
Appendix431

The appendices are organized as follows. Formal proofs of the results stated in the main text are432

presented in Section A. In Section B, we describe the algorithm to recover the maximal hedge433

formed for a certain query (Def. 5), which is used as a subroutine of Algorithm 1. A generalization434

of Assumption 1 is discussed in Section C. Section D provides further details of the heuristic435

algorithms discussed in the main text. Further evaluations and experimental conditions for our436

proposed algorithms are presented in Section E.437

Table 2: Table of notations
Symbol Description
V G Vertices of G
EG

b The set of bidirected edges of G
EG

d The set of directed edges of G
AncG(X) Ancestors of X in G
M(G) The set of the all compatible models with G
pe Probability of edge e
we Weight of edge e

PX(Y ) Causal effect of X on Y

A Formal Proofs438

We begin with presenting the proofs of Proposition 1 and Lemma 1. Proofs of Theorem 1 and439

Proposition 2 appear at the end of Sections A.1 and A.2, respectively.440

Proposition 1. For any causal query PX(Y ) and ADMG G, if F is a valid identification formula for441

PX(Y ) in G (Def. 2), then F is a valid identification formula for PX(Y ) in any G′ ⊆ G.442

Proof. LetH ⊆ G be an arbitrary edge-induced subgraph of G. Let F be an identification formula443

for PX(Y ) in G, i.e., for any model M that induces G,444

PM
X (Y ) = F(PM (V G)). (5)

By definition, PX(Y ) is identifiable in G. As a result, there exists and identification formula such as445

F ′ that can be derived for PX(Y ) in G, using a sequence of do calculus rules and basic probability446

manipulations. Note that this means for any model M that induces G,447

PM
X (Y ) = F ′(PM (V G)). (6)

Note that an immediate corollary of Equations 5 and 6 is that for any model M that induces G,448

F(PM (V G)) = F ′(PM (V G)). (7)

Now, we first show that this sequence of actions (combination of do calculus rules and probability449

manipulations) is valid inH. Note that the basic probability manipulations are graph-independent.450

It only suffices to show that any applied do calculus rule w.r.t. G can also be applied w.r.t. H. The451

validity conditions of all three do calculus rules are based on certain d-separations. As a result, it452

suffices to show that if a d-separation relation is valid in G, it is also valid inH. To do so, it suffices453

to show that if all paths between Z1 and Z2 are blocked in G given W , they are blocked inH too, for454

arbitrary disjoint sets of vertices Z1, Z2,W ⊆ V G . Take an arbitrary path, p, between Z1 and Z2 in455

H. Since H ⊆ G, this path exists in G. Since Z1 and Z2 are d-separated given W in G, the path p456

is blocked by W . As a result, any path between Z1 and Z2 in H is blocked by W . Therefore, any457

do-calculus rule applied in G, can also be applied inH. Hence, F ′ is a valid identification formula458

for PX(Y ). That is, for any model M that inducesH,459

PM
X (Y ) = F ′(PM (V H)). (8)

Now note that any model M that induces H, i.e., is compatible with H, is also compatible with G.460

Also, V G = V H. As a result, from Equations 7 and 8, we know that for any model M that induces461

H,462

PM
X (Y ) = F(PM (V H)).

By definition, F is a valid identification formula for PX(Y ) inH.463
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Lemma 1. Under Assumption 1, Problem 1 is equivalent to the edge ID problem with the edge464

weights chosen to be the log propensity ratios, i.e., we = max{0, log( pe

1−pe
)}, ∀e ∈ G. Moreover,465

Problem 2 is equivalent to the edge ID problem with the choice of weights we = − log(1 − pe),466

∀e ∈ G. That is, an instance of Problems 1 and 2 can be reduced to an instance of the edge ID467

problem in polynomial time, and vice versa.468

Proof. Problem 1. First consider an arbitrary graph G1 ∈ [G]Id(Q[Y ]) such that G1 has an edge e with469

pe < 1/2. Let G2 denote the graph G1 after removing e. Proposition 1 implies that G2 ∈ [G]Id(Q[Y ]).470

According to Equation 1, we have P (G2) = 1−pe

pe
P (G1) > P (G1) (since pe < 1/2). As a result,471

the solution G∗ to Problem 1 (Eq. 2) has no edges with probability less than 1/2. We can therefore472

rewrite Problem 1 as:473

G∗ := argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

P (Gs) = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

P (Gs) s.t. ∀e ∈ Gs : pe ≥
1

2
.

Or equivalently, we can always assume that we start with a graph G that has no edges with probability474

less than 1/2, as otherwise we can remove all of those edges and the problem does not change. This475

indeed is equivalent to choosing weight (cost) 0 for those edges in the equivalent edge ID problem.476

Now assuming that the edges have probability at least 1/2,477

G∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

P (Gs)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

log(P (Gs))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

log(
∏
e∈Gs

pe
∏
e/∈Gs

(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∑
e∈Gs

log(pe) +
∑
e/∈Gs

log(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∑
e∈Gs

log(pe) +
∑
e/∈Gs

log(1− pe)) +
∑
e∈Gs

log(1− pe))−
∑
e∈Gs

log(1− pe))

Since
∑

e/∈Gs
log(1− pe)) +

∑
e∈Gs

log(1− pe)) is a constant value that does not depend on Gs, it478

can be ignored in the maximization and we have:479

G∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∑
e∈Gs

log(pe)−
∑
e∈Gs

log(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∑
e∈Gs

log(
pe

1− pe)
)

= argmin
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∑
e/∈Gs

log(
pe

1− pe)
).

From the formulation above, it is clear that if we assign the weight we = log( pe

1−pe
) to each edge480

e ∈ EG , we will have an instance of the edge ID problem. Note that for edges with probability higher481

than 1/2, log( pe

1−pe
) ≥ 0, and this assignment of edge weights satisfies the positivity requirement.482

For the opposite direction, note that the procedure explained above is reversible by the choice of483

probabilities pe =
exp (we)

1+exp (we)
, which is a value between 1/2 and 1.484

Problem 2. First note that under Assumption 1, for any graph Gs,485 ∑
Ĝ⊆Gs

P (Ĝ) =
∏
e/∈Gs

(1− pe)[
∑

Ê⊆EGs

∏
e∈Ê

pe
∏
e/∈Ê

(1− pe)] =
∏
e/∈Gs

(1− pe).
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This is because the inner summation goes over all the possible subsets of EGs , and the summation486

adds up to 1. Therefore, we can rewrite Problem 2 (Eq. 3)as487

H∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∑
Ĝ⊆Gs

P (Ĝ)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∏
e/∈Gs

(1− pe)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

log(
∏
e/∈Gs

(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∑
e/∈Gs

log(1− pe)

= argmin
Gs⊆G,

Gs∈[G]Id(Q[Y ])

∑
e/∈Gs

− log(1− pe).

