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ABSTRACT

Estimating camera poses is a fundamental task for 3D reconstruction and re-
mains challenging given sparsely sampled views (<10). In contrast to existing
approaches that pursue top-down prediction of global parametrizations of camera
extrinsics, we propose a distributed representation of camera pose that treats a
camera as a bundle of rays. This representation allows for a tight coupling with
spatial image features improving pose precision. We observe that this representa-
tion is naturally suited for set-level transformers and develop a regression-based
approach that maps image patches to corresponding rays. To capture the inherent
uncertainties in sparse-view pose inference, we adapt this approach to learn a de-
noising diffusion model which allows us to sample plausible modes while improv-
ing performance. Our proposed methods, both regression- and diffusion-based,
demonstrate state-of-the-art performance on camera pose estimation on CO3D
while generalizing to unseen object categories and in-the-wild captures.
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Figure 1: Recovering Sparse-view Camera Parameters by Denoising Rays. 7op: Given sparsely sampled
images, our approach learns to denoise camera rays (represented using Pliicker coordinates). We then recover
camera intrinsics and extrinsics from the positions of the rays. Bottom: We demonstrate the generalization of
our approach for both seen (teddybear) and unseen object categories (couch, sandwich).

1 INTRODUCTION

We have witnessed rapid recent progress toward the goal of obtaining high-fidelity 3D representa-
tions given only a sparse set of input images (Zhang et al., 2021; Goel et al., 2022; Zhou & Tulsiani,
2023; Long et al., 2022; Cerkezi & Favaro, 2024; Truong et al., 2023). However, a crucial require-
ment is the availability of camera poses corresponding to the 2D input images. This is particularly
challenging as structure-from-motion methods fail to reliably infer camera poses under settings with
sparsely sampled views (also referred to as sparse-view or wide-baseline in prior works). To fill this
performance gap, recent learning-based approaches have examined the task of predicting cameras
given a sparse set of input images, and investigated regression (Jiang et al., 2024; Sinha et al., 2023),
energy-based modeling (Zhang et al., 2022; Lin et al., 2024) and denoising diffusion (Wang et al.,
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2023) for inference. However, while exploring a plethora of learning techniques, these methods have
largely side-stepped a crucial question: what representation of camera poses should learning-based
methods predict?

At first, there may seem to be an obvious answer. After all, every student of projective geometry
is taught that (extrinsic) camera matrices are parameterized with a single rotation and a translation.
Indeed, all of the above-mentioned methods adapt this representation (albeit with varying rotation
parametrizations e.g., matrices, quaternions, or angles) for predicting camera poses. However, we
argue that such a parsimonious global pose representation maybe suboptimal for neural learning,
which often benefits from over-parameterized distributed representations. From a geometric per-
spective, classical bottom-up methods benefit from low-level correspondence across pixels/patches,
while learning-based methods that predict global camera representations may not easily benefit from
such (implicit or explicit) associations.

In this work, we propose an alternate camera parametrization that recasts the task of pose inference
as that of patch-wise ray prediction (Fig. 1). Instead of predicting a global rotation and global
translation for each input image, our model predicts a separate ray passing through each patch in
each input image. We show that this representation is naturally suited for transformer-based set-
to-set inference models that process sets of features extracted from image patches. To recover the
camera extrinsics (R, t) and intrinsics (K) corresponding to a classical perspective camera, we
optimize a least-square objective given the predicted ray bundle. It is worth noting that the predicted
ray bundle itself can be seen as an encoding of a generic camera as introduced in Grossberg & Nayar
(2001), which can capture non-perspective cameras such as catadioptric imagers or orthographic
cameras whose rays may not even intersect at a center of projection.

We first illustrate the effectiveness of our distributed ray representation by training a patch-based
transformer with a standard regression loss. We show that this already surpasses the performance
of state-of-the-art pose prediction methods that tend to be much more compute-heavy (Lin et al.,
2024; Sinha et al., 2023; Wang et al., 2023). However, there are natural ambiguities in the predicted
rays due to symmetries and partial observations (Zhang et al., 2022; Wang et al., 2023). We extend
our regression-based method to a denoising diffusion-based probabilistic model and find that this
further improves the performance and can recover distinct distribution modes. We demonstrate our
approach on the CO3D dataset (Reizenstein et al., 2021) where we systematically study performance
across seen categories as well as generalization to unseen ones. Moreover, we also show that our
approach can generalize even to unseen datasets and present qualitative results on in-the-wild self-
captures. In summary, our contributions are as follows:

* We recast the task of pose prediction as that of inferring per-patch ray equations as an
alternative to the predominant approach of inferring global camera parametrizations.

* We present a simple regression-based approach for inferring this representation given
sparsely sampled views and show even this simple approach surpasses the state-of-the-art.

* We extend this approach to capture the distribution over cameras by learning a denoising
diffusion model over our ray-based camera parametrization, leading to further performance
gains.

2 RELATED WORK

2.1 STRUCTURE-FROM-MOTION AND SLAM

Both Structure-from-motion and SLAM aim to recover camera poses and scene geometry from
a large set of unordered or ordered images. Classic SfM (Snavely et al., 2006) and indirect
SLAM (Mur-Artal et al., 2015; Mur-Artal & Tardés, 2017; Campos et al., 2021) methods gener-
ally rely on finding correspondences (Lucas & Kanade, 1981) between feature points (Bay et al.,
2006; Lowe, 2004) in overlapping images, which are then efficiently optimized (Schonberger &
Frahm, 2016; Schonberger et al., 2016) into coherent poses using Bundle Adjustment (Triggs et al.,
1999). Subsequent work has improved the quality of features (DeTone et al., 2018), correspon-
dences (Shen et al., 2020; Yang & Ramanan, 2019; Sarlin et al., 2020), and the bundle adjustment
process itself (Tang & Tan, 2019; Lindenberger et al., 2021). On the contrary, rather than minimize
geometric reconstruction errors, direct SLAM methods (Davison et al., 2007; Schops et al., 2019)
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Figure 2: Converting Between Camera and Ray Representations. We represent cameras as a collection of
6-D Pliicker rays consisting of directions and moments. We convert the traditional representation of cameras
to the ray bundle representation by unprojecting rays from the camera center to pixel coordinates. We convert
rays back to the traditional camera representation by solving least-squares optimizations for the camera center,
intrinsics matrix, and rotation matrix. See Sec. 3.1 for more details.

optimize photometric errors. While the methods described in this section can achieve (sub)pixel-
perfect accuracy, their reliance on dense images is unsuitable for sparse-view pose estimation.

