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1 MORE DETAILS ABOUT PARAMETER SENSITIVITY

An intuitive approach to compute sensitivity Ωi for the ith parameter is using the average method
over batches:

Ωi =
∑
x∈Dk

|g(θi;x)|/|Dk|, (1)

However, this average method may not be suitable for a real scenario in federated learning, for
that training data may be collected randomly. The momentum approach described in paper is more
flexible for us to do an online accumulating of parameter sensitivity. Also, we find that the momentum
approach can achieve a better performance and is more robust for different τ under different tasks
compared with the average approach. We also conduct an experiment on synthetic federated dataset of
CIFAR-10. We show the inspired percentage of parameters during training in Fig. 1. It indicates that
momentum approach prefers to keep more parameters to be restricted from client drifting. However,
the average approach prefers to inspire more parameters to explore a better distribution. In federated
learning, we are more eager to solve the client-drift problem caused by non-IID-ness via restricting
parameters. The final accuracy in Tab. 1 also indicates a better performance of momentum approach.

2 DATA DISTRIBUTION

Generating synthetic federated datasets Different distribution has a very large influence on the
final performance of federated optimization. The Dirichlet distribution is used on the label ratios to
ensure uneven label distributions among clients for non-IID splits, as in (Yurochkin et al., 2019).
This can generate nonIIDness with unbalance sample number in each label. The Dirichlet distribution
is a density over a K dimensional vector p whose K components are positive and sum to 1. Dirichlet
can support the probabilities of a K-way categorical event. In federated learning, we can view K
clients’ sample number obeys the Dirichlet distribution. You can check here1 for more details of the
Dirichlet distribution. To generate unbalanced data, we sample the number of data points from a
log-normal distribution. Controlling the variance of log-normal distribution gives unbalanced data.

We use above introduced approach to generate synthetic federated datasets for MNIST, CIFAR-10,
CINIC-10 in our paper.

Fed-CIFAR100 The dataset is derived from the CIFAR-100 dataset2. The training and testing
examples are partitioned across 500 and 100 clients (respectively). No clients share any data samples,
so it is a true partition of CIFAR-100. The train clients have string client IDs in the range [0-499],
while the test clients have string client IDs in the range [0-99]. The train clients form a true partition of
the CIFAR-100 training split, while the test clients form a true partition of the CIFAR-100 testing split.
The data partitioning is done using a hierarchical Latent Dirichlet Allocation (LDA) process, referred
to as the Pachinko Allocation Method (Li and McCallum, 2006). This method uses a two-stage
LDA process, where each client has an associated multinomial distribution over the coarse labels of
CIFAR-100, and a coarse-to-fine label multinomial distribution for that coarse label over the labels
under that coarse label. The coarse label multinomial is drawn from a symmetric Dirichlet with
parameter 0.1, and each coarse-to-fine multinomial distribution is drawn from a symmetric Dirichlet

1https://en.wikipedia.org/wiki/Dirichlet_distribution
2https://www.cs.toronto.edu/ kriz/cifar.html
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Figure 1: Percentage of parameters boosted during training.

naive elastic(average) elastic(momentum)
Train Acc(%) 55.39 55.49 58.74
Test Acc(%) 61.22 61.11 61.45

Table 1: Performance with different parameter sensitivity computation approach.

with parameter 10. Each client has 100 samples. To generate a sample for the client, we first select a
coarse label by drawing from the coarse label multinomial distribution, and then draw a fine label
using the coarse-to-fine multinomial distribution. We then randomly draw a sample from CIFAR-100
with that label (without replacement). If this exhausts the set of samples with this label, we remove
the label from the coarse-to-fine multinomial and renormalize the multinomial distribution.

Fed-EMNIST This dataset is derived from the Leaf (Caldas et al., 2018) repository3 pre-processing
of the Extended MNIST dataset, grouping examples by writer. This dataset does not include some
additional preprocessing that MNIST includes, such as size-normalization and centering. In the
Federated EMNIST data, the value of 1.0 corresponds to the background, and 0.0 corresponds to
the color of the digits themselves. It contains 3,400 users, 62 label classes, and 671,585 training
examples, 77,483 testing examples. Rather than holding out specific users, each user’s examples are
split across train and test so that all users have at least one example in train and one example in test.
Writers that had less than 2 examples are excluded from the data set.

3 FEDERATED OPTIMIZER WITH ELASTIC AGGREGATION

Federated Average with Momentum (FedAvgM) and Elastic Aggregation has been presented in
Algorithms. 1. FedProx with Elastic Aggregation has been presented in Algorithms. 2. FedAvgM
is an enhancement of FedAvg in server-side, FedProx is an enhancement of FedAvg in client-side.
Elastic aggregation can work well with other complementary approaches designed for client-side or
server-side.

3https://github.com/TalwalkarLab/leaf
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Algorithm 1: FedAvg with Momentum (Reddi et al., 2020) and Elastic Aggregation

A variable with a superscript i indicates the ith element of the variable. A variable with a
subscript k indicates the variable from kth client. η, η′ are learning rates of server and clients
respectively. µ, µ′, τ are the hyper-parameters. θ, θk ∈ Rn are the server’s and the kth client’s
parameters respectively. Ω ∈ Rn is the aggregated parameter sensitivity. Ωk ∈ Rn is the
parameter sensitivity on the kth client. m ∈ Rn is the momentum vector.

