Under review as a conference paper at ICLR 2023

ELASTIC AGGREGATION FOR FEDERATED OPTIMIZA-
TION
SUPPLEMENTARY MATERIALS

Anonymous authors
Paper under double-blind review

1 MORE DETAILS ABOUT PARAMETER SENSITIVITY

An intuitive approach to compute sensitivity Q° for the i*" parameter is using the average method

over batches: _ _
Q' = > |g(6";)|/|Dxl, (1)
€Dy,

However, this average method may not be suitable for a real scenario in federated learning, for
that training data may be collected randomly. The momentum approach described in paper is more
flexible for us to do an online accumulating of parameter sensitivity. Also, we find that the momentum
approach can achieve a better performance and is more robust for different 7 under different tasks
compared with the average approach. We also conduct an experiment on synthetic federated dataset of
CIFAR-10. We show the inspired percentage of parameters during training in Fig.[1} It indicates that
momentum approach prefers to keep more parameters to be restricted from client drifting. However,
the average approach prefers to inspire more parameters to explore a better distribution. In federated
learning, we are more eager to solve the client-drift problem caused by non-IID-ness via restricting
parameters. The final accuracy in Tab. [T]also indicates a better performance of momentum approach.

2 DATA DISTRIBUTION

Generating synthetic federated datasets Different distribution has a very large influence on the
final performance of federated optimization. The Dirichlet distribution is used on the label ratios to
ensure uneven label distributions among clients for non-1ID splits, as in (Yurochkin et al.|2019).
This can generate nonlIDness with unbalance sample number in each label. The Dirichlet distribution
is a density over a K dimensional vector p whose K components are positive and sum to 1. Dirichlet
can support the probabilities of a K-way categorical event. In federated learning, we can view K
clients’ sample number obeys the Dirichlet distribution. You can check hereﬂ for more details of the
Dirichlet distribution. To generate unbalanced data, we sample the number of data points from a
log-normal distribution. Controlling the variance of log-normal distribution gives unbalanced data.

We use above introduced approach to generate synthetic federated datasets for MNIST, CIFAR-10,
CINIC-10 in our paper.

Fed-CIFAR100 The dataset is derived from the CIFAR-100 dataseﬂ The training and testing
examples are partitioned across 500 and 100 clients (respectively). No clients share any data samples,
so it is a true partition of CIFAR-100. The train clients have string client IDs in the range [0-499],
while the test clients have string client IDs in the range [0-99]. The train clients form a true partition of
the CIFAR-100 training split, while the test clients form a true partition of the CIFAR-100 testing split.
The data partitioning is done using a hierarchical Latent Dirichlet Allocation (LDA) process, referred
to as the Pachinko Allocation Method (Li and McCallum| |2006)). This method uses a two-stage
LDA process, where each client has an associated multinomial distribution over the coarse labels of
CIFAR-100, and a coarse-to-fine label multinomial distribution for that coarse label over the labels
under that coarse label. The coarse label multinomial is drawn from a symmetric Dirichlet with
parameter (.1, and each coarse-to-fine multinomial distribution is drawn from a symmetric Dirichlet

"https://en.wikipedia.org/wiki/Dirichlet_distribution
Zhttps://www.cs.toronto.edu/ kriz/cifar.html

Under review as a conference paper at ICLR 2023

86 -
84 - |

|
82 - !
80 -

78 A

Inspired (%)

76 A

72

— Average
70 —— Momentum

0 25 50 75 100 125 150 175 200

Rounds

Figure 1: Percentage of parameters boosted during training.

‘ naive elastic(average) elastic(momentum)
Train Acc(%) | 55.39 55.49 58.74
Test Acc(%) 61.22 61.11 61.45

Table 1: Performance with different parameter sensitivity computation approach.

with parameter 10. Each client has 100 samples. To generate a sample for the client, we first select a
coarse label by drawing from the coarse label multinomial distribution, and then draw a fine label
using the coarse-to-fine multinomial distribution. We then randomly draw a sample from CIFAR-100
with that label (without replacement). If this exhausts the set of samples with this label, we remove
the label from the coarse-to-fine multinomial and renormalize the multinomial distribution.

Fed-EMNIST This dataset is derived from the Leaf (Caldas et al.,[2018)) repositoryﬂ pre-processing
of the Extended MNIST dataset, grouping examples by writer. This dataset does not include some
additional preprocessing that MNIST includes, such as size-normalization and centering. In the
Federated EMNIST data, the value of 1.0 corresponds to the background, and 0.0 corresponds to
the color of the digits themselves. It contains 3,400 users, 62 label classes, and 671,585 training
examples, 77,483 testing examples. Rather than holding out specific users, each user’s examples are
split across train and test so that all users have at least one example in train and one example in test.
Writers that had less than 2 examples are excluded from the data set.