With the same reasoning as before, assigning the weights we = − log(1− pe) to each edge e ∈ EG ,488

we end up with an instance of the edge ID problem. Note that again 0 ≤ − log(1 − pe) ≤ ∞.489

It is noteworthy that this procedure is also reversible with the choice of edge probabilities pe =490

1 − exp (−we), which reduces the edge ID problem to an instance of Problem 2. Again note that491

0 ≤ 1− exp (−we) ≤ 1 for any non-negative we.492

A.1 Reduction from MCIP to edge ID493

Theorem 1. The edge ID problem is NP-hard.494

To prove Theorem 1, we first present a polynomial-time reduction from MCIP to the edge ID problem.495

It has been shown that the minimum vertex cover problem can be reduced to MCIP in polynomial496

time [1]. Combining the two reductions, we show that there exists a polynomial-time redcution from497

the minimum vertex cover problem to the edge ID problem. Since the minimum vertex cover problem498

is known to be NP-hard [11], it follows that the edge ID problem is also NP-hard.499

We propose the following reduction from MCIP to the edge ID problem. Assume we want to solve500

MCIP given ADMG G = (V G , EG
d , E

G
b ), query Q[Y ], and the intervention costs C(v) for v ∈ V G .501

We construct a graph, denoted byH = T1(G, Y ), through the following steps.502

a. For every vertex x ∈ V G \ Y , add two vertices x1, x2 to V H.503

b. For any bidirected edge {x, z} ∈ EG
b where x ∈ V G \ Y and z ∈ V G , add the bidirected edge504

{x2, z2} to EH
b .505

c. For any directed edge (x, z) ∈ EG
d where x ∈ V G \Y and z ∈ V G , add the directed edge (x1, z1)506

to EH
d .507

d. For any bidirected edge {y1, y2} ∈ EG
b where y1, y2 ∈ Y , add the bidirected edge {y1, y2} to508

EH
b .509

e. For every x1, x2 ∈ V G \Y , draw the two edges {x1, x2} ∈ EH
b and (x2, x1) ∈ EH

d . Furthermore,510

the weight of {x1, x2} is C(x).511

f. The costs of the all other edges inH are assigned to be infinite.512

With abuse of notation, for any vertex x ∈ V G \ Y , we define T1(x) = {x2, x1} ∈ EH
b , where513

{x2, x1} is the bidirected edge inH that corresponds to x in G, and inherits the same weight (cost).514

Example 2. Consider graph G in Figure 4a. Vertices x and z are mapped to x1, x2, and z1, z2,515

respectively. Both a directed and a bidirected edge are drawn between these pairs. The bidirected516

edge {x1, x2} is assigned the weight C(x) = cx, and the bidirected edge {z1, z2} is assigned the517

weight C(z) = cz . Infinite weights are assigned to the rest of the edges inH (Figure 4b).518
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Figure 4: Reduction of MCIP to edge ID

Proposition 3. Suppose G′ is an ADMG, Y ⊆ V G′
is a set of its vertices such that Y is a district519

in G′[Y ], andH′ = T1(G′, Y ). Consider X ⊆ V G′ \ Y as an arbitrary subset of vertices of G′, and520

define G = G′[V G′ \X]. Let E′′
b = {e ∈ EH′

b |∃v ∈ X, e = T1(v)} and define EH
b = EH′

b \E′′
b . Let521

H be the edge-induced subgraph ofH′ defined asH = (V H′
, EH

d , EH
b ). Q[Y ] is identifiable in G if522

and only if Q[Y ] is identifiable inH.523

Proof. We prove the contrapositive, i.e., Q[Y ] is not identifiable in G iff Q[Y ] is not identifiable in524

H. Note that by construction, Y is a district in both G[Y ] andH[Y ]. That is, it suffices to show that525

there exists a hedge formed for Q[Y ] in G iff there exists a hedge formed for Q[Y ] inH.526

To this end, we first prove the following claim. Let W ∈ V H form a hedge for Q[Y ]. If x1 ∈W for527

some x ∈ V G′
, then x2 ∈W and vice versa. That is, the two vertices x1 and x2 corresponding to the528

same vertex x in V G′
appear only simultaneously in any hedge. To see this, note that by construction,529

x1 is the only child of x2. By definition of hedge, if x2 ∈W , then it has a directed path to Y within530

H[W ], and this path can only go through x1. For the other direction, note that x1 has only one531

bidirected edge, which is with x2. Again, by definition of hedge, if x1 ∈W , then it has a bidirected532

path to Y withinH[W ], and this path can only go through x2. Hence, in the sequel, when there is a533

hedge W formed for Q[Y ] inH, we will without loss of generality assume that there exists a set of534

variables Z ⊆ V G′
such that W = Z1 ∪ Z2 ∪ Y , where Z1 = {z1|z ∈ Z} and Z2 = {z2|z ∈ Z}.535

If part. Let W = Z1 ∪ Z2 ∪ Y form a hedge for Q[Y ] in H. First note that since none of the536

bidirected edges between Z1 and Z2 are removed inH, by construction, all vertices Z are present537

in G, i.e., Z ⊆ V G . Now we show that Z ∪ Y forms a hedge for Q[Y ] in G. To this end, we prove538

G[Z ∪ Y ] is a district and Z ∪ Y = AncG[Z∪Y ](Y ). First note that any vertex in Z1 has only one539

bidirected edge to a vertex in Z2. That is, if we consider the edge-induced subgraph ofH[W ] over540

its bidirected edges, vertices of Z1 are leaf nodes. As a result, Z2 ∪ Y must be connected in this541

graph. That is, Z2 ∪ Y is a district inH[Z2 ∪ Y ]. This implies by construction ofH that G[Z ∪ Y ]542

is a single district. With a similar reasoning, note that vertices in Z2 have no parents. As result,543

Z1 ∪ Y = AncH[Z1∪Y ](Y ) (since the directed paths cannot go through Z2). Again, by construction,544

the edge-induced subgraph of G[Z ∪ Y ] over its directed edges is a copy ofH[Z1 ∪ Y ]. As a result,545

Z ∪ Y = AncG[Z∪Y ](Y ).546

Only if part. Let Z ∪ Y form a hedge for Q[Y ] in G, where Z ⊆ V G \ Y . Define Z1 = {z1|z ∈ Z}547

and Z2 = {z2|z ∈ Z}. We show that Z1 ∪Z2 ∪ Y forms a hedge for Q[Y ] inH. First, by definition548

of hedge, AncG[Z∪Y ](Y ) = Z ∪ Y . Since the edge-induced subgraph of H[Z1 ∪ Y ] is a copy of549