2.2 POSE ESTIMATION FROM SPARSELY SAMPLED VIEWS

Estimating poses from sparsely sampled images (also called sparse-view or wide-baseline pose es-
timation in prior work) is challenging as methods cannot rely on sufficient (or even any) overlap
between nearby images to rely on correspondences. The most extreme case of estimating sparse-
view poses is recovering the relative pose given 2 images. Recent works have explored how to
effectively regress relative poses (Balntas et al., 2018; Rockwell et al., 2022; Cai et al., 2021) from
wide-baseline views. Other works have explored probabilistic approaches to model uncertainty
when predicting relative pose (Zhang et al., 2022; Chen et al., 2021).

Most related to our approach are methods that can predict poses given multiple images. Rel-
Pose (Zhang et al., 2022) and RelPose++ (Lin et al., 2024) use energy-based models to compose
relative rotations into sets of camera poses. SparsePose (Sinha et al., 2023) learns to iteratively
refine sparse camera poses given an initial estimate, while FORGE (Jiang et al., 2024) exploits syn-
thetic data to learn camera poses. The most comparable to us is PoseDiffusion (Wang et al., 2023),
which also uses a diffusion model to denoise camera poses. However, PoseDiffusion denoises the
camera parameters directly, whereas we denoise camera rays which we demonstrate to be more pre-
cise. Concurrently to our work, PF-LRM (Wang et al., 2024a) and DUSt3R (Wang et al., 2024b)
predict sparse poses by predicting pixel-aligned pointclouds (as opposed to rays in our work) and
using PnP to recover cameras.

2.3 RAY-BASED CAMERA PARAMETERIZATIONS

Prior work in calibrating generic camera representations has used ray-based representations of cam-
eras, mainly for fish-eyed lenses for which the pinhole model is not a good approximation (Kannala
& Brandt, 2006). Grossberg & Nayar (2001); Dunne et al. (2010) consider the most general camera
model, where each pixel projection is modeled by its ray. Even with better algorithms (Schops et al.,
2020), the large number of parameters in these camera models makes calibration difficult. Although
these works also make use of ray-based camera representations, their focus is on calibration (intrin-
sics) and require known calibration patterns. Neural Ray Surfaces (Vasiljevic et al., 2020) considers
learning the poses of generic cameras but does so from video rather than sparse views.

Parameterizing viewpoints using camera rays is also commonly used in the novel view synthesis
community. Rather than render a full image at once, the pixel-wise appearance is conditioned per
ray (Mildenhall et al., 2020; Sitzmann et al., 2021; Watson et al., 2023) given known cameras. In
contrast, we aim to recover the camera itself.

3 METHOD

Our aim is to recover cameras from a sparse set of images {I1, ..., Iy }. Rather than predict global
camera parametrizations directly as done in previous work, we propose a ray-based representation
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Figure 3: Denoising Ray Diffuser Network. Given a noisy ray corresponding to an image patch, our denoising
ray diffusion model predicts the denoised ray. We concatenate spatial image features (Oquab et al., 2023) with
noisy rays, represented with 6-dimensional Pliicker coordinates (Pliicker, 1828) that are visualized as 3-channel
direction maps and 3-channel moment maps. We use a transformer to jointly process all image patches and
associated noisy rays to predict the original denoised rays.

that can be seamlessly converted to and from the classic representation (Sec. 3.1). We then describe a
regression-based architecture to predict ray-based cameras in Sec. 3.2. We build on this architecture
to introduce a probabilistic framework that estimates the rays using diffusion to handle uncertainties
and symmetries that arise from sparsely sampled views in Sec. 3.3.

3.1 REPRESENTING CAMERAS WITH RAYS

Distributed Ray Representation. Typically, a camera is parameterized by its extrinsics (rotation
R € SO(3), translation ¢ € R3) and intrinsics matrix K € R3*3, Although this parameterization
compactly relates the relationship of world coordinates to pixel coordinates using camera projection
(u = K[R | T)x), we hypothesize that it may be difficult for a neural network to directly regress
this low-dimensional representation. Instead, inspired by generalized camera models (Grossberg &
Nayar, 2001; Schops et al., 2020) used for calibration, we propose to over-parameterize a camera as
a collection of rays:

R:{Tl,...,’r‘m}, (1)

where each ray r; € R® is associated with a known pixel coordinate u;. We parameterize each ray 7
traveling in direction d € R? through any point p € R? using Pliicker corodinates (Pliicker, 1828):

r = (d,m) € RY, (2)

where m = p x d € R? is the moment vector, and importantly, is agnostic to the specific point
on the ray used to compute it. When d is of unit length, the norm of the moment m represents the
distance from the ray to the origin.

Converting from Camera to Ray Bundle. Given a known camera and a set of 2D pixel coordinates
{w;}m, the directions d can be computed by unprojecting rays from the pixel coordinates, and the
moments 1m can be computed by treating the camera center as the point p since all rays intersect at
the camera center:

d=R"K 'u, m=(—R"t) x d. (3)

In practice, we select the points {u;},, by uniformly sampling points on a grid across the image
or image crop, as shown in Fig. 2. This allows us to associate each patch in the image with a
ray passing through the center of the patch, which we will use later to design a patch- and ray-
conditioned architecture.

Converting from Ray Bundle to Camera. Given a collection of rays R = {r; },, associated with
2D pixels {w; },, we show that one can recover the camera extrinsics and intrinsics. We start by
solving for the camera center c¢ by finding the 3D world coordinate closest to the intersection of all
rays in R:

¢ = argmin Z lp x d—m|?>. 4)
DPER3
(dm)eR
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Figure 4: Visualizing the Denoising Process Using Our Ray Diffuser. Given the 2 images of the suitcase
(Bottom Right), we visualize the denoising process starting from randomly initialized camera rays. We visualize
the noisy rays using the Pliicker representation (ray directions and moments) in the bottom row and their
corresponding 3D positions in the top row. In the rightmost column, we recover the predicted cameras (green)
and compare them to the ground truth cameras (black).