3 FEDERATED OPTIMIZER WITH ELASTIC AGGREGATION

Federated Average with Momentum (FedAvgM) and Elastic Aggregation has been presented in
Algorithms. [T} FedProx with Elastic Aggregation has been presented in Algorithms. 2] FedAvgM
is an enhancement of FedAvg in server-side, FedProx is an enhancement of FedAvg in client-side.
Elastic aggregation can work well with other complementary approaches designed for client-side or
server-side.

3https://github.com/TalwalkarLab/leaf

Under review as a conference paper at ICLR 2023

Algorithm 1: FedAvg with Momentum (Reddi et al.,|2020) and Elastic Aggregation

A variable with a superscript i indicates the i*" element of the variable. A variable with a
subscript k indicates the variable from k'” client. 7,)’ are learning rates of server and clients
respectively. p, ¢/, T are the hyper-parameters. 6,), € R™ are the server’s and the k*" client’s
parameters respectively. 2 € R™ is the aggregated parameter sensitivity. 2 € R™ is the
parameter sensitivity on the k*" client. m € R™ is the momentum vector.

Initialize 6

Initialize m < 0

By, < Sample a subset of training data Dj,.

Dy, < Drop the samples of By, from Dj.

for each round do

for each activated client k do

Initialize €, as zeros.

for each batch data x € By, do

g=VI|IF(:2)|3

forie[l,--- ,n]do

[Q< 1%+ (1= p)lg’|

919 «— 0
or each epoch do
for each batch data x € Dy, do
L Qk — Gk — n'VEk(F(Gk,x))

)

L Ap=10,—0
wi 4= Dyl /324 [Drls @ =32 (wy, - Q)3 Q7 = max(€)
foric[1,---,n]do

Cilzl—'l—T—Qi/Ql ‘
Az,:Cl'Zk(wk'AfC) .
mi < p'mt + (1 — WA

L 0« 0" —n.m
FedAvg FedAvgM FedProx
554 5514
50 1 601 501
3
< 451 50 45 4
g
3 40 A 40 4
g
< 40 4
35 — NA — NA 351 — NA
— EA — EA — EA
30 T T T 1 30 T T T v 30 T T T 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
2.0 2.01 2.0
— NA — NA — NA
—EA | 14 — EA — EA
1.8 1.8 1
" 1.6
3164 141 161
1.4 121 1.4
T T T 1 1.0 T T T 1 T T T 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Figure 2: Elastic aggregation can be easily integrated with different federated optimizers, achieving
performance improvements.

Rounds

Rounds

Rounds

Under review as a conference paper at ICLR 2023

Algorithm 2: FedProx (Li ef al., [2018) with Elastic Aggregation

A variable with a superscript 4 indicates the i*” element of the variable. A variable with a
subscript k indicates the variable from k*” client. 7,7’ are learning rates of server and clients
respectively. u, 7 are the hyper-parameters. p is penalty coefficient of FedProx. 6,6, € R™ are
the server’s and the k" client’s parameters respectively. {2 € R™ is the aggregated parameter
sensitivity. £, € R”™ is the parameter sensitivity on the k*" client.

Initialize 6
By, < Sample a subset of training data Dy,.
Dy, < Drop the samples of By from Dy.
for each round do
for each activated client k do
Initialize €2, as zeros.
for each batch data x € By, do

g =V||F(0;2)|]3

fori e [1,---,n|do

[Q< p%+ (1= p)lg'|
Gk «— 0
or each epoch do
for each batch data x € Dy, do
L 0 < 05, — n’VEk(F(Gk;x)) + p(9 - 9")

=]

| Ay =0, — 6
wi, < |Di|/ >4 [Drls @ =>4 (wi - Q)5 @ = max(Q)
fori e [1,--- ,n]do

C=1+7-Q/0
AT = (3 (wy - A)
L 06— A

Under review as a conference paper at ICLR 2023

In Fig. 2] we show the convergence speed with different optimizers.

4 THE COMPUTATIONAL OVERHEAD OF PARAMETER SENSITIVITY

This computational overhead can be neglectable in terms of total computational cost in training phase.
Moreover, the parameter sensitivity is not required in inference phase.

In a training task, the parameter sensitivity is only calculated once for each round. Suppose that each
round contains e epochs, and several backwards perform on a small fraction y of training instances,
which is enough to precisely estimate the parameter sensitivity. Thus, the additional computational

cost can be roughly given by 52—. Empirically, we set ;1 = 10% and e = 10. The extra cost only

takes 0.5% against total training cost.