G[Z ∪ Y ] by construction, we know AncG[Z1∪Y ](Y ) = Z1 ∪ Y . Further, each vertex z2 ∈ Z2 is a550

parent of z1 ∈ Z1. As a result, AncG[Z1∪Z2∪Y ](Y ) = Z1 ∪ Z2 ∪ Y . Now it suffices to show that551

Z1 ∪Z2 ∪ Y is a district inH[Z1 ∪Z2 ∪ Y ]. By definition of hedge, Z ∪ Y is a district in G[Z ∪ Y ].552

By construction of H, exactly the same bidirected edges (and therefore bidirected paths) exist in553

H[Z2 ∪ Y ]. Therefore, Z2 ∪ Y is a district in H[Z2 ∪ Y ]. Now note that by construction of H′,554

each vertex z1 ∈ Z1 has a bidirected edge to z2 ∈ Z2. And by definition of G and H, since the555

vertices Z exist in G, none of these edges are removed inH. As a result, Z1 ∪ Z2 ∪ Y is a district in556

H[Z1 ∪ Z2 ∪ Y ], which completes the proof.557

558

15



Proof of Theorem 1. A polynomial-time reduction from MCIP to the edge ID problem follows559

immediately from Proposition 3. MCIP is shown to be NP-hard [1]. As a result, the edge ID problem560

is Np-hard.561

A.2 Reduction from edge ID to MCIP562

Proposition 2. There exists a polynomial-time reduction from edge ID to MCIP and vice versa.563

To prove Proposition 2, we begin with presenting a transformation T2(G, Y ) which is in the core of564

reduction from edge ID to MCIP.565

Suppose we want to solve the edge ID problem given ADMG G = (V G , EG
d , E

G
b ), query Q[Y ], and566

edge weights WG = {we|e ∈ G}. Let X = V G \ Y denote the set of vertices of G excluding Y .567

We define the transformation (H, Y mcip) = T2(G, Y ) whereH = (V H, EH
d , EH

b ) is an ADMG and568

Y mcip ⊆ V H as follows. Note that V H will consist of two disjoint set of vertices, namely V H
top and569

V H
bot, i.e., V H = V H

top ∪ V H
bot.570

a. Begin with V H
top = V H

bot = ∅, Y mcip = ∅. For any vertex v ∈ V G , add a vertex v to V H
top with571

cost C(v) =∞. If v ∈ Y , add v to Y mcip.572

b. For any directed edge (vi, vj) ∈ EG
d with weight wd

ij in G, add a new vertex vdij to V H
top, with cost573

C(vdij) = wd
ij , where574

vdij =


xd
ij if vi, vj ∈ X,

zdij if vi ∈ Y or vj ∈ Y,

ydij if both vi, vj ∈ Y.

Draw directed edges (vi, vdij) and (vdij , vj). Further, draw a bidirected edge between vi and vdij .575

c. For any bidirected edge {xi, xj} ∈ EG
b with weight wb

ij , add a new vertex, xb
ij to V H

top with cost576

C(xb
ij) = wb

ij . Add two bidirected edges {xi, x
b
ij} and {xj , x

b
ij}. Further, draw two directed577

edges (xb
ij , xi) and (xb

ij , xj) inH.578

d. For any bidirected edge {xi, yj} with weight wb
ij , add a new vertex zbij to V H

top with cost C(zbij) =579

wb
ij . Draw bidirected edges {zbij , xi} and {zbij , yj}. Then draw a directed edge from zbij to xi.580

e. For any bidirected edge between {yi, yj} ∈ EG
b with weight wb

ij in G, add a new vertex, ybij to581

V H
top with cost C(ybij) = wb

ij . Draw bidirected edges {ybij , yi} and {ybij , yj}. Further, for any582

x ∈ X , draw a directed edge from ybij to x.583

f. Let y1 ≺ ... ≺ yk denote a topological ordering among vertices of Y . For every pair {yi, yj}584

of vertices of Y , where i < j, add vertices yiji , yiji+1, . . . , y
ij
j to V H

bot. Add yijj to Y mcip. Draw585

the directed edges (yk, y
ij
k ) for every i ≤ k ≤ j. Draw the directed edges (yijk , yiji ) for every586

i < k < j, and the directed edge (yiji , yijj ). Draw a bidirected edge between yj and yiji . Further,587

for any bidirected edge {yk, yl} ∈ EG
b where i ≤ k, l ≤ j, add a new vertex yijkl to V H

bot, draw588

two bidirected edges {yijkl, y
ij
k } and {yijkl, y

ij
l }, and a directed edge (yijkl, y

b
ij). The costs of the all589

of the vertices in V H
bot are infinite.590

With abuse of notation, for any bidirected edge ebij = {vi, vj} ∈ EG
b and any directed edge edij =591

(vi, vj) ∈ EG
d , we define T2(ebij) = vbij and T2(edij) = vdij , respectively, where vbij , v

d
ij ∈ V H are the592

vertices representing their corresponding edges.593

We will utilize the following results to prove Proposition 2. More precisely, Lemmas 2 through 9 are594

used to prove Proposition 4, which in turn is used to prove Proposition 2.595

Lemma 2. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T (G, Y ). Each596

vertex y ∈ Y mcip is a district inH.597

Proof. It suffices to show that for every pair of v1, v2 ∈ Y mcip there is no bidirected edge between598

them inH. Suppose first that v1, v2 ∈ Y . Any bidirected edge between v1 and v2 in G (if it exists)599

16



is removed in step (e) of the transformation, and none of the steps (a) through (f) add a bidirected600

edge between them. Otherwise, at least one of v1, v2, w.l.o.g. v1, is in Y mcip \ Y . Suppose w.l.o.g.601

that v1 = yijj . From step (f) of the transformation T , we know that v1 has bidirected edges only to602

vertices yijkj , where none of them is a member of Y mcip.603

Lemma 3. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T2(G, Y ). Suppose604

there is a hedge formed for Q[y] inH, where y ∈ Y . Let H denote the set of vertices of this hedge. H605

does not include any of the vertices added in the step (f) of the transformation. That is, H ∩ V H
bot = ∅.606

