
Under review as a conference paper at ICLR 2022

A MORE RELATED WORK

A.1 ROBUSTNESS OVERESTIMATION

We discuss two recently published methods where the emphases on problematic data can be easily
identified from their training objectives (See Table 2) compared to the baseline methods.

• GAIRAT (Zhang et al., 2020b) is based upon PGD-AT with an additional sample-wise weight in
the loss function. Examples that are farther from the decision boundary will be assigned with larger
weights, which amounts to an emphasis on the problematic data since the problematic score can be
alternatively characterized by the distance to the decision boundary (see Appendix D.2).

• MART (Wang et al., 2020) can be largely viewed as a variant of TRADES with an additional term
promoting the loss of those examples with low output probabilities, which also amounts to an
emphasis on the problematic data based on the probability characterization of the problematic score
(see Appendix D.1).

Table 2: Training objectives in the outer minimization in various adversarial training methods, where
`(·, ·) indicates the cross-entropy loss, f(·) indicates the probabilistic prediction of a model and
fy(·) indicates the probability corresponding to class y, � indicates the adversarial perturbation of x
generated by the inner maximization.

Method Training objective

PGD-AT minf Ex,y [`(f(x+ �), y)]
GAIRAT minf Ex,y [!(x, y)`(f(x+ �), y)]

TRADES minf Ex,y [`(f(x), y) + � · `(f(x), f(x+ �))]
MART minf Ex,y [`(f(x+ �), y) + � · `(f(x), f(x+ �))(1� fy(x))]

A.2 ROBUSTNESS-ACCURACY TRADE-OFF

We note that there exists an abundant body of works that focuses on the robustness-accuracy trade-off
in robust learning. In additional to the related works discussed in the main paper, here we review
some works that attack this problem from other perspectives. This is by no means an exhaustive
review.

It has been argued that the robustness-accuracy trade-off is inherent to the data distribution and is
thus inevitable for any classifier. Tsipras et al. (2018; 2019) and Zhang et al. (2019) theoretically
show that no optimal classifier can achieve both robustness and accuracy on toy problems. Dohmatob
(2018) formalizes this into a “No Free Lunch” problem, and further proves the inevitability of
trade-off under mild assumptions of the data distribution. Nakkiran (2019) shows that the trade-off is
inevitable because the hypothesis class is not expressive enough. Javanmard et al. (2020) shows that
the adversarial training may improve generalization in an over-parameterized regime, but hurt it in
under-parameterized regime.

On the contrary, some works argue that the robustness-accuracy trade-off is not necessarily inevitable
in a realistic setting. Raghunathan et al. (2020) shows that the trade-off stems from the over-
parameterization of the hypothesis class. Robust self-training (Carmon et al., 2019; Najafi et al.,
2019; Uesato et al., 2019), overcoming the sample complexity leveraging additional unlabeled data,
thus can effectively mitigate the trade-off. Yang et al. (2020b) shows that the trade-off in practice is a
result of either the model failing to impose local Lipschiztness, or not generalizing sufficiently. Wen
et al. (2020) and Roth et al. (2020) show that adversarial training is essentially a form of operator
norm regularization, thus hurting the generalizability if not properly configured.

There are more works implying that the robustness and accuracy may not be contradict by showing
that adversarial examples can benefit generalization either through different perturbation generation
strategies (Stutz et al., 2019) or different adversarial training strategies (Xie et al., 2020).
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A.3 DATA PROFILING IN STANDARD LEARNING

In classical machine learning, data quality is important because algorithms may be sensitive to noise
and outliers. By measuring the degree of class overlapping and skewness in a dataset, Smith et al.
(2013) proposes a generic definition of instance hardness representing how likely an example will be
misclassified. Prudêncio et al. (2015) motivates from item response theory (IRT) (Embretson & Reise,
2000; Ayala, 2008) to characterize instance hardness. Smith & Martinez (2011) shows that properly
removing hard examples in the dataset improves performance for a variety of learning algorithms
including but not limited to Decision Tree and Support Vector Machine.