5 COMMUNICATION OVERHEAD

As for communication budget, we introduce no overhead for downloading global model, but requires
an extra communication overhead for uploading the parameter sensitivities. And this overhead
seems to inevitable. Such as the well known related method mentioned in Table 5, the SCAF-
FOLD2019karimireddy2020scaffold also introduce such communication overhead. We list the
additional communication overhead using FedAvg(McMahan et al.| [2017) as baseline in Tab@]
(downloading parameters notes as 1x and uploading parameters also notes as 1x, so the FedAvg is 2x
in total):

FedAvg | FedAvgM | FedProx | SCAFFOLD | AdaOpt | PENM | Ours
2x | 2X | 2x | 4x | 2x | 2x | 3x

6 COMPARE TO PRIOR WORKS IN PROS/CONS

Table 2: Compare to prior works in pros/cons.

Pros Cons
Slow convergence,
Limited upper performance

FedAvg Efficient, Robust

Fast convergence,
Better performance
SCAFFOLD karimireddy2020scaffold | Fast convergence Not robust
Fast convergence,
Excellent performance
Alleviate client drift,
PFNM yurochkin2019bayesian Excellent performance,
Fast convergence
Alleviate client drift,
Excellent performance,
Robust,

Fast convergence

FedProx 1i2018federated Light extra overhead

AdaOpt reddi2020adaptive Considerable extra overhead

Complex implementation,
Considerable extra overhead

Ours Light extra overhead

Here we list the pros/cons of several related works in Tab. [??] From the table, our proposed Elastic
Aggregation basically incorporates the advantages of other methods without any defect except a light
extra computational overhead.

7 TECHNICALITIES

We formalize the problem as minimizing a sum of stochastic functions like (Karimireddy ef al.,
2020)), with only access to stochastic samples:

N

> (i) =B, [fila; G} 2)

i=1

min{f(x) := !

rERC N

Under review as a conference paper at ICLR 2023

The functions f; represents the loss function on client 7. All our results can be easily extended to the
weighted case.

We assume that f is bounded from below by f* and f; is S-smooth. Further, we assume g;(x) :=
V fi(x; ¢;) is an unbiased stochastic gradient of f; with variance bounded by o2. For some results,
we assume p > 0 (strong) convexity. Note that o only bounds the variance within clients.

Now, we examine some additional definitions and introduce some technical lemmas.

7.1 ADDITIONAL DEFINITIONS

We make precise a few definitions and explain some of their implications.

A1l There exists constants G > 0 and B > 1 such that

1 N
¥ 2 IVA@)? < 6+ BV f(x)[* Vo 3)
i=1

A2 f;is p-convex for ;> 0 and satisfies:
(Vi) y - @) = ~(fi@) — fily) + Sz — yl?), Vi, 2y, @

Here, we allow that ;n = 0 (we refer to this case as the general convex case as opposed to strongly
convex). It is also possible to generalize all proofs here to the weaker notion of PL-strong convex-
ity (Karimi ez al.,2016).

A3 g;(x) := Vfi(x; ;) is unbiased stochastic gradient of f; with bounded variance

ECi[gi(m) - sz(a:)”Q] < UQ,VZ',:B. (5)

Note that (A3) only bounds the variance within the same client, but not the variance across the clients.

A4 {f;} are S-smooth and satisfy:
The assumption (A4) also implies the following quadratic upper bound on f;

Fily) < Fula) + (VT @)y —) + 0y

If additionally the function { f;} are convex and z* is an optimum of f, (A4) implies

N
5% 2 IVA@) — VA < @)= £,
i=1

Further, if f; is twice-differentiable, (A4) implies that

V2 fi(z)|| < B,Ve.

7.2 SOME TECHNICAL LEMMAS

Now we cover some technical lemmas which are useful for computations later on. The two lemmas
below are useful to unroll recursions and derive convergence rates. The first one is a slightly improved
(and simplified) version of ((Stich and Karimireddyl, 2019), Theorem 2). It is straightforward to
remove the additional logarithmic terms if we use a varying step-size ((Kulunchakov and Mairal,
2019), Lemma 13).

Under review as a conference paper at ICLR 2023

Lemmal (linear convergence rate).

For every non-negative sequence {d,_1},>1 and any parameters pt > 0, max € (0, i], c>0,R>

m, there exists a constant step-size 1 < Nmax and weights w, := (1 — un)'=" such that for
R+1

Wk = ZT:I Wy,

R+1
1 Wy Wy A ¢
Up = — (1 — dr_1 — —d, + cnw,) = O(udg ex max . 7
R= ;—1(y (L=)y = = dr o) = Ofyudo exp(—putmaxR) + -5 (1)

Proof. By substituting the value of w,., we observe that we end up with a telescoping sum and estimate

s e R+1 d
UVp=—r Wp—1dr—1 — Wpd,) + —— wrg—o—l—c .
nWr r:l(') Wkr ; Wr

When R > $7 (1 — un)? < exp(—unR) < % For such an R, we can lower bound nWg using

=

_ r _pl—(1—)k _pl
nWe = n(1—pn) ™Y (1= pn)” = n(1 — pn) R(W)Z(lun) R@-
r=0

This proves that for all R > ﬁ,

Ur < 3udo(1 — pn)™ + en < 3udo exp(—pnR) + en.

