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Appendix

The appendices are organized as follows. Formal proofs of the results stated in the main text are
presented in Section A. In Section B, we describe the algorithm to recover the maximal hedge
formed for a certain query (Def. 5), which is used as a subroutine of Algorithm 1. A generalization
of Assumption 1 is discussed in Section C. Section D provides further details of the heuristic
algorithms discussed in the main text. Further evaluations and experimental conditions for our
proposed algorithms are presented in Section E.

Table 2: Table of notations

Symbol Description
%4 Vertices of G
Ef The set of bidirected edges of G
Eg The set of directed edges of G
Ancg(X) Ancestors of X in G
M(G) The set of the all compatible models with G
De Probability of edge e
We Weight of edge e
Px(Y) Causal effect of X on Y’

A Formal Proofs

We begin with presenting the proofs of Proposition 1 and Lemma 1. Proofs of Theorem 1 and
Proposition 2 appear at the end of Sections A.1 and A.2, respectively.

Proposition 1. For any causal query Px (YY) and ADMG G, if F is a valid identification formula for
Px(Y) in G (Def. 2), then F is a valid identification formula for Px (Y) in any G' C G.

Proof. Let H C G be an arbitrary edge-induced subgraph of G. Let F be an identification formula
for Px(Y) in G, i.e., for any model M that induces G,

PY(Y) = F(PM(V9)). (5)

By definition, Px (Y) is identifiable in G. As a result, there exists and identification formula such as
F’ that can be derived for Px(Y") in G, using a sequence of do calculus rules and basic probability
manipulations. Note that this means for any model M that induces G,

PY(Y) = F'(PM(VY)). (©)
Note that an immediate corollary of Equations 5 and 6 is that for any model M that induces G,
FPM (V) =F (PM (V7)) @)

Now, we first show that this sequence of actions (combination of do calculus rules and probability
manipulations) is valid in H. Note that the basic probability manipulations are graph-independent.
It only suffices to show that any applied do calculus rule w.r.t. G can also be applied w.r.t. /. The
validity conditions of all three do calculus rules are based on certain d-separations. As a result, it
suffices to show that if a d-separation relation is valid in G, it is also valid in H. To do so, it suffices
to show that if all paths between Z; and Z5 are blocked in G given W, they are blocked in # too, for
arbitrary disjoint sets of vertices Z1, Zo, W C V9. Take an arbitrary path, p, between Z; and Zs in
‘H. Since H C G, this path exists in G. Since Z; and Z, are d-separated given W in G, the path p
is blocked by W. As a result, any path between Z; and Z, in H is blocked by W. Therefore, any
do-calculus rule applied in G, can also be applied in H. Hence, F' is a valid identification formula
for Px (Y'). That is, for any model M that induces H,

PY(Y) =F (PM(V™M)). (8)

Now note that any model M that induces H, i.e., is compatible with #, is also compatible with G.
Also, V9 = V*. As a result, from Equations 7 and 8, we know that for any model M that induces
H?

PY(Y) = F(PM(VH)).
By definition, F is a valid identification formula for Px (Y") in . O
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Lemma 1. Under Assumption 1, Problem 1 is equivalent to the edge ID problem with the edge
weights chosen to be the log propensity ratios, i.e., w. = max{0,log(25-)}, Ve € G. Moreover,
Problem 2 is equivalent to the edge ID problem with the choice of weights w, = —log(1 — p.),
Ve € G. That is, an instance of Problems 1 and 2 can be reduced to an instance of the edge ID
problem in polynomial time, and vice versa.

Proof. Problem . First consider an arbitrary graph G; € [G]1q(q[y)) such that G; has an edge e with
pe < 1/2. Let G denote the graph G, after removing e. Proposition 1 implies that G € [G]ra(q[y])-
According to Equation 1, we have P(Gy) = = —EeP(G1) > P(G1) (since pe < 1/2). As aresult,

the solution G* to Problem 1 (Eq. 2) has no edges with probability less than 1/2. We can therefore
rewrite Problem 1 as:
1
G*:= argmax P(Gs)= argmax P(G;) st. Vee€Gs: p.> =
G.CG. G.CG. 2
Gs€l9lracqrvy Gs€lGlracqry

Or equivalently, we can always assume that we start with a graph G that has no edges with probability
less than 1/2, as otherwise we can remove all of those edges and the problem does not change. This
indeed is equivalent to choosing weight (cost) O for those edges in the equivalent edge ID problem.
Now assuming that the edges have probability at least 1/2,

G* = argmax P(Gs)
G:Cg,
Gs€lGl1aqQv))

= argmax log(P(Gs))
GsCG,
gE[g]M(Q

= argmax log H De H (1—1pe))
9:C9, €.  cgG,
QSG[Q]M(Q R4
= argmax Z log(pe) + Z log(1 —p.))

GsCG,
Gs€[Glracomy © €0s e€gs

— argmax Y loglp)+ Y log(l—p)) + 3 log(1—p0) — Y log( — )
G:C3, e€G; e¢Gs ecG, ecG;
Gs€lGl1aqv))
Since ), ¢g. log(1 —pe)) + Zeeg log(1 — p.)) is a constant value that does not depend on G, it
can be 1gn0red in the maximization and we have:

G'= argmax ) log(pc) — ) log(1~p.))
G:C9, e€gs e€gs
Qée[g]zd(g Y

Pe
= argmax E log(————)
95297 ecG ]‘ - pe)
Gs€[Glracqiv :

. DPe

= argmin log(——).

rg mi > 8(y )
Gs€ [Q]Id(Q[Y]

From the formulation above, it is clear that if we assign the weight w, = log(7 m ) to each edge

e € EY9, we will have an instance of the edge ID problem. Note that for edges with probability higher
than 1/2, log(2 ) > 0, and this assignment of edge weights satisfies the positivity requirement.

For the opposite d1rect10n note that the procedure explained above is reversible by the choice of

exp (wc)
1+4exp (we)’

probabilities p, = which is a value between 1/2 and 1.

