
A Appendix

This appendix is dedicated to proving Theorem 1. First, we introduce some notation. The cumulant
generating function of random variable X : Ω→ R is given by

GX(β) = logE exp(βX).

We shall denote the cumulant generating function of µl(s, a) at time t as Gµ|tl (s, a, ·) and similarly
the cumulant generating function of Q?l (s, a) at time t as GQ|tl (s, a, ·), specifically

G
µ|t
l (s, a, β) = logEt exp(βµl(s, a)), G

Q|t
l (s, a, β) = logEt exp(βQ?l (s, a)),

for l = 1, . . . , L.

Theorem 1. Under assumption 1 the K-learning algorithm 1 satisfies Bayes regret bound

BRφ(T ) ≤ 2
√

(σ2 + L2)LSAT logA(1 + log T/L)

= Õ(L3/2
√
SAT ).

(15)

Proof. Lemma 1 tells us that GQ|t(s, a, β) satisfies a Bellman inequality for any β ≥ 0. This
implies that for fixed τt ≥ 0 the certainty equivalent values Qtl = τtG

Q|t
l (s, a, 1/τt) satisfy a

Bellman inequality with optimistic Bellman operator Bt defined in Eq. (6), i.e.,

Qtl ≤ Btl (τt,Qtl+1),

for l = 1, . . . , L, where QtL+1 ≡ 0. By construction the K-values Kt are the unique fixed point of
the optimistic Bellman operator. That is, Kt has Kt

L+1 ≡ 0 and

Kt
l = Btl (τt,Kt

l+1) (16)

for l = 1, . . . , L. Since log-sum-exp is nondecreasing it implies that the operator Btl (τ, ·) is nonde-
creasing for any τ ≥ 0, i.e., if x ≥ y pointwise then Btl (τ, x) ≥ Btl (τ, y) pointwise for each l. Now
assume that for some l we have Kt

l+1 ≥ Qtl+1, then

Kt
l = Btl (τt,Kt

l+1) ≥ Btl (τt,Qtl+1) ≥ Qtl ,

and the base case holds since Kt
L+1 = QtL+1 ≡ 0. This fact, combined with Lemma 4 implies that

Et max
a

Q?l (s, a) ≤ τt log
∑
a∈A

exp(Qtl(s, a)/τt) ≤ τt log
∑
a∈A

exp(Kt
l (s, a)/τt) (17)

since log-sum-exp is increasing and τt ≥ 0. The following variational identity yields the policy that
the agent will follow:

τt log
∑
a∈A

exp(Kt
l (s, a)/τt) = max

πl(s)∈∆A

(∑
a∈A

πl(s, a)Kt
l (s, a) + τtH(πl(s))

)

for any state s, where ∆A is the probability simplex of dimension A− 1 and H denotes the entropy,
i.e., H(π(s)) = −

∑
a∈A π(s, a) log π(s, a) [13]. The maximum is achieved by the policy

πtl (s, a) ∝ exp(Kt
l (s, a)/τt).

This comes from taking the Legendre transform of negative entropy term (equivalently, log-sum-
exp and negative entropy are convex conjugates [10, Example 3.25]). The fact that (9) achieves the
maximum is readily verified by substitution.
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Now we consider the Bayes regret of an agent following policy (9), starting from (4) we have

BRφ(T )
(a)
= E

N∑
t=1

Es∼ρEt(V ?1 (s)− V π
t

1 (s))

= E
N∑
t=1

Es∼ρEt
(

max
a

Q?1(s, a)−
∑
a∈A

πt1(s, a)Qπ
t

1 (s, a)
)

(b)

≤ E
N∑
t=1

Es∼ρ
(
τt log

∑
a∈A

exp(Kt
1(s, a)/τt)−

∑
a∈A

πt1(s, a)EtQπ
t

1 (s, a)
)

(c)

≤ E
N∑
t=1

Es∼ρ
(∑
a∈A

πt1(s, a)
(
Kt

1(s, a)− EtQπ
t

1 (s, a)
)

+ τtH(πt1(s))

)
(18)

where (a) follows from the tower property of conditional expectation where the outer expectation is
with respect to F1,F2, . . ., (b) is due to (17) and the fact that πt is Ft-measurable, and (c) is due to
the fact that the policy the agent is following is the policy (9). If we denote by

∆t
l(s) =

∑
a∈A

πtl (s, a)
(
Kt
l (s, a)− EtQπ

t

l (s, a)
)

+ τtH(πtl (s))

then we can write the previous bound simply as

BRφ(T ) ≤ E
N∑
t=1

Es∼ρ∆t
1(s).