The lemma now follows by carefully tuning 1. Consider the following two cases depending on the
magnitude of R and 79ax:

< log(max(1,u%Rdo/c)
nR

* Suppose 2;+R < Nmax <) Then we can choose 7 = Nmax»

Cc

Up < 3udy GXP[—MUmaxR] + CNmax < 3pdo eXp[_:unmaxR] + @(NJR)

¢ Instead if Nyax > log(max(i’gp“do/c)) , we pick n = log(max(};gmdo/c)) to claim that
).

Wy < 3udy exp|— log(max(1, uRdy /)] + @<§R> <O

c

uR
The next lemma is useful to derive convergence rates for general convex functions (¢ = 0) and
non-convex functions.

Lemma 2 (sub-linear convergence rate).

For every non-negative sequence {d,_1},>1 any parameters Nmax > 0,¢ > 0, R > 0, there exists a
constant step-size 1 < Nmax and weights w, = 1 such that,

1 d,-_l dr 2 do 2\/Cld0 do 2 1
Upi=—— ——4can+ec < + 2 3cy. (8
" RJA;(n p 277)_77IW(R+1) VR+1 (R+1) 2 ®
Proof. Unrolling the sum, we can simplify
Up < ——— e+ can’.
R= 1R+ 1) 11+ c2n

Similar to the strongly convex case (Lemma 1), we distinguish the following cases:

Under review as a conference paper at ICLR 2023

e When R+1 < ¢

= Nmax to claim

m ax

do 2 do Verdg do (2 1
Vg < + C1Mmax + C2Mmax < + + 5cy.
RS D) et e < Oy e T ()t

s In the other case, we have 72, > Cl(}ié’“) or N2, > (‘2(R+1) We choose =

min{\/q(%grl), \/ D } to prove

d 2v/crdy d?
Wp < — 0 o= 0 o) 02
n(R+1) VR+1 (R+1)

Next, we state a relaxed triangle inequality true for the squared ¢5 norm.

Lemma 3 (relaxed triangle inequality).

Let {vy,- -+ ,v,} be T vectors in R%. The the following are true:
{ [vi + v;]1? < A+ a)]lvill* + 1+ g)llvslI% Va >0, ©)
132 vill® < 7320 [loil?
Proof. The proof of the first statement for any a > 0 follows from the identity'
lvi + vl = (1 + a)|Jws|* + (1 +)vaHQ* IVav; + ij?
f
For the second inequality, we use the convexity of z — ||||? and Jensen’s inequality
I 0o I 5
123 w2 < 23 o2
T “ T “
i=1 =1
Next we state an elementary lemma about expectations of norms of random vectors.
Lemma 4 (separating mean and variance).
Let Z1,--- ,Z, be T random variables in RY which are not necessarily independent. First suppose

that their mean is E[Z;] = &; and variance is bounded as E[||Z; — &;||?] < 0. Then, the following
holds

T T
E(I Y SlPT <D &l + %™ (10)
i=1 i=1
Now instead suppose that their conditional mean is E[Z;|Z;_1,--- ,21] = &, i.e. the variables

{Zi =&} form a martingale difference sequences, and the variance is bounded by E[||Z; —&;||?] <
as before. Then we can show the tighter bound

HZ ill?] <2||Z£zll2+2w (11)
Proof. For any random variable X, E[X?] = (E[X — E[X]])? + (E[X])? implying

E| ZEz||2] = Z§i||2 + E[]| ZEz - &%
i=1 i=1 i=1

Expanding the above expression using relaxed triangle inequality (Lemma 3) proves the first claim:

El Y =i -&l’l < v) EllE: - &)%) < 7°0°
i=1 i=1

Under review as a conference paper at ICLR 2023

For the second statement, &; is not deterministic and depends on =;_1, - - - , =;. Hence we have to
resort to the cruder relaxed triangle inequality to claim

E[l Y Ell’] <201 &l* + 2B Y= - &)
i=1 i=1 i=1
and then use the tighter expansion of the second term:

B35 - &) = D EIE: - 6)7(E -)] = Y ElIS: - &) < 7o,

The cross terms in the above expression have zero mean since {Z; — &; } form a martingale difference
sequence.

8 PROPERTIES OF CONVEX FUNCTIONS

We now study two lemmas which hold for any smooth and strongly-convex functions. The first is a
generalization of the standard strong convexity inequality (A2), but can handle gradients computed at
slightly perturbed points.

Lemma$5 (perturbed strong convexity).