Initialize θ
Initialize m← 0
Bk ← Sample a subset of training data Dk.
Dk ← Drop the samples of Bk from Dk.
for each round do

for each activated client k do
Initialize Ωk as zeros.
for each batch data x ∈ Bk do

g = ∇||F (θ;x)||22
for i ∈ [1, · · · , n] do

Ωik ← µΩik + (1− µ)|gi|

θk ← θ
for each epoch do

for each batch data x ∈ Dk do
θk ← θk − η′∇`k(F (θk;x))

∆k = θk − θ
wk ← |Dk|/

∑
k |Dk|; Ω =

∑
k(wk · Ωk); Ω′ = max(Ω)

for i ∈ [1, · · · , n] do
ζi = 1 + τ − Ωi/Ω′

∆i = ζi ·
∑
k(wk ·∆i

k)
mi ← µ′mi + (1− µ′)∆i

θi ← θi − η ·mi
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Figure 2: Elastic aggregation can be easily integrated with different federated optimizers, achieving
performance improvements.
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Algorithm 2: FedProx (Li et al., 2018) with Elastic Aggregation

A variable with a superscript i indicates the ith element of the variable. A variable with a
subscript k indicates the variable from kth client. η, η′ are learning rates of server and clients
respectively. µ, τ are the hyper-parameters. ρ is penalty coefficient of FedProx. θ, θk ∈ Rn are
the server’s and the kth client’s parameters respectively. Ω ∈ Rn is the aggregated parameter
sensitivity. Ωk ∈ Rn is the parameter sensitivity on the kth client.

Initialize θ
Bk ← Sample a subset of training data Dk.
Dk ← Drop the samples of Bk from Dk.
for each round do

for each activated client k do
Initialize Ωk as zeros.
for each batch data x ∈ Bk do

g = ∇||F (θ;x)||22
for i ∈ [1, · · · , n] do

Ωik ← µΩik + (1− µ)|gi|

θk ← θ
for each epoch do

for each batch data x ∈ Dk do
θk ← θk − η′∇`k(F (θk;x)) + ρ(θ − θk)

∆k = θk − θ
wk ← |Dk|/

∑
k |Dk|; Ω =

∑
k(wk · Ωk); Ω′ = max(Ω)

for i ∈ [1, · · · , n] do
ζi = 1 + τ − Ωi/Ω′

∆i = ζi ·
∑
k(wk ·∆i

k)
θi ← θi − η ·∆i
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In Fig. 2, we show the convergence speed with different optimizers.

4 THE COMPUTATIONAL OVERHEAD OF PARAMETER SENSITIVITY

This computational overhead can be neglectable in terms of total computational cost in training phase.
Moreover, the parameter sensitivity is not required in inference phase.

In a training task, the parameter sensitivity is only calculated once for each round. Suppose that each
round contains e epochs, and several backwards perform on a small fraction µ of training instances,
which is enough to precisely estimate the parameter sensitivity. Thus, the additional computational
cost can be roughly given by µ

2×e . Empirically, we set µ = 10% and e = 10. The extra cost only
takes 0.5% against total training cost.

5 COMMUNICATION OVERHEAD

As for communication budget, we introduce no overhead for downloading global model, but requires
an extra communication overhead for uploading the parameter sensitivities. And this overhead
seems to inevitable. Such as the well known related method mentioned in Table 5, the SCAF-
FOLD2019karimireddy2020scaffold also introduce such communication overhead. We list the
additional communication overhead using FedAvg(McMahan et al., 2017) as baseline in Tab.??
(downloading parameters notes as 1x and uploading parameters also notes as 1x, so the FedAvg is 2x
in total):

FedAvg FedAvgM FedProx SCAFFOLD AdaOpt PFNM Ours
2x 2x 2x 4x 2x 2x 3x

6 COMPARE TO PRIOR WORKS IN PROS/CONS

Table 2: Compare to prior works in pros/cons.

Pros Cons

FedAvg Efficient, Robust
Slow convergence,
Limited upper performance

FedProx li2018federated
Fast convergence,
Better performance Light extra overhead

SCAFFOLD karimireddy2020scaffold Fast convergence Not robust

AdaOpt reddi2020adaptive
Fast convergence,
Excellent performance Considerable extra overhead

PFNM yurochkin2019bayesian
Alleviate client drift,
Excellent performance,
Fast convergence

Complex implementation,
Considerable extra overhead

Ours

Alleviate client drift,
Excellent performance,
Robust,
Fast convergence

Light extra overhead

Here we list the pros/cons of several related works in Tab. ??. From the table, our proposed Elastic
Aggregation basically incorporates the advantages of other methods without any defect except a light
extra computational overhead.

7 TECHNICALITIES

We formalize the problem as minimizing a sum of stochastic functions like (Karimireddy et al.,
2020), with only access to stochastic samples:

min
x∈Rd
{f(x) :=

1

N

N∑
i=1

(fi(x) := Eζi [fi(x; ζi)])}. (2)
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The functions fi represents the loss function on client i. All our results can be easily extended to the
weighted case.

We assume that f is bounded from below by f? and fi is β-smooth. Further, we assume gi(x) :=
∇fi(x; ζi) is an unbiased stochastic gradient of fi with variance bounded by σ2. For some results,
we assume µ ≥ 0 (strong) convexity. Note that σ only bounds the variance within clients.