Problem 2. First note that under Assumption 1, for any graph G,

ZP(gA):Hlfpe Z HpeHlfpe)]:H(lfpe)'

gCg. e¢gs ECEYs ecE  e¢E e¢Gs

13
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This is because the inner summation goes over all the possible subsets of £9, and the summation
adds up to 1. Therefore, we can rewrite Problem 2 (Eq. 3)as

H* = argmax Z P(G)
GgsCg, 5
G.€[Glracqry)) YE9-

= argmax H (1 —pe)

g4<€[ggbjfgdfc’z)[y]> e¢Js

= argmax log( 1T =»e))
G.€91a@p °¢Gs

= argmax Z log(1 — pe)
gse[%]zgd%g[y]) el

= argmin Z —log(1 — p.).
g4s€[ggéjzgdfé[y]> e¢Js

With the same reasoning as before, assigning the weights w. = —log(1 — p.) to each edge e € EY,

we end up with an instance of the edge ID problem. Note that again 0 < —log(1l — p.) < oc.
It is noteworthy that this procedure is also reversible with the choice of edge probabilities p, =
1 — exp (—w,), which reduces the edge ID problem to an instance of Problem 2. Again note that
0 <1 —exp(—w,) <1 for any non-negative w,. O

A.1 Reduction from MCIP to edge ID
Theorem 1. The edge ID problem is NP-hard.

To prove Theorem 1, we first present a polynomial-time reduction from MCIP to the edge ID problem.
It has been shown that the minimum vertex cover problem can be reduced to MCIP in polynomial
time [1]. Combining the two reductions, we show that there exists a polynomial-time redcution from
the minimum vertex cover problem to the edge ID problem. Since the minimum vertex cover problem
is known to be NP-hard [11], it follows that the edge ID problem is also NP-hard.

We propose the following reduction from MCIP to the edge ID problem. Assume we want to solve
MCIP given ADMG G = (V9, EY, E), query Q[Y], and the intervention costs C(v) for v € V9.
We construct a graph, denoted by H = 71(G, Y’), through the following steps.

a. For every vertex z € V9 \ Y, add two vertices x!, 2% to V.

b. For any bidirected edge {z, 2} € Ef wherez € V9 \ Y and z € V9, add the bidirected edge
{22, 2%} to E}t.

c. For any directed edge (z,2) € EY where z € V9\Y and z € V9, add the directed edge (z, 2*)
to E7¢.

d. For any bidirected edge {y1,y2} € Ebg where y1,y2 € Y, add the bidirected edge {y1,y2} to
E}.

e. Forevery x!, 22 € V9\Y, draw the two edges {x!, 22} € EJ* and (22, ') € EJ. Furthermore,
the weight of {z!, 22} is C(x).

f. The costs of the all other edges in # are assigned to be infinite.

With abuse of notation, for any vertex z € V9 \ Y, we define 71 (z) = {2%,2'} € E}!, where
{z?, 21} is the bidirected edge in A that corresponds to  in G, and inherits the same weight (cost).

Example 2. Consider graph G in Figure 4a. Vertices x and z are mapped to x', x2, and z', 22,

respectively. Both a directed and a bidirected edge are drawn between these pairs. The bidirected
edge {x', 22} is assigned the weight C(x) = c,, and the bidirected edge {z',2*} is assigned the
weight C'(z) = c,. Infinite weights are assigned to the rest of the edges in H (Figure 4b).
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Figure 4: Reduction of MCIP to edge ID

Proposition 3. Suppose G' is an ADMG, Y C VY is a set of its vertices such that Y is a district
inG'lY), and H' = T1(G",Y). Consider X C 1% \'Y as an arbitrary subset of vertices of G, and
define G = G'[V9'\ X|. Let B} = {e € E}*'|3v € X,e = Ti(v)} and define E}* = E}* \ E}'. Let
H be the edge-induced subgraph of H' defined as H = (V' E E}). QY] is identifiable in G if
and only if Q[Y] is identifiable in H.

Proof. We prove the contrapositive, i.e., Q[Y] is not identifiable in G iff Q[Y] is not identifiable in
‘H. Note that by construction, Y is a district in both G[Y] and H[Y']. That is, it suffices to show that
there exists a hedge formed for QY] in G iff there exists a hedge formed for Q[Y] in H.

To this end, we first prove the following claim. Let W € V* form a hedge for Q[Y]. If #! € W for
some € V9, then z2 € W and vice versa. That is, the two vertices z* and 22 corresponding to the
same vertex z in V9’ appear only simultaneously in any hedge. To see this, note that by construction,
x! is the only child of #2. By definition of hedge, if #? € W, then it has a directed path to Y within
H[W], and this path can only go through x!. For the other direction, note that 2* has only one
bidirected edge, which is with 22. Again, by definition of hedge, if z! € W, then it has a bidirected
path to Y within #[W], and this path can only go through 2. Hence, in the sequel, when there is a
hedge W formed for Q[Y] in H, we will without loss of generality assume that there exists a set of
variables Z C V' such that W = Z' U Z2UY, where Z' = {z'|z € Z} and Z2 = {2%|z € Z}.