Proof. Define V1 = {yijkl ∈ V H
bot,∀i, j, k, l}, and V2 = V H

bot \ V1. By construction ofH, the vertices607

of V2 have directed edges only to vertices in V2. Therefore, for each vertex v ∈ V2, we have608

v /∈ AncH[H](y). As a result, V2 ∩ H = ∅, since by definition of hedge, any vertex of H is an609

ancestor of y in H[H]. Now, consider an arbitrary vertex v ∈ V1. By construction of H, if there610

exists a bidirected edge {v, v′} ∈ EH
b , we must have that v′ ∈ V2. Therefore, if v ∈ H , there must611

be at least one vertex v′ ∈ V2 ∩H . Since we proved V2 ∩H = ∅, v cannot be in H . Consequently,612

V1 ∩H = ∅.613

614

Lemma 4. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T (G, Y ). Suppose615

there is a hedge formed for Q[yijj ] inH, where yi, yj ∈ Y and yijj is the vertex corresponding to the616

pair (yi, yj) added in step (f) of the transform T . Let H denote the set of vertices of this hedge. If617

v ∈ H ∩ V H
bot, then v has the superscript ij, that is, v is either one of the vertices yijk , or one of the618

vertices yijkl, where i ≤ k, l ≤ j. In the latter case, ybkl ∈ H .619

Proof. Define V1 = {ymn
kl ∈ V H

bot,∀m,n, k, l}, and V2 = V H
bot \ V1. Suppose V ∗

1 = {vijkl ∈620

V H
bot,∀k, l} and V ∗

2 = {vijk ∈ V H
bot,∀k}. Also define V ′

1 = V1 \ V ∗
1 , V ′

2 = V2 \ V ∗
2 . For the first621

part of the claim, it suffices to show that V ′
1 ∩ H = ∅, V ′

2 ∩ H = ∅. By construction of H, the622

vertices of V
′

2 do not have any child out of V
′

2 . Therefore, V ′
2 ∩ AncH[H](y

ij
j ) = ∅. This implies that623

V
′

2 ∩H = ∅. Now let vi
′
j
′

1 be an arbitrary vertex in V
′

1 . By construction ofH, vi
′
j
′

1 has bidirected624

edges only to vertices of V ′
2 . This implies that if vi

′
j
′

1 ∈ H , there must be at least one vertex of V ′
2625

in H which is in contradiction with V ′
2 ∩H = ∅. Therefore, vi

′
j
′

1 /∈ H . Since vi
′
j
′

1 is an arbitrary626

vertex in V ′
1 , we conclude V ′

1 ∩H = ∅.627

Now, we prove that if v ∈ H is one of the vertices yijkl, we have ybkl ∈ H . Since yijkl ∈ H , there exists628

a directed path from yijkl to yijj inH[H]. Since ybkl is the only child of yijkl, the aforementioned path629

passes through ybkl. Therefore, ybkl ∈ H .630

631

Lemma 5. Suppose G′ = (V G′
, EG′

d , EG′

b ) is an ADMG, Y ⊆ V G′
is a set of its vertices, and632

(H′, Y mcip) = T (G′, Y ). Let E′′
d ⊆ EG′

d and E′′
b ⊆ EG′

b be arbitrary edges of G, and define633

EG
d = EG′

d \ E′′
d , EG

b = EG′

b \ E′′
b . Define G = (V G , EG

d , E
G
b ) and H = H′[V H′ \ V ′], where634

V G = V G′
and V ′ = {v ∈ V H′ |∃e ∈ E′′

b ∪ E′′
d , v = T2(e)}. Suppose there is a hedge formed635

for Q[yijj ] in H for some i, j. Let H denote the set of vertices of this hedge in H. The set of636

vertices Y ∗ = {yk|yijk ∈ H} is a district in G[Y ]. Moreover, Htop = AncH[Htop](Y
∗), where637

Htop = H ∩ V H
top.638

Proof. First we prove that Y ∗ is a district in G[Y ]. Consider an arbitrary vertex yijk in H . By definition639

of hedge, there exists a bidirected path, p1, between yijk and yijj inH[H]. Let Y ij denotes the set of640

vertices in H such that their superscript is ij. Lemma 4 implies that H ⊆ V H
top ∪ Y ij . Furthermore,641

by construction ofH, there is only one bidirected edge between Y ij and H \ Y ij , which is {yj , yiji }.642

Therefore, all of the vertices on the path p1 are in Y ij . Now, we define Y
′

1 = {yk|yijk ∈ p1} and643
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Y ′
2 = {ybkl|y

ij
kl ∈ p1}, i.e., the V H

top counterparts of the vertices in p1. Since the vertices on p1644

are in H , Y ′
1 ⊆ Y ∗. From Lemma 4, we know that if yijkl ∈ H , then, ybkl ∈ H . It implies that645

Y
′

2 ⊆ H . As a result, Y ′
1 and Y ′

2 are both vertices ofH. Now if we replace all the vertices in p1 with646

their corresponding counterpart in Y ′
1 ∪ Y ′

2 , we arrive at a bidirected path p2 between yk and yj in647

H[Y ′
1 ∪ Y ′

2 ] (as by construction the same edges exist in V H
top). By definition of G andH, if a vertex648

ybkl exists inH, the corresponding edge {yk, yl} exists in G. As a result, a bidirected path between yk649

and yl exists in G[Y ′
1 ]. Noting that yk is an arbitrary vertex in Y ∗ and Y ′

1 ⊆ Y ∗, this implies that all650

of the vertices of Y ∗ are in the same district as yj in G[Y ∗], which completes the proof.651

Next, we prove that Htop = AncH[Htop](Y
∗). To this end, it suffices to show that there is a directed652

path form an arbitrary vertex v ∈ Htop to Y ∗ in H[Htop]. Since H forms a hedge for Q[yijj ] in H,653

there exists a directed path from v to yijj inH[H]. This path must go through the only parent of yijj ,654

which is yiji . Then, the last vertex on the path is one of the parents of yiji . If this parent is yi, we are655

done as we have a directed path from v to yi, where yi ∈ Y ∗ and it has no ancestors in H \Htop.656

Otherwise, let this parent be yijk for some i < k < j. Now the last vertex on the path before yijk must657

be yk, which is the only parent of yijk . Note that by definition of Y ∗, yk ∈ Y ∗. Therefore, v has a658

directed path to Y ∗ inH[Htop].659

Lemma 6. Suppose G = (V G , EG
d , E

G
b ) is an ADMG, Y is a set of its vertices, and (H, Y mcip) =660

T2(G, Y ). Suppose there is a hedge formed for Q[y] inH for some y ∈ Y mcip. Let H denote the set661

of vertices of this hedge. Then H ∩X ̸= ∅, where X = V G \ Y .662

Proof. Since H forms a hedge for Q[y] in H, there exists a vertex h ∈ H such that {y, h} ∈ EH
b .663