Ray Dirs. +
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To solve for the rotation R (and intrinsics K) for each camera, we can solve for the optimal ho-
mography matrix P that transforms per-pixel ray directions from the predicted ones to those of an
‘identity’ camera (K = I and R = I):

m
P:argminZHHdi x ugl . (5)
| H =1 i=1

The matrix P can be computed via DLT (Abdel-Aziz et al., 2015) and can allow recovering R using
RQ-decomposition as K is an upper-triangular matrix and R is orthonormal. Once the camera
rotation R and camera center c are recovered, the translation ¢ can be computed as t = — Rc.

3.2 POSE ESTIMATION VIA RAY REGRESSION

We now describe an approach for predicting the ray representation outlined in Sec. 3.1 for camera
pose estimation given N images {Iy,...,Ixy}. Given ground truth camera parameters, we can
compute the ground truth ray bundles {Ri,...,Ry}. As shown in Fig. 2, we compute the rays
over a uniform p x p grid over the image such that each ray bundle consists of m = p? rays (eq. (1)).

To ensure a correspondence between rays and image patches, we use a spatial image feature extractor
and treat each patch feature as a token:

frea(I) = f € RPPX4, (6)

To make use of the crop parameters, we also concatenate the pixel coordinate w (in normalized de-
vice coordinates with respect to the uncropped image) to each spatial feature. We use a transformer-
based architecture (Dosovitskiy et al. (2021); Peebles & Xie (2023)) that jointly processes each of
the p? tokens from N images, and predicts the ray corresponding to each patch:

{7%}11\;1 = fRegress ({f“’uq}j\;fz> . (7)

We train the network by computing a reconstruction loss on the predicted camera rays:

N
Erecon = E
=1

1=

~ 2
Ri—Ri
2

3.3 POSE ESTIMATION VIA DENOISING RAY DIFFUSION

While the patchwise regression-based architecture described in Sec. 3.2 can effectively predict our
distributed ray-based parametrization, the task of predicting poses (in the form of rays) may still be
ambiguous given sparse views. To handle inherent uncertainty in the predictions (due to symmetries
and partial observations), we extend the previously described regression approach to instead learn a
diffusion-based probabilistic model over our distributed ray representation.
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Figure 5: Qualitative Comparison Between Predicted Camera Poses. We compare the results of our regres-
sion and diffusion approaches with PoseDiffusion and RelPose++. Ground truth (black) camera trajectories are
aligned to the predicted (colored) camera trajectories by performing Procrustes optimal alignment on the cam-
era centers. The top two examples are from seen categories, and the bottom two are from held out categories.

Denoising diffusion models (Ho et al., 2020) approximate a data likelihood function by inverting a
noising process that adds time-dependent Gaussian noise to the original sample x:

T = vVarzo + V1 — aue, 9

where € ~ N(0,I) and oy is a hyper-parameter schedule of noise weights such that z7 can be
approximated as a standard Gaussian distribution. To learn the reverse process, one can train a
denoising network fy to predict the denoised sample x conditioned on x;:

L(0) = Et go.c llzo — fo (ze, )] (10)

We instantiate this denoising diffusion framework to model the distributions over patchwise rays
conditioned on the input images. We do this by simply modifying our ray regression network from
Sec. 3.2 to be additionally conditioned on noisy rays (concatenated with patchwise features and pixel
coordinates) and a positionally encoded (Vaswani et al., 2017) time embedding ¢:

~ N-p2
[RIL, = foimse ({(Fiui i) 8. an
where the noisy rays 7; ; can be computed as:

Tie = Vaur; + V1 — age. (12)

Conveniently, our time-conditioned ray denoiser can be trained with the same L2 loss func-
tion (eq. (8)) as our ray regressor. We visualize the states of the denoised rays during backward
diffusion in Fig. 4.

3.4 IMPLEMENTATION DETAILS

Following Lin et al. (2024), we place the world origin at the point closest to the optical axes of the
training cameras, which represents a useful inductive bias for center-facing camera setups. To handle
coordinate system ambiguity, we rotate the world coordinates such that the first camera always has
identity rotation and re-scale the scene such that the first camera translation has unit norm. Following
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Figure 6: Generalization to In-the-wild Self-captures. We test the generalization of our ray diffusion model
on a variety of self-captured data on objects that are not in CO3D.

prior work (Zhang et al., 2022), we take square image crops tightly around the object bounding box
and adjust the uniform grid of pixel coordinates associated with the rays accordingly.

We use a pre-trained, frozen DINOv2 (S/14) (Oquab et al., 2023) as our image feature extractor.
We use a DiT (Peebles & Xie, 2023) with 16 transformer blocks as the architecture for both fregress
(with ¢ always set to 100) and fpigrusion. We train our diffusion model with 7=100 timesteps. When
training our denoiser, we add noise to the direction and moment representation of rays. The ray
regression and ray diffusion models take about 2 and 4 days respectively to train on 8§ A6000 GPUs.

To predict cameras with our ray denoiser, we use DDPM (Ho et al., 2020) inference with slight
modifications. Empirically, we found that removing the stochastic noise in DDPM inference and
stopping the backward diffusion process early (and using the predicted x as the estimate) produced
better performance. We hypothesize that this is because while the earlier diffusion steps help se-
lect among distinct plausible modes, the later steps yield samples around these—and this may be
detrimental to accuracy metrics that prefer distribution modes.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. Our method is trained and evaluated using CO3Dv2 (Reizenstein et al., 2021). This dataset
contains turntable videos spanning 51 categories of household objects. Each frame is labeled with
poses determined by COLMAP (Schonberger et al., 2016; Schonberger & Frahm, 2016). Following
Zhang et al. (2022), we train on 41 categories and hold out the remaining 10 categories for evaluating
generalization.

Baselines. We evaluate our method against a handful of learning-based and correspondence-based
pose estimation works.

COLMAP (Schonberger et al., 2016; Schonberger & Frahm, 2016). COLMAP is a standard dense
correspondence-based SfM pipeline. We use an implementation (Sarlin et al., 2019) which uses
SuperPoint features (DeTone et al., 2018) and SuperGlue matching (Sarlin et al., 2020).

RelPose (Zhang et al., 2022). RelPose predicts relative rotations between pairs of cameras and de-
fines evaluation procedures to optimize over a learned scoring function and determine joint rotations.

RelPose++ (Lin et al., 2024). RelPose++ builds upon the pairwise scoring network of RelPose to
incorporate multi-view reasoning via a transformer and also allows predicting camera translations.

