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Method for Continual Graph Learning

Anonymous Authors

ABSTRACT
Continual graph learning (CGL) is an important and challenging
task that aims to extend static GNNs to dynamic task flow scenarios.
As one of the mainstream CGL methods, the experience replay (ER)
method receives widespread attention due to its superior perfor-
mance. However, existing ER methods focus on identifying samples
by feature significance or topological relevance, which limits their
utilization of comprehensive graph data. In addition, the topology-
based ER methods only consider local topological information and
add neighboring nodes to the buffer, which ignores the global topo-
logical information and increases memory overhead. To bridge
these gaps, we propose a novel method called Feature-Topology
Fusion-based Experience Replay (FTF-ER) to effectively mitigate
the catastrophic forgetting issue with enhanced efficiency. Specifi-
cally, from an overall perspective to maximize the utilization of the
entire graph data, we propose a highly complementary approach
including both feature and global topological information, which
can significantly improve the effectiveness of the sampled nodes.
Moreover, to further utilize global topological information, we pro-
pose Hodge Potential Score (HPS) as a novel module to calculate
the topological importance of nodes. HPS derives a global node
ranking via Hodge decomposition on graphs, providing more accu-
rate global topological information compared to neighbor sampling.
By excluding neighbor sampling, HPS significantly reduces buffer
storage costs for acquiring topological information and simulta-
neously decreases training time. Compared with state-of-the-art
methods, FTF-ER achieves a significant improvement of 3.6% in
AA and 7.1% in AF on the OGB-Arxiv dataset, demonstrating its
superior performance in the class-incremental learning setting.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies→ Neural networks.

KEYWORDS
Continual Graph Learning, Experience Replay, Hodge Decomposi-
tion

1 INTRODUCTION
Continual learning (CL) in the field of graph neural networks
(GNNs) [12, 17, 30] has become increasingly significant due to
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Figure 1: FTF-ER workflow: Nodes are selected from each
class based on importance scores to create induced subgraphs
for the buffer. This enables the model to maintain classifica-
tion performance across tasks, i.e., continual learning.

its potential applications in dynamic and evolving environments.
Traditional GNN models are designed to operate on static graph
data, making them inadequate for scenarios where graphs evolve
over time. Continual graph learning (CGL) addresses this challenge
by extending GNNs to adapt to changing graph structures and data
distributions [36]. This enables models to continuously learn and
update their knowledge without forgetting previous information.
The ability to learn from sequential data and adapt to new dynamic
information is crucial for various real-world applications such as
social network analysis [13], recommendation systems [11] and
traffic prediction [7]. In this context, developing effective continual
learning strategies for graphs has emerged as a key research area
with the aim of enhancing the robustness and adaptability of GNN
models in dynamic environments.

CGL methods can be categorized into three classes [47]: regular-
ization methods, parametric isolation methods and experience re-
play (ER) methods. Among them, ER methods, inspired by the com-
plementary learning systems theory in cognitive science [19, 25],
have achieved SOTA performance in both traditional CL and CGL
fields. To help the model stay good at the earlier tasks, ER methods
use a partial collection of training samples from previous tasks and
reintroduce themwhen training on new tasks. In recent years, some
studies integrate ER methods to deal with the issue of graph learn-
ing in streaming scenarios [36]. ER-GNN [51] stores representative
nodes at the feature level for experience replay. SGNN-GR [37]
incorporates generative replay to learn and generate fake historical
samples. Recently, SSM [49] stores sparsified subgraphs to gain
topological-level experience and achieves SOTA performence in
CGL. However, the ER methods mentioned above primarily select
impactful samples based on either feature significance or topologi-
cal relevance, which limits their utilization of the comprehensive
graph data. Furthermore, to provide local topological information,
SSM expands the buffer by adding nodes that are not present in the
experience samples, resulting in the neglect of global topological
information and the requirements of additional storage.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To address the aforementioned issues, we integrate information
from both the feature and topological levels and propose a novel
experience replay method called Feature-Topology Fusion-based
Experience Replay (FTF-ER) to mitigate the catastrophic forget-
ting issue in CGL. Figure 1 shows the workflow of FTF-ER, and
the essence of the workflow centers on the approach to acquiring
information for sampling. Specifically, we employ two theoretically
grounded approaches to calculate the feature-level and topological-
level importance scores of nodes. Firstly, inspired by [26], we use
gradient norm score (GraNd) to compute the node importance in the
feature space. GraNd measures the importance of a node by evaluat-
ing the change in the loss of all other nodes when the node is added
to the training set. Furthermore, we propose Hodge potential score
(HPS) as a novel module to calculate the topological importance
of nodes by using Hodge decomposition on graphs (HDG) [15, 21].
HDG is an effective tool for studying the topological properties of
nodes that can establish a natural and computable node potential
function. This function can derive a global ranking from pairwise
comparison relationships among all nodes. It explicitly highlight
the global topological importance of each node. To the best of our
knowledge, our study represents the first application of HDG to
node importance computation. By precomputing the HPS of nodes
before training, our method efficiently captures comprehensive
global topological information in the node sampling phase. HPS
enhances the accuracy of topological information while eliminating
the need for additional nodes during the subgraph creation phase.