There are two possibilities for y ∈ Y mcip:664

• y = yi ∈ Y . From Lemma 4 we have h /∈ V H
bot. Therefore, by construction ofH, h = ybij665

for some j.666

• y = yijj ∈ V H
bot. By construction ofH, h = yijkj for some k. Vertex h must have a directed667

path to y in H by definition of hedge, which must go through the only child of h, i.e., ybkl.668

In both cases, we showed that there exists a vertex v = ybij ∈ H for some i, j. By definition of hedge,669

there is a bidirected path, p, from v to y inH because v ∈ AncH(y). Since all of the children of v are670

in X , there is at least one vertex in X on path p. Therefore, H includes at least one vertex of X .671

672

Lemma 7. [Inverse transform preserves hedges.] Suppose G′ = (V G′
, EG′

d , EG′

b ) is an ADMG,673

Y ⊆ V G′
is a set of its vertices, and (H′, Y mcip) = T2(G′, Y ). Let E′′

d ⊆ EG′

d and E′′
b ⊆ EG′

b be674

arbitrary edges of G, and define EG
d = EG′

d \ E′′
d , EG

b = EG′

b \ E′′
b . Define G = (V G , EG

d , E
G
b )675

and H = H′[V H′ \ V ′], where V G = V G′
and V ′ = {v ∈ V H′ |∃e ∈ E′′

b ∪ E′′
d , v = T2(e)}. Let676

W ⊆ V H
top be a set of vertices ofH. Let Ws ⊆W ∩ V G be a subset of W such that Ws are vertices677

of G as well. Consider the inverse transform of H[W ] in the ADMG G, i.e., for any v = vbij ∈ W ,678

delete v and all edges incident to it and draw a bidirected edge between vi and vj , and for any679

v = vdij , delete v and all edges incident to it and draw a directed edge from vi to vj . Let the resulting680

subgraph (which is a subgraph of G) be denoted by G[W−1] with the set of vertices W−1 ⊆ V G . If681

AncH[W ](Ws) = W , then AncG[W−1](Ws) = W−1. Moreover, if W is a district in H[W ], then682

W−1 is a district in G[W−1].683

Proof. First, we show that if AncH[W ](Ws) = W , then AncG[W−1](Ws) = W−1. Let v be an684

arbitrary vertex in W−1. Vertex v is in W because W−1 ⊆W . Since v ∈W and v ∈ AncH[W ](Ws),685

v has a directed path v → . . . vi → vdij → vj · · · → w, denoted by l, to a vertex w ∈ Ws in H[W ].686

For each vertex vdij on path l, we have vi, vj ∈ G[W−1] and since vdij ∈ V H, by definition of G687

and H, there exists (vi, vj) ∈ EG
d s.t. i ≺ j, and consequently, (vi, vj) ∈ E

G[W−1]
d . Therefore,688
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there exists a directed path from v to w in G[W−1]. Noting that v is an arbitrary vertex in W−1, we689

conclude that AncG[W−1](Ws) = W−1.690

Now, we prove that if W is a district in H[W ], then W−1 is a district in G[W−1]. Consider two691

vertices v1, v2 ∈ W−1. Since v1, v2 ∈ W and W is a district, there exists a bidirected path692

v1 ↔ . . . vi ↔ vbij ↔ vj · · · ↔ v2, denoted by p, between v1 and v2 in H[W ]. Each vertex vbij on693

path p is in H and vi, vj ∈ G[W−1]. By definition of G and H, we have {vi, vj} ∈ EG
b . Therefore,694

{vi, vj} ∈ E
G[W−1]
b . Then, there is a bidirected path between v1 and v2 in G[W−1]. Since v1 and v2695

are two arbitrary vertices in W−1, it implies that W−1 is a district in G[W−1].696

Lemma 8. [Transform preserves hedges.] Suppose G′ = (V G′
, EG′

d , EG′

b ) is an ADMG, Y ⊆ V G′
is697

a set of its vertices, and (H′, Y mcip) = T2(G′, Y ). Let E′′
d ⊆ EG′

d and E′′
b ⊆ EG′

b be arbitrary edges698

of G, and define EG
d = EG′

d \E′′
d , EG

b = EG′

b \E′′
b . Define G = (V G , EG

d , E
G
b ) andH = H′[V H′ \V ′],699

where V G = V G′
and V ′ = {v ∈ V H′ |∃e ∈ E′′

b ∪E′′
d , v = T2(e)}. Let W ⊆ V G be a set of vertices700

of G such that W \ Y ̸= ∅. Let Ws ⊆ W be a subset of W . Let the transformed graph of G[W ]701

under T2 be denoted by H′′, where H′′ ⊆ H. Define W ∗ = V H′′

top . If AncG[W ](Ws) = W , then702

AncH[W∗](Ws) = W ∗. Moreover, if W is a district in G[W ], then W ∗ is a district inH[W ∗].703

Proof. First, we prove that if AncG[W ](Ws) = W , then AncH[W∗](Ws) = W ∗. Take an arbitrary704

vertex v ∈W ∗. There are two possibilities for v:705

• v ∈W . That is, vertex v is in G[W ].706

• v /∈ W . This implies that v represents an edge e between two vertices vi and vj in G[W ].707

There are three possibilities for e:708

– e = (vi, vj). By construction ofH, v is parent of vj inH[W ∗], where vj is a vertex of709

G[W ].710

– e = {vi, vj} and vi ∈ X or vj ∈ X . In this case, v is parent of at least one of vi and711

vj inH[W ∗], w.l.o.g. vi, where vi is a vertex of G[W ].712

– e = {vi, vj} and vi, vj ∈ Y . By construction ofH, v is parent of all vertices in V G \Y .713

Since W \ Y ̸= ∅, there exists a vertex x in G[W ] such that v is a parent of x.714