R+T Regression (Lin et al., 2024). To test the importance of modeling uncertainty, Lin et al. (2024)
trains a baseline that directly regresses poses. We report the numbers from Lin et al. (2024).

PoseDiffusion (Wang et al., 2023). PoseDiffusion reformulates the pose estimation task as directly
diffusing camera extrinsics and focal length. Additionally, they introduce a geometry-guided sam-
pling error to enforce epipolar constraints on predicted poses. We evaluate PoseDiffusion with and
without the geometry-guided sampling.
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# of Images 2 3 4 5 6 7 8

COLMAP (SP+SG) (Sarlin et al., 2019) 30.7 284 265 268 27.0 28.1 306
3 RelPose (Zhang et al., 2022) 56.0 56.5 57.0 572 572 573 572
'S PoseDiffusion w/o GGS (Wang et al., 2023)  74.5 754 75.6 757 1760 763 765
§° PoseDiffusion (Wang et al., 2023) 7577 764 768 774 78.0 78.7 78.8
S RelPose++ (Lin et al., 2024) 81.8 828 841 847 849 853 855
S R+T Regression (Lin et al., 2024) 49.1 50.7 53.0 546 557 56.1 56.5
& Ray Regression (Ours) 88.8 88.7 887 89.0 894 893 89.2

Ray Diffusion (Ours) 91.8 924 926 929 931 933 933
» COLMAP (SP+SG) (Sarlin et al., 2019) 345 31.8 31.0 31.7 327 350 385
-2 RelPose (Zhang et al., 2022) 486 475 48.1 483 484 484 483
%) PoseDiffusion w/o GGS (Wang et al., 2023) 62.1 624 63.0 63.5 642 642 644
< PoseDiffusion (Wang et al., 2023) 632 642 642 657 662 670 67.7
Lé RelPose++ (Lin et al., 2024) 69.8 71.1 719 728 738 744 749
8 R+T Regression (Lin et al., 2024) 427 438 463 477 484 489 489
& Ray Regression (Ours) 79.0 79.6 80.6 814 81.3 819 819
= Ray Diffusion (Ours) 835 856 863 869 872 875 88.1

Table 1: Camera Rotation Accuracy on CO3D (@ 15°). Here we report the proportion of relative camera
rotations that are within 15 degrees of the ground truth.

# of Images 2 3 4 5 6 7 8
» COLMAP (SP+SG) (Sarlin et al., 2019) 100 345 238 189 156 145 150
-2 PoseDiffusion w/o GGS (Wang et al., 2023) 100 76.5 669 624 594 580 565
go PoseDiffusion (Wang et al., 2023) 100 775 69.7 659 637 628 619
= RelPose++ (Lin et al., 2024) 100 8.0 780 742 719 703 68.8
% R+T Regression (Lin et al., 2024) 100 583 41.6 359 327 31.0 300
8 Ray Regression (Ours) 100 917 857 821 798 779 76.2
“  Ray Diffusion (Ours) 100 942 90.5 878 86.2 850 84.1
. COLMAP (SP+SG) (Sarlin et al., 2019) 100 360 255 200 179 176 19.1
go PoseDiffusion w/o GGS(Wang et al., 2023) 100 62.5 48.8 419 39.0 365 348
~ PoseDiffusion (Wang et al., 2023) 100 63.6 50.5 457 43.0 412 399
% RelPose++ (Lin et al., 2024) 100 706 58.8 534 504 478 46.6
® R+T Regression (Lin et al., 2024) 100 489 326 259 237 224 213
% Ray Regression (Ours) 100 83.7 756 708 674 653 639
Ray Diffusion (Ours) 100 87.7 811 77.0 741 724 714

Table 2: Camera Center Accuracy on CO3D (@ 0.1). Here we report the proportion of camera centers that
are within 0.1 of the scene scale. We apply an optimal similarity transform (s, R, t) to align predicted camera
centers to ground truth camera centers (hence the alignment is perfect at N = 2 but worsens with more images).

4.2 METRICS

We evaluate sparse image sets of 2 to 8 images for each test sequence in CO3D. For an IV image
evaluation, we randomly sample N images and compute the accuracy of the predicted poses. We
average these accuracies over 5 samples for each sequence to reduce stochasticity.

Rotation Accuracy. We first compute the relative rotations between each pair of cameras for both
predicted and ground truth poses. Then we determine the error between the ground truth and pre-
dicted pairwise relative rotations and report the proportion of these errors within 15 degrees.

Camera Center Accuracy. We align the ground truth and predicted poses in CO3D using the optimal
similarity transform (s, R, t). We compare our prediction to the scene scale (the distance from the
scene centroid to the farthest camera, following Sinha et al. (2023)). We report the proportion of
aligned camera centers within 10 percent of the scene scale to the ground truth.

4.3 EVALUATION

We report the camera rotation accuracy in Tab. 1 and camera center accuracy in Tab. 2 evaluated on
CO3D. We find that COLMAP struggles in wide-baseline settings due to insufficient image overlap
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Figure 7: Modeling Uncertainty Via Sampling Modes. Sparse-view camera poses are sometimes inherently
ambiguous due to symmetry. The capacity to model such uncertainty in probabilistic models such as our Ray
Diffusion model is a significant advantage over regression-based models that must commit to a single mode.
We thus investigate taking multiple samples from our diffusion model. We visualize the predicted cameras
(colored) of both our regression- and diffusion-based approaches compared to the ground truth (black). While
the regression model predicts the green camera incorrectly, we can recover better modes by sampling our
diffusion model multiple times.

to find correspondences. We find that both the regression and diffusion versions of our method safely
outperform all existing approaches, suggesting that our ray-based representation can effectively re-
cover precise camera poses in this setup. In particular, our ray regression method significantly
outperforms the baseline that regresses extrinsics R and T directly (R+T Regression). Similarly, our
ray diffusion model demonstrates a large improvement over R+T Diffusion (PoseDiffusion with-
out GGS) (Wang et al., 2023), while also outperforming their full method (PoseDiffusion) which
includes geometry-guided sampling.

We show qualitative results comparing both our Ray Regression and Diffusion methods with PoseD-
iffusion and RelPose++ in Fig. 5. We find that our ray-based representation consistently achieves
finer localization. Additionally, ray diffusion achieves slightly better performance than ray regres-
sion. More importantly, it also allows recovering multiple plausible modes under uncertainty, as
highlighted in Fig. 7.

