpoints of diffusion mod-
els provided by their original authors. For EDMv2 and MDTv2, we use the hyperparameters sug-
gested by their authors. Latent Diffusion, Simple Diffusion, and Stable Diffusion come without rec-
ommended hyperparameters, so we tune the classifier-free guidance (CFG) weight by the F-score
between precision and coverage on the 554 validation captions on our CC12M split.

For the repellence radius r, the latent spaces that the different models diffuse on have different
dimensionalities, hence the scales of the repellence radii differ. To get a sense of the scales, we
first generate one batch of images without repellence and tracked the pairwise L2 distance between
generated latents at the final timestep. We then test 16 values from 0 to 2 times the median distance.
This yields the following hyperparameters for the results in Table 1.

EDMv2: CFG weight 1.2, 50 backwards steps, σmin = 0.002, σmax = 80, ρ = 7, Smin = 0,
Smax =∞, repellence radius r = 20, batchsize 8.

MDTv2: CFG weight 3.8, 50 backwards steps, repellence radius r = 45, batchsize 2.

Stable Diffusion 3: CFG weight 5.5, 28 backwards steps, repellence radius r = 200, on CC12M
overcompensation 1.6 (no overcompensation on ImageNet), batchsize 8.

Simple Diffusion: CFG weight 5.5, 50 backwards steps, repellence radius r = 50, overcompensa-
tion 1.6, batchsize 16.

Latent Diffusion: CFG weight 5, 50 backwards steps, repellence radius r = 20, overcompensation
1.6, batchsize 8.

Algorithm 1 gives a high-level pseudo-code for SPELL and Algorithm 2 details how we imple-
mented SPELL in a parallelized way in Python.

Algorithm 1: SPELL added to the backwards diffusion step. This is a simplified example, see
Appendix D for Python code that is parallelized and supports sparse neighbor retrieval.

1 Input: Batch of latents {x(b)
t }b=1,...,B , set of shielded images {zk}k=1,...,K , radius r, λ

2 for b = 1, . . . , B do
3 x̂

(b)
0 ← Dθ⋆(t, x

(b)
t ) ▷ Expected diffusion output without repellency

4 end
5 for b = 1, . . . , B do
6 ∆⃗b ← 0
7 for k = 1, . . . ,K do ▷ Repel from the shielded set
8 if ∥x̂(b)

0 − zk∥2 < r then

9 ∆⃗b = ∆⃗b + (x̂
(b)
0 − zk)ReLU

(
r

∥x̂(b)
0 −zk∥2

− 1

)
10 end
11 end
12 for b′ = 1, . . . , B, b′ ̸= b do ▷ Repel within the batch
13 if ∥x̂(b)

0 − x̂
(b′)
0 ∥2 < r then

14 ∆⃗b = ∆⃗b + (x̂
(b)
0 − x̂

(b′)
0 )ReLU

(
r

∥x̂(b)
0 −x̂

(b′)
0 ∥2

− 1

)
15 end
16 end
17 Calculate x

(b)
t−1 by taking a step towards x̂(b)

0 + λ∆⃗b (using the diffusion scheduler)
18 end
19 Output: {x(b)

t−1}b=1,...,B
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def backward_step(x_t, t, protection_set, r, lambda, repel_within_batch):
"""
A generation step from t to t-1 of a diffusion with repellency.

x_t: Matrix of size [batch, dimensions] containing the current latents
t: float, current time
protection_set: Either a matrix of size [num_protection_images, dimensions] with latents
we want to repel from or a database that will output closest neighbors in this format
radius: Float, repellency radius
lambda: Float, overcompensation factor
repel_within_batch: Boolean, whether to apply intra-batch repellency
"""

