
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Realistic Gesture: Co-Speech Gesture Video Generation Through
Context-Aware Gesture Representation

Supplementary Material

A OVERVIEW

The supplementary material is organized into the following sections:

• Section B: Dataset Details and Preprocessing
• Section C: Additional Implementation Details
• Section D: Speech-Gesture Alignment
• Section E: Additional Experiments
• Section F: Time and Resource Consumption
• Section G: User Study Details
• Section H TPS-based Image Warping
• Section I Ethical Ethical Considerations
• Section J: Limitations

For more visualization, please see the additional demo videos.

B DATASET DETAILS AND PREPROCESSING

B.1 PREPROCESSING

We found that many videos used in ANGIE Liu et al. (2022) and S2G-Diffusion He et al. (2024),
particularly for the subject Jon, are no longer available. To address this, we replaced Jon with
Noah. We utilized the PATS Ginosar et al. (2019) metadata to download videos from YouTube and
preprocess them. After filtering, we obtained 1080 videos for Oliver, 1080 for Kubinec, 1080 for
Seth, and 988 for Noah. For the testing dataset, we collected 120 videos for Oliver, 120 for Kubinec,
120 for Seth, and 94 for Noah.

During the dataset preprocessing, while for image-generation we use the whole video preprocessed
as above, for for the speech-gesture alignment and gesture pattern generation modules, we further
preprocess the data by slicing them into smaller chunks following S2G-Diffusion He et al. (2024).
Specifically, based on the source training dataset, the keypoint sequences and audio sequences are
clipped to 80 frames (3.2s) with stride 10 (0.4s) for training. We obtain 85971 overlapping training
examples and 8867 testing examples for gesture pattern modeling.

B.2 FEATURE REPRESENTATION

Gesture Keypoints. We utilize RTMPose Jiang et al. (2023) from MMPose OpenMMLab (2020)
for whole-human-body keypoint identification. The keypoint definition is based on by 133 CoCo
human pose estimation. Due to the PATS Ginosar et al. (2019) only contains the upper body, we
select 68 face landmarks for face motion modeling, 3 for left shoulder, 3 for right shoulder, 21 for
left hand and 21 for right hand separately, which results in flattened face feature with dim of 136
and body feature with dim of 96.

Audio Features. The audio features are pre-extracted WavLM features (dim of 1024) with
additional low-level mel-spectrum and beat information with dimension of 34. We concatenate
them channel-wise as the speech feature.

B.3 DATASET LICENSE.

The video data within PATS dataset include personal identity information, and we strictly adhere to
the data usage license “CC BY - NC - ND 4.0 International,” which permits non-commercial use.
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C ADDITIONAL IMPLEMENTATION DETAILS

We jointly train the framework on four speakers. The following sections provide the technical details
for each module’s training.

Optimizer Settings. All modules utilize the Adam Optimizer Kingma (2014) during training, with
a learning rate of 1× 10−4, β1 = 0.5, and β2 = 0.999.

Speech-Gesture Alignment. For aligning speech with facial and bodily gestures, we implement
two standard transformer blocks for encoding each modality. The latent dimension is configured to
384, accompanied by a feedforward size of 1024. We calculate the mean features for both modalities
and project them using a two-layer MLP in a contrastive learning framework, with a temperature
parameter set to 0.7.

Residual Vector Quantization (RVQ) Tokenization. We employ four layers of codebooks for
residual vector quantization Lee et al. (2022) for both face and body modalities, each comprising
512 codes. To address potential collapse issues during training, we implement codebook resets. The
RVQ encoder and decoder are built with two layers of convolutional blocks and a latent dimension
of 512. We avoid temporal down-sampling to ensure the latent features maintain the same temporal
length as the original input sequences. During RVQ training, we set α = 1 and β = 0.5 to balance
gesture reconstruction with speech-context distillation.

Mask Gesture Generator. The generator takes sequences of discrete tokens for both face and
body, derived from the RVQ codebook. This module includes two layers of audio encoders for face
and body, initialized based on the Speech-Gesture Alignment. The latent dimension is again set
to 384, with a feedforward dimension of 1024, and it features eight layers for both modalities.
A two-layer MLP is utilized to project the latent space to the codebook dimension, and cross-
entropy is employed for model training. We calculate reconstruction and acceleration loss by
feeding the predicted tokens into the RVQ decoder. A reconstruction loss of 50 is maintained
during training, and the mask ratio is uniformly varied between 0.5 and 1.0. For inference, a cosine
schedule is adopted for decoding. The Mask Gesture Generator is trained over 1000 epochs, taking
approximately 1.5 days to complete.

