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ABSTRACT

Equivariant neural networks can effectively model physical systems by naturally
handling the underlying geometric quantities and preserving their symmetries,
but scaling them to large geometric data remains challenging. Naive downsam-
pling typically disrupts features’ transformation laws, limiting their applicability
in large scale settings. In this work, we propose a scalable equivariant transformer
that efficiently processes geometric data in a coarse-grained latent space while
preserving E(3) symmetries of the problem. In particular, by building on the Ge-
ometric Algebra Transformer (GATr) and PerceiverIO architectures, our method
learns equivariant latent tokens which allow us to decouple the processing com-
plexity from the input data representation while maintaining global equivariance.

1 INTRODUCTION

Machine learning approaches that adhere to the laws of physics have become an important tool in
analyzing data in natural sciences (Raissi et al., 2019). Equivariant neural network architectures
(Cohen & Welling, 2016; Weiler et al., 2021; Bronstein et al., 2021) are a prime example of such
approaches, as they guarantee that the network output transforms with the input according to the
symmetries of the underlying physics. The design principle of equivariant models is to incorpo-
rate the prior knowledge about the geometry and the symmetries of the problem directly into the
architecture, such that the model does not need to learn them from data during training. As a result,
the equivariant design can improve the model’s reliability and is especially effective in data-scarce
regimes, for example when gathering or even simulating abundant data is too expensive or pro-
hibitive. This is a common scenario in many disciplines in science, where it is crucial to analyze
large quantities of geometric data - typically in the form of graphs, meshes or point clouds - with
very little training data available. Equivarant models are particularly useful where point clouds can-
not be canonically aligned without additional modeling assumptions (for example in cortical surface
analysis). Other examples include weather prediction and climate modeling (Andrychowicz et al.,
2023; Nguyen et al., 2023; Lam et al., 2022), material design for high-temperature superconductivity
(Choudhary & Garrity, 2022; Chen et al., 2024) or fusion power plants (Spangher et al., 2024), ana-
lyzing Large Hadron Collider (LHC) data (Plehn et al., 2022; Brehmer et al., 2024), catalyst design
(Goldsmith et al., 2018) and even large scale medical data analysis (Arzani et al., 2022; Suk et al.,
2024; Dahan et al., 2024). While practitioners in each discipline developed powerful deep learn-
ing solutions, leveraging also domain knowledge, these are often tailored to the underlying domain
and data representation, and scalability remains a major challenge in many applications. A general
strategy to handle large-scale geometric input data, which proved to be effective across many sce-
narios, is to transition from the fine-grained data space to a coarse-grained latent one, which is more
practical for performing computations. Ideally, the coarser latent structure allows computational
resources to focus on the most informative parts of the high-resolution data, avoiding the excessive
costs associated with modeling the fine patterns at full resolution and, therefore, improving scalabil-
ity. Similar ideas underpin many successful solutions, but it is not straightforward to implement this
within an equivariant design. Indeed, the strict constraints enforced by equivariance require the ex-
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Figure 1: ViNE-GATr: input tokens in data space are processed into geometric features via PCA. These
augment V/4 invariant coordinates to construct V virtual nodes (latent space). The encoder includes one (or
more) cross-attention modules, allowing virtual nodes to query the high-resolution inputs. The resulting latent
features are processed by a standard GATr backend. Finally, an output neural field is generated via cross-
attention by querying virtual nodes at each output token (or spatial location).

act conservation of the data’s transformation law and naive approaches to downsampling are known
to be problematic (Zhang, 2019). Preserving the right geometric structure and the input symmetries
during down-sampling poses non-trivial challenges, which are subject of many previous works such
as (Xu et al., 2021; Chaman & Dokmanic, 2021; Rojas-Gomez et al., 2022; Rahman & Yeh, 2025).