If part. Let W = Z1 U Z2 U'Y form a hedge for Q[Y] in AH. First note that since none of the
bidirected edges between Z! and Z? are removed in H, by construction, all vertices Z are present
ingG,ie., Z C VY. Now we show that Z UY forms a hedge for Q[Y] in G. To this end, we prove
GlZUYlisadistrictand Z UY = Ancgzuy)(Y). First note that any vertex in Z' has only one
bidirected edge to a vertex in Z2. That is, if we consider the edge-induced subgraph of H[W] over
its bidirected edges, vertices of Z 1 are leaf nodes. As a result, Z2 U Y must be connected in this
graph. Thatis, Z? UY is a district in H[Z? U Y. This implies by construction of H that G[Z U Y]
is a single district. With a similar reasoning, note that vertices in Z2 have no parents. As result,
ZYUY = Ancyz10y)(Y) (since the directed paths cannot go through Z?2). Again, by construction,
the edge-induced subgraph of G[Z U Y] over its directed edges is a copy of H[Z! U Y]. As a result,
ZUY = AnCQ[ZUY] (Y)

Only if part. Let Z U'Y form a hedge for Q[Y]in G, where Z C V9 \ Y. Define Z! = {z!|z € Z}
and Z2 = {2%|z € Z}. We show that Z1 U Z2UY forms a hedge for Q[Y] in H. First, by definition
of hedge, Ancgizuy](Y) = Z UY. Since the edge-induced subgraph of H[Z* U Y] is a copy of
G[Z UY] by construction, we know Ancgz1uy|(Y) = Z' UY. Further, each vertex 2° € Z%is a
parent of z' € Z'. As a result, Al’ng[ZIUz2Uy](Y) = Z'U Z%? UY. Now it suffices to show that
ZYU Z?UY is adistrictin H[Z1 U Z2 UY]. By definition of hedge, Z U Y is a district in G[Z U Y.
By construction of H, exactly the same bidirected edges (and therefore bidirected paths) exist in
H[Z? UY]. Therefore, Z> UY is a district in H[Z? U Y]. Now note that by construction of H’,
each vertex z! € Z! has a bidirected edge to 22 € Z%2. And by definition of G and H, since the
vertices Z exist in G, none of these edges are removed in H. As a result, Z LU Z2UY is adistrict in
H[Z' U Z% U Y], which completes the proof.

O
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Proof of Theorem 1. A polynomial-time reduction from MCIP to the edge ID problem follows
immediately from Proposition 3. MCIP is shown to be NP-hard [1]. As a result, the edge ID problem
is Np-hard. O

A.2 Reduction from edge ID to MCIP
Proposition 2. There exists a polynomial-time reduction from edge ID to MCIP and vice versa.

To prove Proposition 2, we begin with presenting a transformation 73(G, Y) which is in the core of
reduction from edge ID to MCIP.

Suppose we want to solve the edge ID problem given ADMG G = (V9, EY, EY), query Q[Y], and

edge weights Wg = {w.|e € G}. Let X = V9 \ Y denote the set of vertices of G excluding Y.
We define the transformation (H, Y ™"?) = T5(G,Y) where H = (V*, E}t, E}t) is an ADMG and

ymeir C V' as follows. Note that V* will consist of two disjoint set of vertices, namely V;* and

H o H_ H H
Viors 1€, V5 =V, UV

a. Begin with VX, = V%, = (), Y™ — (). For any vertex v € V¥, add a vertex v to V;}{, with
cost C(v) = co. If v € Y, add v to Y™¢P,

b. For any directed edge (v;,v;) € Edg with weight ng in G, add a new vertex v to V' with cost

J top>
dy — 4d
C(vy;) = wy;, where

d .
; zy;  ifv,v5 € X,
_J.d
vy; =14 %; fvieYorv;ey,

yfj if both v;,v; € Y.
Draw directed edges (v;, vfj) and (vfj, v;). Further, draw a bidirected edge between v; and vfj.

c. For any bidirected edge {z;,z;} € Ey with weight w?;, add a new vertex, 2%, to V;7t, with cost
C(2};) = wf;. Add two bidirected edges {x;, z;} and {x;, x%;}. Further, draw two directed
edges (2%, z;) and (2%, ;) in H.

d. For any bidirected edge {z;,y; } with weight wfj,

w?;. Draw bidirected edges {2}, ;} and {z{;,y;}. Then draw a directed edge from z/; to x;.

add a new vertex z}; to V;} with cost C(z};) =

e. For any bidirected edge between {y;, yj} S Ebg with weight wﬁ-’j in G, add a new vertex, yﬁ?j to
Vi with cost C(y?;) = w?;. Draw bidirected edges {y};,y;} and {y?;,y;}. Further, for any
x € X, draw a directed edge from yfj to x.

f. Lety1 < ... < yi denote a topological ordering among vertices of Y. For every pair {y;, y,}
of vertices of Y, where ¢ < j, add vertices y:] , yﬁl, o ,y;-j to V)L, Add y;] to Y™, Draw
the directed edges (y, y,ij ) for every ¢« < k < j. Draw the directed edges (y,ij , yfj ) for every
1 < k < 7, and the directed edge (yfj , y;] ). Draw a bidirected edge between y; and yzj . Further,
for any bidirected edge {yx,y;} € Ef where i < k,1 < j, add a new vertex y;jl to V)L, draw
two bidirected edges {y,?l, y,ij } and {y,?l, yfj }, and a directed edge (y;gl, yfj) The costs of the all
of the vertices in V}fjt are infinite.

With abuse of notation, for any bidirected edge ei—’j = {v;,v,} € Ebg and any directed edge efj =
(vi,v;) € EY, we define 7-2(6%) = ué’j and 7-2(6%) = vfj, respectively, where U%, vflj € V7 are the
vertices representing their corresponding edges.

We will utilize the following results to prove Proposition 2. More precisely, Lemmas 2 through 9 are
used to prove Proposition 4, which in turn is used to prove Proposition 2.

Lemma 2. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y™mer) = T(G,Y). Each
vertex y € Y™ is a district in H.

Proof. 1t suffices to show that for every pair of vy, vy € Y™ there is no bidirected edge between
them in 7. Suppose first that v1, vy € Y. Any bidirected edge between v; and ve in G (if it exists)
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is removed in step (€) of the transformation, and none of the steps (a) through (f) add a bidirected
edge between them. Otherwise, at least one of vy, va, w.l.o.g. vy, is in Y<*? \ Y. Suppose w.l.0.g.

that v; = y;j . From step (f) of the transformation 7, we know that v; has bidirected edges only to

vertices y;jj, where none of them is a member of Y ¢P, O

Lemma 3. Suppose G is an ADMG, Y is a set of its vertices, and (H,Y ™P) = T(G,Y). Suppose
there is a hedge formed for Q[y] in H, where y € Y. Let H denote the set of vertices of this hedge. H
does not include any of the vertices added in the step (f) of the transformation. That is, H N ‘/b?;‘t = 0.