In all three cases above, we proved that there exists a vertex x ∈W such that v is a parent715

of x.716

Therefore, we showed that any vertex v ∈W ∗ either is itself a vertex in W or is a parent of a vertex717

in W . As a result, it suffices to show that every w ∈ W has a directed path to Ws in H[W ∗]. We718

know that w has a directed path to Ws in G[W ] such as p. Take an arbitrary pair of consecutive719

vertices on this path, such as v1 and v2. The directed edge (v1, v2) exists in G[W ]. As a result, the720

directed path v1 → vd12 → v2 exists inH[W ∗]. Starting at w and repeating this argument for every721

pair of consecutive vertices on p, we conclude that there exists a directed path from w to Ws, which722

completes the proof.723

Now, we show that if W is a district in G[W ], then W ∗ is a district in H[W ∗]. Take an arbitrary724

vertex v ∈W ∗. There are two possibilities for v:725

• v ∈W . That is, v is a vertex in G[W ].726

• v /∈W . In this case, at least one of the vertices v represents an edge e between two vertices727

vi and vj in G[W ]. By construction ofH, v is connected to at least one of vi or vj , w.l.o.g.728

vi, by a bidirected edge, where vi ∈W .729

We showed that any vertex v ∈ W ∗ either is in W , or is connected to a vertex in W through a730

bidirected edge. Therefore, it suffices to show that for any two vertices w1, w2 ∈ W there exists731

a bidirected path between w1 and w2 in H[W ∗]. Since w1, w2 ∈ W , there is a bidirected path, p,732

between w1 and w2 in G[W ]. Take an arbitrary pair of consecutive vertices on this path, such as v1733

and v2. The bidirected edge {v1, v2} exists in G[W ]. As a result, the bidirected path v1 ↔ vb12 ↔ v2734
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exists inH[W ∗]. Starting at w and repeating this argument for every pair of consecutive vertices on735

p, we conclude that there exists a bidirected path from w1 to w2, which completes the proof.736

Lemma 9. Suppose G is an ADMG, and Y is a subset of its vertices. Also let Y ∗ be a district in737

G[Y ]. If the set of vertices H form a hedge for Q[Y ∗], then H \ Y ̸= ∅.738

Proof. Assume by contradiction H \ Y = ∅, i.e., H ⊆ Y . By definition of hedge, we know739

H \ Y ∗ ̸= ∅. Take an arbitrary vertex v ∈ H \ Y ∗. Furthermore, v ∈ Y \ Y ∗ because H ⊆ Y . Since740

H forms a hedge for Q[Y ∗], H is a district in G[H]. Therefore, there exists a bidirected path between741

v and a vertex y∗ ∈ Y ∗ in Q[Y ] which is in contradiction with the assumption that Y ∗ is a district in742

G[Y ].743

Proposition 4. Suppose G′ = (V G′
, EG′

d , EG′

b ) is an ADMG, Y ⊆ V G′
is a set of its vertices, and744

(H′, Y mcip) = T2(G′, Y ). Let E′′
d ⊆ EG′

d and E′′
b ⊆ EG′

b be arbitrary edges of G, and define745

EG
d = EG′

d \E′′
d , EG

b = EG′

b \E′′
b . Q[Y ] is identifiable in G = (V G , EG

d , E
G
b ) if and only if Q[Y mcip]746

is identifiable in H = H′[V H′ \ V ′], where V G = V G′
and V ′ = {v ∈ V H′ |∃e ∈ E′′

b ∪ E′′
d , v =747

T2(e)}.748

Proof. We prove the contrapositive, i.e., Q[Y ] is not identifiable in G iff Q[Y mcip] is not identifiable749

inH.750

If part. Suppose Q[Y mcip] is not identifiable inH. That is, there exists a hedge formed for Q[Y mcip]751

inH. From Lemma 2, this hedge is formed for Q[y′] for some y′ ∈ Y mcip. Denote the set of vertices752

of this hedge by H . We consider two possibilities separately:753

• y′ = yi, where yi ∈ Y . From Lemma 3, H ⊆ V H
top. Taking W = H in Lemma 7, W−1 is a754

set of vertices in G such that AncG[W−1](y) = W−1, and W−1 is a district in G. Now take755

Y ∗ to be the district of G[Y ] that includes yi. By definition of hedge, G[W−1 ∪ Y ∗] forms a756

hedge for Q[Y ∗] in G. Note that from Lemma 6, W−1 \ Y ̸= ∅. As a result, Q[Y ] is not757

identifiable in G.758

• y′ = yijj , where yi, yj ∈ Y and y′ is one of the vertices added to H in the last step of the759

transformation T (step (f)). Define the set Y ∗ = {yk|yijk ∈ H}. From Lemma 5, Y ∗ is a760

district in G, and therefore a district in G[Y ]. As a result, it suffices to show that there exists761

a hedge formed for Q[Y ∗] in G. Now define Htop = H ∩ V H
top. By definition of hedge,762

H is a district in H[H], i.e., it is connected over its bidirected edges. By construction of763

H, there is only one bidirected edge between the vertices in Htop and H \Htop, which is764

the bidirected edge between yj and yiji . Therefore, this edge is a cut set that partitions the765

graphH[H] into two connected componentsH[Htop] andH[H \Htop]. That is,H[Htop]766

is connected over its bidirected edges and therefore Htop is a district inH[Htop]. Further,767

from Lemma 5, Htop = AncH[Htop](Y
∗). Noting that Htop ⊆ V H

top, taking W = Htop in768

Lemma 7, W−1 is a district in G and AncG[W−1](Y
∗) = W−1. Note that from Lemma 6,769

W−1 \ Y ̸= ∅. Therefore, the set of vertices W−1 form a hedge for Q[Y ∗] in G. Hence,770

Q[Y ] is not identifiable in G.771

Only if part. Suppose Q[Y ] is not identifiable in G. It implies that there exists a district of G[Y ] such772

as Y ∗ such that there is a hedge formed for Q[Y ∗] in G. Let H denote the set of vertices of this hedge.773

From Lemma 9, H \ Y ̸= ∅. Define W ∗ as in Lemma 8, that is the transform T (G[H], Y ∗) without774

step (f) (only on the vertices of V H
top). Note that Y ∗ ⊆ W ∗. We consider the following two cases775

separately:776

• Y ∗ = {y}, that is, Y ∗ is a single vertex. From Lemma 8, W ∗ is a district in H[W ∗], and777

AncH[W∗](y) = W ∗. By definition of hedge, the vertices W ∗ form a hedge for Q[y] inH.778

Note that y ∈ Y mcip, and from Lemma 2 it is a district ofH[Y mcip]. As a result, Q[Y mcip]779

is not identifiable inH.780
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• |Y ∗| ≥ 2. Let yi and yj be the first and the last vertices of Y ∗ in the topological order. Define781

Y ij∗ = {yijk |yk ∈ Y ∗} ∪ {yijkl|yk, yl ∈ Y ∗}. Y ij∗ are the vertices in V H
bot with superscript782

ij corresponding to the vertices in Y ∗. Note that yiji , yijj ∈ Y ij∗, since yi, yj ∈ Y ∗. Since783

yijj ∈ Y mcip and from Lemma 2 yijj is a district inH[Y mcip], it suffices to show that there784

is a hedge formed for yijj inH. We show that the vertices W = W ∗ ∪ Y ij∗ form a hedge785

for yijj inH. From Lemma 8, AncH[W∗](Y
∗) = W ∗, that is, all of the vertices in W ∗ are786

ancestors of Y ∗ in H[W ∗], and therefore in H[W ]. Also, the vertices yijkl in Y ij∗ have a787

direct edge to their corresponding vertex in W ∗, i.e., ybkl, and therefore are ancestors of788