Alkin et al. (2024) proposed a flexible framework addressing similar problems by elegantly decou-
pling the modeling of dynamics within latent tokens from the input data representation, substantially
improving scalability. The method builds on PerceiverIO (Jaegle et al.) to construct a hourglass ar-
chitecture that learns an independent set of latent query tokens to process the input data efficiently in
three stages: first, the latent query tokens extract relevant features from the input via cross-attention,
second, the latent tokens are processed by a transformer architecture and, finally, an output condi-
tional neural field is reconstructed at the output tokens, which aggregate features via cross-attention
on the latent space. Unfortunately, incorporating equivariance in this framework is still not straight-
forward since latent query tokens are inherently invariant, preventing them from capturing geometric
information from the input keys equivariantly through the simple inner products in cross-attention
layers. Hence, in an equivariant design, it is desirable for the latent tokens to transform equivariantly
too; see Sec. 3. In this paper, building on the Geometric Algebra Transformer (GATr) framework
from Brehmer et al. (2023), we introduce ViNE-GATr, a scalable transformer architecture that pre-
serves the E(3)-symmetries in the data space while efficiently processing it in a latent token space.

2 BACKGROUND: GEOMETRIC ALGEBRA TRANSFORMERS

Geometric Algebra Transformers (GATr) (Brehmer et al., 2023) is a recent architecture which
achieves equivariance to the group E(3) of isometries of the 3-dimensional Euclidean space, i.e.
translations, rotations and mirroring. GATr leverages the projective geometric algebra (or Clifford
algebra) (PGA) G(3, 0, 1) to represent its input, output and intermediate activations as (multiple)
16-dimensional feature vectors - the so-called multivectors - which encode geometric objects such
as scalars, points, lines or planes as well as certain geometric operators like rotations or translations.

To better understand how PGA is used to represent 3D geometry, note that by including a 4-th ho-
mogeneous coordinate e0 to the standard basis (e1, e2, e3) of R3, one can model translations as lin-
ear operations too. Then, by introducing a certain associative, non-commutative geometric product
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between these vectors1, one generates the 16-dimensional vector space of multivectors:

x = ( xs︸︷︷︸
scalar

, x0, x1, x2, x3︸ ︷︷ ︸
vectors

, x01, x02, x03, x12, x13, x23︸ ︷︷ ︸
bi-vectors

, x012, x013, x023, x123︸ ︷︷ ︸
tri-vectors

, x0123︸ ︷︷ ︸
pseudo-scalar

) ∈ G(3, 0, 1)

The geometric product is a bilinear operator which generalizes well known operations like the inner
product or the cross product between vectors, but also implements other geometric transformations
(e.g. combine two multivectors representing a translation and a point to obtain the translated point,
expressed as another multivector). This motivates the use of the geometric algebra as a principled
and practical tool for geometrical reasoning. We refer to Apx. B and Brehmer et al. (2023) for more
details about PGA and the mapping of geometric objects and operators to multivectors.

Like typical equivariant networks, multivector features carry an action of the equivariance group
E(3) and GATr includes layers which map between these features in an equivariant way, in partic-
ular: linear layers, bilinear layers (which, loosely speaking, encode the geometric product between
multivectors) and the attention layer, as well as other non-linear layers. Finally, GATr has already
been applied to a wide range of scientific domains (Suk et al., 2024; Hehn et al., 2025; Brehmer
et al., 2024). We believe its versatility makes GATr a good architecture for our problem.

3 E(3)-EQUIVARIANT VIRTUAL NODES EMBEDDINGS (VINE)

In a generic equivariant scenario, we assume the input tokens jointly transform according to a cer-
tain group G (e.g E(3)) which models the symmetries of the task: g ∈ G : {nj}Nj=1 7→ {g.nj}Nj=1.
The typical cross-attention mechanism leverages the inner product ⟨·, ·⟩ between key and query vec-
tors. As a result, when using fixed (hence, invariant) query tokens but the input transforms under
g ∈ G, the attention scores are given by

⟨q(vi),k(g.nj)⟩ = ⟨q(vi), ρ(g)k(nj)⟩ ≠ ⟨q(vi),k(nj)⟩ ∀g ∈ G (1)

where ρ is a representation of G modeling its action on the key feature space and k consists of
primitives equivariant to the actions of G. However, cross-attention is G-equivariant only if these
scores are G-invariant. This holds only for a choice of trivial representation ρ(g) = 1, such that the
inequality above turns into an equality, that is, the latent queries can only attend to invariant keys,
missing a lot of geometric information in the input data. Conversely, if we equip the latent tokens
with some geometric feature f which transforms equivariantly to the input data, we can construct
equivariant query vectors too, which enable expressive attention2:

⟨q(vi, g.f),k(g.nj)⟩ = ⟨ρ(g)q(vi, f), ρ(g)k(nj)⟩ = ⟨q(vi, f),k(nj)⟩ ∀g ∈ G (2)

Inspired by recent works on Virtual Nodes for equivariant graph convolution (Sestak et al., 2024;
Zhang et al., 2024), we propose to augment the latent tokens with simple global geometric features
carrying the equivariance property of the input to allow for more expressive queries.

ViNE via PCA features A efficient but effective choice is given by the Principal Component Anal-
ysis (PCA) of the input tokens, which provides a center-of-mass vector and 3 orthogonal eigenvec-
tors (weighted by their eigenvalues). Note that the center-of-mass c ∈ R3 is a quantity transforming
like a point (translates and rotates when the input does), while eigenvectors W = (w1,w2,w3) ∈
R3×3 rotate but are translation-invariant. As such, they can be encoded respectively as a point
and translation operators multivectors3: see Apx. B, Tab. 3. The global geometric feature f =
(c,w1,w2,w3) comprising these 4 multivectors is concatenated to the invariant query tokens to
build our Virtual Node Embeddings (ViNE). We argue this simple PCA features are effective for
our purpose, while still being extremely efficient to compute. Indeed, in Apx. A, we show that ViNE
allows the model to learn a canonicalized virtual point cloud, which can effectively leverage the
distance-aware attention. In Apx. A, we also discuss the analogy with canonicalization methods.

1Assuming the orthonormal basis {ei}3i=0, the geometric product is defined such that e0e0 = 0 and eiei = 1
for i = 1, 2, 3 and eiej = −ejei for i ̸= j.

2Here we assumed orthogonal ρ, which is not typically faithful to the whole E(3) group. This is the case also
in GATr, which only uses the translation invariant coefficients to compute the attention weights, but introduces
positional bias via a separate component.

3For minor improved expressivity, due to the structure of the equivariant linear maps, in practice we prefer
encoding eigenvectors as vectors, which can be mapped to translations via a single linear map.
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Figure 2: We apply ViNE-GATr to cortical surface parcellation (left) in the Mindboggle-101 dataset and
estimation of surface pressure caused by airflow around car bodies (right) (ShapeNet-Car).

Table 1: Comparison of inference time and accuracy between LaB-
GATr, ViNE-GATr and (†) LaB-GATr using random instead of farthest
point sampling. Times are averaged over 101 cortical surface meshes
(ca. 300K vertices each) from the Mindboggle-101 dataset. We report in
brackets (∗) the percentage that is due to pre-processing of the inputs. For
the accuracy, we report mean ± standard deviation across the test split.

Model Inference [ms] (∗) Accuracy ↑ [%]

LaB-GATr 2076.5 (86.2 %) 79.4 ± 1.8
ViNE-GATr 390.1 ( 1.8 %) 77.3 ± 2.7
LaB-GATr† 386.1 ( 0.0 %) 66.6 ± 2.2

Table 2: ShapeNet-Car bench-
mark comparison to baselines
(values from (Alkin et al., 2024)).

Model Error ×1e2 ↓

GINO 2.14
UPT 2.24
FNO 3.26

ViNE-GATr 3.85

Sign-Ambiguity of eigenvectors A problem with the PCA features is that eigenvectors are only
defined up to a sign ambiguity. To handle this artificial symmetry, we compute 4 different global
features {fj}4j=1, one for each matrix with positive determinant among the 23 obtained by flipping
the signs of the columns of W . Then, we only learn V/4 invariant embeddings but combine them
with each of these global features to obtain V ViNE tokens. In other words, this strategy introduces
some redundancy by inputting all possible 4 frames and leverages the permutation-equivariant atten-
tion to automatically handle the resulting set symmetry. In practice, in some experiments, we found
beneficial for improved performance and stable convergence to ignore this artifact and simply use
all sign-flipped eigenvectors in a single global feature f = (c,W,−W ) for all virtual nodes.

