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This supplementary material provides more details of the research

background and experiment results that are omitted from the man-

uscript due to the page limit. As a supplement to the background,

Section 1 introduces the basic architecture of Graph Neural Net-

works (GNNs) and describes three types of GNNs that are applied

as backbones in our study. To strengthen the theoretical foundation

of our proposed FTF-ER, Section 2 presents the description and

generalization of the Hodge Decomposition Theorem, along with

the proof of the graph Laplacian operator. Finally, Section 3 pro-

vides additional implementation details and presents a qualitative

analysis of our experimental results.

1 GRAPH NEURAL NETWORKS
Graph neural networks (GNNs) are deep learning models defined on

a graph G. At each layer of GNNs, nodes in V update their hidden

representations by aggregating and transforming information from

their neighborhoods. the process of aggregation and transformation

is accomplished by an update function that takes into account the

hidden representations of the node and its adjacent nodes.

Formally, for each node 𝑣 in V , its hidden representation at the

𝑙-th layer of the GNN, denoted as ℎ
(𝑙 )
𝑣 , is computed as follows:

ℎ
(𝑙 )
𝑣 = 𝑈 (ℎ (𝑙−1)𝑣 , ℎ

(𝑙−1)
𝑢 ),∀𝑢 ∈ N (𝑣), (1)

where 𝑈 (·) is a differentiable function and N(𝑣) represents the
set of neighbors of node 𝑣 in the graph. 𝑈 (·) takes the hidden

representation of the current nodeℎ
(𝑙−1)
𝑣 and its neighboring nodes

ℎ
(𝑙−1)
𝑢 as inputs.

The graph convolutional network (GCN) [1] designs 𝑈 (·) based
on a first-order approximation of the spectra of the graph, which

fixes the adjacency matrix A. In the case of the attention-based

GNN such as the graph attention network (GAT) [7], 𝑈 (·) is de-
signed based on pairwise attention. Furthermore, in [8], the authors

highlight the performance limitations of GNNs and propose a new

network called the graph isomorphism network (GIN). In our paper,

the aforementioned three types of neural networks serve as the

backbones of our FTF-ER.

2 THEOREM AND PROOF
2.1 Hodge Decomposition Theorem
Hodge decomposition theorem is a fundamental result in the theory

of differential forms and Riemannian geometry. On a compact and

oriented Riemannian manifold, the Hodge decomposition theorem

states that any differential form can be uniquely decomposed into

the sum of three components:

• An exact form: A differential form that is the exterior deriva-

tive of another form.

• A co-exact form: A differential form whose codifferential

(adjoint of the exterior derivative) is zero.

• A harmonic form: A differential form that is both closed (its

exterior derivative is zero) and co-closed (its codifferential is

zero).

Let Ω𝑘 (𝑀) be a 𝑘-form on an 𝑛-dimensional smooth manifold

𝑀 , 𝑑 be the exterior derivative operator, and 𝛿 be the adjoint map

of 𝑑 . Then we can define the Hodge-Laplace operator:

Definition 2.1 (Hodge-Laplace operator).
Δ ≜ 𝑑𝛿 + 𝛿𝑑 : Ω𝑘 (𝑀) ↦→ Ω𝑘 (𝑀) . (2)

Given the Definition 2.1, we state the Hodge decomposition

theorem as follows:

Theorem 2.2 (Hodge Decomposition Theorem). For any 𝛼 ∈
Ω𝑘−1 (𝑀), 𝛽 ∈ Ω𝑘+1 (𝑀) and Δ𝛾 = 0, we have

𝜔 ∈ Ω𝑘 (𝑀) ⇒ 𝜔 = 𝑑𝛼 + 𝛿𝛽 + 𝛾, (3)

where 𝑑𝛼 is an exact 𝑘-form, 𝛿𝛽 is a co-exact 𝑘-form and 𝛾 satisfying
Δ𝛾 = 0 is also referred to as a harmonic form.