Now, we examine some additional definitions and introduce some technical lemmas.

7.1 ADDITIONAL DEFINITIONS

We make precise a few definitions and explain some of their implications.

A1 There exists constants G ≥ 0 and B ≥ 1 such that

1

N

N∑
i=1

‖∇fi(x)‖2 ≤ G2 +B2‖∇f(x)‖2,∀x (3)

A2 fi is µ-convex for µ ≥ 0 and satisfies:

〈∇fi(x),y − x〉 ≥ −(fi(x)− fi(y) +
µ

2
‖x− y‖2),∀i,x,y. (4)

Here, we allow that µ = 0 (we refer to this case as the general convex case as opposed to strongly
convex). It is also possible to generalize all proofs here to the weaker notion of PL-strong convex-
ity (Karimi et al., 2016).

A3 gi(x) := ∇fi(x; ζi) is unbiased stochastic gradient of fi with bounded variance

Eζi [‖gi(x)−∇fi(x)‖2] ≤ σ2,∀i,x. (5)

Note that (A3) only bounds the variance within the same client, but not the variance across the clients.

A4 {fi} are β-smooth and satisfy:

‖∇fi(x)−∇fi(y)‖ ≤ β‖x− y‖,∀i,x,y. (6)

The assumption (A4) also implies the following quadratic upper bound on fi

fi(y) ≤ fi(x) + 〈∇f(x),y − x〉+
β

2
‖y − x‖2.

If additionally the function {fi} are convex and x? is an optimum of f , (A4) implies

1

2βN

N∑
i=1

‖∇fi(x)−∇fi(x?)‖2 ≤ f(x)− f?.

Further, if fi is twice-differentiable, (A4) implies that

‖∇2fi(x)‖ ≤ β,∀x.

7.2 SOME TECHNICAL LEMMAS

Now we cover some technical lemmas which are useful for computations later on. The two lemmas
below are useful to unroll recursions and derive convergence rates. The first one is a slightly improved
(and simplified) version of ( (Stich and Karimireddy, 2019), Theorem 2). It is straightforward to
remove the additional logarithmic terms if we use a varying step-size ( (Kulunchakov and Mairal,
2019), Lemma 13).
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Lemma1 (linear convergence rate).

For every non-negative sequence {dr−1}r≥1 and any parameters µ > 0, ηmax ∈ (0, 1
µ ], c ≥ 0, R ≥

1
2ηmaxµ

, there exists a constant step-size η ≤ ηmax and weights wr := (1 − µη)1−r such that for

WR :=
∑R+1
r=1 wr,

ΨR :=
1

WR

R+1∑
r=1

(
wr
η

(1− µη)dr−1 −
wr
η
dr + cηwr) = Õ(µd0 exp(−µηmaxR) +

c

µR
). (7)

Proof. By substituting the value of wr, we observe that we end up with a telescoping sum and estimate

ΨR =
1

ηWR

R+1∑
r=1

(wr−1dr−1 − wrdr) +
cη

WR

R+1∑
r=1

wr ≤
d0
ηWR

+ cη.

When R > 1
2µη , (1− µη)R ≤ exp(−µηR) ≤ 2

3 . For such an R, we can lower bound ηWR using

ηWR = η(1− µη)−R
R∑
r=0

(1− µη)r = η(1− µη)−R
1− (1− µη)R

µη
≥ (1− µη)−R

1

3µ
.

This proves that for all R ≥ 1
2µη ,

ΨR ≤ 3µd0(1− µη)R + cη ≤ 3µd0 exp(−µηR) + cη.

The lemma now follows by carefully tuning η. Consider the following two cases depending on the
magnitude of R and ηmax:

• Suppose 1
2µR ≤ ηmax ≤ log(max(1,µ2Rd0/c))

µR . Then we can choose η = ηmax,

ΨR ≤ 3µd0 exp[−µηmaxR] + cηmax ≤ 3µd0 exp[−µηmaxR] + Õ(
c

µR
).

• Instead if ηmax >
log(max(1,µ2Rd0/c))

µR , we pick η = log(max(1,µ2Rd0/c))
µR to claim that

ΨR ≤ 3µd0 exp[− log(max(1, µ2Rd0/c))] + Õ(
c

µR
) ≤ Õ(

c

µR
).

The next lemma is useful to derive convergence rates for general convex functions (µ = 0) and
non-convex functions.

Lemma 2 (sub-linear convergence rate).

For every non-negative sequence {dr−1}r≥1 any parameters ηmax ≥ 0, c ≥ 0, R ≥ 0, there exists a
constant step-size η ≤ ηmax and weights wr = 1 such that,

ΨR :=
1

R+ 1

R+1∑
r=1

(
dr−1
η
− dr

η
+ c1η + c2η

2) ≤ d0
ηmax(R+ 1)

+
2
√
c1d0√
R+ 1

+ 2(
d0

R+ 1
)

2
3 c

1
3
2 . (8)

Proof. Unrolling the sum, we can simplify

ΨR ≤
d0

η(R+ 1)
+ c1η + c2η

2.

Similar to the strongly convex case (Lemma 1), we distinguish the following cases:

7
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• When R+ 1 ≤ d0
c1η2max

, and R+ 1 ≤ d0
c2η3max

, we pick η = ηmax to claim

ΨR ≤
d0

ηmax(R+ 1)
+ c1ηmax + c2η

2
max ≤

d0
ηmax(R+ 1)

+

√
c1d0√
R+ 1

+ (
d0

R+ 1
)

2
3 c

1
2
2 .