# Predict x_0 using the diffusion model (using diffusion without repellency)
x_0_hat = diffusion_score.predict(x_t, t)

# Repel from protection set
repellency_term = 0
if protection_set is not None:

if isinstance(protection_set, database):
protection_set = protection_set.find_neighbors_within_radius(x_0_hat, radius)

diff_vec = x_0_hat.unsqueeze(1) - mu.unsqueeze(0)
# diff_vec has size [batch, num_protection_images, dimensions]
weight = (diff_vec**2).sum(dim=2).sqrt()
trunc_weight = ReLU(radius / diff - 1)
repellency_term += (diff_vec * trunc_weight).sum(dim=1)

# Repel within batch
if repel_within_batch:

diff_vec = x_0_hat.unsqueeze(1) - x_0_hat.unsqueeze(0)
# diff_vec has size [batch, batch, dimensions]
weight = (diff_vec**2).sum(dim=2).sqrt()
trunc_weight = ReLU(radius / diff - 1)
diag(trunc_weight) = 0 # Don’t repel from the image itself
repellency_term += (diff_vec * trunc_weight).sum(dim=1)

# Add our repellency term to the current x_0_hat prediction
x_0_hat = x_0_hat + lambda * repellency_term

# Step from t to t-1 using the diffusion update rule (same as in typical diffusion)
x_t_minus_1 = calculate_update(x_0_hat, x_t, t)
if t > 0:

x_t_minus_1 += generate_noise(t)

return x_t_minus_1

Algorithm 2: Our repellency can be added to the backwards algorithm of existing diffusion models,
without retraining. Since the expected x 0 hat is often already computed as part of the backward
process, the only runtime overhead are the pairwise differences and the possible neighbor search.

E CONSTRUCTION OF THE SOFT-LABEL CC12M DATASET

CC12M is a recent text-to-image dataset that contains pairs of image links and the title scraped from
their metadata. To turn this into our soft-label subset of CC12M, where each caption has a set of
multiple possible images related to it, we first group all images in CC12M by their caption and keep
only captions with at least four and at most 128 images.

Some of these images are falsely grouped together. For example, there are photo albums whose
images were assigned the same generic title in their metadata. A useful heuristic to filter out such
cases is to analyze the top-level domains of the images. We filter out sets where the most frequent
top-level domain belongs to 75% or more of the image urls. Second, we filter out automatically
generated captions by removing captions that include the strings ’Display larger image’, ’This image
may contain’, ’This is the product title’, or ’Image result for’. Last, due to privacy guidelines, we
filter out any caption whose image may include individuals. This is done by filtering out caption
that include ’<PERSON>’, which is a placeholder that the CC12M dataset overwrote any possible
person name with. After these filtering steps, we arrive at 5554 captions. We randomly split them
into a validation set of 554 captions and a test set of 5000 captions. Table 3 shows how many images
belong to each caption.
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We did not filter any images out although there are some near-duplicates. This is done on purpose in
order to not skew the distributions. Filtering out captions amounts to deciding on which subset of the
dataset we test our models on. But filtering out images would change the conditional distributions
P (X|c) to something different from the training distributions. In other words, a model that learned
the train distribution ideally is expected to have a stronger mode at near-duplicate images but testing
it on a changed P (X|c) distribution would punish it for learning the correct distribution. If a future
work intends to test models on unseen images, we note that removing near-duplicates may be a
possibility, depending on the experiment design.

Table 3: Number of captions that have a certain number of images attached to them in our soft-label
CC12M dataset.

Images per caption Validation split Test split

4 – 5 270 2600
6 – 10 174 1485
11 – 20 75 555
21 – 30 20 219
31 – 40 10 86
41 – 50 3 32
51 – 128 2 23

F FURTHER DIVERSITY-QUALITY TRADEOFFS

In addition to the tradeoff experiments in Section 4.3, Table 4 provides the full combinations of
metrics attainable with each method, depending on how one chooses the hyperparameters. This is
the raw data underlying Figure 4 and allows the curious reader to compare arbitary tradeoffs.