In summary, our contributions can be outlined as follows:
• We present Feature-Topology Fusion-based Experience Replay
(FTF-ER), a novel framework from an overarching standpoint,
which aims to efficiently and effectively alleviate the cata-
strophic forgetting problem in continual graph learning.
• To fully utilize the comprehensive graph data, we propose
an integrative approach to better represent node importance.
We first normalize the node importance scores on features
and topology separately, and then obtain the aggregated im-
portance by calculating the weighted average of two scores,
thereby improving the accuracy of node importance.
• We propose Hodge potential score (HPS), a preprocessing mod-
ule to capture global topological information without adding
neighboring nodes to the buffer. Consequently, HPS further uti-
lizes global topological information and reduces buffer storage
costs of topology-based ER methods.
• We conduct extensive experiments on four mainstream graph
datasets, and achieve state-of-the-art performance on accuracy,
time efficiency in the class-incremental learning setting. More-
over, despite leveraging topological information, our buffer
storage costs are comparable to topology-agnostic methods.

2 RELATEDWORK
2.1 Experience Replay
Continual graph learning seeks to sequentially train the model as
graph data from various tasks are received in a stream. Similar to
continual learning research in other fields [14, 28, 40], research
methods for CGL can be mainly categorized into three major types
[9, 46]. The first family consists of regularizationmethods that focus
on preserving the parameters inferred in one task while training on

another [1, 8, 18, 20, 22]. The second family is parametric isolation
methods that separate parameters from different tasks explicitly
[29, 39, 43, 44, 48]. The last family is experience replay methods
that store a limited amount of representative data from previous
tasks and replay them during training on subsequent tasks in order
to maintain the model’s ability to classify past tasks [2, 23, 27]. As
an illustration, Gradient Episodic Memory (GEM) [23] constrains
the gradient of the current task to prevent an increase in the loss
associated with the data stored in episodic memory. In the domain
of graphs, Experience Replay Graph Neural Network (ER-GNN)
[51] stores representative nodes at the feature level for experience
replay, while Sparsified Subgraph Memory (SSM) [49] stores sparsi-
fied subgraphs that include 𝑘-hop neighboring nodes to gain local
topological-level experience. However, previous methods primarily
have two drawbacks: (1) They select samples based on either feature
significance or topological relevance, limiting their comprehensive
utilization of graph data. (2) SSM adds neighboring nodes to the
buffer, overlooking global topological information and increasing
storage needs. Different from them, our FTF-ER combines both
feature and topological information of nodes to provide an over-
all perspective for alleviating the catastrophic forgetting problem.
Furthermore, we propose Hodge potential score to obtain global
topological information without introducing extra nodes, thereby
further utilizing global topological information and reducing the
buffer storage overhead of topology-based ER methods.

2.2 Application of Hodge Decomposition
In the realm of machine learning, Hodge decomposition has found
several innovative applications, serving as a foundational tool for
understanding complex data structures through the lens of algebraic
topology [5, 31, 32]. For example, previous work [34] develops a set
of tools for analyzing 3D discrete vector fields on tetrahedral grids
using a Hodge decomposition approach. In addition, researchers
apply Hodge decomposition to robustly find global rankings in the
presence of outliers for image processing [45]. In the field of robot-
ics, Helmholtz-Hodge decomposition is used to create algorithms
that approximate incompressible flows for agent control and stream
function computation in graph-modeled environments [16]. In [15]
and [21], researchers introduce Hodge decomposition on graphs
(HDG) and apply it to statistical ranking problems. Furthermore, in
[42], researchers use HodgeRank for paired comparison data in the
multimedia domain, assessing video quality and analyzing incon-
sistencies. For the advantage of Hodge decomposition’s ability to
reliably and globally rank nodes in graphs, even among irregular
data, it has seen widespread application in various fields. To the
best of our knowledge, we first introduce HDG to CGL, thus ob-
taining global topological information and reducing buffer storage
requirements of topology-based ER methods.

3 METHOD
3.1 Preliminaries
Notations. For a graph G = (V, E) with 𝑛 nodes, we have a node
setV = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and an edge set E = {(𝑢, 𝑣) |𝑢 ∈ V, 𝑣 ∈ V}.
We use the adjacency matrix A ∈ R𝑛×𝑛 to describe the connectivity
of G, and each non-zero element in A corresponds to an edge
in E. In this paper, we study the node classification problem in
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Figure 2: The complete node importance score calculation process for our FTF-ER. In the schematic diagram of Potential, the
grayscale of nodes represents their importance, and the edges are only used to indicate the comparative results of importance.
In the Sample Score stage, before mixing the two scores, they need to be normalized separately as shown in Eq. (18).

which each node 𝑣 ∈ V has a category label 𝑦𝑙 ∈ Y where Y =

{𝑦1, 𝑦2, . . . , 𝑦𝑐 } is the label set and 𝑐 is the number of classes. GNNs
are the mainstream solution for node classification problems.
ProblemDefinition. In this paper, we focus on the continual graph
node classification problem. In a learning process, the model is con-
tinually trained on a sequence of disjoint tasks T = {T1,T2, . . . ,T𝐾 },
where 𝐾 represents the number of tasks. Each task T𝑖 comprises
multiple non-overlapping classes Y𝑖 = {𝑦1, 𝑦2, . . . , 𝑦𝑐𝑖 } and 𝑐𝑖 is
the number of classes in task T𝑖 . We define the node set of T𝑖
as V𝑖 = {𝑣 |𝑦 (𝑣) ∈ Y𝑖 , 𝑣 ∈ V}, where 𝑦 (𝑣) is the label of node
𝑣 . Then the induced subgraph of T𝑖 can be represented as G𝑖 =