• In the other case, we have η2max ≥ d0
c1(R+1) or η2max ≥ d0

c2(R+1) . We choose η =

min{
√

d0
c1(R+1) ,

3

√
d0

c2(R+1)} to prove

ΨR ≤
d0

η(R+ 1)
+ cη =

2
√
c1d0√
R+ 1

+ 2 3

√
d20c2

(R+ 1)2
.

Next, we state a relaxed triangle inequality true for the squared `2 norm.

Lemma 3 (relaxed triangle inequality).

Let {v1, · · · ,vτ} be τ vectors in Rd. The the following are true:{
‖vi + vj‖2 ≤ (1 + a)‖vi‖2 + (1 + 1

a )‖vj‖2, ∀a > 0,
‖
∑τ
i=1 vi‖2 ≤ τ

∑τ
i=1 ‖vi‖2.

(9)

Proof. The proof of the first statement for any a > 0 follows from the identity:

‖vi + vj‖2 = (1 + a)‖vi‖2 + (1 +
1

a
)‖vj‖2 − ‖

√
avi +

1√
a
vj‖2.

For the second inequality, we use the convexity of x→ ‖x‖2 and Jensen’s inequality

‖1

τ

τ∑
i=1

vi‖2 ≤
1

τ

τ∑
i=1

‖vi‖2.

Next we state an elementary lemma about expectations of norms of random vectors.

Lemma 4 (separating mean and variance).

Let Ξ1, · · · ,Ξτ be τ random variables in Rd which are not necessarily independent. First suppose
that their mean is E[Ξi] = ξi and variance is bounded as E[‖Ξi − ξi‖2] ≤ σ2. Then, the following
holds

E[‖
τ∑
i=1

Ξi‖2] ≤ ‖
τ∑
i=1

ξi‖2 + τ2σ2. (10)

Now instead suppose that their conditional mean is E[Ξi|Ξi−1, · · · ,Ξ1] = ξi, i.e. the variables
{Ξi−ξi} form a martingale difference sequences, and the variance is bounded by E[‖Ξi−ξi‖2] ≤ σ2

as before. Then we can show the tighter bound

E[‖
τ∑
i=1

Ξi‖2] ≤ 2‖
τ∑
i=1

ξi‖2 + 2τσ2. (11)

Proof. For any random variable X,E[X2] = (E[X − E[X]])2 + (E[X])2 implying

E[‖
τ∑
i=1

Ξi‖2] = ‖
τ∑
i=1

ξi‖2 + E[‖
τ∑
i=1

Ξi − ξi‖2].

Expanding the above expression using relaxed triangle inequality (Lemma 3) proves the first claim:

E[‖
τ∑
i=1

Ξi − ξi‖2] ≤ τ
τ∑
i=1

E[‖Ξi − ξi‖2] ≤ τ2σ2.

8
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For the second statement, ξi is not deterministic and depends on Ξi−1, · · · ,Ξ1. Hence we have to
resort to the cruder relaxed triangle inequality to claim

E[‖
τ∑
i=1

Ξi‖2] ≤ 2‖
τ∑
i=1

ξi‖2 + 2E[‖
τ∑
i=1

Ξi − ξi‖2]

and then use the tighter expansion of the second term:

E[‖
τ∑
i=1

Ξi − ξi‖2] =
∑
i,j

E[(Ξi − ξi)T (Ξj − ξj)] =
∑
i

E[‖Ξi − ξi‖2] ≤ τσ2.

The cross terms in the above expression have zero mean since {Ξi− ξi} form a martingale difference
sequence.

8 PROPERTIES OF CONVEX FUNCTIONS

We now study two lemmas which hold for any smooth and strongly-convex functions. The first is a
generalization of the standard strong convexity inequality (A2), but can handle gradients computed at
slightly perturbed points.

Lemma 5 (perturbed strong convexity).

The following holds for any β-smooth and µ-strongly convex function h:

〈∇h(x), z − y〉 ≥ h(z)− h(y) +
µ

4
‖y − z‖2 − β‖z − x‖2,∀x,y, z ∈ h (12)

Proof. Given any x,y and z, we get the following two inequalities using smoothness and strong
convexity of h:

〈∇h(x), z − x〉 ≥ h(z)− h(x)− β

2
‖z − x‖2,

〈∇h(x),x− y〉 ≥ h(x)− h(y) +
µ

2
‖y − x‖2.

Further, applying the relaxed triangle inequality gives
µ

2
‖y − x‖2 ≥ µ

4
‖y − x‖2 =

µ

2
‖x− z‖2.

Combining all the inequalities together we have

〈∇h(x), z − y〉 ≥ h(z)− h(y) +
µ

4
‖y − z‖2 − β + µ

2
‖z − x‖2.

The lemma follows since β ≥ µ.

Lemma 6 (contractive mapping).

For any β-smooth and µ -strongly convex function h and step-size η ≤ 1
β , the following is true

‖x− η∇h(x)− y + η∇h(y)‖2 ≤ (1− µη)‖x− y‖2,∀x,y ∈ h. (13)

Proof.