In deep learning regime, models with large capacity are typically more robust to outliers. Nevertheless,
data examples can still exhibit diverse levels of difficulties. Arpit et al. (2017) finds that data examples
are not learned equally when injecting noisy data into training. Toneva et al. (2019) shows that
certain examples are forgotten frequently during training, which means that they can be first classified
correctly then incorrectly. Model performance can be largely maintained when removing those least
forgettable examples from training. Zhou et al. (2020) proposes to dynamically estimate instance
hardness during training and encourage the model to focus on those hard examples from a curriculum
learning (Bengio et al., 2009) perspective, which can improve both the performance and efficiency for
a wide range of datasets and neural architectures. More generally, under a self-paced learning (Kumar
et al., 2010) framework, diverse methods have been proposed to mine hard examples on the fly (Chang
et al., 2017).

A.4 DATA PROFILING IN ROBUST LEARNING

In robust learning regime, the model is required to learn features that are robust to perturbations.
Such task is generally more difficult, where the data examples are thus more likely to differentiate
in terms of their behaviours in learning or contribution to the model performance. Plenty of works
have analyzed the diverse behaviours of data during adversarial training, and proposed a variety of
methods that treating the data examples differently. A detailed review has been made in Section 2,
and Section 4.3, 4.1, 4.2 that focus on existing problems in adversarial training specifically.

Here we mainly review works that investigate adversarial examples from a data perspective.
Hendrycks et al. (2019b) collects a set of unperturbed images, known as the “natural adversarial
examples”, that significantly degrades the performance of state-of-the-art image classifiers. Pestana
et al. (2020a) observes that the adversarial perturbations concentrate in the Y-channel of the YCbCr
space, which is believed to contain more shape and texture related information. Pestana et al. (2020b)
reports the existence of a set of images that are particularly robust to adversarial perturbations.
Including such data in validation significantly limits the reliability of the robustness evaluation.

B MORE EXPERIMENT RESULTS

B.1 ADDITIONAL NEURAL ARCHITECTURES

Figure 8: Correlation between data quality and three problems in adversarial training shown by
conducting controlled experiments on WRN-28-10.

In this section we show the interconnection between data quality and those three problems in
adversarial training including robust overfitting, robustness overestimation and robustness-accuracy
trade-off also holds true for other neural architectures such as WRN. Here we conduct experiments on
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WRN-28-10 and employ PGD training on CIFAR-10 as an example. As shown in Figure 8, as low-
quality examples are removed from the training set, the robust overfitting would vanish, robustness
overestimation and robustness-accuracy trade-off would become less significant, in contrast to the
observations when removing randomly selected examples.

B.2 DATA QUALITY AND ROBUSTNESS

Experiments on different models and perturbation sizes. For larger perturbation radii and
smaller models, removing a certain group of low-quality examples yields more robustness improve-
ment as shown in Figure 9a and Figure 9b respectively. Note that in Figure 9b, the robustness
improvement yielded by removing 20% examples with the lowest quality diminishes as the model
capacity increases. For considerably large models such as WRN-34-10 it will eventually hurts. These
analyses match our intuition that adversarial examples produced by large perturbation are hard to
learn; and smaller models are hard to learn adversarial robustness.

(a) Removing a set of low-quality examples improves
the robustness consistently for different training per-
turbation radii ". The robustness improvement is more
prominent for larger perturbation radii (� 10/255).
Here we remove 20% examples with the lowest qual-
ity. We conduct adversarial training with PGD-AT.
The model is fixed as pre-activation ResNet-18. Other
details of the experimental settings are mentioned in
Appendix F.

(b) The robustness improvement by removing a set of
low-quality examples is more prominent for smaller
models, and gradually vanishes as the model capacity
increases. Here we control the model capacity by mod-
ulating the depth of Wide ResNet, where the width is
fixed as 10. We experiment on PGD-AT with the train-
ing perturbation radius yielding the best robustness
(12/255).