G RUNTIME ANALYSIS AND COMPARISON

The scale of the overhead that SPELL adds is negligible when contrasted with the diffusion gen-
eration cost. It amounts to computing (up to) [B,K], distance matrices per time t, where both the
batchsize B and the size of the protection set K do not exceed hundreds, and adding one single cor-
rection vector to the score. Table 5 confirms that the runtime that SPELL adds (as well as the other
benchmarked diversity methods) is negligible, here using B = 8 and intra-batch repellency, hence
K = B − 1 = 7. This also further confirms that the runtime observed in Section 4.6 is due to the
next-neighbor search algorithm, not SPELL’s correction terms.

H ABLATION: REPELLENCY STRENGTH THROUGHOUT THE GENERATION

In this section, we scrutinize how and when repellency acts during the generation. We also use these
insights to run ablations that foster the intuition on the role of the repellence radius.

To begin with, Figure 9 shows repellency in the standard setting with a repellency radius of 25
in Latent Diffusion. We first generate 8 images per prompt, and then generate another 8 images
that repel from the first ones, without intra-batch repellency. Figure 9a shows how high the L2

norm of the total gradient is that our repellency adds to the score, divided by the L2 norm of the
score. It can be seen that the repellency term is in most cases at most 20% as strong as the original
diffusion gradient field. Intuitively, this means that our repellence does not drown out the diffusion
model, but is more a corrective term. Repellency mostly takes place early in the backwards diffusion
(t ∈ [0.6, 1.0]), with Figure 9b demonstrating that more than 50% of the generations have already
finished their repellency in the first quarter of timesteps (note that Latent Diffusion uses linearly
scheduled timesteps). This leaves sufficient time for the diffusion model to generate high quality
images in the remainder of steps.

Figure 10 uses intra-batch repellency instead of repelling from 8 previously generated images. The
dynamics are very similar to Figure 9 (see also the comparison in Figure 15). This shows that our
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Table 4: Metrics of all approaches in the tradeoff experiments in Figure 4.

Method Recall Vendi Score Coverage Precision Density FID FDDINOv2 CLIP Score

Base Model 0.237 2.527 0.446 0.558 0.768 9.566 105.967 27.789

Particle Guidance, strength = 1024 0.099 1.987 0.249 0.300 0.326 84.115 705.661 24.470
Particle Guidance, strength = 512 0.230 2.753 0.378 0.443 0.534 23.106 286.093 26.740
Particle Guidance, strength = 256 0.252 2.656 0.429 0.523 0.682 11.934 154.897 27.440
Particle Guidance, strength = 128 0.248 2.591 0.447 0.553 0.754 9.442 109.257 27.704
Particle Guidance, strength = 64 0.245 2.561 0.449 0.559 0.771 9.072 101.796 27.781
Particle Guidance, strength = 32 0.235 2.528 0.445 0.557 0.763 9.724 108.382 27.812
Particle Guidance, strength = 16 0.236 2.529 0.446 0.557 0.764 9.596 107.041 27.813

Interval Guidance, [0.1,0.9] 0.372 2.840 0.455 0.537 0.730 8.385 85.871 27.453
Interval Guidance, [0.2,0.9] 0.419 2.994 0.442 0.514 0.689 8.359 85.094 26.813
Interval Guidance, [0.1,0.8] 0.470 3.174 0.448 0.500 0.663 7.507 76.104 27.215
Interval Guidance, [0.3,0.9] 0.471 3.208 0.421 0.483 0.635 8.406 87.971 25.885
Interval Guidance, [0.2,0.8] 0.518 3.340 0.434 0.478 0.624 7.478 75.250 26.544
Interval Guidance, [0.1,0.7] 0.567 3.576 0.432 0.451 0.577 6.804 72.092 26.784
Interval Guidance, [0.4,0.9] 0.525 3.495 0.395 0.442 0.569 8.623 96.611 24.630
Interval Guidance, [0.3,0.8] 0.571 3.575 0.411 0.446 0.570 7.556 78.887 25.549
Interval Guidance, [0.2,0.7] 0.614 3.770 0.417 0.426 0.536 6.771 72.972 25.979
Interval Guidance, [0.1,0.6] 0.673 4.138 0.396 0.385 0.466 6.885 81.643 26.020