Residual Gesture Generator. The Residual Gesture Generator is designed similarly to the Mask
Gesture Generator but utilizes only six layers for the generator. It features four embedding and
classification layers corresponding to the RVQ tokenization scheme for residual layers. This module
is trained for an additional 500 epochs, requiring about 0.5 days to finalize.

Image Warping. For pixel-level motion generation, we utilize Thin Plate Splines (TPS) Zhao
& Zhang (2022). Our framework tracks 116 keypoints (68 for the face and 48 for the body).
The number of TPS transformations K is set to 29, with each transformation utilizing N = 4
paired keypoints. In accordance with TPS methodologies, both the dense motion network and
occlusion-aware generators leverage 2D convolutions to produce 64 × 64 weight maps for optical
flow generation, along with four occlusion masks at various resolutions (32, 64, 128, and 256) to
facilitate image frame synthesis.

Image-refinement. We use the UNet similar to S2G-Diffusion He et al. (2024) to restore missing
details, further improve the hand and shoulder areas. We keep the training loss to be the same except
the added conditional adversarial loss based on edge heatmap. For the network design difference,
we add the multi-level edge heatmap as additional control for different resolutions (32, 64 and 128).
Each correponds to a SPADE Park et al. (2019) block to inject the semantic control into the current
generation.

D SPEECH-GESTURE ALIGNMENT

To validate the effectiveness of Speech-Gesture Alignment, inspired by TMR Petrovich et al. (2023)
we propose the following speech2gesture and gesture2speech retrieval as the evaluation benchmark.
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Table 1: Speech-to-Gesture Motion retrieval benchmark on PATS: We establish two evaluation settings as
described in Section D.

Setting Speech-Face retrieval Face-Speech retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑

(a) All 0.181 0.350 0.485 0.722 1.343 0.226 0.361 0.429 0.677 1.207

(a) w/o mask 0.142 0.326 0.388 0.656 1.112 0.158 0.299 0.343 0.612 1.026

(b) Small batches 26.230 45.318 59.330 77.019 89.858 24.977 44.822 59.894 77.775 90.264

(b) w/o mask 25.373 44.221 60.432 78.141 88.232 24.534 44.532 59.121 74.232 87.675

Setting Speech-Body retrieval Body-Speech retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑

(a) All 0.102 0.237 0.327 0.587 1.230 0.158 0.271 0.406 0.654 1.320

(a) w/o mask 0.112 0.143 0.303 0.494 1.023 0.144 0.253 0.384 0.599 1.187

(b) Small batches 25.542 43.660 57.954 77.471 90.309 24.052 43.874 58.495 76.986 89.745

(b) w/o mask 23.437 40.653 54.332 74.983 88.273 22.454 40.235 56.383 74.436 88.675

Table 2: Gesture Generation Comparison on BEAT-X. We report FGD ×10−1, BC ×10−1, Diversity, MSE
×10−8, and LVD ×10−5. Realistic-Gesture improves FGD and diversity compared with existing methods.

FGD ↓ BC ↑ Diversity ↑ MSE ↓ LVD ↓
Rhythmic GesticulatorAo et al. (2022) 6.453 6.558 9.132 - -
TalkSHOWYi et al. (2023) 6.209 6.947 13.47 7.791 7.771
EMAGE Liu et al. (2023) 5.512 7.724 13.06 7.680 7.556
Ours (w/o Distillation) 7.479 7.395 12.12 7.656 7.671
Ours 4.650 7.370 13.55 7.343 7.432

Evaluation settings. The retrieval perforamnce is measures under recall at various ranks, R@1,
R@2, etc.Ṙecall at rank k indicates the percentage of times the correct label is among the top k
results; therefore higher is better. We define two settings, by changing the evaluation set. Note that,
for this retrival, we are not based on the full sequence test dataset but the sliced clips, with each
lasting for 3.2 seconds and 80 frames. The size of testing dataset is 8867.