‖x− η∇h(x)− y + η∇h(y)‖2 = ‖x− y‖2 + η2‖∇h(x)−∇h(y)‖2 − 2η〈∇h(x)−∇h(y),x− y〉
≤ ‖x− u‖2 + (η2β − 2η)〈∇h(x)−∇h(y),x− y〉.

Recall our bound on the step-size η ≤ 1
β which implies that (η2β − 2η) ≤ −η. Finally, apply the

µ-strong convexity of h to get

−η〈∇h(x)−∇h(y), (x)− y〉 ≤ −ηµ‖x− y‖2.

9
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Algorithm 3: Simplified elastic aggregation
For the convenience of representation, we simplify or omit some extra hyper parameters (i.e. τ, µ)

and processes that will not affect the convergence analysis.
server input: initial x, and global step-size ηg
client’s input: local step-size ηl
for each round r = 1, · · · , R do

sample clients S ⊆ {1, · · · , N}
communicate x to all clients i ∈ S
for client i ∈ S do

initialize local model yi ← x
accumulate local parameter sensitivities φi ← Φ(x)
for k = 1, · · · ,K do

compute mini-batch gradient gi(yi)
yi ← yi − ηlgi(yi)

communicate ∆yi ← yi − x and φi
∆x← 1

|S|
∑
i∈S ∆yi

φ← 1
|S|
∑
i∈S φi

x← x + φηg∆x

9 CONVERGENCE OF ELASTIC AGGREGATION

Here we will give a general convergence rate for elastic aggregation and in the next section, we will
use it to analyse the ideal convergence rate for our proposed elastic aggregation.

9.1 ELASTIC AGGREGATION

We outline the general aggregation method in Algorithm 3. In round r we sample Sr ⊆ [N ] clients
with |Sr| = S and then perform the following updates:

Step 1: Starting from the shared global parameters yri,0 = xr−1, we update the local parameters for
k ∈ [K]

yri,k = yri,k−1 − ηlgi(yri,k−1).

Step 2: Compute the new global parameters using only updates from the clients i ∈ Sr and a global
step-size ηg:

xr = xr−1 +
1

S
φηg

∑
i∈Sr

(yri,K − xr−1). (14)

where φ is the parameter sensitivities respect to xr−1. Finally, for some weights {wr}, we output
x̄R = xr−1 with probability wr∑

τ wτ
for r ∈ {1, · · · , R+ 1}.

9.2 BOUNDING HETEROGENEITY

Recall our bound on the gradient dissimilarity:

1

N

N∑
i=1

‖∇fi(x)‖2 ≤ G2 +B2‖∇f(x)‖2.

If {fi} are convex, we can relax the assumption to

1

N

N∑
i=1

‖∇fi(x)‖2 ≤ G2 + 2βB2(f(x)− f?).

10
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We defined two variants of the bounds on the heterogeneity depending of whether the functions are
convex or not. Suppose that the functions f is indeed convex as in (7.1) and β-smooth as in (7.1),
then it is straightforward to see that (9.2) implies (9.2). Suppose that the functions {f1, · · · , fN} are
convex and β-smooth. Then (9.2) is satisfied with B2 = 2 since

1

N

N∑
i=1

‖∇fi(x)‖2 ≤ 2

N

N∑
i=1

‖∇fi(x?)‖2 +
2

N

N∑
i=1

‖∇fi(x)−∇fi(x?)‖2

≤ 2

N

N∑
i=1

‖∇fi(x?)‖2︸ ︷︷ ︸
=:σ2

f

+4β(f(x)− f?).

Thus, (9.2) is equivalent to the heterogeneity assumption of ( (Mishchenko et al., 2019)) with
G2 = σ2

f . Instead, if the functions are possibly non-convex, then G = ε corresponds to the local
dissimilarity defined in ( (Li et al., 2018)). Note that assuming G is negligible is quite strong and
corresponds to the strong-growth condition ( (Vaswani, 2018)).

9.3 RATES OF CONVERGENCE

Theorem I. Suppose that the functions {fi} satisfies assumptions A1, A3 and A4. Then, in each of
the following cases, there exist weights {wr} and local step-sizes ηl such that for any φηg ≥ 1 the
output of general aggregation x̄R satisfies

Strongly convex: fi satisfies (A2) for µ > 0, ηl ≤ 1
8(1+B2)βKφηg

, R ≥ 8(1+B2)β
µ then

E[f(x̄R)]− f(x?) ≤ Õ(
M2

µRKS
+

βG2

µ2R2
+ µD2 exp(− µ

16(1 +B2)β
R)), (15)

General convex: fi satisfies (A2) for µ = 0, ηl ≤ 1
(1+B2)8βKφηg

, R ≥ 1 then

E[f(x̄R)]− f(x?) ≤ O(
MD√
RKS

+
D4/3(βG2)1/3

(R+ 1)2/3
+
B2βD2

R
), (16)

Non-convex: fi satisfies (A1) and ηl ≤ 1
(1+B2)8βKφηg

, then

E[‖∇f(x̄R)‖2] ≤ O(
βM
√
F√

RKS
+
F 2/3(βG2)1/3

(R+ 1)2/3
+
B2βF

R
), (17)

where M2 := σ2(1 + S
φ2η2g

) +K(1− S
N )G2, D := ‖x0 − x?‖2, and F := f(x0)− f(x?).

9.4 PROOF OF CONVERGENCE

We will only prove the rate of convergence for convex functions here. The corresponding rates for
non-convex functions are easy to derive following the techniques in the rest of the paper.