This decomposition is unique and orthogonal with respect to

the 𝐿2 inner product on the space of differential forms. The Hodge

decomposition theorem has significant implications in various areas

of mathematics and physics, including the study of cohomology,

the theory of partial differential equations, and the formulation

of Maxwell’s equations in differential form language. Besides, this

theorem allows us to categorize differential forms into three distinct

types, each with its own physical interpretation:

• An exact form 𝑑𝛼 : This differential form can be expressed as

the gradient of a scalar field, making it particularly useful for

describing potential energies associated with various fields.

In physics, an exact form is commonly employed to repre-

sent electric potential energy or magnetic potential energy,

providing valuable insights into the behavior of these fields.

• A co-exact form 𝛿𝛽 : A differential form that can be written as

the curl of a vector field is classified as a cexact form. It plays

a crucial role in describing circulation phenomena related to

fields, such as magnetic flux in the context of magnetic fields.

By utilizing a cexact form, physicists can effectively model

and analyze the circulatory aspects of these fields.

• A harmonic form 𝛾 : Unlike an exact or a cexact form, a

harmonic form is characterized by the absence of potential

energies or circulations. It represents a state of equilibrium or

scenarios devoid of sources or sinks. In the realm of physics, a

harmonic form is frequently associated with fields that are free

from sources, such as source-free electric fields or source-free

magnetic fields. This form provides a framework for studying

the behavior of fields in the absence of external influences.
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2.2 Hodge Decomposition Theorem on Graphs
By defining several concepts on graphs, including 𝑑 , Δ and 𝛿 when

𝑘 = 0, we can generalize the Hodge decomposition theorem from

its manifold version to graphs.

Definition 2.3 (Hodge Potential Score).
Ω0 (G) ≜ {𝑠 : V ↦→ R}. (4)

Definition 2.4 (Edge Flows).
Ω1 (G) ≜ {X : V ×V ↦→ R|X(𝑖, 𝑗) = −X( 𝑗, 𝑖), (𝑖, 𝑗) ∈ E}. (5)

Definition 2.5 (Gradient Operator). Let grad be the gradient op-

erator, 𝑠𝑖 , 𝑠 𝑗 ∈ Ω0 (G), we have
(𝑑0𝑠) (𝑖, 𝑗) ≜ (grad 𝑠) (𝑖, 𝑗) ≜ 𝑠 𝑗 − 𝑠𝑖 , (𝑖, 𝑗) ∈ E . (6)

Definition 2.6 (Negative Divergence Operator). Let𝑤 be theweight

of an element in Ω𝑘 (G),𝑤𝑖 ∈ Ω0 (G),𝑤𝑖 𝑗 ∈ Ω1 (G) and div be the

divergence operator, we have

(𝛿0X)(𝑖) ≜ (−divX)(𝑖) = −
∑︁
𝑗

𝑤𝑖 𝑗

𝑤𝑖
X(𝑖, 𝑗). (7)

Definition 2.7 (Graph Laplacian Operator).
Δ0 ≜ 𝛿0𝑑0 ≜ −div(grad). (8)

We note that we denote Δ0 as the graph Laplacian operator. The

proof that Δ0 corresponds to the usual graph Laplacian operator is

given in Section 2.3.

Given the definitions above, we state the Hodge decomposition

theorem on graphs for the case where 𝑘 = 0 at frist:

Theorem 2.8 (Hodge Decomposition Theorem on Graphs for

𝑘 = 0). Let Im be the image set and ker be the kernel set, we have
Ω0 (G) = Im 𝑑0 ⊕ Im 𝛿0 ⊕ ker Δ0 . (9)

In our paper, we employ the gradient field decomposition pro-

vided by the 𝑘 = 0 version of the Hodge decomposition theorem

on graphs to compute the topological importance of nodes. For the

sake of theoretical completeness, we then describe the theorem

for the case where 𝑘 ∈ N. To generalize the Hodge decomposition

theorem on graphs for 𝑘 = 0 to the case where 𝑘 ∈ N, we first

denote 𝐾𝑘 as the set of 𝑘-cliques on the graph. Then we have

Ω𝑘 (𝐺) ≜ {𝑢 : V𝑘+1 ↦→ R|
𝑢 (𝑖𝜎 (0) , · · · , 𝑖𝜎 (𝑘 ) ) = sign(𝜎)𝑢 (𝑖0, · · · , 𝑖𝑘 ),
(𝑖0, · · · , 𝑖𝑘 ) ∈ 𝐾𝑘+1}.