B.3 DATA QUALITY AND ROBUST OVERESTIMATION

Experiments on more robustness evaluation methods. To exclude the possibility that AutoAt-
tack itself is sensitive to the data property due to its sophisticated design, we take CIFAR-10 as an
example and select 20% as a representative fraction of low-quality examples being removed where
the overestimation gap shrinks significantly. We further evaluate the robustness obtained by removing
20% low-quality examples against a variety of black-box attacks including Square Attack, RayS and
transfer attack from a separately trained surrogate model (See Appendix F for details). We conduct
repeated experiments (5 times) to reduce the statistical bias. We find that compared to the training set
with 20% low-quality examples removed, the robustness obtained on the entire training set can be
significantly higher (⇠ 2%) when evaluated against PGD-10 and PGD-1000, i.e. PGD attack with up
to 1000 iterations. However, the improvement is actually not clear if evaluated against Square Attack
and RayS in that the average difference is less than the standard deviation, and may even be negative
for AutoAttack and transfer attack. In contrast, compared to the training set with 20% randomly
selected examples removed, the robustness obtained on the entire training set is consistently higher for
all evaluation attacks. This demonstrates that the low-quality data can cause difficulty for PGD attack
to reliably evaluate the robustness, which cannot be avoided even with a substantially large number
of iterations. This also implies PGD attack is likely to be suboptimal with fixed parameters (Mosbach
et al., 2018; Croce & Hein, 2020b).
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C MORE ABOUT DATA QUALITY

C.1 CALCULATION OF THE DATA QUALITY RANK

To output a relatively accurate estimation of the data quality rank, we synthesize the results of multiple
experiments. Specifically, we adversarially train a pre-activation ResNet-18 using PGD-10 on the
entire CIFAR-10 training set for 160 epochs with learning rate initialized as 0.1 and decayed at epoch
80 and 120 with a factor of 10. We repeat the training 10 times and average the data quality ranks
calculated on each example, which yields a relatively stable estimation2.

C.2 DISTRIBUTION OF LEARNING STABILITY

In Section 3.2, we estimate the data quality relatively by calculating the ranking of the examples
based on learning stability. Directly using learning instability to measure the data quality might be
troublesome as its magnitude varies greatly across different training settings (e.g. number of training
epochs).

Figure 10 shows the distribution of the learning stability with different training epochs. One may
observe that, the overall magnitude of the learning stability varies greatly as the training setting
changes, which is reasonable since the model complexity hinges on the training settings and all
training examples will eventually be overfitted given sufficient training epochs.

Figure 10: The distribution of learning stability given different training epochs.

D MORE METHODS TO MEASURE THE DATA QUALITY

In this section, we show that it is possible to estimate the data quality motivated from multiple
measurements including prediction probability, minimum perturbation and learning order. Each
measurement is itself consistent across different training settings, and is also correlated with the
data quality rank estimated in Section 3.1. We also briefly review existing adversarial training
methods leveraging these measurements to customize the inner maximization or outer minimization
for individual examples in their designs, which implies that their improved performance is potentially
due to treating examples of different data quality differently.

D.1 PREDICTION PROBABILITY

Based on the standard adversarial training (Madry et al., 2018), multiple variants pivot on the
utilization of soft output in the adversarial loss function. Here we specifically refer the soft output as
the either the output before the softmax function, namely logit, or that after the softmax function,
namely prediction probability. Adversarial logit pairing (ALP) (Kannan et al., 2018) is a method
explicitly penalizing the difference between the logits from an clean example and its adversarial
counterpart on top of the standard cross-entropy loss for adversarial training. BGAT (Cui et al., 2020)
instead collects the logits of clean examples from an auxiliary clean model. GAT (Sriramanan et al.,
2020) adopts a similar loss function penalizing probability difference instead of logit difference.