We can interpret ∆t
l(s) as a bound on the expected regret in that episode when started at state s. Let

us denote

G̃
µ|t
l (s, a, β) = G

µ|t
l (s, a, β) +

(L− l)2β2

2(ntl(s, a) ∨ 1)
.

Now we shall show that for a fixed πt and τt ≥ 0 the quantity ∆t satisfies the following Bellman
recursion:

∆t
l(s) = τtH(πtl (s)) +

∑
a∈A

πtl (s, a)

(
δtl (s, a, τt) +

∑
s′∈S

Et(Pl(s′ | s, a))∆t
l+1(s′)

)
(19)

for s ∈ S, l = 1, . . . , L, and ∆t
L+1 ≡ 0, where

δtl (s, a, τ) = τG̃
µ|t
l (s, a, 1/τ)− Etµl(s, a) ≤ σ2 + (L− l)2

2τ(ntl(s, a) ∨ 1)
, (20)

where the inequality follows from assumption 1 which allows us to bound Gµ|tl as

τG
µ|t
l (s, a, 1/τ) ≤ Etµl(s, a) +

σ2

2τ(ntl(s, a) ∨ 1)

for all τ ≥ 0. We have that

EtQπ
t

l (s, a)
(a)
= Et

(
µl(s, a) +

∑
s′∈S

Pl(s
′ | s, a)V π

t

l+1(s′)
)

(b)
= Etµl(s, a) +

∑
s′∈S

EtPl(s′ | s, a)EtV π
t

l+1(s′)

(c)
= Etµl(s, a) +

∑
s′∈S

EtPl(s′ | s, a)
∑
a′∈A

πtl+1(s′, a′)EtQπ
t

l+1(s′, a′),

(21)

where (a) is the Bellman Eq. (2), (b) holds due to the fact that the transition function and the value
function at the next state are conditionally independent, (c) holds since πt is Ft measurable.
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Now we expand the definition of ∆t, using the Bellman equation that the K-values satisfy and
Eq. (21) for the Q-values

∆t
l(s) = τtH(πtl (s)) +

∑
a∈A

πtl (s, a)
(
τtG̃

µ|t
l (s, a, 1/τt)− Etµl(s, a)+

∑
s′∈S

EtPl(s′ | s, a)
(
τt log

∑
a′∈A

expKt
l+1(s′, a′)/τt −

∑
a′∈A

πtl+1(s′, a′)EtQπ
t

l+1(s′, a′)
))

= τtH(πtl (s)) +
∑
a∈A

πtl (s, a)

(
δtl (s, a, τt)+

∑
s′∈S

EtPl(s′ | s, a)
(
τtH(πtl+1(s′)) +

∑
a′∈A

πtl+1(s′, a′)
(
Kt
l+1(s′, a′)− EtQπ

t

l+1(s′, a′)
)))

= τtH(πtl (s)) +
∑
a∈A

πtl (s, a)

(
δtl (s, a, τt) +

∑
s′∈S

EtPl(s′ | s, a)∆t
l+1(s′)

)
,

where we used the variational representation (8). We shall use this to ‘unroll’ ∆t along the MDP,
allowing us to write the regret upper bound using only local quantities.

An occupancy measure is the probability that the agent finds itself in state s and takes action a. Let
λtl(s, a) be the expected occupancy measure for state s and action a under the policy πt at time t,
that is λt1(s, a) = πt1(s, a)ρ(s), and then it satisfies the forward recursion

λtl+1(s′, a′) = πtl (s
′, a′)

∑
(s,a)

Et(Pl(s′ | s, a))λtl(s, a),

for l = 1, . . . , L, and note that
∑

(s,a) λ
t
l(s, a) = 1 for each l and so it is a valid probability

distribution over S ×A. Now let us define the following function

Φt(τ, λ) =

L∑
l=1

∑
(s,a)

λtl(s, a)

(
τH

(
λtl(s)∑
b λ

t
l(s, b)

)
+ δtl (s, a, τ)

)
. (22)

where λt(s) is the vector corresponding to the occupancy measure values at state s. One can see
that by unrolling the definition of ∆t in (19) we have that

Es∼ρ∆t
l(s) = Φt(τt, λ

t).