The following holds for any B-smooth and p-strongly convex function h:

(Vh(z), z —y) > h(z) — h(y) + %Ily —z|* = Bllz - =|*,Va,y,z € h (12)

Proof. Given any x,y and z, we get the following two inequalities using smoothness and strong
convexity of h:

(Vh(z), =~) > h(z) — h(z) - 5|z — I

(Vh(),x —y) > h(@) - h(y) + Sy - =]

Further, applying the relaxed triangle inequality gives
lly —@l? = Ly —) = £l - 2
Combining all the inequalities together we have

[y

(Vh(w),z —y) > h(z) = hy) + Ly - 2 = = .

z — x|
The lemma follows since 5 > pu.

Lemma 6 (contractive mapping).

For any 3-smooth and v -strongly convex function h and step-size n < %, the following is true
lz = nVh(z) =y + nVh@)I* < (1= p)lle - y|*, v,y € h. (13)

Proof.
|z —nVh(z) —y +nVh@)|* = |z — y|* + n*|Vh(z) — Vh(y)||> — 20(Vh(z) — Vh(y),z —y)
< & —wul® + (0?8 — 2n)(Vh(z) — Vh(y),z — y).

Recall our bound on the step-size n < % which implies that (9?3 — 2n) < —n. Finally, apply the
u-strong convexity of h to get

—1{Vh(zx) — Vh(y), (z) —y) < —npllz —y|*.

Under review as a conference paper at ICLR 2023

Algorithm 3: Simplified elastic aggregation

For the convenience of representation, we simplify or omit some extra hyper parameters (i.e. T, |i)
and processes that will not affect the convergence analysis.
server input: initial x, and global step-size 7,
client’s input: local step-size 7;
for each roundr =1,--- , Rdo
sample clients S C {1,--- , N}
communicate x to all clients € S
for clienti € S do
initialize local model y; <+ @
accumulate local parameter sensitivities ¢; < ®(x)
fork=1,--- ,Kdo
L compute mini-batch gradient g;(y;)
Yi < Yi — mgi(Yi)
communicate Ay; < y; — @ and ¢;

1
Az + 7S] Yics Ayi

¢<_ﬁzz'es¢i
| x+ gnyAx

9 CONVERGENCE OF ELASTIC AGGREGATION

Here we will give a general convergence rate for elastic aggregation and in the next section, we will
use it to analyse the ideal convergence rate for our proposed elastic aggregation.

9.1 ELASTIC AGGREGATION

We outline the general aggregation method in Algorithm In round r we sample S” C [N] clients
with |S”| = S and then perform the following updates:

Step 1: Starting from the shared global parameters y; , = "1, we update the local parameters for
k€ [K]
y:k = y;,k—l - nlgi<yir,k—1)'

Step 2: Compute the new global parameters using only updates from the clients ¢ € S™ and a global
step-size 1)y:

1 ; .
2= Song D (Yl —), (14)
i€EST

where ¢ is the parameter sensitivities respect to ="~ L. Finally, for some weights {w, }, we output
& = "~ with probability s forr € {1,--- ,R+1}.

- Wr

9.2 BOUNDING HETEROGENEITY

Recall our bound on the gradient dissimilarity:

N
T IVA@IP < &+ BV @)
i=1

If {f;} are convex, we can relax the assumption to
| X
v 2 IV Ai@)* < G* +28B2(f() - f*).
i=1

10

Under review as a conference paper at ICLR 2023

We defined two variants of the bounds on the heterogeneity depending of whether the functions are
convex or not. Suppose that the functions f is indeed convex as in (7.1I)) and S-smooth as in (7.1)),
then it is straightforward to see that implies . Suppose that the functions { f1,-- -, fx } are
convex and /3-smooth. Then is satisfied with B* = 2 since

1 Y 9 X 2 X
N S IVLi@)? < ~ SO IVLiah)|? + ~ IV i) = V()|
=1 =1 i=1
N

< = Y IVAEIE 8 @) - 1),

i=1

— g2
_'Jf

Thus, @ is equivalent to the heterogeneity assumption of ((Mishchenko ef all 2019)) with
G:=o¢ 7. Instead, if the functions are possibly non-convex, then G = € corresponds to the local
dissimilarity defined in ((Li ef al.} 2018)). Note that assuming G is negligible is quite strong and
corresponds to the strong-growth condition ((Vaswani, 2018))).

