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Abstract

Recent vision-language-action (VLA) models rely
on 2D inputs, lacking integration with the broader
realm of the 3D physical world. Furthermore,
they perform action prediction by learning a direct
mapping from perception to action, neglecting the
vast dynamics of the world and the relations be-
tween actions and dynamics. In contrast, human
beings are endowed with world models that depict
imagination about future scenarios to plan actions
accordingly. To this end, we propose 3D-VLA
by introducing a new family of embodied founda-
tion models that seamlessly link 3D perception,
reasoning, and action through a generative world
model. Specifically, 3D-VLA is built on top of
a 3D-based large language model (LLM), and a
set of interaction tokens is introduced to engage
with the embodied environment. Furthermore, to
inject generation abilities into the model, we train
a series of embodied diffusion models and align
them into the LLM for predicting the goal images
and point clouds. To train our 3D-VLA, we curate
a large-scale 3D embodied instruction dataset by
extracting vast 3D-related information from exist-
ing robotics datasets. Our experiments on held-in
datasets demonstrate that 3D-VLA significantly
improves the reasoning, multimodal generation,
and planning capabilities in embodied environ-
ments, showcasing its potential in real-world ap-
plications.
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1. Introduction

Nowadays, there has been a proliferation of vision-language
models (Liu et al., 2023; Alayrac et al., 2022; Li et al.,
2023b) that can take images as inputs and perform a series
of reasoning tasks in the 2D space, mirroring the versatility
of the human brain. Such 2D foundation models also lay
the foundation for recent embodied foundation models such
as RT-2 (Brohan et al., 2023) and PALM-E (Driess et al.,
2023a) that could generate high-level plans or low-level
actions contingent on the images. However, they neglect
the fact that human beings are situated within a far richer
3D physical world beyond 2D images - they reason, plan,
and act based on their 3D understanding of the environment
(Palmer, 1975; Pylyshyn, 2003; Marr, 2010). It’s crucial
that human-like intelligent embodied agents are equipped
with the same 3D understanding ability.

Taking a step forward, recent works (Huang et al., 2023b;
Hong et al., 2024) develop embodied foundation models
that could plan and act in the 3D environment. However,
such models mainly learn a direct mapping from perception
to action, devoid of a broader understanding of the dynamics
of the world, and the relations between actions and world
dynamics. On the other hand, human beings are blessed
with world models that simulate future events based on 3D
internal representations. By depicting the imagination and
anticipation about the future states, one could better plan
actions toward the predicted goals.

Challenges inevitably exist for building such human-like 3D
world models. Firstly, existing foundation models focus on
language generation, unable to imagine modalities beyond
language and simulate future states to facilitate action gener-
ation, which is a crucial aspect of world models. Secondly,
existing embodied datasets mainly contain 2D images or
videos, lacking 3D-related annotations for reasoning and
planning in the 3D space.

To this end, we propose 3D-VLA by introducing a new
family of embodied foundation models that seamlessly link
3D perception, reasoning, and action through a generative
world model. Specifically, we build our 3D-VLA on top
of a 3D large language model (Hong et al., 2023) to equip
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Figure 1. Examples from our 3D Embodied Instruction Tuning Dataset.

the model with 3D understanding ability. Since embodied
tasks could not be accomplished via language generation
solely and require deeper digging into the dynamic scenes,
the manipulated objects as well as actions to interact with
the scenes, we add special interactive tokens to the LLM
vocabulary (e.g., scene, object, and action tokens). These
added tokens enable our model to perform a wider range
of embodied tasks and support interleaved 3D-text data.
Recognizing the inadequacy of multimodal generation abil-
ity in embodied foundation models, we propose to inject
the goal generation ability into 3D-VLA. We first pretrain
a set of embodied diffusion models for RGBD-to-RGBD
and point-to-point generation respectively. To efficiently
bridge between the diffusion decoders of various modalities
and the LLM embedding space, we employ a projector that
aligns multi-modal goal generation in 3D-VLA. It strategi-
cally incorporates multimodal signals to specify the type of
modality for a generation.

Another challenge for building such a generative world

model lies in the lack of data. The embodied datasets in
use (Padalkar et al., 2023; Brohan et al., 2022; Jang et al.,
2022) mainly consist of 2D images, deficient in 3D-related
information. Thus, we curate a large-scale 3D embodied
instruction tuning dataset. Specifically, we first gather a di-
verse collection of datasets that includes real and synthetic
data featuring robot manipulations and human-object inter-
actions. For datasets lacking depth data, we utilize a depth
estimator to append necessary 3D details and project them
to 3D point clouds. Additionally, we design a pipeline to
use the off-the-shelf models to extract 3D-related annota-
tions and enrich the language descriptions. In this way, we
collect 2M 3D-language-action data pairs, covering various
tasks such as task captioning, action prediction, localization,
multimodal goal generation, etc, as shown in Figure 1.

To sum up, we have the following contributions:

* We propose 3D-VLA, a new family of 3D vision-language-
action embodied foundation models that unify 3D percep-
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Figure 2. Overview of our 3D-VLA pipeline. The left part shows our goal-generation capability. Our model can imagine the final state
image and point cloud based on the user’s input. This generated goal state can then be fed back to our model to guide the robot control.

tion, reasoning, and action with a generative world model.

* We create a large-scale 3D embodied instruction tuning
dataset addressing the absence of 3D-related information
in existing embodied datasets.

