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This supplementary material provides more details of the research
background and experiment results that are omitted from the man-
uscript due to the page limit. As a supplement to the background,
Section 1 introduces the basic architecture of Graph Neural Net-
works (GNNs) and describes three types of GNNs that are applied
as backbones in our study. To strengthen the theoretical foundation
of our proposed FTF-ER, Section 2 presents the description and
generalization of the Hodge Decomposition Theorem, along with
the proof of the graph Laplacian operator. Finally, Section 3 pro-
vides additional implementation details and presents a qualitative
analysis of our experimental results.

1 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) are deep learning models defined on
a graph G. At each layer of GNNSs, nodes in V update their hidden
representations by aggregating and transforming information from
their neighborhoods. the process of aggregation and transformation
is accomplished by an update function that takes into account the
hidden representations of the node and its adjacent nodes.
Formally, for each node v in V, its hidden representation at the

I-th layer of the GNN, denoted as hz(,l), is computed as follows:
WD = umY nEYY), vu e N (o), 1)

where U(-) is a differentiable function and N (v) represents the

set of neighbors of node v in the graph. U(-) takes the hidden

representation of the current node hz(,l_l)

hl(,l_l) as inputs.

The graph convolutional network (GCN) [1] designs U(-) based
on a first-order approximation of the spectra of the graph, which
fixes the adjacency matrix A. In the case of the attention-based
GNN such as the graph attention network (GAT) [7], U(-) is de-
signed based on pairwise attention. Furthermore, in [8], the authors
highlight the performance limitations of GNNs and propose a new
network called the graph isomorphism network (GIN). In our paper,
the aforementioned three types of neural networks serve as the
backbones of our FTF-ER.

and its neighboring nodes

2 THEOREM AND PROOF

2.1 Hodge Decomposition Theorem

Hodge decomposition theorem is a fundamental result in the theory
of differential forms and Riemannian geometry. On a compact and
oriented Riemannian manifold, the Hodge decomposition theorem
states that any differential form can be uniquely decomposed into
the sum of three components:

e An exact form: A differential form that is the exterior deriva-
tive of another form.

e A co-exact form: A differential form whose codifferential
(adjoint of the exterior derivative) is zero.

e A harmonic form: A differential form that is both closed (its
exterior derivative is zero) and co-closed (its codifferential is
Z€ro).

Let QK (M) be a k-form on an n-dimensional smooth manifold
M, d be the exterior derivative operator, and § be the adjoint map
of d. Then we can define the Hodge-Laplace operator:

Definition 2.1 (Hodge-Laplace operator).
A2 ds+68d: QM) - k(M. (2)

Given the Definition 2.1, we state the Hodge decomposition
theorem as follows:

THEOREM 2.2 (HODGE DECOMPOSITION THEOREM). For any a €
Qk=1(M), g € Q**1(M) and Ay = 0, we have

weQ*(M) > w=da+5B+y, 3)

where da is an exact k-form, 8f is a co-exact k-form and y satisfying
Ay = 0 is also referred to as a harmonic form.

This decomposition is unique and orthogonal with respect to
the L? inner product on the space of differential forms. The Hodge
decomposition theorem has significant implications in various areas
of mathematics and physics, including the study of cohomology,
the theory of partial differential equations, and the formulation
of Maxwell’s equations in differential form language. Besides, this
theorem allows us to categorize differential forms into three distinct
types, each with its own physical interpretation:

e An exact form da: This differential form can be expressed as
the gradient of a scalar field, making it particularly useful for
describing potential energies associated with various fields.
In physics, an exact form is commonly employed to repre-
sent electric potential energy or magnetic potential energy,
providing valuable insights into the behavior of these fields.

e A co-exact form §f: A differential form that can be written as
the curl of a vector field is classified as a cexact form. It plays
a crucial role in describing circulation phenomena related to
fields, such as magnetic flux in the context of magnetic fields.
By utilizing a cexact form, physicists can effectively model
and analyze the circulatory aspects of these fields.

e A harmonic form y: Unlike an exact or a cexact form, a
harmonic form is characterized by the absence of potential
energies or circulations. It represents a state of equilibrium or
scenarios devoid of sources or sinks. In the realm of physics, a
harmonic form is frequently associated with fields that are free
from sources, such as source-free electric fields or source-free
magnetic fields. This form provides a framework for studying
the behavior of fields in the absence of external influences.