In order to prove the Bayes regret bound, we must bound this Φt function. For the case of τt
annealed according to the schedule of (10) and the associated expected occupancy measure λt we
do this using lemma 3. For the case of τ?t the solution to (11) and the associated expected occupancy
measure λt? lemma 5 proves that

Φt(τ?t , λ
t?) ≤ Φt(τt, λ

t),

and so it satisfies the same regret bound as the annealed parameter. This result concludes the proof.

A.1 Proof of Bellman inequality lemma 1

Lemma 1. The cumulant generating function of the posterior for the optimal Q-values satisfies the
following Bellman inequality for all β ≥ 0, l = 1, . . . , L:

G
Q|t
l (s, a, β) ≤ G̃µ|tl (s, a, β) +

∑
s′∈S

EtPl(s′ | s, a) log
∑
a′∈A

expG
Q|t
l+1(s′, a′, β).

where

G̃
µ|t
l (s, a, β) = G

µ|t
l (s, a, β) +

(L− l)2β2

2(ntl(s, a) ∨ 1)
.
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Proof. We begin by applying the definition of the cumulant generating function

G
Q|t
l (s, a, β) = logEt expβQ?l (s, a)

= logEt exp
(
βµl(s, a) + β

∑
s′∈S

Pl(s
′ | s, a)V ?l+1(s′)

)
= G

µ|t
l (s, a, β) + logEt exp

(
β
∑
s′∈S

Pl(s
′ | s, a)V ?l+1(s′)

) (23)

where Gµ|tl is the cumulant generating function for µ, and where the first equality is the Bellman
equation for Q?, and the second one follows the fact that µl(s, a) is conditionally independent of
downstream quantities. Now we must deal with the second term in the above expression.

Assumption 1 says that the prior over the transition function Pl( · | s, a) is Dirichlet, so let us denote
the parameter of the Dirichlet distribution α0

l (s, a) ∈ RS+ for each (s, a), and we make the additional
mild assumption that

∑
s′∈S α

0
l (s, a, s

′) ≥ 1, i.e., we start with a total pseudo-count of at least one
for every state-action. Since the likelihood for the transition function is a Categorical distribution,
conjugacy of the categorical and Dirichlet distributions implies that the posterior over Pl( · | s, a) at
time t is Dirichlet with parameter αtl(s, a), where

αtl(s, a, s
′) = α0

l (s, a, s
′) + ntl(s, a, s

′)

for each s′ ∈ Sl+1, where ntl(s, a, s
′) ∈ N is the number of times the agent has been in state s, taken

action a, and transitioned to state s′ at timestep l, and note that
∑
s′∈Sl+1

ntl(s, a, s
′) = ntl(s, a), the

total visit count to (s, a).

Our analysis will make use of the following definition and associated lemma from [40]. Let X
and Y be random variables, we say that X is stochastically optimistic for Y , written X ≥SO Y , if
Eu(X) ≥ Eu(Y ) for any convex increasing function u. Stochastic optimism is closely related to the
more familiar concept of second-order stochastic dominance, in that X is stochastically optimistic
for Y if and only if −Y second-order stochastically dominates −X [19]. We use this definition in
the next lemma.

Lemma 2. Let Y =
∑n
i=1Aibi for fixed b ∈ Rn and random variable A, where A is Dirichlet with

parameter α ∈ Rn, and let X ∼ N (µX , σ
2
X) with µX ≥

∑
i αibi∑
i αi

and σ2
X ≥ (

∑
i αi)

−1Span(b)2,
where Span(b) = maxi bi −minj bj , then X ≥SO Y .

For the proof see [40]. In our case, in the notation of the lemma 2, A will represent the transition
function probabilities, and b will represent the optimal values of the next state, i.e., for a given
(s, a) ∈ S ×A let Xt be a random variable distributed N (µXt , σ

2
Xt

) where

µXt =
∑
s′∈S

(
αtl(s, a, s

′)V ?l+1(s′)/
∑
x

αtl(s, a, x)
)

=
∑
s′∈S

Et(Pl(s′ | s, a))V ?l+1(s′)

due to the Dirichlet assumption 1. Due to assumption 1 we know that Span(V ?l (s)) ≤ L− l, so we
choose σ2

Xt
= (L− l)2/(ntl(s, a)∨1). Let FVt = Ft∪σ(V ?) denote the union of Ft and the sigma-

algebra generated by V ?. Applying lemma 2 and the tower property of conditional expectation we
have that for β ≥ 0

Et exp
(
β
∑
s′∈S

Pl(s
′ | s, a)V ?l+1(s′)

)
= EV ?