4 EXPERIMENTS

We evaluate ViNE-GATr on two tasks, see Fig. 2: cortical surface parcellation, i.e. the segmenta-
tion of functional brain regions (Mindboggle-101 (Klein et al., 2016)) and estimation of pressure
exerted by airflow on the body of cars (ShapeNet-Car (Umetani & Bickel, 2018)).

Inference time study on large-scale cortical surface data We investigate the trade-off between
inference time and accuracy using the Mindboggle-101 dataset. We create an ablation of LaB-
GATr (Suk et al., 2024) (”large-scale biomedical GATr”) which uses random subsampling of mesh
vertices instead of farthest point sampling (FPS) which is the inference bottleneck in LaB-GATr.4
Results are presented in Tab. 1. We choose the best-performing configuration of LaB- and ViNE-
GATr which used (approximately) 1K hidden tokens and V = 750 virtual nodes, respectively. LaB-
GATr achieves the highest accuracy albeit for the highest inference cost due to FPS. Ablating FPS
for random sampling incurs an accuracy drop of 12.8% but greatly increases inference speed. ViNE-
GATr presents a favorable accuracy trade-off by 2.1% under negligible increase in inference time.

4FPS is a iterative algorithm that requires distances to all points in each step (O(NV )) and – due to its
sequential nature – is challenging to parallelize.
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Figure 3: MSE ↓ over allocated token budget of LaB-GATr (blue) and ViNE-GATr (orange). Shown are
mean, std, min. and max. error over 4 runs per budget.

Ablation on number of virtual nodes in cars airflow data We present preliminary results in
which we train LaB- and ViNE-GATr with varying latent token budget and compare its influence
on accuracy, see Fig. 3. We follow the setup of Alkin et al. (2024) and estimate car body pressure.
Flow direction is encoded at every vertex in the mesh by oriented planes in G(3, 0, 1); the surface
normal of the car body is also encoded as planes. We find that increased token budgets benefit both
LaB- and ViNE-GATr while the scaling of ViNE-GATr is more moderate. However, ViNE-GATr
performs better at the very small budget of V = 64. Tab. 2 shows how ViNE-GATr (V = 512)
compares to the three models in Alkin et al. (2024), where we observe competitive performance.
We did not perform any hyperparameter optimisation for ViNE-GATr in this study.

5 DISCUSSION

Our preliminary results are a promising prospect for the utility of ViNE-GATr in the context of
scientific problems on intricate geometric shapes. Compared to baselines, ViNE-GATr affords ad-
ditional inference compute which could be spent e.g. on uncertainty quantification. ViNE-GATr
also decouples the task from its geometry and generates predictions based on a latent space of vir-
tual nodes, independently of the input spatial resolution (in contrast to LaB-GATr). We find that
increased numbers of virtual nodes improve the accuracy on the ShapeNet-Car dataset, which hints
at decoupling of model expressivity and computational cost due to the input size. See limitations
in Apx. D. In future work, we aim to compare ViNE-GATr to different strategies to achieve E(3)
equivariance, e.g. based on frame averaging (Puny et al., 2022), and non-equivariant baselines such
as UPT (Alkin et al., 2024).
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Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021. (Cited on
page 1)

Anadi Chaman and Ivan Dokmanic. Truly shift-invariant convolutional neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3773–3783, June 2021. (Cited on page 2)

Pin Chen, Luoxuan Peng, Rui Jiao, Qing Mo, WANG Zhen, Wenbing Huang, Yang Liu, and Yutong
Lu. Learning superconductivity from ordered and disordered material structures. In The Thirty-
eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2024. (Cited on page 1)

Kamal Choudhary and Kevin Garrity. Designing high-tc superconductors with bcs-inspired screen-
ing, density functional theory, and deep-learning. npj Computational Materials, 8(1):244, 2022.
(Cited on page 1)

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999. PMLR, 2016. (Cited on page 1)