(10)

For 𝑑𝑘 : Ω𝑘 (G) ↦→ Ω𝑘+1 (G) and 𝛿𝑘 : Ω𝑘 (G) ↦→ Ω𝑘+1 (G), we
define

(𝑑𝑘𝑢) (𝑖0, · · · , 𝑖𝑘+1) ≜
𝑘+1∑︁
𝑗=0

(−1) 𝑗+1𝑢 (𝑖0, · · · , 𝑖 𝑗−1, 𝑖 𝑗+1, · · · , 𝑖𝑘+1),

(11)

and

(𝛿𝑘𝑢) (𝑖0, · · · , 𝑖𝑘+1) ≜
𝑘+1∑︁
𝑗=0

(−1) 𝑗𝑢 (𝑖0, · · · , 𝑖 𝑗−1, 𝑖 𝑗+1, · · · , 𝑖𝑘+1) .

(12)

Then we have

Δ𝑘 ≜ 𝛿𝑘𝑑𝑘 + 𝑑𝑘−1𝛿𝑘−1 . (13)

Given the definitions above, we state the Hodge decomposition

theorem on graphs for 𝑘 ∈ N:

Theorem 2.9 (Hodge Decomposition Theorem on Graphs).

Let Im be the image set and ker be the kernel set, we have
Ω𝑘 (G) = Im 𝑑𝑘 ⊕ Im 𝛿𝑘 ⊕ ker Δ𝑘 . (14)

Theorem 2.9 reveals that a graph signal can be decomposed into

three orthogonal components:

• Gradient component: The gradient component represents

the conservative or curl-free part of the graph signal. It can

be expressed as the gradient of a potential function defined

on the nodes of the graph. This means that the flow along any

closed path in the graph sums up to zero. In other words, the

gradient component captures the portion of the signal that ex-

hibits no rotational behavior. It is analogous to the irrotational

component in the continuous Hodge decomposition.

• Curl component: The curl component represents the rota-

tional or divergence-free part of the graph signal. It can be

expressed as the curl of a potential function defined on the

edges of the graph. This means that the net flow out of any

node in the graph is zero. The curl component captures the

portion of the signal that exhibits rotational behavior but has

no divergence.

• Harmonic component: The harmonic component is the part

of the graph signal that is both gradient-free and divergence-

free. It represents the signal’s behavior that is not captured by

either the gradient or the curl components. In other words, it is

the part of the signal that is constant on connected components

of the graph and has zero gradient and zero divergence.

These three components (i.e., gradient, curl, and harmonic) form

a complete and orthogonal decomposition of the graph signal. They

provide a way to analyze and understand the different aspects

of the signal’s behavior on the graph. The gradient component

captures the conservative part, the curl component captures the

rotational part, and the harmonic component captures the part

that is neither conservative nor rotational. This decomposition is

particularly useful in applications involving signal processing, data

analysis, and machine learning on graph-structured data.

2.3 Graph Laplacian Operator
In this section, we give the proof that Δ0 in our paper corresponds

to the usual graph Laplacian operator for completeness, which may

be found in [3].

Proof. Let 𝑠 ∈ Ω1 (G), we have

(grad 𝑠) (𝑖, 𝑗) =
{
𝑠 ( 𝑗) − 𝑠 (𝑖), if (𝑖, 𝑗) ∈ E,
0, otherwise.