l+1

(
EP
(

expβ
( ∑
s′∈S

Pl(s
′ | s, a)V ?l+1(s′)

)∣∣FVt )∣∣∣Ft)
≤ EV ?

l+1

(
EXt

(expβXt|FVt )
∣∣∣Ft)

= EV ?
l+1

(
exp(µXt

β + σ2
Xt
β2/2)

∣∣∣Ft)
= EtV ?

l+1
exp

(
β
∑
s′∈S

EtPl(s′ | s, a)V ?l+1(s′) + σ2
Xt
β2/2

)
,

(24)

the first equality is the tower property of conditional expectation, the inequality comes from the fact
that Pl(s′ | s, a) is conditionally independent of V ?l+1(s′) and applying lemma 2, the next equality
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is applying the moment generating function for the Gaussian distribution and the final equality is
substituting in for µXt . Now applying this result to the last term in (23)

logEt exp
(
β
∑
s′∈S

Pl(s
′ | s, a)V ?l+1(s′)

)
(a)

≤ logEtV ?
l+1

exp
(
β
∑
s′∈S

EtPl(s′ | s, a)V ?l+1(s′) + σ2
Xt
β2/2

)
(b)
= logEtQ?

l+1
exp

(
β
∑
s′∈S

EtPl(s′ | s, a) max
a′

Q?l+1(s′, a′)
)

+ σ2
Xt
β2/2

(c)

≤
∑
s′∈S

EtPl(s′ | s, a) logEtQ?
l+1

exp
(
βmax

a′
Q?l+1(s′, a′)

)
+ σ2

Xt
β2/2

(d)

≤
∑
s′∈S

EtPl(s′ | s, a) log
∑
a′∈A

expG
Q|t
l+1(s′, a′)(β) +

β2(L− l)2

2(ntl(s, a) ∨ 1)

where (a) follows from Eq. (24)) and the fact that log is increasing, (b) is replacing V ? with Q?, (c)
uses Jensen’s inequality and the fact that logE exp(·) is convex, and (d) follows by substituting in
for σXt

and since the max of a collection of positive numbers is less than the sum. Combining this
and (23) the inequality immediately follows.

A.2 Proof of lemma 3

Lemma 3. Following the policy induced by expected occupancy measure λtl ∈ [0, 1]S×A, l =
1, . . . , L, and the temperature schedule τt in (10) we have

E
N∑
t=1

Φt(τt, λ
t) ≤ 2

√
(σ2 + L2)LSAT logA(1 + log T/L).

Proof. Starting from the definition of Φ

Φt(τt, λ
t) =

L∑
l=1

∑
(s,a)

λtl(s, a)

(
τtH

(
λtl(s)∑
b λ

t
l(s, b)

)
+ δt(s, a, τt)

)

≤ τtL logA+ τ−1
t

L∑
l=1

∑
(s,a)

λt(s, a)
(σ2 + L2)

2(ntl(s, a) ∨ 1)

which comes from the sub-Gaussian assumption on G
µ|t
l and the fact that entropy satisfies

H(π(λs)) ≤ logA for all s. These two terms summed up to N determine our regret bound, and we
shall bound each one independently. To bound the first term:

L logA

N∑
t=1

τt ≤ (1/2)L
√

(σ2 + L2)SA logA(1 + log T/L)

N∑
t=1

1/
√
t

≤
√

(σ2 + L2)LSAT logA(1 + log T/L),

since
∑N
t=1 1/

√
t ≤

∫ N
t=0

1/
√
t = 2

√
N , and recall that N = dT/Le. For simplicity we shall take

T = NL, i.e., we are measuring regret at episode boundaries; this only changes whether or not there
is a small fractional episode term in the regret bound or not.

To bound the second term we shall use the pigeonhole principle lemma 6, which requires knowledge
of the process that generates the counts at each timestep, which is access to the true occupancy
measure in our case. The quantity λt is not the true occupancy measure at time t, which we shall
denote by νt, since that depends on P which we don’t have access to (we only have a posterior
distribution over it). However it is the expected occupancy measure conditioned on Ft, i.e., λt =
Etνt, which is easily seen by starting from λt1(s, a) = πt1(s, a)ρ(s) = νt1(s, a), and then inductively
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using:

Etνtl+1(s′, a′) = Et
(
πtl+1(s′, a′)

∑
(s,a)

Pl(s
′ | s, a)νtl (s, a)

)
= πtl+1(s′, a′)

∑
(s,a)

Et(Pl(s′ | s, a))Etνtl (s, a)