* We add interaction tokens to better interact with the envi-
ronment. We further train diffusion models for goal image
and point cloud generation. We utilize a projector to effi-
ciently align LLM output features and diffusion models.

* Our 3D-VLA can conduct a series of tasks, including goal
generation (in terms of images, depths, and point clouds),
goal-based planning, and embodiment action prediction.
It outperforms baseline models by a large margin in these
novel embodied tasks. It also outshines baseline models in
traditional language-based tasks.

2. Related Works

Multimodal Language Models. Recent Multimodal Lan-
guage Models have made remarkable advances in various
domains, including vision and language understanding (Li
et al., 2022; 2023b; Liu et al., 2023; Huang et al., 2023c;
Peng et al., 2023; Zhu et al., 2023), interleaved image and
text understanding (Alayrac et al., 2022), interleaved image
and text generation (Dong et al., 2023). Some more unified
models can perceive inputs and generate outputs in arbitrary
combinations of text, images, videos, and audio (Wu et al.,
2023; Lu et al., 2023). However, none of these models can
perceive 3D inputs or output actions according to 3D input.

Vision-Language-Action Models. Previous vision-
language models with action output have predominantly
leveraged 2D features, thereby lacking the capability of 3D

spatial understanding (Driess et al., 2023b; Brohan et al.,
2022; 2023). In contrast, our model is guided by 3D fea-
tures, which are predicted in alignment with goal objectives
in our general world model. We are the first to leverage 3D
features such as point clouds for action token generation,
significantly improving action planning accuracy. Addition-
ally, this pipeline possesses the potential to be extended for
applications in real-world scenarios.

3D Foundation Models. Our paper is closely related to
the 3D foundation models that integrate 3D features in
MLLMs (Hong et al., 2023; Chen et al., 2023b; Qi et al.,
2023; Xu et al., 2023; Huang et al., 2023a; Zhou et al., 2023;
Guo et al., 2023; Li et al., 2024). These studies have suc-
cessfully stepped forward to leverage foundation models
to comprehend 3D features. However, they primarily fo-
cus on analyzing and reasoning in the current observable
state of the 3D scenes, thereby revealing a limitation in
predicting future features that extend beyond immediate per-
ception. Contrasting with them, we aim to not only under-
stand the perceivable scenes but also predict imperceptible
multimodal features guided by specific goals. This capabil-
ity enables our model to further generate action tokens to
interact with the 3D world.

3. 3D Embodied Instruction Tuning Dataset

Recently, benefiting from billion-scale datasets on the in-
ternet, VLMs have demonstrated exceptional proficiency in
various tasks. Similarly, million-level datasets comprising
video-action pairs lay the foundation for embodied VLMs
for robot control. However, they mostly don’t provide depth
or 3D annotations and precise control in robot operations
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that necessitate the inclusion of 3D spatial reasoning and
interaction. Without 3D information, it is challenging for a
robot to comprehend and execute the commands that require
3D spatial reasoning, such as “place the farthest cup into
the middle drawer”.

To bridge this gap, we build a large-scale 3D embodied
instruction tuning dataset that provides sufficient 3D-related
information as well as paired text instructions to train our
model. We design a pipeline to extract 3D-language-action
pairs from existing embodied datasets, obtaining annota-
tions for point clouds, depth maps, 3D bounding boxes, the
robot’s 7D actions, and textual descriptions. The details are
outlined as follows.

3.1. Dataset Collection

Our data are curated from various sources. We provide an
overview here, with details available in the Appendix:

Robot Datasets: We select 12 datasets (Brohan et al., 2022;
Jang et al., 2022; Walke et al., 2023; Lynch et al., 2023; Feng
et al., 2023; Chen et al., 2023a; Dass et al., 2023; Mandlekar
etal., 2019; Mees et al., 2023; Shah et al., 2023; Sawhney
etal., 2021; Sermanet et al., 2023) from the Open-X Embodi-
ment Dataset (Padalkar et al., 2023). They have high-quality
images with linguistic instructions in the real world but lack
more in-depth information and 3D annotations. We also
select datasets with excellent depth information, such as
Dobb-E (Shafiullah et al., 2023) and RH20T (Fang et al.,
2023). Additionally, we use datasets collected from two
simulator environments, RLBench (James et al., 2020) and
CALVIN (Mees et al., 2022).

Human Object Interaction Datasets: Human/hand-object
interactions could provide demonstrations that benefit robot
decision-making and imitation. Therefore, we utilize sev-
eral human-object interaction datasets, including datasets
without depth information, such as Epic-Kitchens (Damen
et al., 2018), and datasets with better 3D annotations, such
as HOI4D (Liu et al., 2022).

3.2. Visual Annotations

Estimating depths and optical flows. Given that over 95%
of the video datasets for embodied tasks do not provide 3D
information, we employ ZoeDepth (Bhat et al., 2023) on
each frame of the video from these datasets. Additionally, to
better utilize video data, we use RAFT (Teed & Deng, 2020)
for optical flow estimation. Optical flow aids in refining
the data we generate. Thus, for video segments where the
camera pose does not change, we use optical flow to estimate
which pixels are the unmoved background. We align the
depth maps of these backgrounds across different frames
of the same video, multiplying each frame’s depth map by
a coefficient to ensure depth consistency. After getting the

depth maps, we can directly lift the RGB-D images into 3D
point clouds using camera intrinsics and poses.