9.3 RATES OF CONVERGENCE

Theorem I. Suppose that the functions {f;} satisfies assumptions Al, A3 and A4. Then, in each of
the following cases, there exist weights {w, } and local step-sizes 1 such that for any ¢ng > 1 the
output of general aggregation T satisfies

Strongly convex: f; satisfies (A2) for u > 0,7 < 8(1+821)ﬁK¢ng SR> 8(1+f2)6 then
Bl ()] - J(e") £ O+ S b expl o L), 9
General convex: f; satisfies (A2) for u = 0,1 < m, R > 1 then
B@") - f(a*) < O(el D CGND | BT 16
Non-convex: f; satisfies (A1) and 1; < m, then
Vs < o 4 FLCTE | BT an)

where M? = 02(1 + ¢2i773) +K(1-%)G% D :=|z°—z*||? and F := f(z°) — f(z*).

9.4 PROOF OF CONVERGENCE

We will only prove the rate of convergence for convex functions here. The corresponding rates for
non-convex functions are easy to derive following the techniques in the rest of the paper.

Lemma 7. (one round progress) Suppose our functions satisfies assumptions (Al) and (A2)-(A4).

For any step-size satisfying n; < W and effective step-size 7 := K ¢ngn;, the updates of
g

general aggregation satisfy

7‘_*2< _/1‘777 r—=1 _ %2 i~22
Ba" - 2*)|> <(1— SDE[la" " — &) + (=5)iPo

~2
F -9 el @) - fah) + 30,

11

Under review as a conference paper at ICLR 2023

where &, is the drift caused by the local updates on the clients defined to be

1 K N
—— T r—12
Eri= o 2 Y Erlllyii — @)

k=11=1

Proof. We start with the observation that the updates (10) and (11) imply that the server update in
round r can be written as below (dropping the superscripts everywhere)

Ax = _Kis Z}mgs 9i(Yik—1)s (18)
ElAz] = — 2% 220 B[V fi(yin-1)]-

We adopt the convention that summations are always over k € [K] or ¢ € [N] unless otherwise stated.
Expanding using above observing, we proceed a

* * 2~ *
Efle + Az — || =& - @ |* — 75 DV filgie). @ — 2*)
ki

. 1 :
+ 1 Eralllgrg D gilycisk — 1))

k€S
o
<|lx —x*|? *% > (Vfi(Yik-1), 2 — ")
Aq
i 2
iPE, 1||— > Viiyir)l? H—-
szS
As

We can directly apply Lemma 5 with h = f;, £ = y; ,_1,y = * and z = x to the first term 4,
21

Ar = KN (VfiYik-1), " —x)
o
< e U@ = fi(@) + Blyis — 2l = Flle —)

ki

= ~2i(f(@) - f(@") + L]l — 2*|?) + 287E.

For the second term A2, we repeatedly apply the relaxed triangle inequality (Lemma 4)

4s = ﬁ?Er_l[n% S Vi) - V@) + V@)

k€S
< 277 Er 1 Z vfl Yik—1 — vfz())H]+2772E7‘ 1 ||*vaz

kvES i€S

=2
< 2 SB IV - V@] + mﬁmmg S Vhi@) - Vi)
i i€S
27725 2, 2

< e 2Bl — el + 2T+ 1= i 'y LIVA@
< 2P B + 8T + 1)(f (@) — f(a*)) + (1 - %)‘{Z @

*We use the notation E,._1[.] to mean conditioned on filtration i.e. on all the randomness generated prior to
round 7.

12

Under review as a conference paper at ICLR 2023

The last step used Assumption (G,B)-BGD assumption (14) that & S |V fi(z)||> < G2 +

2B8B%(f(x) — f*). The extra (1 — %) improvement we get is due to sampling the functions { f;}
without replacement. Plugging back the bounds on .4; and As,

Er—illz + Az —x*|*] <(1 - %ﬁ)\\w —a*|* — (27 - 887*(B? +1))(f(x) — f(z*))

~ ~ L 5 5 S 477 2
The lemma now follows by observing that 837(B2 + 1) < 1 and that B > 0.

Lemma 8 (bounded drift). Suppose our functions satisfies assumptions (A1) and (A2)—(A4). Then
the updates of general aggregation for any step-size satisfying m; < (IJFBQ)W have bounded
drift:

=2 2

muw“wn—ﬂw»+;g§+wmﬂ?. (19

367, <

[\>]
“3

Proof. If K = 1, the lemma trivially holds since y; o = « forall i € [N] and &, = 0. Assume K > 2
here on. Recall that the local update made on client ¢ is y; = Yi k-1 — M9i(Yi,k—1). Then,
Elllyix — 2lI’] =E[lyin—1 — & — mgi(yix—1)|I°]

<E[|yik—1 — = — mV fi(yin—1)|?] + nio?
1

<= 7 Ellyi—1 — @l?) + K|V fi(yin-)|? + nio?
B 1 2 UN 2L 7o’
=(1 = =—)Ellyss—1 — I’ + WMAVM%kﬂ” K272
1
<(1— — -1 — ||? (@)
<0 = e Bl — 2P+ S IV iyin1) = Vi)
2019)P +
Png K K2¢)277§
1 277262 2 2 2 ﬁ202
1_7]E S —
= g+ g Bl — 2l S IV A @)+ s
1 2 ,;]20.2
<(1 = o)E[||yin—1 — x| e
<0 = g =y Bl =2l + ZHIVA@I + s

In the above proof we separated the mean and the variance in the first inequality, then used the relaxed
triangle inequality with a = K 7 in the next inequality. Next equality uses the definition of 7, and
the rest follow from the Lipschitzness of the gradient. Unrolling the recursion above,

??‘

~2 2
Vfi(@) |2+ L2 3K.