(a) All test set samples for face and body motions are used as a first setting. This set is problematic
because the speech and gesture motion should not be of one-to-one mapping relationship.

(c) Small batch size of 32 speech-gesture pairs are randomly picked, reporting average performance.

Given this evaluation definition, we evaluate the speech-gesture alignment in Tab. 1. Based on the
retrieval evaluation, we discover the gesture patterns and speech context are very hard to have precise
one-to-one mapping relationship as shown by the significantly low performance of retrieval. Due to
global contrastive alignment cannot guarantee the global alignment, without applying mask reduces
the retrial accuracy for both face and body. Based on setting (c), within a small batch size of 32, the
model achieves significantly higher performance, indicating the alignment pre-training does provide
the model with the discrimination over different speech context and the motion. For each setting,
we construct an ablation without applying temporal masking. The results demonstrate that temporal
masking can increase the robustness of retrieval.

E ADDITIONAL EXPERIMENTS

In the main paper, we have shown our method achieves promising joint gesture motion and video
generation. To understand the disentangled gesture and video avatar generation separately, we
further conduct Gesture Generation and Video Avatar Animation experiments separately to compare
our method with the corresponding representative works for each domain.
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E.1 GESTURE GENERATION

Experiment Settings We select BEAT-X Liu et al. (2023) as the dataset for additional gesture
generation comparison. For consistency, we will exclude the image-to-animation component from
our method and extend gesture representation from 2D to 3D poses. (with SMPL-X expressions
for face gestures, as in the existing literature) We compare the gesture generation module of our
work with representative state-of-the-art methods in co-speech gesture generation Ao et al. (2022);
Yi et al. (2023); Liu et al. (2023). We further design a baseline without using contextual distillation.

Experiment Results As shown in Tab. 2, our method significantly improve the SMPL-X based
co-speech gesture generation with lower FGD and higher diversity. Specifically, Our methods
have present smoother gesture motion patterns compared with existing works. It demonstrates the
effectiveness of contextual distillation for the motion representation learning in our framework. We
defer the video comparisons in the Appendix videos for reference.

Table 3: Long Sequence Generation Quality.

Dataset Setting FGD Diversity BAS

PATS ≤10s 1.303 13.260 0.996
>10s 2.356 11.956 0.994

BEAT-X ≤10s 4.747 13.14 7.323
>10s 4.650 13.55 7.370

Long Sequence generation To understand the capa-
bility of our framework for long sequence generation,
we conduct an ablation study for both PATS and
BEAT-X dataset. For BEAT-X, we cut the testing
audios into segments of 256 (about 8.53 seconds) for
short sequence evaluation and use raw testing audios
for long sequence evaluation in Tab. 2. Shown in
Tab. 3, it is interesting for PATS dataset, long-sequence
generation as an application in the main paper presents quality lower than normal settings. However,
for BEAT-X dataset, the generation quality is not affected much. We attribute this difference caused
by the dataset difference. Because PATS dataset consists training video lengths with a average of
less than 10 seconds, the model presents less diverse gesture patterns. However, in BEAT-X, most
of gesture video sequences are over 30 or 1 minutes, our method further benefits from this long
sequence learning precess and presents higher qualities.

E.2 VIDEO AVATAR ANIMATION

Experiment Settings. We select PATS dataset as in main paper for avatar rendering comparison. We
processed the videos into 512x512 for Diffusion-bassed model AnimateAnyone Hu et al. (2023). We
extract the 2D poses by MMPOse OpenMMLab (2020) for pose guidance for the Diffusion Model,
and maintain all the training details as in AnimateAnyone for consistency.

Experiment Results. We compare the gesture generation module of our work with representative
AnimateAnyone Hu et al. (2023). As shown in Fig. 1, though AnimateAnyone achieves better video
generation quality for hand structure of the speaker centering in the video, it fails to maintain the
speaker identity, making the avatar less similar to the source image compared with our method. In
addition, due to the entanglement of camera motions and speaker gesture motions within the dataset,
AnimateAnyone fails to separate two types of motions from the source training video, thus leading
to significant background changes over time and dynamic inconsistency. Unlike completely relying
on human skeletons as conditions in AnimateAnyone, our method benefits from Warping-based
method, which has the capability of resolving the background motions in addition to the speaker
motion. We defer visual comparisons in the Appendix videos.