Generating 3D annotations. We aim to generate several
3D-related annotations: 3D bounding boxes of the objects,
goal images, depths, or point clouds as the imagination
outcomes, as well as robot actions in the 3D space. We first
extract the 3D bounding boxes of the objects in the scenes.
Such information could benefit 3D models’ ability to capture
3D information and attend to the manipulated object for
better decision-making. The embodied datasets that serve as
sources provide text instructions to describe the commands
executed by the robots. We use spaCy (Honnibal & Montani,
2017) to parse the instructions to obtain all noun chunks,
including the manipulated object. We utilize a pre-trained
grounding model (e.g., Grounded-SAM (Ren et al., 2024) )
to obtain the 2D mask of each object. These 2D masks, when
lifted to 3D, correspond to parts of the point cloud, allowing
us to obtain the 3D bounding boxes of all the objects in
space. When selecting masks, the manipulated object is
chosen based on the highest confidence value in areas of
significant optical flow. Since we reconstruct the depths and
point clouds, we could use images, depths, and point clouds
in future frames as ground-truth goals. For actions, we use
the 7 DoF actions from the provided datasets.

3.3. Language Annotations

Inspired by (Li et al., 2023a; Peng et al., 2023), we pro-
pose to generate dense language annotations consisting of
tokens (e.g., <image></image>; <pcd></pcd>) that en-
compass the 3D annotations (bounding boxes, goal images
/ depths / point clouds, actions) we generated before, as
shown in the prompts in Figure 2.

We use pre-defined language templates with tokens to con-
struct these 3D annotations into prompts and answers. Fol-
lowing (Hong et al., 2023), we use ChatGPT-based prompt-
ing to diversify prompts. Specifically, we provide instruc-
tions to ChatGPT, as well as our annotated objects and
bounding boxes. We also give 2-3 few-shot human-written
demonstrations to guide the GPT on the type of data it is
instructed to generate. ChatGPT is asked to summarize the
information and rewrite the template-generated prompts into
more diverse forms. For tasks without pre-defined templates,
ChatGPT is also asked to generate prompts and answers as
language inputs and outputs of these tasks by itself. We
show the detailed templates and prompts to generate all
types of data in the Appendix.

4. Methods

4.1. Overview

In this section, we introduce 3D-VLA, a world model for
3D reasoning, goal generation, and decision-making in em-



3D-VLA: A 3D Vision-Language-Action Generative World Model

bodied environments. As shown in Figure 2, we first build
our backbone on top of 3D-LLM (Hong et al., 2023), and
further enhance the model’s capabilities to interact with the
3D world by adding a series of interaction tokens. Next,
we inject goal generation ability into 3D-VLA by first pre-
training the embodied diffusion models and employing a
projector for aligning the LLM and the diffusion models.

4.2. 3D-VLA
4.2.1. BACKBONE

In the first stage, we develop the 3D-VLA base model fol-
lowing the methodology of 3D-LLM (Hong et al., 2023).
Since the dataset we collected is not at the billion-level scale
required for training a multi-modal LLM from scratch, we
follow the approach of 3D-LLM by leveraging multi-view
features to generate 3D scene features. This enables the
seamless integration of visual features into a pre-trained
VLM with no need for adaptation. Meanwhile, the training
datasets for 3D-LLM mostly comprise objects (Deitke et al.,
2022) and indoor scenes (Dai et al., 2017; Ramakrishnan
et al., 2021), which do not directly align with our embod-
ied setup. Therefore, we choose not to load the 3D-LLM
pretrained model. Instead, we utilize BLIP2-FlanT5x, (Li
et al., 2023b) as our pretrained model. During training, we
unfreeze both the input and output embeddings for tokens,
as well as the weights of the Q-Former.

4.2.2. INTERACTION TOKENS

To enhance the model’s comprehension of 3D scenes and
facilitate interaction within these environments, we intro-
duce a novel set of interaction tokens. Firstly, We incorpo-
rate object tokens <obj> </obj> that enclose the object
nouns in the parsed sentences (e.g., <obj> a chocolate
bar </obj> [loc tokens] on the table) so that
the model could better capture which objects are manip-
ulated or referred to. Secondly, to better represent spatial
information by language, we devise a set of location to-
kens <loc0-255> for grounding referred objects, which
are represented by six tokens for the 3D bounding box in the
form of AABB. Thirdly, to better encode dynamics with our
framework, we introduce the <scene> </scene> tokens
to enclose the embeddings of a static scene. By composing
over the scene tokens, 3D-VLA could comprehend dynamic
scenes and manage inputs that interleave 3D scenes and text.

We further enhance the architecture with an expanded set
of specialized tokens that represent robotic actions. The
robot’s actions, with 7 degrees of freedom, are represented
by discrete tokens such as <aloc0-255>, <arot0-255>,
and <gripper0/1> to denote the arm’s intended absolute
location, rotation, gripper openness. These actions are sepa-
rated by token <ACT_SEP>.

4.3. Injecting Goal Generation Ability into 3D-VLA

In this section, we introduce how our 3D-VLA performs
goal generation in terms of images, depths, and point clouds.