2772 =2 2
n°o 1 - 2772
E[ly: .~ }j (@)]*+ - <(T
g

K2¢2n§)(1 2(K — 1)) dmgKH

Averaging over ¢ and k, multiplying by 3387 and then using Assumption Al,

3ﬁ~3 2 ~ 36~3 2 _ N
KZQ% < 1867°G? + KZQ% +368%7 B2(f(x) — f(x*))

1
367, < o Z 188373V f()||* +

The lemma now follows from our assumption that 8(B + 1)37 < 1.

Proof of Theorem I Adding the statements of Lemmas 7 and Lemmas 8, we get

13

Under review as a conference paper at ICLR 2023

Elle + Aa* 2] <(1 - “D)Elle - o2 + 0 + (1 -) 62—l (@) - f(@)
> 0.2 2
B~ £ 7 (04 o) + g (=) + 189767

Moving the f(x) — f(x*) term and dividing throughout by g, we get the following bound for any
1< 5757

Blf@")] - f(e") <20 - 5

2 S . 4G, S
+377(U 1+ pe) o (1= 1)+ 1887G?).

If o = 0 (general convex), we can directly apply Lemma 2. Otherwise, by averaging using weights
w, = (1 — &1)'~". and using the same Weights to pick output a2, we can simplify the above
recursive bound to prove that for any 7 satlsfymg 7 <N < m

n 3
Byt —) - Sler =

Blf2"] - f(2) <" — &*|]2 pexp(~ TuR)
—_———

=:d

202 S 8G? S

K7$(+ ¢2W§)+T(- N))

+(

+ 777 (36 8G?)
—

Now, the choice of 7} = min{ log(max(;’ng/) T é2)8 5} yields the desired rate. The proof of the

non-convex case is very similar and also relies on Lemma 2.

9.5 LOWER BOUND FOR GENERAL AGGREGATION

We first formalize the class of algorithms we look at before proving out lower bound.

A6 We assume that general aggregation is run with n, = 1, K > 1, and arbitrary possibly adaptive
step-sizes {1, --nr} are used with n, < i and fixed within a round for all clients. Further, the
server update is a convex combination of the client updates with non-adaptive weights.

Note that we only prove the lower bound here for 7, = 1. In fact, bu taking 7, infinitely large and
scaling n; o %ﬂg such that the effective step size 7} = 7,1, K remains constant, general aggregation
reduces to the simple large batch SGD method. Hence, proving a lower bound for arbitrary 7, is not

possible, but also is of questionable relevance. Further, note that when o2 = 0, the upper bound in
Theorem V uses 1y = 1 and hence the lower bound serves to show that our analysis is tight.

Below we state a more formal version of Theorem II.

Theorem II. For any positive constants G, i, there exists i -strongly convex functions satisfying
Al for which that the output of general aggregation satisfying A6 has the error for any r > 1:

F@) - (@) > Qmin(F() - f(z), £>>. o)

Proof. Consider the following simple one-dimensional functions for any given y and G:

filz) = px®+ Gz,
fo(z) = -Gz,

14

Under review as a conference paper at ICLR 2023

with f(z) = (f1(z) + f2(z)) = 42? and optimum at z = 0. Clearly f is p-strongly convex and
further f; and f5 satisfy Al with B = 3. Note that we chose f5 to be a linear function (not strongly

convex) to simplify computations. The calculations make here can be extended with slightly more
work for (f, = £2? — Gx).

Let us start general aggregation from z° > 0. A single local update for f; and fo in round r > 1 is
respectively

vy =y —0-2px + G)
Y2 =y2+ .G

Then, straightforward computations show that the update at the end of round r is of the following
form for some averaging weight a € [0, 1]

K-1

a" =" (1= a)(1 = 2um,) " +) + G Y (a— (1 —a)(1—2um,)7).
7=0

Since « was picked obliviously, we can assume that o < 0.5. If indeed o« > 0.5, we can swap the
definitions of f; and f» and the sign of 2°. With this, we can simplify as

K-1
A =2pm)K +1 G
Py gt U227 AL 1—(1—2un,)"
2> 5 + 75 TZ:;)((1= 2um,)7)
7’]GK_1
> " (1= 2+ T (1= (1= 2m)7).
=0

Observe that in the above expression, the right hand side is increasing with 7, — this represents the
effect of the client drift and increases the error as the step-size increases. The left hand side decreases
with 7,. — this is the usual convergence observed due to taking gradient steps. The rest of the proof
is to show that even with a careful balancing of the two terms, the effect of G' cannot be removed.
Lemma 9 performs exactly such a computation to prove that for any » > 1,

" > cmin(zg.—=).

uR

We finish the proof by noting that f(2") = & (z")2.