(V𝑖 , E𝑖 ), E𝑖 = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ V𝑘 , (𝑢, 𝑣) ∈ E}. In the continual learn-
ing settings, different tasks correspond to different induced sub-
graphs without overlap on Y. Once the learning of a task is com-
pleted, the vast majority of the training data related to this task
are no longer available. The goal of CGL is to achieve consistent
high performance across all tasks in the sequence, addressing both
current task performance and mitigating the catastrophic forgetting
problems for past tasks.
Incremental Learning Settings. Continual learning has two main
settings: task-incremental learning (task-IL) and class-incremental
learning (class-IL). The key difference lies in whether task indicators
are provided to the model during testing. In task-IL, the model
receives a task indicator, enabling it to concentrate solely on the
classes relevant to the current task during classification. Conversely,
in class-IL, the model must identify all previously learned classes
without the assistance of task indicators. Class-IL is considered
more challenging due to the larger classification dimension and
the absence of explicit task boundaries. Previous studies [47] have
shown that CGL methods significantly perform better in task-IL
than in class-IL. In this paper, we aim to tackle the more challenging
class-IL tasks to showcase the effectiveness of our method.

3.2 Experience Replay on Subgraphs
In the field of graphs, due to the presence of rich topological struc-
tures, experience replay (ER) methods can be extended to ER on
subgraphs. The traditional ER methods preserve a small number of
training samples from past tasks and replay them during the sub-
sequent tasks training in order to retain the model’s classification
ability for past tasks. The key to ER methods lies in designing a
rational experience sample selection strategy. Previous research
has revealed that samples are inherently unequal; some samples
may carry information that can significantly improve model perfor-
mance, while the addition of other samples may have little impact
on enhancing model effectiveness [33]. For a given task T𝑘 and
its training dataset D𝑡𝑟

𝑘
, ER methods use an experience sample

strategy S(·) to collect experience samples fromD𝑡𝑟
𝑘

and add them
to the experience buffer B. A simple way to replay the experience
in B is applying an auxiliary loss:

L =
∑︁

𝑥𝑖 ∈D𝑡𝑟
𝑘

𝑙 (𝑓 (𝑥𝑖 ;𝜽 ), 𝑦𝑖 ) + 𝜆
∑︁
𝑥 𝑗 ∈B

𝑙 (𝑓 (𝑥 𝑗 ;𝜽 ), 𝑦 𝑗 ), (1)

where 𝑙 (·, ·) denotes the loss function, 𝑓 (·;𝜽 ) denotes the model
training on the task sequence, and 𝜆 is utilized to balance the auxil-
iary loss. When training 𝑓 (·;𝜽 ) in T𝑘 , B contains the experience
samples collected from T1 to T𝑘−1.

For GNNs, which have the capability to effectively harness and
leverage the rich topological information embedded within the
graph structure, the selection process of experience samples should
consider not only the importance of samples in isolation but also
their significance and influence at the topological level. A naive
approach to incorporating topological information into experience
is to sample nodes and their induced subgraph simultaneously:

(V𝑏𝑢𝑓
𝑘

,G𝑏𝑢𝑓
𝑘
) = S(D𝑡𝑟

𝑘
,G𝑘 ), (2)
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where G𝑏𝑢𝑓
𝑘

= G𝑘 (V
𝑏𝑢𝑓

𝑘
) is the induced subgraph of G𝑘 with

respect to the experience node set V𝑏𝑢𝑓
𝑘

. And S(·) denotes the
strategy used to select nodes and generate subgraph. With the
assistance of the topological information carried by the induced
subgraph, the loss function for CGL can be defined as follows:
L =

∑︁
𝑥𝑖 ∈D𝑡𝑟

𝑘

𝑙 (𝑓 (𝑥𝑖 ,G𝑘 ;𝜽 ), 𝑦𝑖 ) + 𝜆
∑︁

𝑥 𝑗 ∈𝑉 (B)
𝑙 (𝑓 (𝑥 𝑗 ,GB ;𝜽 ), 𝑦 𝑗 ), (3)

where GB is the subgraph stored in the buffer B and𝑉 (B) denotes
the node set stored in B. In other topology-based ER methods, GB
is not necessarily an induced subgraph of 𝑉 (B), without loss of
generality. For example in SSM [49], to obtain more topological
information, the node set of GB includes not only 𝑉 (B) but also
a subset of N(𝑣) for each node 𝑣 in 𝑉 (B), where N(𝑣) represents
the set of neighbors of node 𝑣 in the graph.

In this paper, due to the acquisition of additional topological
information reflected in the selection strategy of 𝑉 (B), we simply
let GB = G(𝑉 (B)). Therefore, we do not need to bear the stor-
age requirements of non-sample nodes in GB . The pipeline of the
method we propose is illustrated in Figure 1.