Human beings pre-visualize the final states of the scenes
to facilitate action prediction or decision making, which
is a key aspect in building world models. Moreover, dur-
ing preliminary experiments, we also discover that provid-
ing the ground-truth final states can enhance the model’s
reasoning and planning capabilities. However, training an
MLLM to generate images, depths, and point clouds is non-
trivial. Firstly, state-of-the-art video diffusion models are
not tailored for embodied setups. For instance, when ask-
ing Runway (Esser et al., 2023) to generate future frames
given the instruction “open the drawer”, the entire scene is
altered to a great extent with regard to view change, unex-
pected object deformation, and weird texture replacement,
as well as layout distortion. Similarly, using the method of
DreamLLM (Dong et al., 2023) to directly freeze the sta-
ble diffusion trained on internet data, can lead to collapsed
outputs. Secondly, how to incorporate diffusion models of
various modalities into a single foundation model remains
a challenge. Therefore, we propose to inject the ability to
generate images, depths and point clouds into 3D-VLA. We
first pretrain the embodied diffusion models in terms of dif-
ferent modalities such as images, depths and point clouds,
and then align the decoders of these diffusion models to the
embedding space of 3D-VLA through an alignment stage.

4.3.1. PRETRAINING EMBODIED DIFFUSION MODELS
FOR GOAL GENERATION

To address the limitations of current diffusion models for
goal generation in an embodied environment, we train RGB-
D to RGB-D and point-cloud to point-cloud diffusion mod-
els. We utilize our curated 3D-language video data to train a
conditional diffusion model that edits the initial state modal-
ity based on instructions to generate the corresponding final
state modality. The specific training details for these models
are as follows: For RGBD to RGBD generation, we em-
ploy Stable Diffusion V1.4 (Rombach et al., 2022) as our
pretrained model due to the efficiency and quality of image
generation by latent diffusion when operating in the latent
space of a pretrained VAE (Kingma & Welling, 2013). We
concatenate the RGB latent and depth latent as the image
condition. Similarly, for point-to-point generation, we use
Point-E (Nichol et al., 2022) as the pretrained model, to
which we add a point cloud condition input.

4.3.2. BRIDGING LLM AND GOAL GENERATION

After pretraining the diffusion models, we are equipped
with various decoders that could generate goals by condi-
tioning the latent spaces in their modalities. Challenges
remain as to how to seamlessly incorporate the pretrained
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Tasks Models BLEU-1 BLEU-2 BLEU-3 BLEU4 METEOR ROUGH.L EMe@I
3D-LLM* 1.05 0.38 0.15 0.02 12.96 091 0.00
BLIP2 OPT, 7" 7.39 3.17 0.03 0.02 3.87 7.40 3.03
. BLIP2 FlanTSyx * | 22.84 1617 1250  10.11 11.41 32.01 10.31
Embodied QA Flamingoss* |  9.50 6.51 5.14 4.29 6.84 10.40 1.21
LLaVA7g* 11.66 8.06 6.01 4.58 12.59 14.17 5.67
BLIP2 FlanTSyx. | 37.31 2720 2032 1548 17.80 38.92 15.35
3D-VLA 4834 3855 3172 26.80 23.72 49.33 2453
3D-LLM* 0.78 0.16 0.07 0.05 0.57 133 0.00
BLIP2 FlanT5x.* | 8.50 2.07 0.35 0.00 3.40 8.45 0.00
. OpenFlamingosp* 7.61 1.64 0.37 0.00 4.74 9.36 0.00
Task Caption 1 Va L+ 2.63 0.69 0.16 0.0 2.63 4.65 0.00
BLIP2 FlanT5x | 22.05  11.40 572 3.16 8.72 26.12 775
3D-VLA 5569 4588 3939  34.88 27.57 62.01 29.34
Whatif Qo BLIP2ZFlanTSx | 2823 1147 4.49 0.06 8.27 2841 5.85
3D-VLA 53.09 4094 3434 2938 26.83 52.82 14.7
3D-LLM* 0.52 0.22 0.16 0.13 0.34 0.64 0.00
Dense Caption BLIP2 FlanTSxi | 36.17 2472  18.06  13.96 17.83 40.56 13.10
3D-VLA 5190 4283 3811  34.62 25.25 55.91 39.49

Table 1. Evaluation on reasoning ability using held-in data. * denotes zero-shot transfer results without training on our pre-train datasets.

decoders into the LLMs so that 3D-VLA could gener-
ate goals with regard to any pretrained modalities condi-
tioned on the input instructions. To bridge the gap be-
tween the LLM and the diffusion models of different modal-
ities, we develop an alignment stage into our 3D-VLA. We
first introduce additional special tokens such as <image>
</image> and <pcd> </pcd>. These tokens are intri-
cately designed to inform the decoder about the type of
modal content to output. Between the enclosing tokens, we
supervise the LLM in generating instructions for a robot
to execute, which may include object tokens and location
tokens, such as <image> pick up the <obj> apple
</obj> [loc tokens] </image>. Based on this, we
can apply a transformer-based projector, which is capable
of mapping the decoder features and embeddings from the
Large Language Model (LLM) into the space of the DM
framework. It plays a crucial role in enhancing the model’s
capability to understand and generate multi-modal data, es-
tablishing a connection between high-level language under-
standing and multi-modal goal generation. To make training
3D-VLA more efficient and to avoid catastrophic forgetting,
we utilize LoRA (Hu et al., 2021) to fine-tune different dif-
fusion models. At the same time, we only train the newly
introduced special tokens embeddings, the corresponding
embedding output linear layer, and the entire projector. We
minimize both the LLM and DM denoising loss.