Lemma9. Suppose that forallr > 1,7, < i and the following is true:

K-1

> (1= (1= 2um,)7). 1)

7=0

G
{,CT 2 .’Er_l(]. o 2M777‘)K + Ui

Then, there exists a constants ¢ > 0 such that for any sequence of step-size {n™ } :

" > emin(zg, —
x _cmm(a’o,uR)

Proof. Define ~, = un, R(K — 1). Such a ~,. exists and is positive since K > 2. Then, -, satisfies

2y
R(K —1)

K—1

(1 - 24m,) "% = (1~ s

K—1

2 < —).
)5 < exp(- 1)
we then have

15

Under review as a conference paper at ICLR 2023

a K-1
z" > 2" (1= 2um) " + 777 (1= (1 —2um,)7)
=0
Ie. K-1
> 2" (1= 2pme)" + T > (=1 —2um)")
r=(K—1)/2
> x"_l(l — 2/u7T)K + r (1- exp(—&))

The second inequality follows because 7,- < - implies that (1 — (1 — 2un,.)7) is always positive. If
1

Yr > %, then we have a constant ¢; € (0, which satisfies

On the other hand, if v, < %, we have a tighter inequality

K1 27y K1 Vr
1—2unp)" T = (1— =<1
(1 —2pn,) (ROk — 1)) <1-4
implying that
xr > mr—l(l _ 2,7T)K + ’}/EG > xr—l(l _ 477‘) + 772‘G (22)
= R(E -1 4Ry < R’ 4uR

The last step used Bernoulli’s inequality and the fact that K — 1 < K/2 for K > 2. Observe that in
the above expression, the right hand side is increasing with -,. —this represents the effect of the client
drift and increases the error as the step-size increases. The left hand side decreases with ~y, —this is
the usual convergence observed due to taking gradient steps. The rest of the proof is to show that
even with a careful balancing of the two terms, the effect of G cannot be removed.

Suppose that all rounds after 7 > 0 have a small step-size i.e. 7, < R/8 for all > r(and hence
satisfies (22)). Then we will prove via induction that
G

"> min((1 — — 7
2" > min((' 364R

2R

=:icr

)’r‘—’r’o 70

)

For r = 1o, (0.5) is trivially satisfied. Now for r > ¢,

_ 47, ’yQG . _ 1 G . G
LN 1 1— T > r—1 1— — — - 0 .
vz (s) g 2 minGe (L= gp) ope) = min(er™, o R
The first step is because of (22) and the last step uses the induction hypothesis. The second step
considers two cases for ,.: either v, < é and (1 — i) >(1- ﬁ), orvy2 > 6%1. Finally note that
" > % using Bernoulli’s inequality. We have hence proved
1 G
R > in(= "0
> mln(2x , 7256#]%)

Now suppose vy, > %. Then li implies that 27 > ﬁ% for some constant ¢ > 0. If instead no

such 7o > 1 exists, ;R then we can set 79 = 0. Now finally observe that the previous proof did not
make any assumption on R, and in fact the inequality stated above holds for all » > 1.

REFERENCES

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

16

Under review as a conference paper at ICLR 2023

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-ojasiewicz condition. arXiv e-prints, 2016.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132-5143. PMLR, 2020.

A. Kulunchakov and J. Mairal. Estimate sequences for stochastic composite optimization: Variance
reduction, acceleration, and robustness to noise. 2019.

Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured mixture models of topic
correlations. In Proceedings of the 23rd international conference on Machine learning, pages
577-584, 2006.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pages 1273-1282. PMLR, 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Taka¢, and Peter Richtérik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for sgd with delayed
gradients and compressed communication. 2019.

S. Vaswani. Fast and faster convergence of sgd for over-parameterized models and an accelerated
perceptron. 2018.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In International
Conference on Machine Learning, pages 7252-7261. PMLR, 2019.

17

	More details about parameter sensitivity
	Data distribution
	Federated optimizer with elastic aggregation
	The computational overhead of parameter sensitivity
	Communication overhead
	Compare to prior works in pros/cons
	Technicalities
	Additional definitions
	Some technical lemmas

	Properties of convex functions
	Convergence of elastic aggregation
	elastic aggregation
	Bounding heterogeneity
	Rates of convergence
	Proof of convergence
	Lower bound for general aggregation