3.3 Node Importance Score
To introduce our experience node selection strategy that integrates
feature information and topological information, we first adopt
the gradient norm (GraNd) score [26], which is used to compute
the importance of nodes in the feature space. Next, we propose
Hodge potential score (HPS) to calculate the importance scores of
nodes at the topological level by HDG. Finally, we integrate the
two importance scores to a weighted average score and provide
the mixed node importance score for node selection. The complete
computational process for calculating the node importance scores
we propose is depicted in Figure 2.
3.3.1 Gradient Norm Score for Feature Importance. Inspired
by [26], we introduce gradient norm score (GraNd) to measure the
importance of nodes at the feature level. Intuitively, we can define a
sample’s importance as its contribution to minimizing the model’s
loss function during training. Put simply, a sample is considered
important if it helps reduce the loss of other samples when the
model parameters are optimized using this particular sample. The
importance of the training sample 𝑥𝑖 can be formalized as follows:

I𝑖 =
∑︁

𝑥 𝑗 ∈𝑋 𝑡𝑟 −{𝑥𝑖 }
(𝑙 (𝑓 (𝑥 𝑗 ;𝜽 ), 𝑦 𝑗 ) − 𝑙 (𝑓 (𝑥 𝑗 ;𝜽 ′), 𝑦 𝑗 )), (4)

where
𝜽 ′ = 𝜽 − 𝜂∇𝜽 𝑙 (𝑓 (𝑥𝑖 ;𝜽 ), 𝑦𝑖 ), (5)

and 𝜂 denotes the learning rate.
This definition intuitively represents the generalization ability

of the selected sample, essentially measuring the sample’s value in
improving model predictions on other data. Simply put, we can es-
timate a sample’s importance by calculating the gradient’s norm it
produces. In DNN models, updated via gradient descent, this gradi-
ent normmirrors its effect on adjusting model parameters. Through
theoretical validation [26], researchers approximate this effect by
calculating the 𝐿2 norm of the model gradients after training the
respective node. GraNd is formally defined as follows:

S𝑙𝑜𝑠𝑠 = [𝑆𝑙𝑜𝑠𝑠1 , 𝑆𝑙𝑜𝑠𝑠2 , . . . , 𝑆𝑙𝑜𝑠𝑠|𝑋 𝑡𝑟
𝑘
| ],

𝑆𝑙𝑜𝑠𝑠𝑖 = E𝜽 | |∇𝜽 𝑙 (𝑓 (𝑥𝑖 ;𝜽 ), 𝑦𝑖 ) | |2 .
(6)
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Figure 3: Acquiring topological information by random node
sampling, SSM [49] with 1-hop, 2-hop neighbor sampling,
and FTF-ER (ours). Green nodes indicate the ones selected to
be added to the buffer, and bold solid lines represent the in-
formation flow between nodes during the sampling process.

The contribution of GraNd lies in its ability to make reasonable
judgments on the importance of samples early in the training pro-
cess, which aligns with the setting of incremental learning in CL.
Therefore, we choose GraNd to calculate the importance of samples
at the feature level, with the expectation that the selected samples
can best fit the distribution of the entire dataset.
3.3.2 Hodge Potential Score for Topology Importance. We
introduce the Hodge Potential Score (HPS), a novel measure of a
node’s topological importance in a graph.We discuss themotivation
behind proposing HPS. Unlike other topology-based ER methods or
the commonly used PageRank [3] algorithm that acquire local topo-
logical information through neighboring node sampling, our HPS
module uses the global ranking derived by Hodge decomposition
on graphs (HDG) to measure the global topological importance of
nodes, which can achieve more accurate global topological infor-
mation. Additionally, in CGL, the storage overhead during model
execution is also a crucial metric for ER methods. Applying HPS
can circumvent the drawback of previous ER methods requiring
the storage of neighboring nodes to obtain topological information.

To utilize HDG, we first introduce several key definitions of
HDG used in our method. The complete descriptions of HDG is
presented in Appendix. Let Ω𝑘 (𝑀) be a 𝑘-form on an 𝑛-dimensional
smooth manifold𝑀 , 𝑑 be the exterior derivative operator, and 𝛿 be
the adjoint map of 𝑑 , we provide the following definitions:

Definition 3.1 (Hodge Potential Score).
Ω0 (G) ≜ {𝑠 : V ↦→ R}. (7)

Definition 3.2 (Edge Flows).
Ω1 (G) ≜ {X : V ×V ↦→ R|X(𝑖, 𝑗) = −X( 𝑗, 𝑖), (𝑖, 𝑗) ∈ E}. (8)

Definition 3.3 (Gradient Operator). Let grad be the gradient op-
erator, 𝑠𝑖 , 𝑠 𝑗 ∈ Ω0 (G), we have

(𝑑0𝑠) (𝑖, 𝑗) ≜ (grad 𝑠) (𝑖, 𝑗) ≜ 𝑠 𝑗 − 𝑠𝑖 , (𝑖, 𝑗) ∈ E . (9)

Definition 3.4 (Negative Divergence Operator). Let𝑤 be theweight
of an element in Ω𝑘 (G),𝑤𝑖 ∈ Ω0 (G),𝑤𝑖 𝑗 ∈ Ω1 (G) and div be the
divergence operator, we have

(𝛿0X)(𝑖) ≜ (−divX)(𝑖) = −
∑︁
𝑗

𝑤𝑖 𝑗

𝑤𝑖
X(𝑖, 𝑗). (10)
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Definition 3.5 (Graph Laplacian Operator).
Δ0 ≜ 𝛿0𝑑0 ≜ −div(grad). (11)

To calculate HPS, we primarily make use of Definition 3.5. Def-
inition 3.1 defines a function on graphs that maps a set of nodes
V to the real number field R. This function is naturally suitable
as a node importance scoring function and is referred to as Hodge
potential score. Inspired by [15], we calculate HPS as follows:

Δ0𝑠 = −div 𝑌, (12)
where 𝑌 denotes inconsistent local rankings, which is consistent
with the grad in Definition 3.5. In CGL, we simplify it to an anti-
symmetric adjacency matrix A on directed graphs, where

A𝑖 𝑗 =


1, if (𝑖, 𝑗) ∈ E and ( 𝑗, 𝑖) ∉ E,
−1, if ( 𝑗, 𝑖) ∈ E and (𝑖, 𝑗) ∉ E,
0, otherwise.