Ablating Ray Resolution. We conduct an ablation study to #of Rays Rot@15 CC@0.01
evaluate how the number of camera rays affects performance 2 %9 505 725
in Tab. 3. We find that increasing the number of camera rays 4% 4 70.3 826
significantly improves performance. Note that we kept the 8 x 8 76.1 84.8
parameter count of the transformer constant, but more to- 16 x 16 84.0 89.8

kens incur a greater computational cost. All other experi-

ments are conducted with 16 x 16 rays.

Demonstration on Self-captures. Finally, to demonstrate
that our approach generalizes beyond the distribution of se-
quences from CO3D, we show qualitative results using Ray
Diffusion on a variety of in-the-wild self-captures in Fig. 6.

Table 3: Ray Resolution Ablation. We
evaluate various numbers of patches/rays
by training a category-specific model for
2 different training categories (hydrant,
wineglass) with NV = 3 images. Per-
formance across the 2 categories is aver-

aged. We find that increasing the num-
ber of rays significantly improves perfor-
mance. However, we found that increas-
ing the number of rays beyond 16 x 16
was computationally prohibitive.

5 DISCUSSION

In this work, we explored representing camera poses using
a distributed ray representation, and proposed a determin-
istic regression and a probabilistic diffusion approach for predicting these rays. While we exam-
ined this representation in the context of sparse views, it can be explored for single-view or dense
multi-view setups. In addition, while our representation allows implicitly leveraging associations
between patches, we do not enforce any geometric consistency (as done in classical pose estimation
pipelines). It would be interesting to explore joint inference of our distributed ray representation and
geometry in future work.
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A APPENDIX

In this section, we include the following:
* Additional qualitative comparisons on both seen (Fig. 8) and unseen (Fig. 9) object cate-
gories.
* Evaluations on CO3D at multiple thresholds (Tabs. 10 and 11).

* Evaluations on CO3D using Area-under-Curve (AUC) to account for all thresholds (Tabs. 2
and 8 and Fig. 11).

¢ Evaluation of inference time of all methods (Tab. 6).
* Benchmark of memory usage of our diffusion model (Tab. 7).

* Generalization of our method on up to 43 images (trained on 8 images) in Tab. 5 and to
RealEstate 10K (Zhou et al., 2018) (trained on CO3D).

* Qualitative results on training on SfM-style datasets (MegaDepth (Li & Snavely, 2018)) in

Fig. 10.
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Figure 8: Additional Qualitative Results for Seen Categories.
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Figure 9: Additional Qualitative Results for Unseen Categories.
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Figure 10: Qualitative Results on MegaDepth Dataset (Li & Snavely, 2018). As a proof of concept on
scene-level datasets, we train our ray diffusion model on 235 of the SfM reconstructions from MegaDepth. At
training time, we normalize the scene such that the first camera has identity rotation and zero translation and
rescale the scene such that the standard deviation in the ground truth ray moments is constant. Here we visualize
predicted camera poses in color and ground truth cameras in black for held-out scenes from the dataset. The
color of the camera (and color of the circle for ground truth cameras) indicate the correspondence with the input
image. We compare our method with COLMAP (with SuperPoint+SuperGlue) which is highly accurate when
it converges. Our method is more robust but less accurate when COLMAP does converge.
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# of Images 2 3 4 5 6 7 8

. Constant Rot. 84.0 838 839 840 84.0 840 839
3 PoseDiffusion 776 779 784 787 789 793 79.0
< RelPose++ 838 851 858 864 865 867 86.8
E Ray Regression (Ours) 90.8 90.0 89.9 89.7 89.5 89.5 895
Ray Diffusion (Ours) 909 899 895 893 89.1 888 883

S PoseDiffusion 100 777 659 60.1 550 522 50.2
b RelPose++ 100 712 60.6 54.0 494 471 455
o RayRegression (Ours) 100 744 620 560 513 492 471
O  Ray Diffusion (Ours) 100 79.7 68.6 622 578 549 521

Table 4: Evaluation of Rotation and Camera Center Accuracy on RealEstate10K (Zhou et al., 2018).
Here we report zero-shot generalization of methods trained on CO3D and tested on RealEstate10K without
any fine-tuning. We measure rotation accuracy at a threshold of 15 degrees and camera center accuracy at a
threshold of 0.2. The constant rotation baseline always predicts an identity rotation. We find that this dataset
has a strong, forward-facing bias, so even naively predicting an identity rotation performs well.

# of Images 8 15 22 29 36 43

Rotation Acc. (Seen Categories) 933 931 933 931 934 934
Rotation Acc. (Unseen Categories) 88.1 88.2 892 88.7 89.0 88.9
Camera Center Acc. (Seen Categories) 84.1 783 765 753 747 742
Camera Center Acc. (Unseen Categories) 71.4 62.7 61.1 593 592 589

Table 5: Generalization to More Images on CO3D using Ray Diffusion. Our ray diffusion model is trained
with between 2 and 8 images. At inference time, we find that we can effectively run backward diffusion with
more images by randomly sampling new mini-batches at each iteration of DDPM (keeping the first image
fixed).

Inference Time (s)

COLMAP (SP+SG) (Sarlin et al., 2019) 2.06
RelPose (Zhang et al., 2022) 29.5
PoseDiffusion w/o GGS (Wang et al., 2023) 0.304
PoseDiffusion (Wang et al., 2023) 2.83
RelPose++ (Lin et al., 2024) 4.49
R+T Regression (Lin et al., 2024) 0.0300
Ray Regression (Ours) 0.133
Ray Diffusion (Ours) 11.1

Table 6: Inference time for N=8 Images. All benchmarks are completed using a single Nvidia A6000 GPU.
We compute the best of 5 runs. Ray Diffusion and PoseDiffusion both use DDPM inference with 100 steps.
RelPose uses 200 iterations of coordinate ascent while RelPose++ uses 50 iterations. Unsurprisingly, we find
that feedforward methods (Ray Regression, R+T Regression) achieve very low latency. The other methods
require lengthier optimization loops.