= πtl+1(s′, a′)
∑
(s,a)

Et(Pl(s′ | s, a))λtl(s, a)

= λtl+1(s′, a′)

for l = 1, . . . , L, where we used the fact that πt is Ft-measurable and the fact that νl(s, a) is
independent of downstream quantities. Now applying lemma 6

E
N∑
t=1

∑
(s,a)

λtl(s, a)

ntl(s, a) + 1
= E

N∑
t=1

Et
∑

(s,a)

λtl(s, a)

ntl(s, a) + 1


= E

 N∑
t=1

∑
(s,a)

νtl (s, a)

ntl(s, a) + 1


≤ AS(1 + logN),

which follows from the tower property of conditional expectation and since the counts at time t
are Ft-measurable. From Eq. (10) we know that sequence τ−1

t is increasing, so we can bound the
second term as

E
N∑
t=1

τ−1
t

L∑
l=1

∑
(s,a)

λtl(s, a)(σ2 + L2)

2(ntl(s, a) + 1)
≤ (1/2)(σ2 + L2)τ−1

N E
L∑
l=1

(
N∑
t=1

∑
s,a

λtl(s, a)

ntl(s, a) + 1

)

≤ (1/2)(σ2 + L2)τ−1
N

L∑
l=1

SA(1 + logN)

= (1/2)(σ2 + L2)τ−1
N LSA(1 + logN)

=
√

(σ2 + L2)LSAT logA(1 + log T/L).

Combining these two bounds we get our result.

A.3 Proof of maximal inequality lemma 4

Lemma 4. Let Xi : Ω→ R, i = 1, . . . , n be random variables with cumulant generating functions
GXi : R→ R, then for any τ ≥ 0

Emax
i
Xi ≤ τ log

n∑
i=1

expGXi(1/τ). (25)

Proof. Using Jensen’s inequality

Emax
i
Xi = τ log exp(Emax

i
Xi/τ)

≤ τ logEmax
i

(expXi/τ)

≤ τ log

n∑
i=1

E expXi/τ

= τ log

n∑
i=1

expGXi(1/τ),

(26)

where the inequality comes from the fact that the max over a collection of nonnegative values is less
than the sum.
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A.4 Derivation of dual to problem (11)

Here we shall the derive the dual problem to the convex optimization problem (11), which will be
necessary to prove a regret bound for the case where we choose τ?t as the temperature parameter.
Recall that the primal problem is

minimize Es∼ρ(τ log
∑
a∈A

exp(K1(s, a)/τ))

subject to Kl ≥ Btl (τ,Kl+1), l = 1, . . . , L,

KL+1 ≡ 0,

in variables τ ≥ 0 and Kl ∈ RS×A, l = 1, . . . , L. We shall repeatedly use the variational repre-
sentation of log-sum-exp terms as in Eq. (8). We introduce dual variable λ ≥ 0 for each of the L
Bellman inequality constraints which yields Lagrangian

∑
s∈S

ρ(s)
∑
a∈A

(π1(s, a)K1(s, a) + τH(π1(s))) +

L∑
l=1

λT (Btl (τ,Kl+1)−Kl).

For each of the L constraint terms we can expand the Bl operator and use the variational representa-
tion for log-sum-exp to get∑
(s,a)

λl(s, a)

(
τG̃

µ|t
l (s, a, 1/τ)+

∑
s′∈S

EtPl(s′ | s, a)
( ∑
a′∈A

πl+1(s′, a′)Kl+1(s′, a′)+τH(πl+1(s′))
)
−Kl(s, a)

)
.

At this point the Lagrangian can be expressed:

L(τ,K, λ, π) =
∑
s∈S

ρ(s)
(∑
a∈A

(π1(s, a)K1(s, a)) + τH(π1(s))
)

+

L∑
l=1

∑
(s,a)

λl(s, a)

(
τG̃

µ|t
l (s, a, 1/τ)+

+
∑
s′∈S

EtPl(s′ | s, a)
( ∑
a′∈A

πl+1(s′, a′)Kl+1(s′, a′) + τH(πl+1(s′))
)
−Kl(s, a)

)
.

To obtain the dual we must minimize over τ and K. First, minimizing over K1(s, a) yields

ρ(s)π1(s, a) = λ1(s, a)

and note that since π1(s) is a probability distribution it implies that∑
a1∈A

λ1(s, a) = ρ(s)

for each s ∈ S1. Similarly we minimize over each Kl+1(s′, a′) for l = 1, . . . , L yielding

λl+1(s′, a′) = πl+1(s′, a′)
∑
(s,a)

EtPl(s′ | s, a)λl(s, a).

which again implies ∑
a′∈A

λl+1(s′, a′) =
∑
(s,a)

EtPl(s′ | s, a)λl(s, a).