(13)

For undirected graphs, A = A.
The minimum norm solution of Eq. (12) is

𝑠∗ = −Δ†0div A, (14)
where † indicates a Moore-Penrose inverse.

By applying Definition 3.4, we have
div A = 𝛿A = A · [1, · · · , 1]𝑇 . (15)

And we have the common definition of the graph Laplacian:
Δ0 = D − A, (16)

whereD = diag(deg(1), · · · , deg(𝑛)) and deg(𝑖) denotes the degree
of node 𝑣𝑖 .

By combining the above equations, we consolidate the formula
for calculating HPS as follows:

S𝑡𝑜𝑝𝑜 = 𝑠∗ = −Δ†0𝛿A. (17)
It’s obvious that for any node, HPS aggregates information from

all other nodes. Figure 3 shows that our proposed HPS module
achieves global topological information aggregation during node
sampling, enhancing the accuracy of topological information and
reducing buffer storage costs compared to the existing topology-
based ER methods. Additionally, it is worth noting that the process
of calculating HPS can be considered as a data preprocessing step,
where the HPS of the various subdatasets after task partitioning can
be computed before training. (Alternatively, HPS can be computed
only once for the complete dataset.) This enables our approach to
eliminate the need for training time when obtaining topological
information, boosting training efficiency.

3.3.3 Fusion of GraNd and HPS. To fully leverage the compre-
hensive graph data, we integrate GraNd and HPS as follows. We
adopt a weighted average approach to combine node importance
scores S𝑙𝑜𝑠𝑠 and S𝑡𝑜𝑝𝑜 . Due to the different scales of the two types
of scores S, it is necessary to perform min-max normalization on
each of them before the combination:

norm(S) = S −min(S)
max(S) −min(S) . (18)

Then we define the mixed node importance score as follows:
S𝑚𝑖𝑥 = (1 − 𝛽) norm(S𝑙𝑜𝑠𝑠 ) + 𝛽 norm(S𝑡𝑜𝑝𝑜 ), (19)

where 𝛽 ∈ [0, 1] is a hyper-parameter used to adjust the emphasis
of sampling. A higher 𝛽 value indicates a stronger emphasis on the
topological importance of nodes during sampling. Due to variations
in the characteristics of different datasets, different 𝛽 values are

Algorithm 1 Framework of our FTF-ER.

Input: Task sequence T = {T1,T2, . . . ,T𝐾 }; Experience buffer B;
Number of sampled nodes for each class 𝑏.

Output: A model 𝑓 (·;𝜽 ) that performs well on all tasks.
1: B ← (∅, ∅)
2: Initialize 𝜽 at random
3: for T𝑖 in T do
4: Obtain training dataset D𝑡𝑟

𝑖
= (V𝑡𝑟

𝑖
,G𝑖 ) from T𝑖

5: Extract experience nodes 𝑉 (B) and subgraph GB from B
6: Compute L(𝑓 (·;𝜽 ),D𝑡𝑟

𝑖
,𝑉 (B),GB) using Eq. (3)

7: 𝜽 ← 𝑎𝑟𝑔 𝑚𝑖𝑛𝜽 (L)
8: Compute S𝑚𝑖𝑥 (𝑓 (·;𝜽 ),D𝑡𝑟

𝑖
) using Eq. (19)

9: V𝑏𝑢𝑓
𝑖
← 𝑆𝑒𝑙𝑒𝑐𝑡 (V𝑡𝑟

𝑖
, S𝑚𝑖𝑥 , 𝑏)

10: B ← (𝑉 (B) ∪ V𝑏𝑢𝑓
𝑖

,GB ∪ G𝑖 (V
𝑏𝑢𝑓

𝑖
))

11: end for

used during experimentation. A more detailed analysis of the values
for 𝛽 is presented in Section 4.5.

After calculating the mixed node importance scores, we can
use these scores through two strategies: deterministic sampling
or probabilistic sampling. The deterministic strategy directly sorts
the nodes based on their scores and selects the top 𝑏 nodes as the
experience node set. In contrast, the probabilistic strategy uses the
scores after standardization as a probability mass function: 𝑝 (𝑖) =

𝑆𝑚𝑖𝑥
𝑖∑|𝑋𝑡𝑟

𝑘
|

𝑗=0 𝑆𝑚𝑖𝑥
𝑗

. The experience node set is obtained by performing

𝑏 rounds of sampling without replacement from the probability
distribution defined by 𝑝 (𝑖).

In conclusion, the experience selection strategy we propose can
be described as follows: for each class in T𝑘 , we sample 𝑏 nodes
along with their induced subgraph G𝑘 (V

𝑏𝑢𝑓

𝑘
), and then add them

to buffer B. To obtain the most accurate importance scores, we
calculate the S𝑙𝑜𝑠𝑠 of T𝑘 and perform node selection after the com-
pletion of training for T𝑘 , as demonstrated in Algorithm 1.