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

ACM MM, 2024, Melbourne, Australia

2.2 Hodge Decomposition Theorem on Graphs
By defining several concepts on graphs, including d, A and § when
k = 0, we can generalize the Hodge decomposition theorem from
its manifold version to graphs.

Definition 2.3 (Hodge Potential Score).
Q%G) 2 {s: V- R} (4)

Definition 2.4 (Edge Flows).
QNG) 2 {X VXV > RIX(G,j) =-X(3,i), (i, j) € E}. (5)

Definition 2.5 (Gradient Operator). Let grad be the gradient op-
erator, s;,5j € Q%(G), we have

(dos) (i, j) = (grads)(i, ) = sj = si, (i, j) € &. (6)

Definition 2.6 (Negative Divergence Operator). Let w be the weight
of an element in Q¥(G), w; € Q°(G), wij € Q1(G) and div be the
divergence operator, we have

Wi
(80X) (i) 2 (~divX) (i) = = " —LX (i, j). W)
7o
Definition 2.7 (Graph Laplacian Operator).
Ao £ dody = —div(grad). 8)

We note that we denote A as the graph Laplacian operator. The
proof that Ag corresponds to the usual graph Laplacian operator is
given in Section 2.3.

Given the definitions above, we state the Hodge decomposition
theorem on graphs for the case where k = 0 at frist:

THEOREM 2.8 (HODGE DECOMPOSITION THEOREM ON GRAPHS FOR
k =0). LetIm be the image set and ker be the kernel set, we have

Q"(g) =1Im dy ® Im &y ® ker Ay. 9)

In our paper, we employ the gradient field decomposition pro-
vided by the k = 0 version of the Hodge decomposition theorem
on graphs to compute the topological importance of nodes. For the
sake of theoretical completeness, we then describe the theorem
for the case where k € N. To generalize the Hodge decomposition
theorem on graphs for k = 0 to the case where k € N, we first
denote Ky as the set of k-cliques on the graph. Then we have

ok G) £ {u: V1 S R
u(ig(0ys > ig(k)) = sign(o)ulio, -~ ,ix),  (10)
(io, - ,ig) € Kgy1}-

For di : QX(G) — QK*1(G) and & : Q%(G) — QF*1(G), we
define

k+1
(dku)(iOs Tt ik+1) = Z(_l)j-uu(io’ T i]'—17 ij+1: Tt ik+1)>
Jj=0
(11)
and
k+1 )
(Su) (o, ~ -+ igy1) = Z(—l)Ju(io,'“ jmts s s i)
Jj=0
(12)
Then we have
Ap £ Spd + die_16k—1- (13)

Given the definitions above, we state the Hodge decomposition
theorem on graphs for k € N:
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THEOREM 2.9 (HODGE DECOMPOSITION THEOREM ON GRAPHS).
Let Im be the image set and ker be the kernel set, we have

QK (G) = Im dy ® Tm & @ ker Ay. (14)

Theorem 2.9 reveals that a graph signal can be decomposed into
three orthogonal components:

e Gradient component: The gradient component represents
the conservative or curl-free part of the graph signal. It can
be expressed as the gradient of a potential function defined
on the nodes of the graph. This means that the flow along any
closed path in the graph sums up to zero. In other words, the
gradient component captures the portion of the signal that ex-
hibits no rotational behavior. It is analogous to the irrotational
component in the continuous Hodge decomposition.

e Curl component: The curl component represents the rota-
tional or divergence-free part of the graph signal. It can be
expressed as the curl of a potential function defined on the
edges of the graph. This means that the net flow out of any
node in the graph is zero. The curl component captures the
portion of the signal that exhibits rotational behavior but has
no divergence.

e Harmonic component: The harmonic component is the part
of the graph signal that is both gradient-free and divergence-
free. It represents the signal’s behavior that is not captured by
either the gradient or the curl components. In other words, it is
the part of the signal that is constant on connected components
of the graph and has zero gradient and zero divergence.