5. Experiments

3D-VLA is a versatile 3D-based generative world model
that can perform reasoning and grounding in the 3D world,

Methods IoU Acc@25 Acc@50
Kosmos-2 (w/ GT Depth) | 10.92 12.73 3.85
CoVLM (w/ GT Depth) 19.81 25.39 16.61
3D-VLA 29.33 42.26 27.09

Table 2. Localization results on held-in robotics datasets.

imagine multi-modal goal content, and generate actions for
robot manipulation. In this section, we evaluate 3D-VLA in
three aspects: 3D reasoning and localization, multi-modal
goal generation, and embodied action planning.

5.1. 3D Reasoning and Localization

Tasks. Our primary focus is on scenes involving robots that
are characterized by greater dynamism and a higher degree
of interaction, which require a greater level of reasoning and
localization abilities. We build several tasks on 3D embod-
ied instruction tuning datasets for learning these abilities in
the robotics domain. The tasks include 1) embodied QA on
RoboVQA dataset (Sermanet et al., 2023); 2) task caption-
ing on 11 Open-X datasets (Padalkar et al., 2023), where we
input the initial and final scenes and ask the agent to reason
what has happened; 3) what-if QA on RT-1 dataset (Brohan
et al., 2022), where the agent is asked a question that what
will happen if some specified actions (represented by action
tokens) are executed; 4) dense captioning on 11 Open-X
datasets, where the agent need to caption the content spec-
ified by a 3d bounding box; 5) localization on 11 Open-X
datasets, where the agent is to localize the object mentioned
in the robot manipulation instruction. We evaluate 3D-VLA
on these tasks using held-in datasets.
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GT Goal Pred Goal

Pred Goal

Place the long bread on the table (Jaco Play)

Pick up the red object from table (Pick & Place) Open grill, place chicken inside (Play Fusion)

Pred Goal Input Pred Goal Input Pred Goal

el l
Remove the plastic bottle (0-shot) Knock the coke can over (0-shot) Close middle drawer (0-shot)

Figure 3. Visualization of generated RGB-D goal images. The results in the first row are sampled from the test set of held-in training data
while the second row is the unseen environments gathered from the Internet or daily life.
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Method PSNR+ CLIPSim+ SSIM{ FID ]
Instruct-P2P 14.41 0.909 0380  0.309
SuSIE 15.20 0.898 0.549  0.182
NeXT-GPT 8.86 0.199 0.153 0432
Instruct-P2P* 16.67 0.941 0.628  0.178
3D-VLA w/o Pred BBox | 17.02 0.919 0632 0173
3D-VLA 17.21 0.920 0.636  0.177

Table 3. RGB image goal generation results. * denotes the model
is trained on our pretrained dataset.

Models P-FID | Chamfer-L; |
Point-E* 5.241 0.159
3D-VLA w/o Pred BBox | 4.914 0.143
3D-VLA 4.796 0.139

Table 4. Point Cloud goal generation results. x denotes the model
is trained on our pretrained dataset.

Baselines. We compare 3D-VLA with 3D-LLM (Hong
et al., 2023) and 2D vision-language models, including
BLIP2 (Li et al., 2023b), OpenFlamingo (Alayrac et al.,
2022), and LLaVA (Liu et al., 2023). We implement these
baselines in two ways: 1) zero-shot transfer where we test
the released trained model on these new tasks; 2) held-in
evaluation where we train the released model on 2D-image-
action-language pairs (i.e., , 11 datasets selected from Open-
X and RoboVQA dataset). For the localization task, we com-
pare with 2D grounding MLLM, namely Kosmos-2 (Peng
etal., 2023) and CoVLM (Li et al., 2023a). Specifically, we
use these models to detect 2D bounding boxes in a zero-shot
manner and then transfer them to 3D bounding boxes using
depth projection.

Result analysis. In Tables 1, 3D-VLA outperforms all 2D
VLM methods on language reasoning tasks. We attribute
it to the leverage of 3D information, which provides more
accurate spatial information for reasoning. Besides, since
our dataset contains a bunch of 3D localization annotations,
3D-VLA learns to localize the relevant objects, which helps
the model focus more on key objects for reasoning. More-
over, we find that 3D-LLM performs poorly on these robotic
reasoning tasks, which demonstrates the necessity of collect-
ing and training on a robotics-related 3D dataset. In Table 2,
3D-VLA demonstrates a marked superiority over the 2D
baseline methods in terms of localization performance. This
finding serves as compelling evidence of the efficacy of our
annotation process, which supplies a substantial quantity of
3D annotations, thereby facilitating the acquisition of robust
3D localization capabilities within our model.

5.2. Multi-modal Goal Generation

Tasks. We quantitatively evaluate the RGB goal and point
cloud goal generation capability of 3D-VLA on Open-X test
sets. We randomly sample 4000 episodes from the Open-X

test set which 3D-VLA does not see in the training process.

Baselines. For image generation, we compare 3D-VLA
with three types of image generation methods: 1) image-
editing methods Instruct-P2P (Brooks et al., 2023); 2) goal
image/video generation methods SuSIE (Black et al., 2023);
3) LLMs with image generation ability NeXT-GPT (Wu
et al., 2023). For point cloud generation, we compare with
text-to-3D diffusion model Point-E (Nichol et al., 2022).