3.4 Algorithm Complexity Analysis
Time Complexity Analysis. To demonstrate the validity of our
experiments regarding the algorithm’s runtime costs, we analyze
the time complexity of FTF-ER from a complexity theory perspec-
tive. The majority of the time cost in our FTF-ER is concentrated
in the calculation of HPS and GraNd. The calculation of HPS is
completed in the preprocessing stage and does not contribute to
the runtime cost. Besides, GraNd’s computation process requires a
calculation for each node to be sampled, resulting in a complexity of
O(𝑛) when the number of sampled nodes is 𝑛, similar to ER-GNN.
During the sampling stage, both FTF-ER and ER-GNN perform sin-
gle sampling based on importance scores, resulting in a complexity
of O(𝑛). For the random neighbor sampling version of SSM [49],
there is no importance score calculation stage. However, due to
the need to sample neighbors for each node, the time complexity
of the sampling stage in SSM is O(𝑛2). In summary, the total time
complexity of FTF-ER and ER-GNN is O(𝑛) + O(𝑛) = O(𝑛), while
the total time complexity of SSM is O(𝑛2). This explains why the
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Table 1: Statistical information of four public graph datasets.

Dataset Amazon Computers [24] Corafull [4] OGB-Arxiv [38] Reddit [12]

# nodes 13,381 18,800 169,343 232,965

# edges 491,556 125,370 2,315,598 114,615,892

# classes 10 70 40 40

# tasks 5 35 20 20

time cost of SSM is significantly higher than that of FTF-ER and
ER-GNN during the experimental process.
Space Complexity Analysis. To validate the correctness of our
experiments concerning buffer storage overhead, we analyze the
space complexity of the buffer in FTF-ER from a complexity theory
perspective. Similar to SSM [49], when the number of sampled
nodes is 𝑛, the space complexity of the buffer in FTF-ER is O(𝑛).
However, since FTF-ER does not require introducing additional
neighboring nodes, the additional space complexity of the buffer is
O(1), while the additional space complexity of SSM remains O(𝑛).
Thus, we theoretically demonstrate that the space occupancy of
our FTF-ER buffer is lower than that of SSM.

4 EXPERIMENTS
4.1 Experimental Details
Datasets. We investigate multiple public datasets in the CGL field
and select the four most representative graph node classification
datasets for experimental exploration. These datasets have a wide
coverage in terms of scale, content, and structure, enabling an ef-
fective evaluation of the generalizability of various CGL methods.
To enhance the difficulty of the experiments, following the set-
ting of [47], we set the number of classes for each task to 2 on
all datasets, thereby maximizing the length of the task sequence.
In addition, to adapt to the majority of GNN backbones designed
for undirected graphs, we standardize all datasets (including undi-
recting, removing weights, eliminating self-loops, and extracting
the largest connected component). For each class, we divide the
data into training, validation, and test sets in a ratio of 6:2:2. The
statistical information of all the datasets is shown in Table 1.
Evaluation Metrics. There are two main types of evaluation met-
rics for CGL: average performance (AP) and average forgetting (AF)
[23]. AP is used to measure the average testing performance of the
model across all tasks, while AF can quantify the degree of forget-
ting on previously learned tasks. In this experiment, we adopt the av-

erage accuracy (AA) to quantify the performance: 𝐴𝐴 =

∑|T |
𝑖=1 M

𝑎𝑐𝑐
|T |,𝑖

| T | ,
where M𝑎𝑐𝑐 ∈ R | T |× |T | denotes the accuracy matrix and M𝑎𝑐𝑐

𝑖, 𝑗

denotes model’s accuracy on task T𝑗 after learning task T𝑖 . Under

the setting of AP=AA, we have 𝐴𝐹 =

∑|T |−1
𝑖=1 M𝑎𝑐𝑐

|T |,𝑖−M
𝑎𝑐𝑐
𝑖,𝑖

| T |−1 . All the
experiments are repeated 5 times, and the results are presented by
means and standard deviations.
Baselines and backbones. We select our baselines from CGLB
[47] including Elastic Weight Consolidation (EWC) [18], Learning
without Forgetting (LwF) [20], Memory Aware Synapses (MAS)
[1], Gradient Episodic Memory (GEM) [23], Experience Replay
GNN (ER-GNN) [51], Topology-aware Weight Preserving (TWP)
[22] and Sparsified Subgraph Memory (SSM) [49]. Additionally,
we adopt joint training [6] as an approximation upper bound for

model performance, and fine-tuning (without taking any measures
against forgetting) as an approximation of the lower bound [10]. To
validate the generalizability of the CGL methods, we implemented
each CGL method on three mainstream GNN backbones: Graph
Convolutional Networks (GCNs) [17], Graph Attention Networks
(GATs) [35], and Graph Isomorphism Networks (GINs) [41]. Further
implementation details are presented in Appendix.

4.2 Comparisons with State-of-the-arts
We compare the performance of our method with other baselines
on four public datasets. In order to introduce more randomness,
we design two versions of our method based on different sampling
methods: FTF-ER-det. in Table 2 refers to the FTF-ER method
utilizing deterministic sampling, while FTF-ER-prob. presents uti-
lizing probability distribution sampling. For a detailed description
of these two sampling methods, please refer to Section 3.3.