These three components (i.e., gradient, curl, and harmonic) form
a complete and orthogonal decomposition of the graph signal. They
provide a way to analyze and understand the different aspects
of the signal’s behavior on the graph. The gradient component
captures the conservative part, the curl component captures the
rotational part, and the harmonic component captures the part
that is neither conservative nor rotational. This decomposition is
particularly useful in applications involving signal processing, data
analysis, and machine learning on graph-structured data.

2.3 Graph Laplacian Operator

In this section, we give the proof that Ay in our paper corresponds
to the usual graph Laplacian operator for completeness, which may
be found in [3].

ProOF. Let s € Q1(G), we have

) —s(i), if (i,j) €&,
(grads)(i,j):{;(]) s(i) Lﬂ(lle]v):e (15)

Let a;; be an element of the adjacency matrix A, the gradient may
be written as (grad s)(i, j) = a;;j(s(j) — s(i)) and then
(Aos) (i) = —(div(grad s)) (i) = —(div a;;(s(j) = s(1))) (i)

n n (16)
== aij(s() = (D) = &is() = ) ayjs(),
j=1 j=1
where for any node v; (i = 1,---,n), we define its degree as
n
& =deg(i) = Z aij. (17)

J=1
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Figure 1: 2-D t-SNE projections of embeddings in four models.
The nodes with different labels are represented by dots in
different colors.

If we regard a function s € Q(G) as a vector (s1,---,s,) € R?
where s(i) = s; and set D = diag(&y, -+ , &) € R™", then Eq. (16)

becomes
fi—an —aiz - —ain s1
—a;  H-ap o —am 52
Ags = = (D-A)s.
—an1 —an2 &n — ann Sn
(18)
So A¢ may be regarded as D — A, the usual definition of a graph
Laplacian. o

3 ADDITIONAL EXPERIMENTAL DETAILS

3.1 Implementation Details

We use Adam optimizer to optimize the models, setting the initial
learning rate to 0.005 and the number of training epochs to 200 on
all datasets. The regularizer hyper-parameter for EWC [2], MAS and
TWP is always set to 10,000. And f for TWP [4] is set to 0.01. For
those experience replay baselines, i.e., GEM [5], ER-GNN [10] and
SSM [9], we set the buffer size for each class to be 60, 60, 400, 100 for
Amazon Computers, Corafull, OGB-Arxiv, and Reddit, respectively.
For our method, we choose a buffer size that is the same as that
of other methods and select a suitable § from [0.0, 0.25, 0.5, 0.75,
1.0] for different datasets. Additionally, we set the structure of all
backbones as a 2-layer network with a hidden layer dimension
of 256 for fairness. Finally, due to the abundance of experimental
results for each method across all the three backbones, we only
present the best results of each method on each dataset.
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3.2 Qualitative Analysis

In order to demonstrate the effectiveness of the node representa-
tions learned by FTF-ER, we conduct a qualitative analysis on the
Amazon Computers dataset. For this purpose, we generate a series
of standard t-SNE [6] 2D projected plots of node representations to
reinforce this analysis. We select the complete test data set contain-
ing 5 tasks and 10 classes for demonstration, to analyze the overall
performance of each model after undergoing the complete continual
learning process. Given FTF-ER’s ability to differentiate between
the importance of nodes at the feature and topological levels, we
anticipate that nodes sharing the same labels will be positioned
closely in the projection space, indicating similar representation
vectors. Figure 1 visualizes the hidden layer representations of four
CGL methods, namely FTF-ER, SSM [9], ER-GNN [10], and TWP
[4]. Experimental results show that FTF-ER exhibits a clearer sepa-
ration of nodes from distinct communities compared to alternative
methods. The nodes with different labels are represented by dots
in different colors. This showcases the capability of our FTF-ER in
capturing distinctions among nodes within diverse communities
through the gathered node information.
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