Quantitative results. The image goal generation results
are shown in Table 3. When compared with the existing
generation methods that directly zero-shot transfers to the
robotics domain (rows 1, 2, 3 in Table 3), 3D-VLA achieves
a promising performance in terms of most metrics. This
underscores the importance of training a world model us-
ing datasets specifically designed for robotics applications.
Even in a direct comparison with Instruct-P2P*, which was
trained on the same robotics datasets we employed (row
4 in the table), 3D-VLA consistently outperforms it. This
highlights that the integration of a large language model
into 3D-VLA results in a more comprehensive and insight-
ful comprehension of robotics manipulation instructions,
leading to better goal image generation performance. Fur-
thermore, when we exclude the predicted bounding box
from the input prompt (row 5), we observe a slight decrease
in performance. This observation confirms the effectiveness
of using these intermediate predicted bounding boxes as
they assist the model in comprehending the overall scene,
allowing the model to allocate more attention to the spe-
cific object mentioned in the given instruction, ultimately
enhancing its ability to imagine the final goal images.

The point cloud generation results are presented in Table 4.
3D-VLA with intermediate predicted bounding boxes per-
forms the best. This outcome reinforces the significance
of incorporating large language models and precise object
localization in the context of comprehending both the in-
struction and the scene.

Qualitative results. In the first row of Figure 3, we visu-
alize the generated RGB-D goal images on the test set of
RT-1 (Brohan et al., 2022) and Jaco Play (Dass et al., 2023)
datasets. These samples are not seen in the training pro-
cess. Given the initial scenes and instructions, the 3D-VLA
model consistently exhibits the capability to maintain the
background elements unchanged while accurately identify-
ing the target object of interaction and correctly modifying
the states of these identified objects following the provided
instructions. The generated RGB-D goal images closely
align both in terms of visual appearance and semantic con-
tent with the ground truth goal. In addition to our controlled
experimental settings, we extended our testing to encompass
scenes captured from the internet or everyday life. In these
diverse and uncontrolled environments, our 3D-VLA model
consistently and robustly demonstrated its efficacy.
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Put Take Pick up Pick up
Knife Umbrella Cup Cup (unseen)
LanCon-Learn 28.8 45.6 23.2
LanCon-Learn w/ His. | 32.2 50.8 44.2
3D-VLA w/o Goal 58 68 34 24
3D-VLA 68 80 40 28

Table 5. Evaluation of action planning on RLBench dataset.

Tasks completed in a row

1 2 3 4 5 Avglen
MCIL 282 25 03 00 00 0.31
3D-VLA | 447 163 81 1.6 0.0 0.71

Table 6. Evaluation of action planning on CALVIN dataset.

5.3. Embodied Action Planning

Tasks. We evaluate the ability of 3D-VLA for robot
arm action prediction on two benchmarks, namely RL-
Bench (James et al., 2020) and CALVIN (Mees et al., 2022).
We select three tasks from RLBench for evaluation. Be-
sides, we also select variation-1 from the pick-up-cup task
as an unseen task to test the model’s generalization ability.
We show the performance of 3D-VLA in executing more
complex tasks that require more 3D visual reasoning in the
Appendix. For CALVIN, we evaluate our model under the
long-horizon multi-task language control setting, where the
agent is required to execute 5 tasks sequentially. We train
the agent on scenes A, B, C, D and test on scene D.

Baselines. For RLBench, we compare our model 3D-
VLA with LanCon-Learn (Silva et al., 2021), which is
a multi-task approach that can predict actions based on
instruction-conditioned inputs. For CALVIN, we compare
with MCIL (Lynch & Sermanet, 2020), which is a condi-
tional sequence-to-sequence variational autoencoder.

Result analysis. As shown in Table 5, 3D-VLA surpasses or
matches the baseline performance in most tasks within the
RLBench action prediction, showing its planning capability.
It’s worth noting that the baseline uses history observations,
object states, and current state information, whereas we
only execute via open-loop control. Additionally, our 3D-
VLA model outperforms 3D-VLA w/o Goal by a lot on
the Take Umbrella and Pick Up Cup tasks. This is because
the imagined goal guides the robotic arm to move to the
specific location or determine the color of the object. On the
other hand, the performance on the task put the knife on the
chopping board is same across both settings, as most failures
might be due to object collisions. In Table 6, 3D-VLA also
achieves promising results in CALVIN. We attribute the
superiority to the ability to localize the objects of interest
and imagine the goal state, which provides rich information
for inferring actions.

6. Limitation

Difficulty in precise control. In RLBench, we are unable to
successfully execute the task of picking up small cubes, as
the 3D features and discrete action tokens make it difficult
to accurately locate and manipulate these small objects.

Hallucination of the diffusion model. Occasionally, the
output of the diffusion model is uncontrollable, with issues
including 1) object consistency, where the texture and shape
of the moved object change; 2) object disappearance, where
objects may be removed during the denoising process; 3)
and a certain probability of the goal image generating future
frames of incorrect tasks or not changing at all. During
training, we use the results predicted by the diffusion model,
so that 3D-VLA could adapt to its own generated results.

Issues with depth in the real world. In the simulator,
sensors could obtain good quality depth maps and point
clouds. However, in real-world applications, depth does
not have a unified scale across different scenes, making the
predictions with stable diffusion imperfect, and the point
clouds quite noisy. Future improvements include designing
a better depth prediction decoder and using filters and other
algorithms to optimize point clouds and enhance the model’s
robustness.