# of Images 2 3 4 5 6 7 8
Memory Usage (MiB) 2877 2903 2913 2965 3007 3013 3095

Table 7: Memory Usage of our Ray Diffusion Model. We measure the GPU memory usage when running in-
ference using our Ray Diffusion model with various numbers of images. We report the peak memory consumed
as reported by nvidia-smi, which may not be exact. Note that loading our model into memory consumes
2637 MiB, which is the majority of the memory usage. We observe sub-quadratic growth in memory usage,
likely because the DINO feature computation is heavier than the ray transformer.
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Figure 11: Accuracy For All Thresholds We visualize our unseen category accuracy curves for 8 images.
Note for very fine thresholds of rotation accuracy, between 1 and 5 degrees, COLMAP rises faster than all
other methods. This is due to the precision of COLMAP when it is able to converge to a reasonable set of
poses. However, COLMAP is only able to converge in roughly 40% of our test time evaluations. See Tabs. 8
and 9 for AUC metrics for all numbers of images.

# of Images 2 3 4 5 6 7 8
iy COLMAP (SP+SG) (Sarlin et al., 2019) 57.8 569 56.8 57.5 58.1 589 60.3
< PoseDiffusion (Wang et al., 2023) 849 849 853 856 859 862 86.5
(: RelPose++ (Lin et al., 2024) 88.7 892 89.8 903 904 90.8 90.7
8 Ray Regression (Ours) 936 934 933 935 936 93.6 935
“?  Ray Diffusion (Ours) 943 944 944 945 946 946 94.7
& COLMAP (SP+SG) (Sarlin et al., 2019)  59.1 58.8 59.1 602 612 626 646
& PoseDiffusion (Wang et al., 2023) 76.8 77.0 773 778 783 785 79.0
5 RelPose++ (Lin et al., 2024) 794 812 81.7 828 834 83.6 838
2 Ray Regression (Ours) 912 91.0 915 915 915 91.7 917
5 Ray Diffusion (Ours) 91.7 922 925 929 926 928 928

Table 8: Rotation Accuracy AUC on CO3D. Here we report the rotation accuracy across all thresholds (0 to
180 degrees in 1 degree increments) by measuring the Area Under Curve (AUC). See Fig. 11 for a visualization
of the curves for N=8.

# of Images 2 3 4 5 6 7 8
y COLMAP (SP+SG) (Sarlin et al.,,2019) 40.1 34.1 259 224 206 205 22.0
< PoseDiffusion (Wang et al., 2023) 925 856 823 804 794 789 78.6
(: RelPose++ (Lin et al., 2024) 925 856 823 804 794 789 78.6
8 Ray Regression (Ours) 925 90.2 885 87.6 87.1 86.6 862
“?  Ray Diffusion (Ours) 925 90.7 895 888 883 88.0 87.8
g COLMAP (SP+SG) (Sarlin et al., 2019)  41.0 36.6 294 258 250 262 287
& PoseDiffusion (Wang et al., 2023) 925 813 758 733 714 703 69.7
£ RelPose++ (Lin et al., 2024) 925 833 79.0 769 757 748 743
2 Ray Regression (Ours) 925 88.6 863 850 84.1 83.6 832
::; Ray Diffusion (Ours) 925 89.2 872 862 854 849 84.6

Table 9: Camera Center Accuracy AUC on CO3D. Here we report the camera center accuracy across all
thresholds (0 to 1 of scene scale in 0.05 increments) by measuring the Area Under Curve (AUC). See Fig. 11
for a visualization of the curves for N=8§.
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# of Images 2 3 4 5 6 7 8
Ray Regression @ 5 39.8 385 38.7 387 387 386 384

¢ RayRegression @ 10 753 754 755 76.0 762 76.1 76.1
‘S RayRegression @ 15 888 887 887 89.0 894 893 892
2 Ray Regression @30 960 958 957 958 960 960 95.8
S Ray Diffusion @ 5 48.7 485 486 490 492 492 493
5 Ray Diffusion @ 10 819 824 83.0 834 837 84.0 842
& Ray Diffusion @ 15 91.8 924 926 929 931 933 933

Ray Diffusion @ 30 96.7 969 969 97.1 972 972 973
. Ray Regression @ 5 29.2 293 299 299 306 299 30.1
-2 RayRegression @ 10 61.8 633 648 649 654 657 654
g" Ray Regression @ 15 79.0 79.6 80.6 814 813 819 819
< RayRegression @30 92.8 924 93.0 933 930 934 935
('m) Ray Diffusion @ 5 377 36.6 37.8 382 38.6 382 386
8 Ray Diffusion @ 10 685 703 714 723 732 731 738
é Ray Diffusion @ 15 835 856 863 869 872 875 881

Ray Diffusion @ 30 938 944 948 954 950 952 952

Table 10: Camera Rotation Accuracy on CO3D at varying thresholds.

# of Images 2 3 4 5 6 7 8

Ray Regression @ 0.05 100.0 743 577 49.6 450 417 392

¢ Ray Regression @ 0.1 100.0 91.7 857 821 79.8 779 176.2
S Ray Regression @ 0.2 100.0 974 955 943 939 932 927
§ Ray Diffusion @ 0.05 100.0 80.8 678 60.5 562 535 51.1
& Ray Diffusion @ 0.1 100.0 942 905 87.8 862 850 84.1
Ray Diffusion @ 0.2 100.0 98.0 96.6 960 955 951 948

. Ray Regression @ 0.05 100.0 64.7 46.8 38.0 334 299 286
g Ray Regression @ 0.1 100.0 837 756 708 674 653 639
L; Ray Regression @ 0.2 100.0 943 90.8 88.6 874 86.8 859
8 Ray Diffusion @ 0.05 100.0 70.6 547 475 423 39.0 38.0
é Ray Diffusion @ 0.1 100.0 877 81.1 770 741 724 1714

Ray Diffusion @ 0.2 100.0 947 922 909 89.8 892 885

Table 11: Camera Center Accuracy on CO3D at varying thresholds.
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Figure 12: Early Stopping Ablation for Backward Diffusion on CO3D with 8 Images. We find empirically
that stopping the backward diffusion process early yields slightly improved results. Here, we visualize the
accuracy of the predicted X after each iteration of backward diffusion, starting from complete noise (1" = 100)
to the final recovered rays Xo. For all experiments, we use the X predicted at 7' = 30.
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# of Images 2 3 4 5 6 7 8

Apple 87.6 83.6 83.6 832 841 836 848
Backpack 93.0 940 947 939 947 946 943
Banana 902 903 916 913 914 918 920

Baseballbat 95.7 910 902 91.1 919 903 90.2
Baseballglove ~ 85.3 8.7 86.7 868 859 859 862