F TIME AND RESOURCE CONSUMPTION

In Tab. 4, we present a comparison of training and inference times against existing baseline methods.
For audio-gesture generation, our model’s training time is comparable, albeit slightly slower, than
that of ANGIE Liu et al. (2022) and S2G-Diffusion He et al. (2024), primarily due to the inclusion
of additional modules. However, it is considerably faster than MM-Diffusion Ruan et al. (2023).
Notably, our method excels in inference speed, outperforming all other baselines.

While the training of image-warping and image refinement requires a lot of time, our method leads
to a substantial reduction in overall time and resource usage compared to MM-Diffusion and other
stable-diffusion-based video generation approaches. Furthermore, the generative masking paradigm
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Ground-Truth Ours AnimateAnyone
Figure 1: Comparison of Video Avatar Animation Though presented with worse hand structure reconstruc-
tion, we achieve better identity preserving and significantly better background motion.

we employ significantly cuts down inference times when compared to diffusion-based models like
S2G-Diffusion or the autoregressive generations in ANGIE.

We further compared image-warping based method computation requirements with Stable
Diffusion-based models like AnimateAnyone Hu et al. (2023) in Tab. 5.

Table 4: Time consumption comparison of training (1 NVIDIA A100 GPU) and inference (1 NVIDIA
GeForce RTX A6000 GPU).

Name Training Training Breakdown Inference
(video of ∼10 sec)

ANGIE ∼5d Motion Repr. ∼3d + Quantize ∼0.2d + Gesture GPT ∼1.8d ∼30 sec
MM-Diffusion ∼14d Generation ∼9d + Super-Resolution ∼5d ∼600 sec
S2G-Diffusion ∼5d Motion Decouple ∼3d + Motion Diffusion ∼1.5d + Refine ∼0.5d ∼35 sec

Ours ∼6d Quantize ∼0.2d + Mask-Gen ∼1.5d + Res-Gen ∼0.5d + Img-warp & Refine ∼3.5d ∼3 sec

Table 5: Resource consumption comparison with Stable-Diffusion-based Image-Animation models (1
NVIDIA A100 GPU), * means our re-implementation on PATS dataset.

Methods Training↓ Batch Size Resolution Memory↓ Training Task Inference↑
AnimateAnyone* 10 days 4 512 44 GB Pose-2-Img -
AnimateAnyone* 5 days 4 512 36GB Img-2-Vid 15s

Ours 2.5 days 64 256 64 GB Img-Warp ≤1s
Ours 1 day 64 256 48GB Img-Refine ≤ 1s
Ours 3.5 days 32 512 60GB Img-Warp ≤1s
Ours 1 day 32 512 40GB Img-Refine ≤1s
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Figure 2: Screenshot of user study website.

G USER STUDY DETAILS

For user study, we recruited 20 participants with good English proficiency. To conduct the user study,
we randomly select 80 videos from ground-truth, MM-Diffusion Ruan et al. (2023), ANGIE Liu
et al. (2022), S2G-Diffusion He et al. (2024). Each user works on 20 videos, with 4 videos from
each of the aforementioned methods. The users are not informed of the source of the video for fair
evaluations. A visualization of the user study is shown in Fig. 2.

H TPS-BASED IMAGE-WARPING

In this paper, we utilize Thin Plate Splines (TPS) Zhao & Zhang (2022) to model deformations based
on human poses for image-warping. Here, we provide additional details on this approach.

The TPS transformation accepts N pairs of corresponding keypoints (pDi , pSi ) for i = 1, 2, . . . , N
(referred to as control points) from a driving image D and a source image S. It outputs a pixel
coordinate mapping Ttps (·), which represents the backward optical flow from D to S. This
transformation is founded on the principle that 2D warping can be effectively modeled through a
thin plate deformation mechanism. The TPS transformation seeks to minimize the energy associated
with bending this thin plate while ensuring that the deformation aligns accurately with the control
points. The mathematical formulation is as follows:

min

∫∫
R2

((
∂2Ttps
∂x2

)2

+ 2

(
∂2Ttps
∂x∂y

)2

+

(
∂2Ttps
∂y2

)2
)

dxdy,

s.t. Ttps(pDi ) = pSi , i = 1, 2, . . . , N,

(1)

where pDi and pSi denote the ith keypoints in D and S respectively. As shown in Zhao & Zhang
(2022), it can be demonstrated that the TPS interpolating function satisfies Eq. (1):