The long-tail distribution and datasets with high vari-
ance in quality. We find that in datasets such as RT1, and
BridgeV2 (Walke et al., 2023), the scores of the goal genera-
tion and language-related tasks are higher due to their higher
annotation quality and image quality; however, in datasets
like BC_Z (Jang et al., 2022), and Roboturk (Mandlekar
et al., 2019), the scores are lower.

7. Conclusion

In this paper, we introduce 3D-VLA, a generative world
model that can reason, understand, generate, and plan in the
embodied environment. We devise a novel data generation
pipeline to construct a dataset including 2M 3D-Language-
action data pairs to train our model. These data enable it
to perform diverse tasks such as task caption, localization,
goal image/point cloud generation, action prediction, etc.
Our model uses 3D-LLM as the backbone and introduces
interaction tokens to interact with the environment. We
train a image to image and point to point diffusion model
for embodied Al. They are further aligned by a projector
with the LLM to enhance the LLM’s multimodal generation
capabilities. The experiment further shows that our 3D-
VLA has stronger capabilities in embodied tasks than the
2D baseline.
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Impact Statement

This paper introduces research aimed at pushing the bound-
aries of Machine Learning in the realm of robot manipula-
tion. Given that robots operate in the physical world, the
potential for collisions with objects and humans arises when
the robot system is not adequately configured. To mitigate
this issue, our approach involves initial training in a simula-
tor environment followed by real-world deployment under
human supervision, to minimize any adverse impacts.
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A. Implementation Details

Our training process is divided into three steps: 1) we first finetune the diffusion models on our collected robotics datasets
to bridge the domain gap; 2) we then train a multimodal LLM on language-related tasks; 3) we finally update the LoORA
parameters in the diffusion models, the proposed special tokens and the projectors to align the diffusion models and the
multimodal LLM. Details are shown as follows:

Stepl: Adapting Diffusion Models to Robotics Data Domain. We train both the image and point cloud diffusion model,
which takes the noisy goal state (latent), the initial state (latent), the time step ¢, and the CLIP embeddings of the instruction
as inputs. The objective is to minimize the denoising loss. We train our RGB-D editing diffusion model on 6 x 16 V100
GPUs. We train at 256 x 256 resolution with batch size of 32 on each GPU. We use a learning rate of 10~4. We apply
random horizontal flip augmentation. For the point cloud diffusion model, we train it on 6 x 16 V100 GPUs with a learning
rate of 10™%, and the batch size per GPU is 2.

Step2: Training Multimodal LLM. We train M-LLM on all language-related tasks, including QA, captioning, localization,
action prediction, etc. For tasks such as action prediction, we use either the ground truth goal or the diffusion model
predicted goal in input prompts for training. The objective is to minimize the LLM cross entropy loss. We use pretrained
BLIP-2 FlanT5 as LLM backbone. We train 3D-VLAs on 6 x 32 V100s. The batch size is set to 4 on each node during
training. Additionally, we apply a linear warmup of the learning rate during the initial 1K steps, increasing from 10~% to
10~?, followed by a cosine decay with a minimum learning rate of 10~°,

Step3: Alignment between Diffusion Models and M-LLM We only update the newly added special tokens (<img>,
</img>, <pcd> and </pcd>) in the input and output embeddings of the LLM, as well as the projector and the parameters
fine-tuned in the DM using LoRA. The objective for this stage is to minimize a combination of the LLM token loss and the
diffusion model loss. We train 3D-VLAs for a maximum of epochs of 30 on 6 x 64 V100s. The batch size is set to 2 on
each node for training. The AdamW optimizer is used, with beta; = 0.9, betas = 0.999, and a weight decay of 0.05.

B. Datasets Details

B.1. Details on Question Templates

In this section, we show the question templates for data generation in Table 7. We designed corresponding templates for six
tasks. We design the templates for six tasks, and we replace the INSTRUCTION, OBJECT, LOCATION, and ACTION in
each template with the information processed from each sample.

Tasks Templates

Verification The initial scene is <scene></scene> and the current scene is <scene></scene>.
Instruction: INSTRUCTION. Finished? Answer: [yes/no]

Task Caption The initial scene is <scene></scene> and the final scene is <scene></scene>.
Describe the task. Answer: INSTRUCT ION.

Localization The scene is <scene></scene>. Locate: OBJECT. Answer: LOCATION
Dense Caption The scene is <scene></scene>. What is located at LOCATION? Answer: OBJECT
Image or Point The initial scene is <scene></scene>. Instruction: INSTRUCTION.

Cloud Generation  Generate the goal image (or point cloud). Answer: <image> (<pcd>) INSTRUCTION </image> (</pcd>)

Action Prediction ~ <scene></scene>. INSTRUCTION. Predict {key/dense} actions. Answer: ACTION.

Table 7. Detailed on Question Templates.

B.2. Details on ChatGPT-based Prompting

In this section, we show the prompt used in ChatGPT-based data generation in Figure 4. The ChatGPT version used in
our paper is GPT-3.5-turbo-0125. We generate data for all seven tasks, and we provide all the information in the form
of text, such as the instructions performed by the robot, total execution time, objects and their locations in the scene, etc.
Additionally, for each prompt, we provide two manually written samples as guidance to direct ChatGPT towards more
natural data generation.

13



3D-VLA: A 3D Vision-Language-Action Generative World Model

Gessages: [{“role”: “system” , “content”: ™ \
You are an Al visual assistant and a question-answering generator capable of analyzing dynamic 3D scenes.