Proof. Define Vi = {y,} € ;'L Vi, j, k,1}, and Vo = V;'%, \ V;. By construction of 7, the vertices
of V5 have directed edges only to vertices in Vo. Therefore, for each vertex v € Va, we have
v & Ancyp)(y). As aresult, Vo N H = (), since by definition of hedge, any vertex of H is an
ancestor of y in H[H]. Now, consider an arbitrary vertex v € V3. By construction of #, if there
exists a bidirected edge {v,v'} € Eg", we must have that v’ € V5. Therefore, if v € H, there must
be at least one vertex v’ € V5 N H. Since we proved Vo N H = (), v cannot be in H. Consequently,
V1 M H - (Z)

O

Lemma 4. Suppose G is an ADMG, Y is a set of its vertices, and (H,Y ™) = T(G,Y). Suppose
there is a hedge formed for Q[y;J | in H, where y;,y; € Y and y;J is the vertex corresponding to the
pair (y;,y;) added in step (f) of the transform T. Let H denote the set of vertices of this hedge. If
veHdN Vﬂt, then v has the superscript i3, that is, v is either one of the vertices y,ij, or one of the
vertices y,?l, where i < k,l < j. In the latter case, yzl € H.

Proof. Define V; = {y;’lm € Vit Vm,n,k,l}, and Vo = VL \ V1. Suppose V;* = {v,?l €
VI Yk, 1} and Vs = {v)) € VL, VE}. Also define V{ = Vi \ Vj*, V§ = V5 \ V", For the first
part of the claim, it suffices to show that V1 NH =0,V H = (. By construction of H, the
vertices of V2 do not have any child out of V2 Therefore, V3 N Ancy ) (y; K ) = 0. ThlS implies that

Vy N H = (). Now let vl k be an arbitrary vertex m V1 By construction of H, U1 k& has bidirected

edges only to vertices of V. This implies that if 111 £ €H, there must be at least one vertex of V;

/ /

in H which is in contradiction with Vj N H = {. Therefore, v} kK ¢ H. Since v}’ is an arbitrary
vertex in V{, we conclude V{ N H = {).

Now, we prove that if ve H is one of the vertices y}fl, we have y,l; , € H. Since ylkjl € H, there exists

a directed path from y7 to y; in H[H]. Since y}, is the only child of y,;, the aforementioned path
passes through y?,. Therefore, 3%, € H.

O

Lemma 5. Suppose G' = (V9', Egl,Ebg,) is an ADMG, Y C V9 is a set of its vertices, and
(H',Y™me®) = T(G'Y). Let Ef C Eg' and E} C Ebg’ be arbitrary edges of G, and define
ES = ES \ El, E = EI' \ E}. Define G = (V9,ES,EY) and H = H'[VH \ V'], where
VI =V9 and V' = {v € V?¥'|3e € EJ UE!,v = Ta(e)}. Suppose there is a hedge formed
for Q[y;] | in H for some i,j. Let H denote the set of vertices of this hedge in H. The set of
vertices Y* = {y|yy € H} is a district in G[Y]. Moreover, Hy,, = Ancyn,,,)(Y™), where
Hipp = HOVE,
Proof. First we prove that Y* is a district in G[Y']. Consider an arbitrary vertex yzj in H. By definition
of hedge, there exists a bidirected path, p1, between y,ij and y;j in H[H]. Let Y%/ denotes the set of
vertices in H such that their superscript is ¢j. Lemma 4 implies that H C Vj;‘p U Y'¥. Furthermore,
by construction of 7, there is only one bidirected edge between Y/ and H \ Y/, which is {y;, yz] }.
Therefore, all of the vertices on the path p; are in Y. Now, we define Y1 = {y;ﬁ|y,~C € p1} and

17



644

645

646
647
648
649
650
651
652

653

655
656

657

658
659

660
661
662

663
664

665
666

667

668

669
670
671

672

673

674

675

677

678
679
680

681
682

683

684
685
686
687

688

Y; = {yZﬂy}ch € p1}, ie., the Vtz,{p counterparts of the yartices in p;. Since the vertices on p;
are in H, Y/ C Y*. From Lemma 4, we know that if y,?l € H, then, y,l;l € H. It implies that

YZI C H. As aresult, Y{ and Y7 are both vertices of H. Now if we replace all the vertices in p; with
their corresponding counterpart in Y7 U Yy, we arrive at a bidirected path py between yj, and y; in
H[Y{ U YJ] (as by construction the same edges exist in Vtz;‘p). By definition of G and H, if a vertex

yzl exists in H, the corresponding edge {yx,y; } exists in G. As a result, a bidirected path between yy,
and y; exists in G[Y{]. Noting that yy, is an arbitrary vertex in Y* and Y C Y*, this implies that all
of the vertices of Y* are in the same district as y; in G[Y*], which completes the proof.

Next, we prove that Hy,, = Ancyg,,,1(Y™). To this end, it suffices to show that there is a directed
path form an arbitrary vertex v € Hy,p, to Y™ in H[H,,p). Since H forms a hedge for Qy ”] in 7-[
there exists a directed path from v to yij in H[H]. This path must go through the only parent of y

which is yzj Then, the last vertex on the path is one of the parents of yzj If this parent is y;, we are
done as we have a directed path from v to y;, where y; € Y* and it has no ancestors in H \ Hiop.
Otherwise, let this parent be y,’ for some i < k < j. Now the last vertex on the path before y,’ must

be y, which is the only parent of y;’. Note that by definition of Y*, y;, € Y*. Therefore, v has a
directed path to Y* in H[H;,p). O

Lemma 6. Suppose G = (V9, Edg, Ebg) is an ADMG, Y is a set of its vertices, and (H,Y ™°P) =
T2(G,Y). Suppose there is a hedge formed for Qly| in H for some y € Y™P. Let H denote the set
of vertices of this hedge. Then H N X # (), where X = VI \ Y.