The experimental results presented in Table 2 indicate that de-
spite our proposed FTF-ER retains only subgraphs composed of a
small number of nodes, it outperforms the current state-of-the-art
method in the CGL field and performs similarly to the joint training
method. This indicates that our FTF sampling strategy selects the
most valuable nodes from the complete training dataset. Further
analysis of the experimental data reveals that the vast majority
of CGL methods perform poorly under the class-IL setting, with
our FTF-ER significantly outperforming them. For the SSM method
designed for the class-IL setting, our FTF-ER also outperforms by
1% to 3.6% in terms of AA and exhibits even better performance on
AF, surpassing by 2% to 7.1%.

Furthermore, Figure 4 shows the decrease of AA for each ER-
based CGL method as the number of tasks increases. Consistent
with the results in Table 2, our FTF-ERmethod exhibits performance
close to the upper bound throughout the entire learning process
on all four datasets. This further indicates the effectiveness of our
method in alleviating catastrophic forgetting issues. It is noteworthy
that on the OGB-Arxiv dataset, compared to the SSM and the Joint
method, our FTF-ER exhibits larger fluctuations in performance
across task streams. This may be related to the global topological
information aggregated by HPS and the homophily [50] of the
dataset. For datasets with high homophily, such as OGB-Arxiv,
collecting local topological information can achieve more stable
performance than collecting global topological information.

4.3 Ablation Studies
4.3.1 Effect of Components. To demonstrate the effectiveness
of our proposed node sampling method that integrates feature-level
and topological-level information, we construct three variants of
our method and compare their performance with the complete
FTF-ER on the OGB-Arxiv dataset. Table 3 summarizes the ablation
experimental results of FTF-ER. We observe that all three sampling
methods utilizing additional information outperformed random
sampling, demonstrating that GraNd and HPS can accurately mea-
sure node importance. Furthermore, the best performance of the
FTF (i.e. GraNd + HPS) sampling method, which combines the two
scores, indicates that the fusion of feature-level information and
topological-level information surpasses the approach of using only
one of these types of information. However, it is noteworthy that
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Table 2: Performance comparisons on 4 datasets under the class-IL setting (↑ higher indicates better performance).

CGL Methods Amz Comp. Corafull OGB-Arxiv Reddit
AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑

Fine-tune (soft lower bound) 19.4±0.0 -99.7±0.2 3.2±0.2 -95.7±0.1 4.9±0.0 -84.6±2.0 5.3±0.9 -94.3±2.1
EWC [18] 19.4±0.0 -99.6±0.2 36.2±9.1 -60.1±9.3 5.2±0.1 -92.0±0.2 12.3±2.8 -91.6±2.9
LwF [20] 19.4±0.0 -99.6±0.2 3.3±0.2 -95.3±0.3 4.9±0.1 -83.7±2.8 7.7±1.1 -87.7±1.8
MAS [1] 31.1±11.1 -46.4±24.8 28.6±5.2 -60.2±6.9 6.9±1.5 -23.5±10.9 13.1±4.9 -16.8±4.1
GEM [23] 19.7±0.8 -99.0±1.1 11.3±2.3 -85.1±2.6 5.0±0.1 -88.5±0.8 18.0±0.9 -84.4±1.0

ER-GNN [51] 27.5±5.1 -88.9±6.4 10.0±4.3 -80.7±4.7 7.5±0.8 -82.1±1.2 18.0±0.9 -84.4±1.0
TWP [22] 19.3±0.0 -99.6±0.1 42.2±5.0 -54.8±5.3 11.5±1.0 -75.8±4.1 9.7±1.6 -91.9±2.0
SSM [49] 93.6±0.8 -6.5±1.1 76.4±0.3 -10.6±0.4 54.7±2.6 -13.8±2.1 93.9±1.0 -4.6±1.2

Joint (soft upper bound) 97.8±0.1 -0.9±0.0 83.0±0.1 -2.1±0.2 58.8±0.3 -12.7±0.5 98.3±0.3 -0.4±0.2

FTF-ER-det. (Ours) 94.6±0.8 -4.5±1.1 77.5±0.1 -3.5±0.3 58.3±0.6 -10.5±0.5 95.2±0.7 -2.9±0.8
FTF-ER-prob. (Ours) 93.9±1.4 -5.3±1.9 77.9±0.1 -7.3±0.2 57.0±1.3 -11.8±1.7 95.7±0.6 -2.3±0.5
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Figure 4: Evolution of the AA throughout the learning process on the task sequences of four datasets.
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Figure 5: Visualization of the performance matrices of our FTF-ER method across four datasets.

Table 3: Ablation study on FTF-ER components.

GraNd HPS Dataset AA/% ↑ AF/% ↑

✘ ✘ OGB-Arxiv 50.9±1.9 -15.0±1.2
✔ ✘ OGB-Arxiv 52.3±0.9 -12.5±1.0
✘ ✔ OGB-Arxiv 54.6±0.8 -7.0±1.6
✔ ✔ OGB-Arxiv 58.3±0.6 -10.5±0.5

the performance of FTF-ER (HPS only) is superior to that of the FTF-
ER (GraNd + HPS) on the AF, while it is inferior on the AA. This
suggests that topological information is more effective in enhancing
the model’s memorization ability on the OGB-Arxiv dataset, and a

Table 4: Comparisons on feature-level node selection.

Methods Amazon Computers
AA/% ↑ AF/% ↑

FTF-ER (w/ Random) 91.0±3.5 -9.2±4.4
FTF-ER (w/ MF) 65.9±4.6 -41.1±5.7
FTF-ER (w/ CM) 85.8±5.1 -15.5±6.6

FTF-ER 94.6±0.8 -4.5±1.1

model that integrates both types of information can provide more
stable classification effectiveness.