Y ∗ in H[W ] as well. Further, each vertex in Y ∗ such as yk is a parent of yijk , which is789

in turn a parent of yiji (or is yiji itself if k = i.) Finally, yiji has a directed edge to yijj by790

construction. As a result, all of the vertices W have a direct path to yijj in H[W ]. That is,791

AncH[W ](y
ij
j ) = W . It now remains to show that W is a district inH[W ]. From Lemma 8,792

W ∗ is a district in H[W ∗]. As a result, the vertices W ∗ are connected through bidirected793

edges in H[W ]. There is a bidirected edge between yj and yiji by construction of H. It794

suffices to show that for any v ∈ Y ij∗, there exists a bidirected path between v and yiji in795

H[W ]. A vertex yijkl ∈ Y ij∗ (with double subscript, which are due to the bidirected edges796

among Y ∗) has bidirected edges to yijk and yijl , which are both in Y ij∗ by definition. Now797

take an arbitrary vertex yijk ∈ Y ij∗ (with single subscript, due to vertices in Y ∗). We know798

yk ∈ Y ∗, as yijk ∈ Y ij∗, by definition of Y ij∗. Y ∗ is a district in G[Y ∗]. That is, there exists799

a bidirected path from yk to yi in G[Y ∗]. From Lemma 8 by taking W = Y ∗, there is a800

bidirected path p from yk to yi inH[Y ∗ ∪ {ylm|yl, ym ∈ Y ∗}]. By construction ofH, if we801

replace each vertex v on p by vij , we achieve a bidirected path p′ with vertices in Y ij∗ from802

yijk to yiji , which completes the proof.803

804

Proof of Proposition 2. The reduction from the edge ID problem to MCIP was shown through the805

proof of Proposition 4. The opposite direction is an immediate corollary of Proposition 3.806

Corollary 2. The edge ID problem and MCIP are equivalent.807

B Maximal Hedge808

Algorithm 3 Maximal Hedge.

1: function MH(G, Y )
2: Initialize M ← ∅
3: for Yi in districts of G[Y ] do
4: M ←M ∪HHull(G, Yi)

5: return G[M ]

1: function HHULL(G, Yi)
2: Initialize H ← V G

3: while True do
4: C ← connected component (district) of Yi via bidirected edges in G[H]
5: A← ancestors of Yi in G[C]
6: if C ̸= A then
7: H ← A
8: else
9: break

10: return H

Herein, we present the algorithm for recovering the maximal hedge formed for Q[Y ] in a given809

ADMG G (see Definition 5). Maximal hedge was initially defined in [1] under the name hedge hull.810
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xz yp q

Figure 5: An example where the expert is aware that there is no causal path from z to y, e.g., because
z ⊥⊥ y with high confidence.

We adopt the same definition, and when G[Y ] comprises several districts, we define the maximal811

hedge as the union of the hedge hulls formed for each district of G[Y ]. As a result, the complete812

procedure of recovering the maximal hedge for a query Q[Y ], summarized in Algorithm 3, finds the813

maximal hedge formed for each district Yi of G[Y ] and returns the union of them. This procedure is814

used as a subroutine MH in Algorithm 1. The function HHull is in fact Algorithm 1 borrowed from815

[1]. This function is proven to recover the union of all hedges formed for Yi, where Yi is one of the816

districts of G[Y ] (see Lemma 6 of [1]).817

C Generalizing Assumption 1818

Lemma 1 states the equivalence of Problems 1 and 2 with the edge ID problem under Assumption 1.819

However, as mentioned in the main text, this equivalence holds in the more general setting where we820

allow for perfect negative correlations among edges. As an example, consider the graph of Figure821

5. Suppose that the performed statistical independence tests show that the two variables z and y are822

independent of each other with high confidence. As a result, the expert believes that the edges (z, x)823

and (x, y) must not exist simultaneously, as otherwise the causal path from z to y would make them824

dependent. In such cases, the belief of the expert can be modeled as probabilities p and q assigned825

to the existence of the edges (z, x) and (x, y), respectively, as well as a perfect negative correlation826

between them.827

Note that the aforementioned constraint, i.e., that the edges do not exist simultaneously, can be828

specified for any number of edges, not limited to two edges only. For instance, the expert might829

believe at least one of the edges along a causal path of length n must not exist in the true ADMG830

describing the system. This belief can be modeled as an extra constraint in the optimization of831

Equations 2 and 3. We show that with the specification of such negative correlations, Problems 1 and832

2 can still be cast as an instance of the edge ID problem. Therefore, the results presented in this work833

are valid in this setting as well.834

Assumption 2. The edges in G are assigned probabilities pe,∀e ∈ G, and perfect negative corre-835

lations are defined among subsets of edges. More precisely, for any subset E ⊆ EG
d ∪ EG

b , there is836

either 1) no constraint (mutually independent), or 2) the constraint that at least one of the edges in E837

must not exist in the true ADMG (perfect negative correlation).838

Proposition 5. Under Assumption 2, there exists a reduction from Problems 1 and 2 to the edge ID839

problem and vice versa with the time complexity in the order of O(|C| · |V G |+ |EG
d ∪ EG

b |), where840

C is the set of perfect correlation constraints.841

Proof. First note that we proved the equivalence of Problems 1 and 2 with the edge ID problem842

without the perfect correlation constraints in Lemma 1. As a result, under assumption 2, i.e., by adding843

the perfect correlation constraints, Problems 1 and 2 are equivalent to a modified edge ID problem844

with those constraints. But we claim that there exists and instance of the original unconstrained edge845

ID problem which is equivalent to these problems. To see this, first note that we know from Corollary846

2 that the edge ID problem is equivalent to MCIP. Therefore, it suffices to show that there exists847

an instance of MCIP which is equivalent to the constrained edge ID mentioned above. To this end,848

consider the transform T2(G, Y ) introduced in Section A.2. This transformation maps an instance of849

the edge ID problem to an instance of MCIP. Applying this transformation to the constrained edge ID850

problem, we can map the constrained edge ID to an instance of MCIP with extra constraints, with851

transforming the constraints as well. That is, if for instance, there is a perfect negative correlation852

among the edges e1, e2 in G, this constraint is mapped to a negative perfect correlation on the853

corresponding vertices inH, namely T2(e1), T2(e2). In words, this constraint would be that at least854

one of T2(e1) and T2(e2) must be intervened upon. We show that such constraints can be integrated855

into the original definition of MCIP.856

Suppose we have an MCIP problem in ADMG G with query Q[Y ], with the extra constraint that857

at least one of the vertices X ⊆ V G must be intervened upon. Consider the example of X =858
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x1 x2 x3

x′
1 x′

2 x′
3

ŷ

Figure 6: Integrating the perfect negative correlation constraint into MCIP.