Bench 948 943 932 942 941 941 934
Bicycle 924 924 920 939 937 935 94.0
Bottle 872 84.1 865 862 842 850 854
Bowl 90.5 922 924 914 919 925 919
Broccoli 738 719 772 762 781 781 779
Cake 81.8 834 816 843 838 840 83.6
Car 90.0 909 91.0 913 915 905 903
Carrot 86.1 876 874 881 89.1 89.0 887
Cellphone 87.6 877 883 881 889 896 89.3
Chair 975 982 984 983 984 987 986
Cup 80.0 776 77.1 780 789 773 770
Donut 712 765 747 761 742 758 754
. Hairdryer 90.6 932 939 947 947 945 944
-2 Handbag 85.1 8.1 868 875 876 879 87.1
go Hydrant 98.0 969 959 967 968 967 97.5
% Keyboard 954 954 942 947 945 947 947
‘; Laptop 956 960 96.1 966 965 965 964
8 Microwave 88.0 8.1 853 839 852 861 86.1
9 Motorcycle 924 929 933 940 946 946 94.1
Mouse 935 93.6 944 940 945 941 945
Orange 757 754 737 73.6 749 752 747
Parkingmeter ~ 86.7 844 794 80.0 873 80.8 782
Pizza 924 921 898 928 928 928 942
Plant 839 844 854 855 848 854 858
Stopsign 865 880 894 875 881 872 875
Teddybear 920 93.8 944 944 948 951 953
Toaster 99.2 98.4 985 99.2 99.0 98.8 99.0
Toilet 972 970 956 965 97.1 965 96.5
Toybus 923 931 919 932 915 924 93.0
Toyplane 795 80.0 80.7 819 824 829 825
Toytrain 90.6 892 915 91.6 899 91.8 908
Toytruck 894 879 889 892 899 902 89.7
Tv 100.0 100.0 989 973 991 98.1 983
Umbrella 884 903 893 90.1 905 90.6 89.9
Vase 852 827 850 844 846 847 85.1
Wineglass 71.5 78.1 787 780 78.6 787 78.1
Ball 617 628 628 629 623 622 62.1
. Book 81.7 835 847 860 853 862 85.1
£ Couch 86.8 880 853 878 869 877 882
gb Frisbee 752 755 768 780 712 710 778
£ Hotdog 757 729 757 733 732 746 753
g Kite 692 710 727 738 768 719 717
S Remote 88.0 904 922 930 919 935 926
Z Sandwich 795 790 788 780 780 785 78.0
= Skateboard 778 778 807 851 857 855 856
Suitcase 948 956 963 96.1 957 956 959

Table 12: Per-category Camera Rotation Accuracy on CO3D (@ 15°) for Ray Regression.
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# of Images 2 3 4 5 6 7 8

Apple 100.0 929 873 814 785 747 741
Backpack 100.0 935 90.7 87.7 851 827 8l4
Banana 1000 91.0 849 79.6 762 740 74.1

Baseballbat 100.0 905 782 717 68.6 68.8 64.6
Baseballglove 100.0 933 86.7 813 &I1.1 77.1 747

Bench 100.0 947 915 893 875 856 843
Bicycle 100.0 947 925 906 882 857 852
Bottle 100.0 91.6 86.6 838 793 78.1 764
Bowl 100.0 917 89.6 86.5 857 848 843
Broccoli 100.0 899 823 767 735 699 677
Cake 100.0 87.7 828 764 738 712 679
Car 100.0 92.1 899 879 876 864 853
Carrot 100.0 90.1 830 777 751 72.1 702
Cellphone 100.0 912 842 76.1 737 73.1 705
Chair 100.0 975 969 956 949 941 935
Cup 1000 84.8 759 73.0 702 655 634
Donut 100.0 837 682 659 647 627 62.6
. Hairdryer 1000 956 913 874 856 827 80.8
-2 Handbag 100.0 90.7 84.6 80.8 764 754 724
S Hydrant 1000 979 960 947 941 938 922
g Keyboard 1000 915 833 798 774 745 740
%:) Laptop 100.0 949 88.0 86.7 827 802 78.8
¥ Microwave 1000 893 794 774 740 723 713
“ Motorcycle 100.0 968 947 929 918 914 903
Mouse 1000 956 88.8 855 822 798 753
Orange 1000 859 735 684 632 609 595
Parkingmeter ~ 100.0 822 733 727 739 68.1 625
Pizza 1000 92.1 833 804 789 777 748
Plant 100.0 905 847 795 769 746 732
Stopsign 1000 90.1 849 808 775 722 735
Teddybear 1000 97.0 929 90.8 882 86.8 858
Toaster 1000 973 969 956 955 93.1 932
Toilet 100.0 903 826 808 766 744 72.6
Toybus 100.0 96.7 885 880 850 833 829
Toyplane 100.0 865 779 730 705 69.1 669
Toytrain 1000 904 873 831 793 793 75.7
Toytruck 100.0 915 851 827 814 80.1 77.0
Tv 100.0 956 91.7 840 833 848 875
Umbrella 100.0 952 89.0 854 854 836 820
Vase 1000 89.0 84.0 79.0 763 759 745
Wineglass 100.0 86.0 80.0 744 735 71.8 693
Ball 100.0 79.7 650 588 53.1 51.0 485
. Book 1000 905 830 792 751 750 699
-2 Couch 1000 796 669 642 609 58.1 57.0
§  Frisbee 100.0 84.0 750 709 68.7 642 64.6
£ Hotdog 1000 676 632 51.1 495 488 48.0
L:) Kite 100.0 71.8 604 574 528 50.0 50.6
8 Remote 1000 92.1 877 83.0 805 803 77.8
£  Sandwich 100.0 89.0 81.6 767 730 71.7 714
= Skateboard 1000 87.0 803 764 724 662 66.0
Suitcase 100.0 953 933 905 882 873 855

Table 13: Per-category Camera Center Accuracy on CO3D (@ 0.1) for Ray Regression.
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# of Images 2 3 4 5 6 7 8

Apple 928 913 91.3 922 918 91.5 91.6
Backpack 949 955 953 958 962 957 96.0
Banana 922 932 944 951 958 96.0 965

Baseballbat 97.1 95.2 948 946 950 958 94.4
Baseballglove  89.3 920 90.0 903 90.8 91.1 90.7