Lemma 7. (one round progress) Suppose our functions satisfies assumptions (A1) and (A2)-(A4).
For any step-size satisfying ηl ≤ 1

(1+B2)8βKηg
and effective step-size η̃ := Kφηgηl, the updates of

general aggregation satisfy

E[‖xr − x?]‖2 ≤(1− µη̃

2
)E[‖xr−1 − x?‖2] + (

1

KS
)η̃2σ2

+ (1− S

N
)
4η̃2

S
G2 − η̃(E[f(xr−1)]− f(x?)) + 3βη̃Er,

11



Under review as a conference paper at ICLR 2023

where Er is the drift caused by the local updates on the clients defined to be

Er :=
1

KN

K∑
k=1

N∑
i=1

Er[‖yri,k − xr−1‖2].

Proof. We start with the observation that the updates (10) and (11) imply that the server update in
round r can be written as below (dropping the superscripts everywhere)

{
∆x = − η̃

KS

∑
k,i∈S gi(yi,k−1),

E[∆x] = − η̃
KN

∑
k,i E[∇fi(yi,k−1)].

(18)

We adopt the convention that summations are always over k ∈ [K] or i ∈ [N ] unless otherwise stated.
Expanding using above observing, we proceed as4

E[‖x + ∆x− x?‖2] =‖x− x?‖2 − 2η̃

KN

∑
k,i

〈∇fi(yi,k−1),x− x?〉

+ η̃2Er−1[‖ 1

KS

∑
k,i∈S

gi(y(i, k− 1))‖2]

≤‖x− x?‖2− 2η̃

KN

∑
k,i

〈∇fi(yi,k−1),x− x?〉︸ ︷︷ ︸
A1

+ η̃2Er−1[‖ 1

KS

∑
k,i∈S

∇fi(yi,k−1)‖2]︸ ︷︷ ︸
A2

+
η̃2σ2

KS
.

We can directly apply Lemma 5 with h = fi,x = yi,k−1,y = x? and z = x to the first term A1

A1 =
2η̃

KN

∑
k,i

〈∇fi(yi,k−1),x? − x〉

≤ 2η̃

KN

∑
k,i

(fi(x
?)− fi(x) + β‖yi,k−1 − x‖2 − µ

4
‖x− x?‖2)

= −2η̃(f(x)− f(xstar) +
µ

4
‖x− x?‖2) + 2βη̃E .

For the second term A2, we repeatedly apply the relaxed triangle inequality (Lemma 4)

A2 = η̃2Er−1[‖ 1

KS

∑
k,i∈S

∇fi(yi,k−1)−∇fi(x) +∇fi(x)‖2]

≤ 2η̃2Er−1[
1

KS

∑
k,i∈S

∇fi(yi,k−1 −∇fi(x))‖2] + 2η̃2Er−1[‖ 1

S

∑
i∈S
∇fi(x)‖2]

≤ 2η̃2

KN

∑
i,k

Er−1[‖∇fi(yi,k−1)−∇fi(x)‖2] + 2η̃2Er−1[‖ 1

S

∑
i∈S
∇fi(x)−∇f(x)‖2]

≤ 2η̃2β2

KN

∑
i,k

Er−1[‖yi,k−1 − x‖2] + 2η̃2‖∇f(x)‖2 + (1− S

N
)4η̃2

1

SN

∑
i

‖∇fi(x)‖2

≤ 2η̃2β2E + 8η̃2β(B2 + 1)(f(x)− f(x?)) + (1− S

N
)
4η̃2

S
G2

4We use the notation Er−1[.] to mean conditioned on filtration r i.e. on all the randomness generated prior to
round r.

12
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The last step used Assumption (G,B)-BGD assumption (14) that 1
N

∑N
i=1 ‖∇fi(x)‖2 ≤ G2 +

2βB2(f(x) − f?). The extra (1 − S
N ) improvement we get is due to sampling the functions {fi}

without replacement. Plugging back the bounds on A1 and A2,

Er−1[‖x + ∆x− x?‖2] ≤(1− µη̃

2
)‖x− x?‖2 − (2η̃ − 8βη̃2(B2 + 1))(f(x)− f(x?))

+ (1 + η̃β)2βη̃E +
1

KS
η̃2σ2 + (1− S

N
)
4η̃2

S
G2.

The lemma now follows by observing that 8βη̃(B2 + 1) ≤ 1 and that B ≥ 0.

Lemma 8 (bounded drift). Suppose our functions satisfies assumptions (A1) and (A2)–(A4). Then
the updates of general aggregation for any step-size satisfying ηl ≤ 1

(1+B2)8βKφηg
have bounded

drift:

3βη̃Er ≤
2η̃

3
(E[f(xr−1)])− f(x?) +

η̃2σ2

2Kη2g
+ 18βη̃3G2. (19)

Proof. If K = 1, the lemma trivially holds since yi,0 = x for all i ∈ [N ] and Er = 0. Assume K ≥ 2
here on. Recall that the local update made on client i is yi,k = yi,k−1 − ηlgi(yi,k−1). Then,

E[‖yi,k − x‖2] =E[‖yi,k−1 − x− ηlgi(yi,k−1)‖2]