Proof. Since H forms a hedge for Q[y] in H, there exists a vertex h € H such that {y, h} € E}*.
There are two possibilities for iy € Y ™<P:

* y=y; €Y. From Lemma 4 we have h ¢ V;*,. Therefore, by construction of H, h = y?; f
for some j.

oy = y; € Vi’ By construction of H, h = Yrs . for some k. Vertex h must have a directed
path to y in H by definition of hedge, which must go through the only child of A, i.e., ykl.

In both cases, we showed that there exists a vertex v = yfj € H for some 7, j. By definition of hedge,
there is a bidirected path, p, from v to y in H because v € Ancy(y). Since all of the children of v are
in X, there is at least one vertex in X on path p. Therefore, H includes at least one vertex of X.

O

Lemma 7. [Inverse transform preserves hedges.] Suppose G' = (Vg/7 Egl, Ebg /) is an ADMG,
Y C VY isa set of its vertices, and (H',Y™?) = T3(G',Y). Let E!/ C Eg/ and Ej] C Ebg/ be
arbitrary edges of G, and define EY = Edg, \ EY, Ef = Ebg/ \ EJ. Define G = (V9,ES,EY)
and H = H' [V \ V'], where V9 = V9 and V' = {v € V¥*'|3e € EJ UEY,v = Ta(e)}. Let
W C Vtop be a set of vertices of H. Let Wy C W N\VY be a subset of W such that W are vertices
of G as well. Consider the inverse transform of H[W] in the ADMG G, i.e., for any v = v e W,
delete v and all edges incident to it and draw a bidirected edge between v; and v;, and for any
v = UU, delete v and all edges incident to it and draw a directed edge from v; to v;. Let the resulting
subgraph (which is a subgraph of G) be denoted by G[W ~*] with the set of vertices W~ C V9. If
Ancyw)(Ws) = W, then Ancgpy —11(Ws) = WL, Moreover, if W is a district in H[W], then

WY is a district in G[W ~1).

Proof. First, we show that if Ancy)(Ws) = W, then Ancgpy-11(Ws) = W', Let v be an
arbitrary vertex in W . Vertex v is in W because W~ C W. Since v € W and v € Ancy (W),
v has a directed path v = ...v; = v = -+ = w, denoted by [, to avertex w € Wy in H[W].
For each vertex v ; on path I, we have vi,v; € GIW '] and since v € V™, by definition of G
Eg w1

and H, there exists (vq;,vj) S Ed s.t. ¢ < j, and consequently, (vi,vj) S . Therefore,
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there exists a directed path from v to w in G[W ~1]. Noting that v is an arbitrary vertex in W1, we
conclude that Ancgpy—1](Ws) = W1

Now, we prove that if W is a district in H[W], then W ! is a district in G[W ~!]. Consider two
vertices v1,v2 € WL, Since vi,v2 € W and W is a district, there exists a bidirected path
V] LU vfj > vj -+ +> vy, denoted by p, between v; and v, in H[W]. Each vertex vfj on
path pis in H and v;, v; € G[W~']. By definition of G and H, we have {v;,v;} € EJ. Therefore,

—1
{vi,v;} € Ebg[W I Then, there is a bidirected path between v; and v, in G[W ~1]. Since v; and v,
are two arbitrary vertices in W1, it implies that W~ is a district in G[W ~1]. O

Lemma 8. [Transform preserves hedges.] Suppose G' = (Vg/,Eg/, Ebg l) isan ADMG,Y C VY9 is
a set of its vertices, and (H', Y ™?) = T5(G",Y). Let E] C Eg/ and Ej/ C Ebg/ be arbitrary edges
of G, and define ES = ES \E!, E = EI'\ E}'. Define G = (V9,EY, EZ) and H = H' [V \V'],
where VI = V9 and V' = {v € V¥ |3e € EJ/ UE",v = Tz(e)}. Let W C V9 be a set of vertices
of G such that W\'Y # 0. Let Wy C W be a subset of W. Let the transformed graph of G{W|
under Ty be denoted by H", where H'' C H. Define W* = V' If Ancgpy) (W) = W, then

top *

Ancyw+)(Ws) = W*. Moreover, if W is a district in G[W], then W* is a district in H[W™*].

Proof. First, we prove that if Ancgy(Ws) = W, then Ancyy+(Ws) = W*. Take an arbitrary
vertex v € W*. There are two possibilities for v:

* v € W. That is, vertex v is in G[W].

* v ¢ W. This implies that v represents an edge e between two vertices v; and v; in G[W].
There are three possibilities for e:

- e = (v;,v;). By construction of #, v is parent of v; in H[WW*], where v; is a vertex of
gw

- e={v, vj} and v; € X orv; € X. In this case, v is parent of at least one of v; and
vj in H[W*], w.l.o.g. v;, where v; is a vertex of G[IV].

- e = {v;,v;} and v;,v; € Y. By construction of H, v is parent of all vertices in V9 \ Y.
Since W\ 'Y # {), there exists a vertex = in G[W] such that v is a parent of z.

In all three cases above, we proved that there exists a vertex x € W such that v is a parent
of x.

Therefore, we showed that any vertex v € W* either is itself a vertex in W or is a parent of a vertex
in W. As a result, it suffices to show that every w € W has a directed path to W, in H[IWV*]. We
know that w has a directed path to Wy in G[W] such as p. Take an arbitrary pair of consecutive
vertices on this path, such as vy and v,. The directed edge (v1, v2) exists in G[IW]. As a result, the
directed path v; — v, — vy exists in H[W*]. Starting at w and repeating this argument for every
pair of consecutive vertices on p, we conclude that there exists a directed path from w to Wy, which
completes the proof.

Now, we show that if W is a district in G[W], then W* is a district in H[WW*]. Take an arbitrary
vertex v € W*. There are two possibilities for v:

* v € W. That is, v is a vertex in G[W].