2Due to computational constraints, this estimation process only provides about 1600 unique values for data
quality ranks, which are not enough to differentiate all the 5⇥ 104 training examples in CIFAR-10. However, in
above analyses, we at most partition the training set into 10 subsets with different quality levels, which only
results in about 0.6% indistinguishable examples between any two adjacent subsets. One can seek more accurate
estimation of data quality rank by incorporating the results from more experiments.
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VAT (Miyato et al., 2019) and TRADES (Zhang et al., 2019) propose a loss function matching
the probability from an adversarial example with its clean counterpart, instead of the true label.
Self-adaptive training (Huang et al., 2020) and MART (Wang et al., 2020) use the probabilities from
clean examples to weight the examples in the loss function, although the former focuses more on
examples with high probabilities while the latter focuses more on examples with low probabilities.

Prediction probability is also related to whether an example is correctly classified or not. Low
probability of the true label indicates an example is likely to be misclassified, which might be
troublesome in adversarial training because adversarial examples of misclassfied examples are
“undefined” (Wang et al., 2020). Several methods are thus motivated to treat correctly classified and
misclassified examples differently. MMA (Ding et al., 2020) employs adverarial training only on
correctly classified examples, leaving misclassified examples to standard training. MART (Wang
et al., 2020) introduces a term associated with the probability of the true label in the loss function
to encourage the learning on misclassified examples. A summary of the loss functions employed in
these methods can be found in Table 1 by Wang et al. (2020).

Recently, adversarial training with additional data becomes increasingly popular. Prediction probabil-
ity is used to identify high-quality data that is more relevant to the original distribution (Gowal et al.,
2020).

(a) Prediction probability (b) Minimum perturbation (c) Learning order

Figure 11: Correlation between data quality rank and other measurements

Here we show that the prediction probability of an example is correlated with its data quality rank.
These sophisticated methods are thus likely to achieve robustness gain by treating examples with
different quality levels differently. We specifically refer the prediction probability as the probability
corresponding to the true label from a clean input, and use the best model in terms of robustness
throughout training to estimate it. For every example, we average the probabilities obtained by the
same 10 experiments introduced in Section C.1. As shown in Figure 11a, prediction probability
is inversely correlated with data quality rank. A high-quality example is inclined to be correctly
classified by the model with high probability. We do not estimate the data quality based on whether
an example will be misclassified or not since the misclassification rate varies greatly across different
training settings.

D.2 MINIMUM PERTURBATION

Standard adversarial training often sets a perturbation radius universal to all training examples.
However, it has been widely noticed that individual examples may have different levels of robustness
against adversarial attacks. It might be helpful to customize the perturbation for each example during
adversarial training. MMA (Ding et al., 2020) proposes a method to estimate proper individual
perturbation for each example based on its distance to the decision boundary. The perturbation
is determined by a line search along the perturbation direction initialized by a norm-constrained
PGD attack. In a similar vein, IAAT (Balaji et al., 2019) performs a dynamic update of individual
perturbation throughout the training. CAT (Cheng et al., 2020) further incorporates individual label
smoothing based on the estimated perturbation level. Instead of customizing individual perturbation
radius for each example, FAT (Zhang et al., 2020a) customizes the number of attack iterations for
each example, such that the perturbation is just enough to fool the model. GAIRAT (Zhang et al.,
2020b) further adopts a weighted loss function based on such individual attack iterations to focus
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more on those examples far from the decision boundary. Nevertheless, none of these works detailedly
analyzes the impact of such individual perturbation on the adversarial training.

Here, we show that profiling the data based on individual perturbation radius leads to similar result as
that motivating from learning stability introduced in Section 3.1. We denote the minimum perturbation

of an example as the smallest perturbation radius required to change a model’s prediction on it. Ideally,
the minimum perturbation of an example amounts to its minimum distance to the decision boundary.
We use an untargeted attack based on I-FGSM (Iterative Fast Gradient Sign Method) (Goodfellow
et al., 2015; Kurakin et al., 2017) with step size 1/255 based on the implementation in Adversarial
Robustness Toolbox (ART) (Nicolae et al., 2018). We empirically found the step size 1/255 is often
small enough to ensure a converged minimum perturbation. One can also employ other attacks
including but not limited to DeepFool (Moosavi-Dezfooli et al., 2016), CW (Carlini & Wagner,
2017), EAD (Chen et al., 2018) and FAB (Croce & Hein, 2020a) in estimation. But note that all
these methods cannot obtain the true minimum perturbation, but only the upper bound of it (Weng
et al., 2018). Estimation of the minimum perturbation through optimization is known as a NP-hard
problem (Katz et al., 2017).