≤E[‖yi,k−1 − x− ηl∇fi(yi,k−1)‖2] + η2l σ
2

≤(1− 1

K − 1
)E[‖yi,k−1 − x‖2] +Kη2l ‖∇fi(yi,k−1)‖2 + η2l σ

2

=(1− 1

K − 1
)E[‖yi,k−1 − x‖2] +

η̃2

φηgK
‖∇fi(yi,k−1)‖2 +

η̃2σ2

K2φ2η2g

≤(1− 1

K − 1
)E[‖yi,k−1 − x‖2] +

2η̃2

φηgK
‖∇fi(yi,k−1)−∇fi(x)‖2

+
2η̃2

φηgK
‖∇fi(x)‖2 +

η̃2σ2

K2φ2η2g

≤(1− 1

K − 1
+

2η̃2β2

φηgK
)E[‖yi,k−1 − x‖2] +

2η̃2

φηgK
‖∇fi(x)‖2 +

η̃2σ2

K2φ2η2g

≤(1− 1

2(K − 1)
)E[‖yi,k−1 − x‖2] +

2η̃2

φηgK
‖∇fi(x)‖2 +

η̃2σ2

K2φ2η2g
.

In the above proof we separated the mean and the variance in the first inequality, then used the relaxed
triangle inequality with a = 1

K−1 in the next inequality. Next equality uses the definition of η̃, and
the rest follow from the Lipschitzness of the gradient. Unrolling the recursion above,

E[‖yi,k−x‖2] ≤
k−1∑
τ=1

(
2η̃2

φηgK
‖∇fi(x)‖2+

η̃2σ2

K2φ2η2g
)(1− 1

2(K − 1)
)τ ≤ (

2η̃2

φηgK
‖∇fi(x)‖2+

η̃2σ2

K2φ2η2g
3K.

Averaging over i and k, multiplying by 3βη̃ and then using Assumption A1,

3βη̃Er ≤
1

N

∑
i

18βη̃3‖∇fi(x)‖2 +
3βη̃3σ2

Kφ2η2g
≤ 18βη̃3G2 +

3βη̃3σ2

Kφ2η2g
+36β2η̃3B2(f(x)−f(x?))

The lemma now follows from our assumption that 8(B2 + 1)βη̃ ≤ 1.

Proof of Theorem I Adding the statements of Lemmas 7 and Lemmas 8, we get

13
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E[‖x + ∆x?‖2] ≤(1− µη̃

2
)E[‖x− x?‖2] +

1

KS
η̃2σ2 + (1− S

N
)
4η̃2

S
G2 − η̃(E[f(x)]− f(x?))

+
2η̃

3
(E[f(x)]− f(x?)) + η̃2(

σ2

KS
(1 +

S

φ2η2g
) +

4G2

S
(1− S

N
) + 18βη̃G2).

Moving the f(x)− f(x?) term and dividing throughout by η̃
3 , we get the following bound for any

η̃ ≤ 1
8(1+B2)β

E[f(xr−1)]− f(x?) ≤3

η̃
(1− µη̃

2
)‖xr−1 − x?‖2 − 3

η̃
‖xr − x?‖2

+ 3η̃(
σ2

KS
(1 +

S

φ2η2g
) +

4G2

S
(1− S

N
) + 18βη̃G2).

If µ = 0 (general convex), we can directly apply Lemma 2. Otherwise, by averaging using weights
wr = (1 − µη̃

2 )1−r. and using the same weights to pick output x̄R, we can simplify the above
recursive bound to prove that for any η̃ satisfying 1

µR ≤ η̃ ≤
1

8(1+B2)β

E[f x̄R]− f(x?) ≤ 3‖x0 − x?‖2︸ ︷︷ ︸
=:d

µ exp(− η̃
2
µR)

+ η̃(
2σ2

KS
(1 +

S

φ2η2g
) +

8G2

S
(1− S

N
)︸ ︷︷ ︸

=:c1

)

+ η̃2(36βG2︸ ︷︷ ︸
=:c2

)

Now, the choice of η̃ = min{ log(max(1,µ2Rd/c1))
µR , 1

(1+B2)8β } yields the desired rate. The proof of the
non-convex case is very similar and also relies on Lemma 2.

9.5 LOWER BOUND FOR GENERAL AGGREGATION

We first formalize the class of algorithms we look at before proving out lower bound.

A6 We assume that general aggregation is run with ηg = 1,K > 1, and arbitrary possibly adaptive
step-sizes {η1, · · · ηR} are used with ηr ≤ 1

µ and fixed within a round for all clients. Further, the
server update is a convex combination of the client updates with non-adaptive weights.

Note that we only prove the lower bound here for ηg = 1. In fact, bu taking ηg infinitely large and
scaling ηl ∝ 1

Kηg
such that the effective step size η̃ = ηlηgK remains constant, general aggregation

reduces to the simple large batch SGD method. Hence, proving a lower bound for arbitrary ηg is not
possible, but also is of questionable relevance. Further, note that when σ2 = 0, the upper bound in
Theorem V uses ηg = 1 and hence the lower bound serves to show that our analysis is tight.

Below we state a more formal version of Theorem II.