* v ¢ W. In this case, at least one of the vertices v represents an edge e between two vertices
v; and v; in G[W]. By construction of H, v is connected to at least one of v; or v;, wlo.g.
v;, by a bidirected edge, where v; € W.

We showed that any vertex v € W* either is in W, or is connected to a vertex in W through a
bidirected edge. Therefore, it suffices to show that for any two vertices wy,ws € W there exists
a bidirected path between w; and wo in H[W*]. Since wy,ws € W, there is a bidirected path, p,
between wy and wo in G[W]. Take an arbitrary pair of consecutive vertices on this path, such as v;
and vo. The bidirected edge {vy,v2} exists in G[W]. As a result, the bidirected path vy <+ v%, < vy
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exists in H[W™*]. Starting at w and repeating this argument for every pair of consecutive vertices on
p, we conclude that there exists a bidirected path from w; to ws, which completes the proof. O

Lemma 9. Suppose G is an ADMG, and Y is a subset of its vertices. Also let Y* be a district in
GIY). If the set of vertices H form a hedge for Q|Y*, then H\'Y # 0.

Proof. Assume by contradiction H \ Y = 0, i.e., H C Y. By definition of hedge, we know
H\Y* # (). Take an arbitrary vertex v € H \ Y*. Furthermore, v € Y\ Y* because H C Y. Since
H forms a hedge for Q[Y ], H is a district in G[H|. Therefore, there exists a bidirected path between

v and a vertex y* € Y™* in Q[Y] which is in contradiction with the assumption that Y™ is a district in
glyy. O

Proposition 4. Suppose G' = (V9', Egl,Eg/) isan ADMG, Y C VY is a set of its vertices, and
(H',Y™me®) = T3(G",Y). Let Eff C Edg/ and Ej] C Ebg/ be arbitrary edges of G, and define
ES =EY\EJ, ES = EY \Ey. QY] is identifiable in G = (V'9, EY, EY) if and only if Q[Y "]
is identifiable in H = H'[V* \ V'], where VS = VY9 and V' = {v € V*'|Je € EJ UE/,v =
T2(e)}-

Proof. We prove the contrapositive, i.e., QY] is not identifiable in G iff Q[Y ™?] is not identifiable
in H.
If part. Suppose Q[Y ™| is not identifiable in 7. That is, there exists a hedge formed for Q[Y ™¢7]

in H. From Lemma 2, this hedge is formed for Q[y’] for some 3’ € Y7, Denote the set of vertices
of this hedge by H. We consider two possibilities separately:

ey =1y;, where y; € Y. From Lemma 3, H C Vtz;‘p. Taking W = H in Lemma 7, W lisa
set of vertices in G such that Aan[Wq] (y) = W1, and W1 is a district in G. Now take
Y™* to be the district of G[Y] that includes y;. By definition of hedge, G[W ~1 U Y*] forms a
hedge for Q[Y*] in G. Note that from Lemma 6, W1\ Y # (). As a result, Q[Y] is not

identifiable in G.

oy = y;J , where y;,y; € Y and y' is one of the vertices added to H in the last step of the

transformation 7 (step (f)). Define the set Y* = {yx|y,’ € H}. From Lemma 5, Y* is a
district in G, and therefore a district in G[Y]. As a result, it suffices to show that there exists
a hedge formed for Q[Y*] in G. Now define Hy,, = H N V;?,. By definition of hedge,
H is a district in H[H], i.e., it is connected over its bidirected edges. By construction of
7, there is only one bidirected edge between the vertices in Hy,p, and H \ Hy,p, which is
the bidirected edge between y; and y;’. Therefore, this edge is a cut set that partitions the
graph H[H| into two connected components H[Hy,p] and H[H \ Hyop). That is, H[Hyep)
is connected over its bidirected edges and therefore H,,), is a district in H[H,,,]. Further,
from Lemma 5, Hy,, = Ancym,,,)(Y™). Noting that Hy,, C Vt7o"p, taking W = Hy,,, in
Lemma 7, W1 is a district in G and Ancgpw -1 (Y*) = W~1L. Note that from Lemma 6,
W=\ 'Y # (). Therefore, the set of vertices W ! form a hedge for Q[Y*] in G. Hence,
QY] is not identifiable in G.

Only if part. Suppose Q[Y] is not identifiable in G. It implies that there exists a district of G[Y] such
as Y* such that there is a hedge formed for Q[Y*] in G. Let H denote the set of vertices of this hedge.
From Lemma 9, H \ Y # (). Define W* as in Lemma 8, that is the transform 7 (G[H], Y*) without
step (f) (only on the vertices of Vtz;‘p). Note that Y* C W*. We consider the following two cases
separately:

o Y* = {y}, thatis, Y* is a single vertex. From Lemma 8, W* is a district in #[W*], and
Ancyw-)(y) = W*. By definition of hedge, the vertices W* form a hedge for Q[y] in H.
Note that y € Y™ and from Lemma 2 it is a district of H[Y™¢?]. As a result, Q[Y <P
is not identifiable in #.
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* |Y*| > 2. Let y; and y; be the first and the last vertices of Y* in the topological order. Define
Y = {y? lyx € Y*}U{y) |y, yi € Y*}. YU~ are the vertices in VI with superscript
ij corresponding to the vertices in Y*. Note that y;”, y;’ € Y%, since y;, y; € Y. Since

y;J € Y™ and from Lemma 2 y;j is a district in H[Y ™), it suffices to show that there

is a hedge formed for y;j in 7. We show that the vertices W = W* U Y¥* form a hedge
for y;j in H. From Lemma 8, Ancyw+)(Y™*) = W*, that is, all of the vertices in W* are
ancestors of Y* in H[IW*], and therefore in H[W]. Also, the vertices y,?l in Y¥* have a
direct edge to their corresponding vertex in W*, i.e., y,l;l, and therefore are ancestors of
Y™* in H[W] as well. Further, each vertex in Y* such as yy, is a parent of y,zf , which is
7itself if k = i.) Finally, y;’ has a directed edge to y?’ by