In Figure 11b, we use the best model in terms of robustness obtained in training to estimate the
minimum perturbation, and average the results obtained by the same 10 experiments mentioned in
Section C.1. One can find that the minimum perturbation is inversely correlated with the data quality
rank, which means that a low-quality example is more likely to reside near the decision boundary.
This suggests the sophisticated methods mentioned above are likely to treat examples with different
qualities differently. It also suggests that examples with different amounts of minimum perturbation
will influence the adversarial training differently in terms of the contributions to robustness and
aforementioned problems.

D.3 LEARNING ORDER

Learning order refers to the phenomenon that Deep Neural Networks (DNNs) learn the examples in
a similar order, which is shared by different random initializations and neural architectures. Such
phenomenon is observed widely in standard training and training with noisy inputs and labels (Arpit
et al., 2017; Li et al., 2020). It is demonstrated that the learning order originates from the coupling
between DNNs and benchmark datasets (Hacohen et al., 2019), since DNNs learn synthetic datasets
without a specific order and classifiers other than DNNs such as AdaBoost (Freund & Schapire, 1995)
learn benchmark datasets without a specific order.

We show that learning order still exists in adversarial training. We denote the 1st
learned epoch as

the first epoch when a training example is classified correctly under adversarial attack. We show
there is a correlation between the 1st learned epochs of an example across different training settings
(see Section D.4). Furthermore, we show that learning order is correlated with data quality rank. In
Figure 11c, we average the 1st learned epochs of an example obtained by the same experiments as
mentioned in Section C.1. One can find the 1st learned epoch is positively correlated with its quality
rank, which means low-quality examples are likely to be learned late during training.

Note that if we pick the best epoch3 as a boundary and partition the training examples based on
their 1st learned epochs, the resulting two subsets correspond to exactly the correctly classified
and misclassified examples. This implies that those adversarial training methods treating examples
differently based on whether they are correctly classified or not, as mentioned in Section D.1, are
likely to be a special case of treating examples differently based on their quality, from yet another
perspective.

D.4 CONSISTENCY OF THE MOTIVATION

We show that each motivation mentioned above is itself consistent across different training settings.
Therefore it is possible to estimate the data quality rank similarly from each motivation. In Figure 12,
13, 14, we use the same experiments mentioned in Figure 2 to show that the prediction probability,
minimum perturbation and learning order are all consistent across random initializations, different
training methods, and neural architectures. Nevertheless, one may find that these estimations are

3The epoch when the best model in terms of robustness is obtained
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relatively less consistent compared to the data quality rank estimated from learning stability, which is
the major reason that we estimate the data quality rank from learning stability in the main text.

(a) Random initializations (b) Different methods (c) Different models

Figure 12: Scatter plots of the quality ranks of training examples based on prediction probabilities
obtained by different training settings. The prediction probability of an example is consistent across
random initializations, different methods and models.

(a) Random initializations (b) Different methods (c) Different models

Figure 13: Scatter plots of the quality ranks of training examples based on minimum perturbations
obtained by different training settings. The minimum perturbation of an example is consistent across
random initializations, different methods and models.

(a) Random initializations (b) Different methods (c) Different models

Figure 14: Scatter plots of the quality ranks of training examples based on 1st learned epochs obtained
by different training settings. The 1st learned epoch refers to the first epoch when an example
is classified correctly under adversarial attack, which is consistent across random initializations,
different methods and models.
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E LIMITATIONS OF REMOVING LOW-QUALITY DATA

We note that removing low-quality training data cannot be advocated as a completing method.
Although removing low-quality data can benefit the robustness in certain scenarios, it will inevitably
impair the standard accuracy, since those hard examples are of high-quality to standard training.
As shown in Table 3, removing the 20% examples with the lowest quality can improve the best
robustness consistently for different training methods and perturbation radii, but will also diminish
the standard accuracy for most settings (except PGD training with perturbation radius 12/255).