Ttps(p) = A

[
p
1

]
+

N∑
i=1

wiU
(∥∥pDi − p

∥∥
2

)
, (2)

where p = (x, y)⊤ represents the coordinates in D, and pDi is the ith keypoint in D. The function
U(r) = r2 log r2 serves as a radial basis function. Notably, U(r) is the fundamental solution to the
biharmonic equation Selvadurai & Selvadurai (2000), defined by:

∆2U =

(
∂2

∂x2
+

∂2

∂y2

)2

U ∝ δ(0,0), (3)

where the generalized function δ(0,0) is characterized as:

δ(0,0) =

{
∞, if (x, y) = (0, 0)

0, otherwise
, and

∫∫
R2

δ(0,0)(x, y) dxdy = 1, (4)

indicating that δ(0,0) is zero everywhere except at the origin, where it integrates to one.
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We denote the ith keypoint in image X (either D or S) as pXi = (xX
i , yXi )⊤, and we define:

rij =
∥∥pDi − pDj

∥∥ , i, j = 1, 2, . . . , N.

Next, we construct the following matrices:

K =


0 U (r12) · · · U (r1N )

U (r21) 0 · · · U (r2N )
...

...
. . .

...
U (rN1) U (rN2) · · · 0

, P =


1 xD

1 yD1
1 xD

2 yD2
...

...
...

1 xD
N yDN

 ,

L =

[
K P
PT 0

]
, Y =

[
xS
1 xS

2 · · · xS
N 0 0 0

yS1 yS2 · · · ySN 0 0 0

]⊤
.

We can then determine the affine parameters A ∈ R2×3 and the TPS weights wi ∈ R2×1 by solving
the following equation:

[w1, w2, · · · , wN , A]
⊤
= L−1Y. (5)

In Eq. (2), the first term A

[
p
1

]
represents an affine transformation that aligns the paired control

points (pDi , pSi ) in linear space. The second term
∑N

i=1 wiU
(∥∥pDi − p

∥∥
2

)
accounts for nonlinear

distortions that enable the thin plate to be elevated or depressed. By combining both linear and
nonlinear transformations, the TPS framework facilitates precise deformations, which are essential
for accurately capturing motion while preserving critical appearance details within our framework.

I ETHICAL CONSIDERATIONS

While this work is centered on generating co-speech gesture videos, it also raises important ethical
concerns due to its potential for photo-realistic rendering. This capability could be misused to
fabricate videos of public figures making statements or attending events that never took place. Such
risks are part of a broader issue within the realm of AI-generated photo-realistic humans, where
phenomena like deepfakes and animated representations pose significant ethical challenges.

Although it is difficult to eliminate the potential for misuse entirely, our research offers a valuable
technical analysis of gesture video synthesis. This contribution is intended to enhance understanding
of the technology’s capabilities and limitations, particularly concerning details such as facial nuances
and temporal coherence.

In addition, we emphasize the importance of responsible use. We recommend implementing
practices such as watermarking generated videos and utilizing synthetic avatar detection tools for
photo-realistic images. These measures are vital in mitigating the risks associated with the misuse
of this technology and ensuring ethical standards are upheld.

J LIMITATIONS

While our method have achieved significant improvements over existing baselines, there are still
two limitations of the current work.

First, the generation quality still exhibit blurries and flickering issues. The intricate structure of
hand hinders the generator in understanding the complex motions. In addition, PATS dataset is
sourced from in-the-wild videos of low quality. Most frames extracted from videos demonstrate
blurry hands, limiting the network learning. Thus, it is important to collect the high-quality gesture
video dataset with clearer hands to further enhance the generation quality.

Second, when modeling the whole upper-body, it is hard to achieve synchronized lip movements
aligned with the audio. Even though we explicit separate the face motion and body motion to deal
with this problem, there is no regularization on lip movement. We would like to defer this problem
to the future works that models disentangled and fine-grained motions for each face and body region.
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