4.3.2 Effect of GraNd. To demonstrate the effectiveness of gradi-
ent norm scores, we design three variants of FTF-ER, using random
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Table 5: Comparisons on topological-level node selection.

Methods Amazon Computers
AA/% ↑ AF/% ↑

FTF-ER (w/ Random) 93.5±2.0 -5.6±2.2
FTF-ER (w/ Random neighbor) 87.7±1.7 -13.3±2.3
FTF-ER (w/ Degree neighbor) 87.8±2.3 -13.3±2.9

FTF-ER 94.6±0.8 -4.5±1.1

Table 6: Comparisons of memory and time overheads of var-
ious ER-based CGL methods. * denotes that the methods
utilize topological information.

Methods
Corafull

AA/% ↑ Buffer Memory/MB ↓ Training Time/sec ↓
ER-GNN[51] 10.0 128.65 1530.16
SSM[49] * 76.4 195.05 3614.25
GEM[23] 11.3 625.84 6176.56
FTF-ER * 77.9 128.94 1242.74

scores, mean of feature (MF) scores and coverage maximization
(CM) scores (both of MF and CM are proposed in ER-GNN [51]) to
calculate the feature-level importance of nodes. Table 4 presents
that our original method achieves the best performance in both AA
and AF metrics. This further demonstrates the rationale of choos-
ing GraNd as the method for sampling feature-level information.
Interestingly, FTF-ER (w/ Random) achieves the second-best per-
formance, indicating that the ER-GNN method, which performs
well in the task-IL setting, does not have the capability to generalize
to the challenging class-IL setting.

4.3.3 Effect of HPS. To showcase the efficacy of Hodge potential
scores, we design three additional variants for the method of ex-
tracting topological information to extract node topology informa-
tion: random scores, random neighbor sampling, and degree-based
neighbor sampling algorithms (both neighbor sampling algorithms
are proposed in SSM [49]). Table 5 demonstrates that our original
method achieves the best performance. This reveals that the global
topological information collected by HPS is more helpful for node
classification tasks compared to the local topological information
collected through neighbor sampling used by SSM. Consequently,
this further illustrates the rationale behind our choice of using HPS
as a method for topological-level information sampling.

4.4 Computational Overhead
To demonstrate that our proposed method has lower computational
overhead, we perform an experiment on the Corafull dataset with a
budget of 60 in order to investigate the buffer storage and training
time cost associated with various ER-based CGL methods. In Table
6, we use Buffer Memory to indicate the size of the buffer after
learning all tasks, and Training Time to represent the total time
consumption of a training session.

Table 6 shows that our proposed method has nearly the same
buffer memory overhead as ER-GNN that without providing topo-
logical information, and significantly lower than the SSM and GEM
methods. This demonstrates that FTF-ER can reduce the storage
overhead required for utilizing topological information. Further-
more, our FTF-ER method achieves the best overall training time
among all ER-based CGL methods. This is mainly attributed to
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Figure 6: The influence of 𝛽 on average accuracy.
treating topological importance calculation as a preprocessing step,
thereby reducing the time overhead during runtime.

4.5 Sensitivity of Hyper-parameter
To analyze the sensitivity of our method to the value of the hyper-
parameter 𝛽 , we demonstrate the influence of 𝛽 on AA using the
Amazon Computers and Corafull datasets. In this experiment, we
further divide 𝛽 into [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] to
observe its effects more carefully. Figure 6 displays that the value
of 𝛽 has different effects on different datasets. On the Amazon
Computers dataset, it leads to approximately 14% performance
fluctuation, while on the Corafull dataset, it only leads to about
0.8% fluctuation. Further analysis of the experiments reveals that
the peak consistently occurs at the middle position, which further
confirms the effectiveness of our feature-topology fusion sampling.

4.6 Visualization
In order to better understand the dynamic performance of our FTF-
ER method on different tasks, Figure 5 visualizes the performance
matrix of average accuracy. Each cell in these matrices denotes
the performance on task 𝑗 (column) following the learning of task
𝑖 (row). By looking at the matrices vertically, we can see how a
specific task is gradually forgotten as training continues. By looking
at the matrices horizontally, we can see how all the learned tasks
perform at a given point in time. As training goes on, we notice that
the colors of most tasks stay pretty much the same, matching the
smooth curve of the FTF-ER method seen in Figure 4. This further
validates the effectiveness of our proposed method in alleviating
catastrophic forgetting issues of CGL.

5 CONCLUSION
In this paper, we propose FTF-ER to alleviate the catastrophic forget-
ting problem of CGL. From an overall perspective, FTF-ER proposes
a highly complementary solution to fuse feature and topological
information, thereby fully utilize the comprehensive graph data. By
leveraging Hodge decomposition on graphs, we calculate the topo-
logical importance of nodes without additional storage space, and
obtain more accurate global topological information compared to lo-
cal neighbor sampling. We achieve state-of-the-art performance on
accuracy and time efficiency in the challenging class-incremental
learning setting, while maintaining comparable buffer storage costs
to topology-agnostic methods. Despite the promising performance,
FTF-ER may exhibit inconsistent performance on graphs with sig-
nificant homophily gaps. In future studies, we will devote efforts
toward adapting FTF-ER to handle heterophilic graphs.
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