Table 3: Performance of adversarially training a pre-activation ResNet-18 on CIFAR-10 using PGD
and TRADES with different training perturbation radii.

Method " (/255)
# Training
samples

removed (%)
Standard Acc (%) Robust Acc (%)

PGD 8 0 83.92 48.12
PGD 8 20% 82.26 48.24

PGD 12 0 76.08 48.95
PGD 12 20% 77.85 49.22

TRADES 8 0 81.73 48.18
TRADES 8 20% 78.16 49.35

TRADES 12 0 76.56 45.40
TRADES 12 20% 73.53 46.85

F EXPERIMENT DETAILS

We adopt the following setting for all experiments unless otherwise noted.

Robustness evaluation. We consider the robustness against `1 norm-bounded adversarial attack
with perturbation radius 8/255. Throughout the paper, the following attacks are employed.

• AutoAttack: This is currently the strongest adversarial attack to the best of our knowledge. No
parameter setting is required.

• PGD-10: PGD with 10 attack iterations and step size fixed to 2/255.

• PGD-1000: PGD with 1000 attack iterations. The step size is fixed to 2/255, which is the best
value suggested by Croce & Hein (2020b).

• Square Attack: This is a strong score-based black-box attack and is also built into the standard
AutoAttack. We list it separately here to eliminate the possibility that the adaptive design in
AutoAttack can be sensitive to the data. We adopt 1 restart with maximally 5000 queries.

• RayS: This is a strong decision-based black-box attack that only requires the final prediction of the
model. We set the maximum number of queries to be 10000.

• Transfer attack: We use PGD-AT to adversarially train a WRN-28-10 on the CIFAR-10 training
set. The model at the best checkpoint in terms of the robustness will then serve as a surrogate
model to generate the adversarial attack.

Adversary setting. We conduct adversarial training with `1 norm-bounded perturbations. We
employ PGD-AT and TRADES as base methods, and two sophisticated variants GAIRAT and MART.
We fix the perturbation radius to 8/255 unless otherwise noted. The number of attack iterations is
fixed as 10, and the perturbation step size is fixed as 2/255. We adopt early stopping (Rice et al.,
2020) as a default strategy and report the best robustness obtained throughout the training. Additional
settings specific to each method are listed as follows.

• TRADES: The regularization hyperparameter is fixed as 1/� = 6.0 as recommended in the official
implementation.
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• GAIRAT: A sample-wise weighting based on the distance to the decision boundary is employed
in GAIRAT. The distance to the decision boundary is approximated by the minimum number of
iterations (x, y) to generate adversarial perturbation that successfully fools the model in the inner
maximization. The sample-wise weighting is given by

w(x, y) =
1 + tanh(�+ 5 · (1� 2 · (x, y)/K))

2
,

where K is the maximum number of iterations. We fix � = 0 throughout the training. !(x, y) will
be normalized to ensure

Pn
i !(x, y)/n = 1, where n is the total number of training examples.

• MART: We adopt the version that employ the boosted cross entropy (BCE) loss in the outer
minimization. The regularization hyperparameter is fixed as 1/� = 6.0 to be aligned with
TRADES.

Training setting. We employ SGD as the optimizer. The momentum and weight decay are set
as 0.9 and 0.0005 respectively, which are aligned with the common practice. For Wide ResNet, we
conduct the training for 120 epochs, with the learning rate starting at 0.1 and reduced by a factor 10
at epoch 100 and 110. For other neural architectures, we conduct the training for 160 epochs, with
the learning rate starting at 0.1 and reduced by a factor of 10 at epoch 80 and 120.

Dataset. We conduct experiments on three datasets including CIFAR-10, CIFAR-100 and
Tiny-ImageNet without additional data.

Neural architecture. We conduct experiments with pre-activation ResNet-18, VGG and Wide
ResNet.

Hardware. We conduct experiments on NVIDIA Quadro RTX A6000..