(15)

Let 𝑎𝑖 𝑗 be an element of the adjacency matrix A, the gradient may

be written as (grad 𝑠) (𝑖, 𝑗) = 𝑎𝑖 𝑗 (𝑠 ( 𝑗) − 𝑠 (𝑖)) and then

(Δ0𝑠) (𝑖) = −(div(grad 𝑠)) (𝑖) = −(div 𝑎𝑖 𝑗 (𝑠 ( 𝑗) − 𝑠 (𝑖))) (𝑖)

= −
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗 (𝑠 ( 𝑗) − 𝑠 (𝑖)) = 𝜉𝑖𝑠 (𝑖) −
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑠 ( 𝑗),
(16)

where for any node 𝑣𝑖 (𝑖 = 1, · · · , 𝑛), we define its degree as

𝜉𝑖 = deg(𝑖) =
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗 . (17)
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Figure 1: 2-D t-SNE projections of embeddings in fourmodels.
The nodes with different labels are represented by dots in
different colors.

If we regard a function 𝑠 ∈ Ω1 (G) as a vector (𝑠1, · · · , 𝑠𝑛) ∈ R𝑛
where 𝑠 (𝑖) = 𝑠𝑖 and set D = diag(𝜉1, · · · , 𝜉𝑛) ∈ R𝑛×𝑛 , then Eq. (16)

becomes

Δ0𝑠 =


𝜉1 − 𝑎11 −𝑎12 · · · −𝑎1𝑛
−𝑎21 𝜉2 − 𝑎22 · · · −𝑎2𝑛
.
.
.

. . .
.
.
.

−𝑎𝑛1 −𝑎𝑛2 · · · 𝜉𝑛 − 𝑎𝑛𝑛



𝑠1
𝑠2
.
.
.

𝑠𝑛


= (D−A)𝑠 .

(18)

So Δ0 may be regarded as D − A, the usual definition of a graph

Laplacian. □

3 ADDITIONAL EXPERIMENTAL DETAILS
3.1 Implementation Details
We use Adam optimizer to optimize the models, setting the initial

learning rate to 0.005 and the number of training epochs to 200 on

all datasets. The regularizer hyper-parameter for EWC [2], MAS and

TWP is always set to 10,000. And 𝛽 for TWP [4] is set to 0.01. For

those experience replay baselines, i.e., GEM [5], ER-GNN [10] and

SSM [9], we set the buffer size for each class to be 60, 60, 400, 100 for

Amazon Computers, Corafull, OGB-Arxiv, and Reddit, respectively.

For our method, we choose a buffer size that is the same as that

of other methods and select a suitable 𝛽 from [0.0, 0.25, 0.5, 0.75,

1.0] for different datasets. Additionally, we set the structure of all

backbones as a 2-layer network with a hidden layer dimension

of 256 for fairness. Finally, due to the abundance of experimental

results for each method across all the three backbones, we only

present the best results of each method on each dataset.

3.2 Qualitative Analysis
In order to demonstrate the effectiveness of the node representa-

tions learned by FTF-ER, we conduct a qualitative analysis on the

Amazon Computers dataset. For this purpose, we generate a series

of standard t-SNE [6] 2D projected plots of node representations to

reinforce this analysis. We select the complete test data set contain-

ing 5 tasks and 10 classes for demonstration, to analyze the overall

performance of eachmodel after undergoing the complete continual

learning process. Given FTF-ER’s ability to differentiate between

the importance of nodes at the feature and topological levels, we

anticipate that nodes sharing the same labels will be positioned

closely in the projection space, indicating similar representation

vectors. Figure 1 visualizes the hidden layer representations of four
CGL methods, namely FTF-ER, SSM [9], ER-GNN [10], and TWP

[4]. Experimental results show that FTF-ER exhibits a clearer sepa-

ration of nodes from distinct communities compared to alternative

methods. The nodes with different labels are represented by dots

in different colors. This showcases the capability of our FTF-ER in

capturing distinctions among nodes within diverse communities

through the gathered node information.
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