CADS, mixture factor = 0, τ1 = 0.6 0.262 2.598 0.447 0.553 0.753 9.248 105.006 27.746
CADS, mixture factor = 0, τ1 = 0.7 0.253 2.579 0.448 0.555 0.757 9.288 105.549 27.757
CADS, mixture factor = 0, τ1 = 0.8 0.245 2.561 0.449 0.557 0.762 9.356 105.856 27.771
CADS, mixture factor = 0, τ1 = 0.9 0.239 2.545 0.450 0.559 0.767 9.452 106.455 27.790
CADS, mixture factor = 0.001, τ1 = 0.6 0.325 2.816 0.442 0.531 0.696 8.897 105.081 27.534
CADS, mixture factor = 0.001, τ1 = 0.7 0.297 2.734 0.446 0.540 0.719 8.963 104.006 27.617
CADS, mixture factor = 0.001, τ1 = 0.8 0.277 2.660 0.447 0.548 0.739 9.098 103.766 27.697
CADS, mixture factor = 0.001, τ1 = 0.9 0.256 2.588 0.448 0.554 0.755 9.273 105.268 27.754
CADS, mixture factor = 0.002, τ1 = 0.6 0.425 3.208 0.417 0.472 0.584 9.870 129.159 26.920
CADS, mixture factor = 0.002, τ1 = 0.7 0.380 3.028 0.429 0.501 0.637 9.143 114.333 27.242
CADS, mixture factor = 0.002, τ1 = 0.8 0.330 2.837 0.442 0.529 0.692 8.893 105.511 27.506
CADS, mixture factor = 0.002, τ1 = 0.9 0.277 2.660 0.446 0.548 0.739 9.098 103.762 27.696

SPELL, shield radius = 40 0.370 2.998 0.437 0.500 0.631 13.072 140.841 27.397
SPELL, shield radius = 35 0.359 2.935 0.445 0.518 0.665 11.452 120.346 27.556
SPELL, shield radius = 30 0.337 2.856 0.451 0.531 0.695 10.349 106.753 27.655
SPELL, shield radius = 25 0.312 2.774 0.454 0.542 0.723 9.794 100.123 27.739
SPELL, shield radius = 20 0.287 2.691 0.455 0.552 0.746 9.535 98.666 27.781
SPELL, shield radius = 15 0.263 2.616 0.454 0.558 0.762 9.558 100.709 27.811

Table 5: Generation times per image. Neither SPELL nor other diversity inducing methods add
considerable runtime. The runtime is dominated by the diffusion backbone. Mean ± standard
deviation across 500 images, run on an NVIDIA V100 GPU.

Model Generation time per image (seconds)

Baseline (Simple Diffusion) 2.93 ± 0.12
Simple Diffusion + PG 2.96 ± 0.13
Simple Diffusion + IG 2.93 ± 0.12
Simple Diffusion + CADS 2.96 ± 0.12
Simple Diffusion + SPELL 2.94 ± 0.13

repellency smoothly can be used both intra-batch or iteratively, or in a mixture of both, to generate
arbitrary amounts of diverse data even when GPU memory is limited. This mixed setup is presented
in Figure 11, where we generate two images at a time that repel both intra-batch and from the pre-
vious images. It behaves similarly in both magnitude and duration of repellency. Figure 12 further
investigates scalability. Despite repelling from 64 previously generated images, the repellency mag-
nitudes and times are only slightly increased compared to Figure 9. Note that this is despite gener-
ating 64+8 images conditionally on the same prompt, repellency from a dataset of more various im-
ages like in Section 4.6 is even less effected.