G EXPLANATION

In this section, we move one step further to probe into the effect of data quality in adversarial training.
In previous works, it has been proven that standard classifier and robust classifier learn fundamentally
different features (Tsipras et al., 2019). Useful features prevail in the dataset, but are not necessarily
robust and comprehensible to human (Ilyas et al., 2019). In light of such analyses of robust/non-
robust features, we motivate from a feature learning perspective and try to uncover the potential
mechanisms of how low-quality data is interconnected with the existing difficulties in adversarial
training including robustness-accuracy trade-off, robust overfitting and robustness overestimation.
Under the assumption that similar features will be recognized in a specific class of examples, we
selectively conduct the adversarial training on either one or a few classes of examples. In this way,
we can isolate the impact of each set of similar features and analyze the effects of low-quality data on
the learning of features.

G.1 ROBUSTNESS-ACCURACY TRADE-OFF

Towards understanding the correlation between robustness-accuracy trade-off and data quality, we
conjecture that low-quality data will cause the loss of useful features in adversarial training.

As shown in Figure 3a, low-quality examples are intrinsically ambiguous from a human perspective.
Therefore, if the perturbation radius is relatively large, the adversarial attack may generate reasonable
images of classes other than the true class. Indeed, as shown in 3a, the adversarial counterparts of
low-quality examples catch salient characteristics of the classes that the model predicts. In contrast,
the adversarial counterparts of high-quality examples are still explicit images of the true classes.
Here, we adversarially attack an example using PGD-20 with perturbation radius " = 16/255 based
on the best model obtained through PGD-AT. The perturbation radius 16/255 is exactly twice the
perturbation radius commonly used in adversarial training, which implies that adversarial counterparts
generated on the low-quality examples during the training might be marginal cases from a human
perspective.

Based on the above observation, we suspect that the adversarial training might not be suitable for
low-quality examples. It is explained in Ilyas et al. (2019) that adversarial training works because the
adversary can exploit non-robust features of classes other than the true class, thus forcing the model
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to rely only on the robust features of the true class. However, due to the ambiguity, such “distracting”
features generated on a low-quality example might be too prominent such that it overwhelms the
regular features of other classes when it is forced to be classified into the true class of this example,
thus significantly damage the recognizability of other classes.
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Figure 15: Fine tune the model obtained by standard training with adversarial examples generated by
targeted attack on either all the training examples or the high-quality subset among them. When the
attack in adversarial training is primarily targeted to “Airplane”, the test accuracy of “Airplane” after
fine-tuning is significantly lower, while the test accuracies of other classes are comparable. Instead,
when the attack is targeted to “Automobile”, the test accuracy of “Automobile” after fine-tuning is
significantly lower. In contrast, when fine tuning the model only on the high-quality subset, such
difference is not significant.

We manifest such loss of recognizability by robustly fine tuning the model obtained by standard
training. Instead of untargeted attack, we use targeted attack in adversarial training4 to isolate the
effect of recognizability loss. Specifically, for the PGD attack employed in adversarial training, we
replace the inner maximization by a minimization towards a target class c, except for those examples
have class c as their true labels, where the target is directed to another class c00. We refer this special
case as c� c00 adversarial training. Figure 15 shows the average standard test accuracy produced
by fine-tuning for 30 epochs using Airplane-Truck, Automobile-Truck and Ship-Truck adversarial
training. These classes are selected because the model produces highest standard test accuracy on
them. One can find that, when the attack in adversarial training is primarily targeted to “Airplane”,
the test accuracy of “Airplane” after fine-tuning is significantly lower, while the test accuracies of
other classes are comparable. Instead, when the attack is targeted to “Automobile”, the test accuracy
of “Automobile” after fine-tuning is significantly lower. In contrast, when fine tuning the model
only on the high-quality examples, such difference is not significant. This reflects the detail of how
low-quality examples in adversarial training hurts the learning of useful features.

G.2 ROBUST OVERFITTING

Here, we further show that the low-quality examples will also damage the robust recognizability. In
adversarial training, the gradient-based adversary may generate robust features of another class on
low-quality examples due to their intrinsic ambiguity, especially when the model is already relatively
robust. Consequently, the model may forget the robust recognizability of other classes because it is
forced to classify such robust feature to the original class, which leads to robust overfitting.