in turn a parent of yZJ (oris yf

construction. As a result, all of the vertices W have a direct path to y;J in H[W]. That is,
Ancyw) (y;J ) = W. It now remains to show that T is a district in 7[WV]. From Lemma 8,
W* is a district in H[W*]. As a result, the vertices W* are connected through bidirected
edges in H[W]. There is a bidirected edge between y; and yfj by construction of H. It
suffices to show that for any v € Y'/*, there exists a bidirected path between v and yZ] in
H[W]. A vertex y,?l € Y''* (with double subscript, which are due to the bidirected edges
among Y *) has bidirected edges to y,ij and ylij , which are both in Y'¥/* by definition. Now
take an arbitrary vertex y,ij € Y'9* (with single subscript, due to vertices in Y*). We know
yr €Y, as yff € Y'*, by definition of Y'¥*, Y* is a district in G[Y *]. That is, there exists
a bidirected path from y;, to y; in G[Y*]. From Lemma 8 by taking W = Y*, there is a
bidirected path p from y;, to y; in H[Y™ U {yim|y1, ym € Y*}]. By construction of H, if we
replace each vertex v on p by v*/, we achieve a bidirected path p’ with vertices in Y*7* from
y,ij to yf , which completes the proof.

O

Proof of Proposition 2. The reduction from the edge ID problem to MCIP was shown through the
proof of Proposition 4. The opposite direction is an immediate corollary of Proposition 3. O

Corollary 2. The edge ID problem and MCIP are equivalent.

B Maximal Hedge

Algorithm 3 Maximal Hedge.

1: function MH(G,Y")

2:

3
4:
5

Initialize M < ()
for Y; in districts of G[Y] do
M + M UHHull(G,Y;)

return G[M]

1
2
3
4
5:
6:
7.
8
9
0

10:

: function HHULL(G, Y;)

Initialize H + V9
while True do
C' < connected component (district) of Y; via bidirected edges in G[H]
A « ancestors of Y; in G[C]
if C # A then
H+— A
else
break
return /1

Herein, we present the algorithm for recovering the maximal hedge formed for Q[Y] in a given
ADMG G (see Definition 5). Maximal hedge was initially defined in [1] under the name hedge hull.
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Figure 5: An example where the expert is aware that there is no causal path from z to y, e.g., because
z 1l y with high confidence.

We adopt the same definition, and when G[Y'] comprises several districts, we define the maximal
hedge as the union of the hedge hulls formed for each district of G[Y]. As a result, the complete
procedure of recovering the maximal hedge for a query Q[Y], summarized in Algorithm 3, finds the
maximal hedge formed for each district Y; of G[Y] and returns the union of them. This procedure is
used as a subroutine MH in Algorithm 1. The function HHull is in fact Algorithm 1 borrowed from
[1]. This function is proven to recover the union of all hedges formed for Y;, where Y; is one of the
districts of G[Y] (see Lemma 6 of [1]).

C Generalizing Assumption 1

Lemma 1 states the equivalence of Problems 1 and 2 with the edge ID problem under Assumption 1.
However, as mentioned in the main text, this equivalence holds in the more general setting where we
allow for perfect negative correlations among edges. As an example, consider the graph of Figure
5. Suppose that the performed statistical independence tests show that the two variables z and y are
independent of each other with high confidence. As a result, the expert believes that the edges (z, x)
and (x, y) must not exist simultaneously, as otherwise the causal path from z to y would make them
dependent. In such cases, the belief of the expert can be modeled as probabilities p and ¢ assigned
to the existence of the edges (z, z) and (x, y), respectively, as well as a perfect negative correlation
between them.

Note that the aforementioned constraint, i.e., that the edges do not exist simultaneously, can be
specified for any number of edges, not limited to two edges only. For instance, the expert might
believe at least one of the edges along a causal path of length n must not exist in the true ADMG
describing the system. This belief can be modeled as an extra constraint in the optimization of
Equations 2 and 3. We show that with the specification of such negative correlations, Problems 1 and
2 can still be cast as an instance of the edge ID problem. Therefore, the results presented in this work
are valid in this setting as well.

Assumption 2. The edges in G are assigned probabilities p.,Ve € G, and perfect negative corre-
lations are defined among subsets of edges. More precisely, for any subset E C Eg U EY, there is
either 1) no constraint (mutually independent), or 2) the constraint that at least one of the edges in F
must not exist in the true ADMG (perfect negative correlation).

Proposition 5. Under Assumption 2, there exists a reduction from Problems 1 and 2 to the edge ID
problem and vice versa with the time complexity in the order of O(|C| - V9| + |ES U EY|), where
C' is the set of perfect correlation constraints.

Proof. First note that we proved the equivalence of Problems 1 and 2 with the edge ID problem
without the perfect correlation constraints in Lemma 1. As a result, under assumption 2, i.e., by adding
the perfect correlation constraints, Problems 1 and 2 are equivalent to a modified edge ID problem
with those constraints. But we claim that there exists and instance of the original unconstrained edge
ID problem which is equivalent to these problems. To see this, first note that we know from Corollary
2 that the edge ID problem is equivalent to MCIP. Therefore, it suffices to show that there exists
an instance of MCIP which is equivalent to the constrained edge ID mentioned above. To this end,
consider the transform 72(G,Y") introduced in Section A.2. This transformation maps an instance of
the edge ID problem to an instance of MCIP. Applying this transformation to the constrained edge ID
problem, we can map the constrained edge ID to an instance of MCIP with extra constraints, with
transforming the constraints as well. That is, if for instance, there is a perfect negative correlation
among the edges e, es in G, this constraint is mapped to a negative perfect correlation on the
corresponding vertices in H, namely 7T3(eq), 7T2(e2). In words, this constraint would be that at least
one of T2(e1) and T3(e2) must be intervened upon. We show that such constraints can be integrated
into the original definition of MCIP.