Theorem II. For any positive constants G,µ, there exists µ -strongly convex functions satisfying
A1 for which that the output of general aggregation satisfying A6 has the error for any r ≥ 1:

f(xr)− f(x?) ≥ Ω(min(f(x0)− f(x?),
G2

µR2
)). (20)

Proof. Consider the following simple one-dimensional functions for any given µ and G:{
f1(x) := µx2 +Gx,
f2(x) := −Gx,

14
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with f(x) = 1
2 (f1(x) + f2(x)) = µ

2x
2 and optimum at x = 0. Clearly f is µ-strongly convex and

further f1 and f2 satisfy A1 with B = 3. Note that we chose f2 to be a linear function (not strongly
convex) to simplify computations. The calculations make here can be extended with slightly more
work for (f̃2 = µ

2x
2 −Gx).

Let us start general aggregation from x0 > 0. A single local update for f1 and f2 in round r ≥ 1 is
respectively {

y1 = y1 − ηr(2µx+G)
y2 = y2 + ηrG

Then, straightforward computations show that the update at the end of round r is of the following
form for some averaging weight α ∈ [0, 1]

xr = xr−1((1− α)(1− 2µηr)
K + α) + ηrG

K−1∑
τ=0

(α− (1− α)(1− 2µηr)
τ ).

Since α was picked obliviously, we can assume that α ≤ 0.5. If indeed α > 0.5, we can swap the
definitions of f1 and f2 and the sign of x0. With this, we can simplify as

xr ≥ xr−1 (1− 2µηr)
K + 1

2
+
ηrG

2

K−1∑
τ=0

(1− (1− 2µηr)
τ )

≥ xr−1(1− 2µηr)
K +

ηrG

2

K−1∑
τ=0

(1− (1− 2µηr)
τ ).

Observe that in the above expression, the right hand side is increasing with ηr – this represents the
effect of the client drift and increases the error as the step-size increases. The left hand side decreases
with ηr – this is the usual convergence observed due to taking gradient steps. The rest of the proof
is to show that even with a careful balancing of the two terms, the effect of G cannot be removed.
Lemma 9 performs exactly such a computation to prove that for any r ≥ 1,

xr ≥ cmin(x0.
G

µR
).

We finish the proof by noting that f(xr) = µ
2 (xr)2.

Lemma 9. Suppose that for all r ≥ 1, ηr ≤ 1
µ and the following is true:

xr ≥ xr−1(1− 2µηr)
K +

ηrG

2

K−1∑
τ=0

(1− (1− 2µηr)
τ ). (21)

Then, there exists a constants c > 0 such that for any sequence of step-size {ητ} :

xr ≥ cmin(x0,
G

µR
)

Proof. Define γr = µηrR(K − 1). Such a γr exists and is positive since K ≥ 2. Then, γr satisfies

(1− 2µηr)
K−1

2 = (1− 2γr
R(K − 1)

)
K−1

2 ≤ exp(−γr
R

).

we then have

15



Under review as a conference paper at ICLR 2023

xr ≥ xr−1(1− 2µηr)
K +

ηrG

2

K−1∑
τ=0

(1− (1− 2µηr)
τ )

≥ xr−1(1− 2µηr)
K +

ηrG

2

K−1∑
τ=(K−1)/2

(1− (1− 2µηr)
τ )

≥ xr−1(1− 2µηr)
K +

γrG

4µ
(1− exp(−γr

R
)).

The second inequality follows because ηr ≤ 1
µ implies that (1− (1− 2µηr)

τ ) is always positive. If
γr ≥ R

8 , then we have a constant c1 ∈ (0, 1
32 ) which satisfies

xr ≥ c1G

µ
.

On the other hand, if γr < R
8 , we have a tighter inequality

(1− 2µηr)
K−1

2 = (1− 2γr
R(K − 1)

)
K−1

2 ≤ 1− γr
R
,

implying that

xr ≥ xr−1(1− 2γr
R(K − 1)

)K +
γ2rG

4Rµ
≥ xr−1(1− 4γr

R
) +

γ2rG

4µR
. (22)

The last step used Bernoulli’s inequality and the fact that K − 1 ≤ K/2 for K ≥ 2. Observe that in
the above expression, the right hand side is increasing with γr –this represents the effect of the client
drift and increases the error as the step-size increases. The left hand side decreases with γr –this is
the usual convergence observed due to taking gradient steps. The rest of the proof is to show that
even with a careful balancing of the two terms, the effect of G cannot be removed.

Suppose that all rounds after r0 ≥ 0 have a small step-size i.e. γr ≤ R/8 for all r > r0 and hence
satisfies (22). Then we will prove via induction that

xr ≥ min((1− 1

2R
)r−r0︸ ︷︷ ︸

=:cr

xr0 ,
G

256µR
)

For r = r0, (9.5) is trivially satisfied. Now for r > r0,

xr ≥ xr−1(1− 4γr
R

) +
γ2rG

4µR
≥ min(xr−1(1− 1

2R
),

G

256µR
) = min(crx

r0 ,
G

256µR
).

The first step is because of (22) and the last step uses the induction hypothesis. The second step
considers two cases for γr: either γr ≤ 1

8 and (1− 1
2R ) ≥ (1− 1

2R ), or γ2r ≥ 1
64 . Finally note that

cr ≥ 1
2 using Bernoulli’s inequality. We have hence proved

xR ≥ min(
1

2
xr0 ,

G

256µR
)

Now suppose γr0 >
R
8 . Then (9.5) implies that xR ≥ cG

µR for some constant c > 0. If instead no
such r0 ≥ 1 exists, µR then we can set r0 = 0. Now finally observe that the previous proof did not
make any assumption on R, and in fact the inequality stated above holds for all r ≥ 1.
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