We manifest the loss of recognizability by fine-tuning the best model obtained by a regular adversarial
training. Similarly, we use targeted attack to isolate the effect. Figure 16 shows the average robust test
accuracy produced by fine-tuning the best model for 30 epochs using Airplane-Truck, Automobile-
Truck and Ship-Truck adversarial training. These classes are selected because the model produces
highest robust test accuracy on them. One can find similar results that, when the attack in adversarial
training is primarily targeted to “Airplane”, the robust test accuracy of “Airplane” after fine-tuning is
significantly lower. Instead, when the attack is targeted to “Automobile”, the robust test accuracy of
“Automobile” after fine-tuning is significantly lower. In contrast, when fine tuning the model only on
the high-quality data, such difference is not prominent.

4It is not common to use targeted attack in adversarial training, only for demonstration here.
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Figure 16: Fine tune the best model obtained in adversarial training with targeted attack on either
all the training examples or the high-quality subset among them. When the attack in adversarial
training is primarily targeted to “Airplane”, the robust test accuracy of “Airplane” after fine-tuning is
significantly lower, while the performance of other classes are comparable. We can observe similar
patterns when the attack is targeted to “Automobile” or “ship”. In contrast, when fine tuning the
model only on the high-quality subset, the difference is insignificant.

G.3 ROBUSTNESSS OVERESTIMATION

All 

Airp
lan

e 

Auto
mob

ile Bird
 

Cat 
Dee

r 
Dog

 
Frog

 

Hors
e 

Ship
 

Truc
k 

0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

2.00 

O
ve

re
st

im
at

io
n 

ga
p 

+Low-quality 
High-quality set  
+Airplane 
+Ship 
+Airplane & Ship 

All 

Airp
lan

e 

Auto
mob

ile Bird
 

Cat 
Dee

r 
Dog

 
Frog

 

Hors
e 

Ship
 

Truc
k 

0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

2.00 
+High-quality 

High-quality set 
+Airplane 
+Ship 
+Airplane & Ship 

Figure 17: The overestimation gap, namely the difference between PGD-10 and Auto Attack evalua-
tion, generated by adding examples of two competing classes into a high-quality subset.
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Figure 18: The overestimation gap generated by adding examples of two non-competing classes into
a high-quality subset.

We show that the low-quality data causes robustness overestimation through a mechanism which
we refer as “competing”. In Figure 17, we sample a subset by adding 500 additional low-quality
examples5 to a class-balanced high-quality subset of size 104, adversarially train the model on

510% of all the training examples in one class
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it, and show the overestimation gap. One can find that when we only add examples of one class
either “Airplane” or “Ship”, the overestimation gap increases, but not significantly compared to
the overestimation gap of the original high-quality subset. However, if we add the examples of
two “competing” classes “Airplane” and “Ship” at the same time, the overestimation gap increases
substantially, and mostly attributes to the class “Ship”. Here, “competing” classes means these
two classes contain images that are likely to have similar features6. The overestimation gap is not
significant if the additional examples are not from two “competing” classes, as shown in Figure 18
where we add additional examples from either “Airplane” and “Horse”, or “Ship” and “Horse”. The
overestimation gap is also not significant if the additional examples are not low-quality, as shown in
Figure 17 where we add additional high-quality examples, even if they are from competing classes.

Towards understanding this mechanism, we focus on the inner maximization since overestimation
mainly indicates weakened generation of adversarial perturbation, while previously we assume this
process is ideal. Recall that adversarial attack works because in the inner maximization, the adversary
optimizes towards classes other than the original class and thus can exploit distracting features to fool
the model (Ilyas et al., 2019). However, since the ambiguous low-quality examples from different
classes tend to contain similar features, the adversary may optimize towards different classes starting
from similar features, subsequently damage its capability to exploit distracting features of these
classes.

6One can refer to the sample images we showed in Figure 3a
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