{x1, x2, x3} in Figure 6. We build a new ADMG G′ by adding vertices {x′|x ∈ X}, i.e., a new vertex859

corresponding to each vertex in X , along with an auxiliary vertex ŷ to G. We fix a random ordering860

over the vertices of X , and denote the set of vertices of X as x1, ..., xm. We add the directed edges861

(xi, x
′
i) to G′, as well as the bidirected edges {xi, x

′
i}. Further, we draw directed edges (x′

i, x
′
i+1) for862

every 1 ≤ i < m. Finally, we draw the directed edge (x′
m, ŷ) and the bidirected edge {x1, ŷ}. Refer863

to the graph in Figure 6 for an example with X = {x1, x2, x3}. Note that the set X ∪X ′∪{ŷ} forms864

a hedge for Q[ŷ], where X ′ = {x′|x ∈ X} Now it suffices to set the cost of intervention on vertices865

of X ′ to infinity, and consider MCIP for the query Q[Y ∪ {ŷ}] in G′. It is straightforward to see that866

the objective of this problem would be to find the minimum cost intervention for identification of867

Q[Y ], with the constraint that at least one of the vertices in X must be intervened on. Note that as868

soon as one vertex in X gets intervened upon, there is no hedge left for Q[ŷ]. Also it is noteworthy869

that adding this structure does not add any new hedges formed for Q[Y ], since the structure only870

includes new descendants for X which have no directed paths to Y . Also note that the vertices X ′871

and ŷ are specific to the very constraint corresponding to the set of vertices X . For any constraint, we872

add such a structure to G. The number of vertices (and therefore the time complexity) is at most in873

the order O(|C| · |V G |), where C is the set of constraints.874

875

D Heuristic Algorithms876

Algorithm 2 was devised considering the fact that every hedge formed for Q[Y ] must include a vertex877

that has a bidirected edge to Y . As mentioned in Section 4.2, an analogous approach, summarized in878

Algorithm 4, uses the fact that any hedge formed for Q[Y ] must include a parent of Y .879

Let Y ⊆ V G be a set of vertices of G such that G[Y ] comprises of only one district. Let Z := {z ∈880

V G |∃ y ∈ Y : (z, y) ∈ EG
d } \ Y denote the set of vertices that have at least one directed edge to a881

vertex in Y , i.e., the parents of Y excluding Y . Any hedge formed for Q[Y ] contains at least one882

vertex of Z. As a result, in order to eliminate all the hedges formed for Q[Y ], it suffices to ensure that883

none of the vertices in Z appear in the final hedge. To this end, for any z ∈ Z, it suffices to either884

remove all the directed edges between z and Y , or eliminate all the bidirected paths from z to Y .885

The problem of eliminating all bidirected paths from Z to Y can be cast as a minimum cut problem886

between Z and Y in the edge-induced subgraph of G over its bidirected edges. To add the possibility887

of removing the directed edges between Z and Y , we add an auxiliary vertex z∗ to the graph and888

draw a bidirected edge between z∗ and every z ∈ Z with weight w =
∑

y∈Y w(z,y), i.e., the sum of889

the weights of all directed edges between z and Y . Note that z can have directed edges to multiple890

vertices in Y . We then solve the minimum cut problem for z∗ and Y . If an edge between z∗ and891

z ∈ Z is in the solution to this min-cut problem, it translates to removing all the directed edges from892

z to Y in the original problem. Note that we can run the algorithm on the maximal hedge formed for893

Q[Y ] in G rather than G itself.894

E Experiments895

Noting that the synthetic/simulation results in the main paper were for graphs with a log(n)/n sparsity896

constraint, we begin this section by providing a set a results on the simulated graphs without the897
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Algorithm 4 Heuristic algorithm 2.

1: function HEID2(G, Y,WG)
2: G′ ←MH(G, Y )

3: Z ← {z ∈ V G′ |∃y ∈ Y : (z, y) ∈ EG′

d } \ Y
4: H ← The induced subgraph of G′ on its bidirected edges.
5: WH ← {we ∈WG |e ∈ H}
6: V H ← V H ∪ {y∗, z∗}
7: for z ∈ Z do
8: EH ← EH ∪ {z∗, z}
9: WH ←WH ∪ {w{z∗,z} =

∑
y w(z,y)}

10: for y ∈ Y do
11: EH ← EH ∪ {y, y∗}
12: WH ←WH ∪ {w{y,y∗} =∞}
13: E ←MinCut(H,WH, z∗, y∗)
14: return (E,

∑
e∈E we)

(a) Runtimes. (b) Solution costs.

(c) Fraction for which runtime of 3 minutes exceeded.

Figure 7: Experimental results (for graphs generated without the sparsity constraint) for runtime,
solution costs, fraction of graphs for which no solution was found, and fraction of graphs for which
runtime limit of 3 minutes was exceeded. Error bars for runtime and cost graphs indicate 5th and
95th percentiles. Best viewed in color.

sparsity penalty for comparison. Then, we provide information about the causal discovery algorithm898

used to derive the psychology ‘Psych’ real-world graph.899

E.1 Additional Simulation Results without Sparsity Constraint900

The simulation results for graphs generated without the sparsity constraint are shown in Figure 7.901

These results illustrate monotonic increases in runtime and cost as the number of nodes increases. Our902

proposed heuristic algorithms (HEID-1 and HEID-2) maintain runtimes less than 0.5 seconds even903

for 250 nodes. In contrast, the two exact algorithms (MCIP-exact and EDGEID) exceed the three904

minute runtime limit at only 20 nodes, and the MCIP heuristic variants (MCIP-H1 and MCIP-H2)905

have runtimes which increase exponentially with the number of nodes. These results highlight the906
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efficiency of our proposed heuristic algorithms to find solutions with equivalent cost with significantly907

faster runtimes.908

E.2 Psychology Graph Discovery909

The settings for deriving the putative structure used on the psychology real-world graph are provided910

in Table 3.911

Table 3: Hyperparameter settings for the Structural Agnostic Model used to generate the putative
(directed) structure for the ‘Psych’ real-world dataset.

Parameter Value
Learning Rate 0.01
DAG Penalty True
DAG Penalty Weight 0.05
Number of Runs 50
Train Epochs 3000
Test Epochs 800
Mixed Data True
hlayers 2
dhlayers 2
lambda1 10
lambda2 0.001
dlr 0.001
linear False
nh 20
dnh 200
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