What remains of the Lagrangian is

L∑
l=1

∑
(s,a)

λl(s, a)
(
τG̃

µ|t
l (s, a, 1/τ) + τH(πl(s))

)
which, using the definition of δ in Eq. (20) can be rewritten

L∑
l=1

∑
(s,a)

λl(s, a)Etµl(s, a) + min
τ≥0

L∑
l=1

∑
(s,a)

λtl(s, a)

(
τtH

(
λl(s)∑
b λl(s, b)

)
+ δtl (s, a, τt)

)
.

21



Finally, using the definition of Φ in (22) we obtain:

maximize
L∑
l=1

∑
(s,a)

λl(s, a)Etµl(s, a) + min
τ≥0

Φt(τ, λ)

subject to
∑
a′∈A

λl+1(s′, a′) =
∑
(s,a)

Et(Pl(s′ | s, a))λl(s, a), s′ ∈ Sl+1, l = 1, . . . , L

∑
a1

λ1(s, a) = ρ(s), s ∈ S1

λ ≥ 0.

(27)

A.5 Proof of Lemma 5

Lemma 5. Assuming strong duality holds for problem (11), and denote the primal optimum at time
t by (τ?t ,K

t?
l ) then the policy given by

πtl (s, a) ∝ exp(Kt?
l (s, a)/τ?t )

satisfies the Bayes regret bound given in Theorem 1.

Proof. The dual problem to (11) is derived above as Eq. (27). Denote by Lt the (partial) Lagrangian
at time t:

Lt(τ, λ) =

L∑
l=1

∑
(s,a)

λl(s, a)Etµl(s, a) + Φt(τ, λ).

Denote by λt? the dual optimal variables at time t. Note that the value Lt(τ?t , λt?l ) provides an upper
bound on Et maxaQ

?
1(s, a) due to strong duality. Furthermore we have that

L∑
l=1

∑
(s,a)

λt?l (s, a)Etµl(s, a) = Es∼ρEtV π
t

1 (s),

and so using (4) we can bound the regret of following the policy induced by λt? using

BRφ(T ) ≤ E
N∑
t=1

(
Lt(τ?t , λt?)−

L∑
l=1

∑
(s,a)

λt?l (s, a)Etµl(s, a)
)

= E
N∑
t=1

Φt(τ?t , λ
t?). (28)

Strong duality implies that the Lagrangian has a saddle-point at τ?t , λ
t?

Lt(τ?t , λ) ≤ Lt(τ?t , λt?) ≤ Lt(τ, λt?)
for all τ ≥ 0 and feasible λ, which immediately implies the following

Φt(τ?t , λ
t?) = min

τ≥0
Φt(τ, λt?). (29)

Now let τt be the temperature schedule in (10), we have

BRφ(T ) ≤ E
N∑
t=1

Φt(τ?t , λ
t?) = E

N∑
t=1

min
τ≥0

Φt(τ, λt?) ≤ E
N∑
t=1

Φt(τt, λ
t?) ≤ Õ(L

√
LSAT ),

where the last inequality comes from applying lemma 3, which holds for any occupancy measure
when the agent is following the corresponding policy.

A.6 Proof of pigeonhole principle lemma 6

Lemma 6. Consider a process that at each time t selects a single index at from {1, . . . ,m} with
probability ptat . Let nti denote the count of the number of times index i has been selected up to time
t. Then

N∑
t=1

m∑
i=1

pti/(n
t
i ∨ 1) ≤ m(1 + logN).

22



Proof. This follows from a straightforward application of the pigeonhole principle,

N∑
t=1

m∑
i=1

pti/(n
t
i ∨ 1) =

N∑
t=1

Eat∼pt(n
t
at ∨ 1)−1

= Ea0∼p0,...,aN∼pt
N∑
t=1

(ntat ∨ 1)−1

= Ea0∼p0,...,aN∼pt
m∑
i=1

nN
i ∨1∑
t=1

1/t

≤
m∑
i=1

N∑
t=1

1/t

≤ m(1 + logN),

where the last inequality follows since
∑N
t=1 1/t ≤ 1 +

∫ N
t=1

1/t = 1 + logN .

B Compute requirements

All experiments were run on a single 2017 MacBook Pro.
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