Suppose you have observed a robotic arm successfully executing an instruction: [instruction].

The scene's initial state is <initial scene> and <final scene>, where the final scene is the [num frame] frame, and we assume that the task was
definitely not completed in the first 2/3 of the time.

You have the action sequence <action> of the robot arm.

In this instruction, the initial positions of these objects are [object + location]. Note that the location is the center points of objects
represented by a 3D coordinate (x, y, z) with units of meters.

Utilizing all the information above, you can choose to rewrite the instruction while retaining its original meaning.
Further, you need to generate multiple rounds of dialogue or a question answer pair, which should correspond to one of the following tasks:
1. Verification: Given the initial state and a mid-state frame, ask if the robot has completed the instruction.
2. Task Caption: Given the initial and final states, ask what task the robot performed.
3. Embodied QA: Please conduct some questions and answers about the current dynamic scene.
4. Localization: Detect where objects are, answer the location of the objects.
5. Dense Caption: Given the location of objects, answer with a description of those objects.
6. Image or Point Cloud Generation: Given the initial scene and instruction, generate an image or point cloud of the final state.
If choosing this task, enclose the instruction with the <image> </image> or <pcd> </pcd> token to represent generation.
7. Action Prediction: Given the initial scene, or having both initial and final scenes, predict actions. You can include a simple
task decomposition, but the length of the decomposition must not exceed 3.

N /

Figure 4. Prompt for ChatGPT-based data generation.

B.3. Details on Dataset Construction

We show the number of the episodes and how we use them in table Table 8. We utilize two main categories of datasets,
namely robotics datasets and human object interaction (HOI) datasets. For the former, we filtered out complex scene datasets
to prevent the Grounded-SAM from detecting incorrect object locations. However, within the same robotics dataset, the
background settings are largely the same. Therefore, in the Goal Generation tasks, we included HOI datasets to better allow
the diffusion model to learn diverse scenes, object interaction methods, etc.

C. More Complex Tasks about Embodied Action Planning

We expand the set of tasks evaluated from RLBench, focusing on three main categories (Guhur et al., 2023): Tool Use,
Visual Occlusion, and Screw. Tool Use requires the robot to interact with objects to perform tasks and we select sweep
dirt to dustpan to represent this task category. For the Screw category, it requires precise rotational movements, and thus
we choose the change clock task. Visual Occlusion tasks typically involve interactions with large items, where we choose
open/close drawer as a representative task. The accuracies are shown in Table 9.

Sweep Dirt  Open Drawer Close Drawer Change Clock
3D-VLA 86 72 96 18

Table 9. Evaluation of action planning on RLBench dataset.

D. More Visualization Results about Goal Generation

We show more qualitative examples in Figure 5, 6.

14



3D-VLA: A 3D Vision-Language-Action Generative World Model

'S198BIEP WOO0Y PUR ‘JOH ‘SON0qoy :$91105a1ed IN0J OJul WY} 9Z110T5a1ed oA Toded ano ur pesn sjesele(q g 9[qeL

A, » » A » » » A, » 91¢€ s1esered [V
- » N A’ - - - - - S arIOH
- » » » - - - - - 19 uayoIryf o1dy
- » v v - - - - - 311 s1esere IOH
A’ » N A’ » A’ » » A’ qTE Ke|q oode],
- - - - - - - - » 319 VOA0qoY
» » N N - » - - - 0T }moqoy
» » » » » » - - - 308 youeg Ty
» » » » » » » » » 0T LOZHY
» » » » - » - A’ » Y pooy Sutkelq
N » » » » » » A’ » 350 uorsng Ke[d
» » » » » » » » » NE'T SRR R RIE|
N » » » » » » A’ » AST Xomp
» » » A, - - - A’ » el 9[qe], Sue]
A’ » N N » A’ » » A’ 960 Ke|q odef
» » » » » » » A N jOL [e10eL]
» » N » - »r - » » 30T g-990q
» » » » » » - - - 301 NIATVD
A, » » » » » N » » 6T a3pug
A » » » » » » A’ » A0 Z-0d
» » v v » A » A, » 3S0€ S1osee( $O10q0Y
(Surpunorn 100lqo /M) VO JIeYM
uonoIpalq uondy | pnopDiutod pdog o3ew | uonooje uonedyuep  uonde) asua(q
uonde) ysey, VO patpoquiy | soposidg pasn) JO # jasere(

Sune UOISIONJ

UOT)BIUAL) [BOD)

uondoorog pue Suruoseay

15



3D-VLA: A 3D Vision-Language-Action Generative World Model

GT Goal Pred Goal Input GT Goal Pred Goal

Open middle drawer (RT-1) Pick up the apple fruit (Jaco Play)

Input GT Goal Pred Goal GT Goal Pred Goal

Pick yellow bowl and place in dish rack (Play Fusion) Put carrot on plate (Bridge)

Input Pred Goal Input Pred Goal

el el

Pick the coke can (0-shot) Pick up chip bag (0-shot)

Figure 5. Visualization of generated RGBD goal images. The results in the first row are sampled from the test set of held-in training data
while the second row are the unseen environments gathered from daily life.
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Input RGBD Pred Goal Input PCD Pred PCD

Pick up the red cup

Grasping the umbrella by its handle, lift it up and out of the stand

Figure 6. Visualization of generated RGB-D goal images and goal point cloud. (RLBench)
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