If repellency needs to protect a large radius, the repellency takes place longer in the backwards dif-
fusion process, as shown in Figure 13, where we use an increased radius of 37.5. Here, 43% of the
backwards diffusions apply repellency until the end of the generation. The repellency magnitude is
increased but still stays below 50% of the magnitude of the diffusion score. One option to speed up
the repellency if it runs until the end like here is overcompensation. Figure 14 shows that compared
to Figure 9, the repellency is stronger at start and manages to push the trajectories into the diffusion
cones of different modes, in return allowing to stop the repellency earlier. This implies that over-
compensation can also be used as a means to realize higher repellency radii, without needing to re-
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pel until t = 0. We leave this, and possibly expansions with overcompensation or repellency radius
schedulers, for future works.
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(a) Repellency strength per trajectory
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(b) Diffusion steps with repellency

Figure 9: Generating images that repel from 8 protected images (generated with the same prompt).
Latent Diffusion, 256 generations in total.
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(a) Repellency strength per trajectory
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(b) Diffusion steps with repellency

Figure 10: Generating images with the same prompt in batches of 8 with intra-batch repellency.
Latent Diffusion, 256 generations in total.
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(a) Repellency strength per trajectory
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(b) Diffusion steps with repellency

Figure 11: Generating images by iteratively, generating 2 images at a time. They repel both intra-
batch and from the previously generated images. We use 50 different prompts, generating 4-32
images each, giving a realistic setup. Latent Diffusion, 452 generations in total.
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(a) Repellency strength per trajectory
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(b) Diffusion steps with repellency

Figure 12: Generating images that repel from 64 protected images (generated with the same prompt).
Latent Diffusion, 256 generations in total.
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(a) Repellency strength per trajectory
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(b) Diffusion steps with repellency

Figure 13: Generating images that repel from 8 protected images (generated with the same prompt),
using a 1.5 times larger repellency radius. Latent Diffusion, 256 generations in total.

I IMAGE PROTECTION ON LARGE DATASETS

Image protection involves computing the repellence between the current batch xt being generated
with a large dataset D of size N , with N ≫ 105. This dataset will be typically too large to fit
entirely in GPU memory. Furthermore, computing the repellence term of each element of the batch
with every element of the dataset would be prohibitive. However, since the repellence term is zero
for vectors that are far-away, this opens the possibility of an optimization: first, the closest images
from the batch are retrieved using a vector similarity index (stored in RAM), and only then these
images are moved into GPU memory for the actual computation of the repellence term. An efficient
implementation of this technique is provided by the Faiss library (Douze et al., 2024). We use
the IndexIVFFlat object, that rely on Voronoi cells to cluster vectors and speed-up search. We
chose a number of Voronoi cells equal to the square root of dataset size, i.e 1131 cells containing
typically 1132 examples each. During generation, we probe only the two voronoi cells closest to the
current expected outputs. The behavior of the repellence term ensures that false positive are rarely a
problem. False negatives (if any) are typically “far-away” which means that their contribution to the
sum of all ReLU repellency terms would have been small. In Table 2, we show that one Voronoi cell
is often enough. Searching the ten closest cells gives an even higher protection rate, though at the
cost of higher searching costs. This shows that advances in efficient search algorithms will directly
benefit SPELL when it is applied to large repellency sets.
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(a) Repellency strength per trajectory
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(b) Diffusion steps with repellency

Figure 14: Generating images that repel from 8 protected images (generated with the same prompt),
with an overcompensation factor of 2. Latent Diffusion, 256 generations in total.
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(a) Mean repellency strength per timestep
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(b) Diffusion steps with repellency

Figure 15: Comparison of the previous ablations.
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Figure 16: Timesteps at which the repellency has finished, in that the term is zero and stays zero for
the remainder of the generation.
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J EXAMPLES OF IMAGES GENERATED WITH REPELLENCY