Bench 980 984 975 974 975 97.8 97.3
Bicycle 944 925 935 944 951 95.3 96.3
Bottle 91.6  90.8 909 910 913 920 926
Bowl 91.5 932 934 931 938 939 938
Broccoli 80.0  83.8 853 856 86.1 86.7 86.9
Cake 91.6 91.1 91.3 914 909 913 90.9
Car 926 933 923 932 935 93.1 93.3
Carrot 88.7 904 920 925 926 925 922
Cellphone 920 929 919 923 924 930 926
Chair 989 989 988 993 99.1 994 994
Cup 84.4 825 851 838 84.1 84.5 84.4
Donut 89.6 86.9 88.5 878 889 87.9 88.6
» Hairdryer 93.5 95.4 96.5 959 964 97.0 96.9
-2 Handbag 88.3 89.6 910 909 914 918 91.2
% Hydrant 97.6 980 977 981 99.0 9838 99.1
= Keyboard 944 953 953 956 954  96.0 96.2
(;:) Laptop 97.1 97.0 965 96.8 97.1 972 971
8 Microwave 89.6 88.3 88.0 87.6 87.6 88.5 88.7
“ Motorcycle 95.6 97.2 96.7 96.7 969 97.1 96.6
Mouse 97.1 966 969 978 973 97.5 97.8
Orange 854 869 84.1 864 859 85.5 85.7
Parkingmeter ~ 76.7 844  90.0 90.0 918 93.5 92.4
Pizza 952 959 937 951 953 95.0 947
Plant 912 916 928 938 934 936 941
Stopsign 90.2 89.8 899 895 905 89.4 89.8
Teddybear 94.1 9.6 969 973 977 976  98.0
Toaster 97.6 984 985 992 99.0 988 99.5
Toilet 99.3 977 971 972 97.0 96.8 96.9
Toybus 892 91.8 921 944 917 92.7 92.9
Toyplane 84.1 85.3 855 863 865 86.7 85.8
Toytrain 93.1 93.3 922 933 924 934 931
Toytruck 88.1 90.1 886 8.1 899 910 911
Tv 100.0 100.0 100.0 98.0 100.0 100.0 100.0
Umbrella 90.8 925 93.1 926 924 933 93.7
Vase 87.1 904  90.8 90.8 90.8 90.5 91.3
Wineglass 87.0  85.7 856 868 874 86.8 86.6
Ball 736 740 746 748 760 740 756
. Book 904 906 916 919 926 925 92.7
& Couch 90.8 89.7 89.8 921 904 909 903
go Frisbee 752 78.1 79.1 830 823 82.7 84.2
< Hotdog 70.0 80.0 802 784 789 799 81.3
(; Kite 769 777 787 79.8  8l.1 825 82.7
8 Remote 920 940 959 948 954 951 95.5
£  Sandwich 87.0 873 87.0 88.1 88.6 89.3 90.3
= Skateboard 83.3 86.7 889 888 895 90.5 90.1
Suitcase 956 979 975 976 977 980 979

Table 14: Per-category Camera Rotation Accuracy on CO3D (@ 15°) for Ray Diffusion.
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# of Images 2 3 4 5 6 7 8

Apple 100.0  96.1 924 895 87.1 857 845
Backpack 100.0  96.1 938 916 90.0 87.1 86.9
Banana 100.0  94.1 889 847 825 815 8l.1

Baseballbat 100.0 924 81.8 780 774 776 714
Baseballglove 100.0  92.0 853 837 818 796 79.0

Bench 100.0 973 96.1 937 925 936 938
Bicycle 1000 949 945 928 903 892 89.7
Bottle 100.0 945 93.1 90.1 894 899 882
Bowl 100.0 927 906 893 893 883 875
Broccoli 1000 950 888 843 815 81.1 789
Cake 100.0 939 906 87.7 835 831 80.6
Car 100.0 949 925 91.1 91.1 905 904
Carrot 100.0 934 880 845 822 796 795
Cellphone 100.0 944 878 836 805 778 759
Chair 100.0  98.1 972 968 965 959 957
Cup 100.0  88.9 835 815 80.1 777 719
Donut 100.0 904 874 856 852 81.7 80.7
. Hairdryer 100.0 974 95.6 931 912 904 89.2
-2 Handbag 100.0 939 912 869 852 839 819
g" Hydrant 100.0 987 98.0 97.1 97.7 973 96.7
= Keyboard 1000 944 8.1 836 815 803 80.1
(;:) Laptop 100.0 953 884 870 848 832 823
8 Microwave 100.0  90.7 828 794 761 762 754
“  Motorcycle 100.0 98.3 973 950 949 948 944
Mouse 1000 982 949 915 89.7 885 859
Orange 100.0 923 849 818 775 753 744
Parkingmeter 1000 87.8 933 847 889 86.2 85.0
Pizza 100.0 924 90.7 874 848 833 813
Plant 1000 957 923 897 880 86.6 863
Stopsign 100.0 93.6 872 833 807 771 7715
Teddybear 1000 979 955 943 928 919 0915
Toaster 100.0 98.5 98.0 987 979 962 974
Toilet 100.0 917 879 833 808 792 775
Toybus 100.0 95.1 88.1 895 836 845 859
Toyplane 1000 87.0 808 768 744 735 722
Toytrain 100.0 923 87.0 8.9 825 838 79.7
Toytruck 1000 904 856 80.8 805 80.1 78.1
Tv 100.0 100.0 1000 98.7 978 952 96.7
Umbrella 100.0 953 929 905 90.5 887 885
Vase 1000 950 915 882 871 859 85.0
Wineglass 100.0  90.6 88.1 84.6 832 822 814
Ball 100.0 859 751 704 67.1 627 635
. Book 100.0  93.7 88.0 853 842 825 823
& Couch 100.0 833 749 71.1 657 645 615
§° Frisbee 100.0 843 80.2 758 725 70.7 705
< Hotdog 1000 776 675 60.0 593 592 555
(; Kite 1000 772 638 588 542 5211 535
8 Remote 100.0 940 919 874 858 843 834
£  Sandwich 1000 950 915 889 864 845 849
= Skateboard 100.0  88.1 842 793 737 727 679
Suitcase 100.0 975 943 930 91.8 909 9038

Table 15: Per-category Camera Center Accuracy on CO3D (@ 0.1) for Ray Diffusion.
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