Suppose we have an MCIP problem in ADMG G with query Q[Y'], with the extra constraint that
at least one of the vertices X C V9 must be intervened upon. Consider the example of X =
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Figure 6: Integrating the perfect negative correlation constraint into MCIP.

{1, 22,3} in Figure 6. We build a new ADMG G’ by adding vertices {z'|z € X}, i.e., a new vertex
corresponding to each vertex in X, along with an auxiliary vertex ¢ to G. We fix a random ordering
over the vertices of X, and denote the set of vertices of X as z1, ..., x,,. We add the directed edges
(w4, 2}) to G', as well as the bidirected edges {x;, «}}. Further, we draw directed edges (xj, x, ;) for
every 1 < ¢ < m. Finally, we draw the directed edge (z,,, ) and the bidirected edge {x1, §}. Refer
to the graph in Figure 6 for an example with X = {1, x2, x3}. Note that the set X U X’ U {g} forms
a hedge for Q[g], where X' = {z/|z € X} Now it suffices to set the cost of intervention on vertices
of X' to infinity, and consider MCIP for the query Q[Y U {§}] in G'. Tt is straightforward to see that
the objective of this problem would be to find the minimum cost intervention for identification of
QIY], with the constraint that at least one of the vertices in X must be intervened on. Note that as
soon as one vertex in X gets intervened upon, there is no hedge left for Q[g]. Also it is noteworthy
that adding this structure does not add any new hedges formed for Q[Y], since the structure only
includes new descendants for X which have no directed paths to Y. Also note that the vertices X’
and g are specific to the very constraint corresponding to the set of vertices X . For any constraint, we
add such a structure to G. The number of vertices (and therefore the time complexity) is at most in
the order O(|C| - [VY9]), where C is the set of constraints.

O

D Heuristic Algorithms

Algorithm 2 was devised considering the fact that every hedge formed for Q[Y] must include a vertex
that has a bidirected edge to Y. As mentioned in Section 4.2, an analogous approach, summarized in
Algorithm 4, uses the fact that any hedge formed for QY] must include a parent of Y.

Let Y C V9 be a set of vertices of G such that G[Y'] comprises of only one district. Let Z := {z €
V93y €Y : (2,y) € ES}\ Y denote the set of vertices that have at least one directed edge to a
vertex in Y, i.e., the parents of Y excluding Y. Any hedge formed for Q[Y'] contains at least one
vertex of Z. As aresult, in order to eliminate all the hedges formed for Q[Y], it suffices to ensure that
none of the vertices in Z appear in the final hedge. To this end, for any z € Z, it suffices to either
remove all the directed edges between z and Y, or eliminate all the bidirected paths from z to Y.
The problem of eliminating all bidirected paths from Z to Y can be cast as a minimum cut problem
between Z and Y in the edge-induced subgraph of G over its bidirected edges. To add the possibility
of removing the directed edges between Z and Y, we add an auxiliary vertex z* to the graph and
draw a bidirected edge between z* and every z € Z with weight w = Zer W(z,y) 1-€., the sum of
the weights of all directed edges between z and Y. Note that z can have directed edges to multiple
vertices in Y. We then solve the minimum cut problem for z* and Y. If an edge between z* and
z € Z is in the solution to this min-cut problem, it translates to removing all the directed edges from
z to Y in the original problem. Note that we can run the algorithm on the maximal hedge formed for
QY] in G rather than G itself.

E Experiments

Noting that the synthetic/simulation results in the main paper were for graphs with a log(n) /n sparsity
constraint, we begin this section by providing a set a results on the simulated graphs without the
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Algorithm 4 Heuristic algorithm 2.

1: function HEID2(G, Y, Wy)
2: G+ MH(G,Y)

33 Z«{zeV9ByeY:(zsy) e BII\Y

4: ‘H < The induced subgraph of G’ on its bidirected edges.
5: Wy + {w. € Wgle € H}

6: VR VU {y*, 2%}

7: for z € Z do

8: E" « E"U{z*, 2}

9: Wy +— Wy U {w{z*’z} = Zy w(zyy)}

10: fory € Y do

11: EM « EM U {y,y*}

12: Wy < Wy U {'LU{%y*} =00}

13: E + MinCut(H, Wy, 2*,y*)
14: return (E,% 5 we)
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Figure 7: Experimental results (for graphs generated without the sparsity constraint) for runtime,
solution costs, fraction of graphs for which no solution was found, and fraction of graphs for which
runtime limit of 3 minutes was exceeded. Error bars for runtime and cost graphs indicate 5th and
95th percentiles. Best viewed in color.

sparsity penalty for comparison. Then, we provide information about the causal discovery algorithm
used to derive the psychology ‘Psych’ real-world graph.

E.1 Additional Simulation Results without Sparsity Constraint

The simulation results for graphs generated without the sparsity constraint are shown in Figure 7.
These results illustrate monotonic increases in runtime and cost as the number of nodes increases. Our
proposed heuristic algorithms (HEID-1 and HEID-2) maintain runtimes less than 0.5 seconds even
for 250 nodes. In contrast, the two exact algorithms (MCIP-exact and EDGEID) exceed the three
minute runtime limit at only 20 nodes, and the MCIP heuristic variants (MCIP-H1 and MCIP-H2)
have runtimes which increase exponentially with the number of nodes. These results highlight the
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efficiency of our proposed heuristic algorithms to find solutions with equivalent cost with significantly
faster runtimes.

E.2 Psychology Graph Discovery

The settings for deriving the putative structure used on the psychology real-world graph are provided
in Table 3.

Table 3: Hyperparameter settings for the Structural Agnostic Model used to generate the putative
(directed) structure for the ‘Psych’ real-world dataset.

Parameter Value
Learning Rate 0.01
DAG Penalty True
DAG Penalty Weight  0.05
Number of Runs 50
Train Epochs 3000
Test Epochs 800
Mixed Data True
hlayers 2
dhlayers 2
lambdal 10
lambda2 0.001
dir 0.001
linear False
nh 20
dnh 200
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