Figure 17: Randomly chosen images where repellency actively pushed EDMv2 away from the pro-
tected ImageNet-1k train set in Section 4.6. All images have repellency applied to them but do
not show visual artifacts. Low-quality images are by design because the underlying EDMv2 model
learned to generate this style of images from the ImageNet-1k train dataset.
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K ABLATION: CHANGING THE GUIDANCE WEIGHT

In this section, we test if the diversity improvements can be achieved by changing the classifier-
free guidance weight. We find that it does improve diversity, however adding our SPELL on top
consistently increases the performance further. We use the same SPELL hyperparameters as in the
main paper for Latent Diffusion, namely r = 20 and overcompensation 1.6.
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Figure 18: Our repellency added to the Latent Diffusion model with different classifier-free guidance
weights.
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Figure 19: Our repellency added to the Latent Diffusion model with different classifier-free guidance
weights.
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Figure 20: Our repellency added to the Latent Diffusion model with different classifier-free guidance
weights.
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Figure 21: Our repellency added to the Latent Diffusion model with different classifier-free guidance
weights.
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Figure 22: Our repellency added to the Latent Diffusion model with different classifier-free guidance
weights.
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Figure 23: Our repellency added to the Latent Diffusion model with different classifier-free guidance
weights.
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Figure 24: Our repellency added to the Latent Diffusion model with different classifier-free guidance
weights.
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L FURTHER DIVERSITY EXAMPLES

In order to extend Figure 1, we provide further examples of Simple Diffusion without and with
SPELL in Figure 25 to Figure 34. The prompts are chosen from MS COCO, which Simple Diffusion
was not trained on. As opposed to Figure 1, this features both of SPELL’s capabilities: Intra-batch
repellency (every row is a batch of size four), and inter-batch repellency from previous batches,
which we treat as the shielded set. The examples affirm qualitatively that SPELL increases the
diversity of generated images. Notably, this is without introducing visual artifacts and without
lowering the prompt adherence, which other baselines like IG are prone to, see Table 4 and Figure 4.

(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 25: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”A bed and a mirror in a small room.”. Five batches (rows) with each four images, with
both intra- and inter-batch repellency, with the same seeds as the runs without SPELL.
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(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 26: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”Baked pizza with herbs displayed on serving tray at table.”. Five batches (rows) with each
four images, with both intra- and inter-batch repellency, with the same seeds as the runs without
SPELL.

(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 27: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”The clock tower is in the center of the building.”. Five batches (rows) with each four
images, with both intra- and inter-batch repellency, with the same seeds as the runs without SPELL.
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(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 28: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”A bed and desk in a small room.”. Five batches (rows) with each four images, with both
intra- and inter-batch repellency, with the same seeds as the runs without SPELL.

(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 29: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”A furry, black bear standing in a rocky, weedy, area in the wild.”. Five batches (rows)
with each four images, with both intra- and inter-batch repellency, with the same seeds as the runs
without SPELL.
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(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 30: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”A group of seagulls are flying over a wooden dock that is sitting in a lake during the early
part of the evening.”. Five batches (rows) with each four images, with both intra- and inter-batch
repellency, with the same seeds as the runs without SPELL.

(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 31: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”A plane flies over water with two islands nearby.”. Five batches (rows) with each four
images, with both intra- and inter-batch repellency, with the same seeds as the runs without SPELL.
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(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 32: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”A traffic light over a street surrounded by tall buildings.”. Five batches (rows) with each
four images, with both intra- and inter-batch repellency, with the same seeds as the runs without
SPELL.

(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 33: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”a white boat is out on the water”. Five batches (rows) with each four images, with both
intra- and inter-batch repellency, with the same seeds as the runs without SPELL.
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(a) Simple Diffusion without SPELL (b) Simple Diffusion + SPELL

Figure 34: Images generated with Simple Diffusion without and with SPELL for the MS COCO
prompt ”A table layed out with food such as, salad, steamed peas and carrots, steamed corn, and
bread rolls.”. Five batches (rows) with each four images, with both intra- and inter-batch repellency,
with the same seeds as the runs without SPELL.
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