Simon Dahan, Logan Zane John Williams, Daniel Rueckert, and Emma Claire Robinson. The
multiscale surface vision transformer. In Medical Imaging with Deep Learning, 2024. (Cited on
page 1)

Leo Dorst. A guided tour to the plane-based geometric algebra pga. 2020. URL https://
geometricalgebra.org/downloads/PGA4CS.pdf. (Cited on pages 8 and 9)

Bryan R Goldsmith, Jacques Esterhuizen, Jin-Xun Liu, Christopher J Bartel, and Christopher Sutton.
Machine learning for heterogeneous catalyst design and discovery. 2018. (Cited on page 1)

Thomas Hehn, Markus Peschl, Tribhuvanesh Orekondy, Arash Behboodi, and Johann Brehmer.
Differentiable and learnable wireless simulation with geometric transformers. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=9TClCDZXeh. (Cited on pages 3 and 8)

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. In International Conference on Learning
Representations. (Cited on page 2)
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A ON THE EFFECTIVENESS OF PCA FEATURES AND THE RELATION WITH
CANONICALIZATION METHODS

Let X ∈ R3×N be the coordinates of the input N tokens and let S ∈ R3×V be three invariant
scalars learned by each of the V virtual tokens; then, Ŝ(X) = W (X)S + c(X) ∈ R3×V represents
the canonicalized coordinates of the virtual point cloud S - where we emphasized the dependency
of the PCA features on the input X . Coincidentally, this computation is achieved by i) a weighted
combination of the three translations W = (w1,w2,w3) by the scalars in S followed by ii) the ap-
plication of this translation on the point c, which can be performed by a sequence of two linear and
bilinear layers in GATr. See also Tab. 3 for the precise embeddings of these scalar, point and transla-
tion features into multivectors. In other words, this construction allows the model to learn a canoni-
calized virtual point cloud, which can effectively leverage the distance-aware attention mechanism.

Comparison with canonicalization methods Previous works studied canonicalization methods,
e.g. Kaba et al. (2023), but we emphasize some important differences. First, the canonicalized
coordinates enrich the latent queries, but the virtual nodes still attend to the input tokens, which
contain the full geometry and pose information; hence, the canonicalization of the virtual scalars is
not a bottleneck in passing pose-information to the rest of the model. Second, we still process the
latent data with an equivariant architecture, which helps preserving not only the global but also the
local isometry equivariance. Additionally, each virtual node (and each attention head) can learn to
weight the canonicalized features differently.

We finally draw an analogy with the work of Wessels et al. (2024), which particularly resembles the
decoder of our model, although the work focuses more on the equivariant neural field aspect of it.

B GEOMETRIC ALGEBRA

As representation, GATr uses the projective geometric algebra G3,0,1. Here we summarize key
aspects of this algebra. This summary is taken from the appendix of Hehn et al. (2025). For a precise
definition and pedagogical introduction, we refer the reader to Dorst (2020).

Geometric algebra. A geometric algebra Gp,q,r consists of a vector space together with a bilinear
operation, the geometric product, that maps two elements of the vector space to another element of
the vector space.

The elements of the vector space are known as multivectors. Their space is constructed by extending
a base vector space Rd to lower orders (scalars) and higher-orders (bi-vectors, tri-vectors, . . . ). The
algebra combines all of these orders (or grades) in one 2d-dimensional vector space. From a basis
for the base space, for instance (e1, e2, e3), one can construct a basis for the multivector space. A
multivector expressed in that basis then reads, for instance for d = 3, x = x∅ + x1e1 + x2e2 +
x3e3 + x12e1e2 + x13e1e3 + x23e2e3 + x123e1e2e3.

The geometric product is fully defined by bilinearity, associativity, and the condition that the geo-
metric product of a vector with itself is equal to its norm. The geometric product generally maps
between different grades. For instance, the geometric product of two vectors will consist of a scalar,
the inner product between the vectors, and a bivector, which is related to the cross-product of R3.
In particular, the conventional basis elements of grade k > 1 are constructed as the geometric prod-
uct of the vector basis elements ei. For instance, e12 = e1e2 is a basis bivector. From the defining
properties of the geometric products it follows that the geometric product between orthogonal basis
elements is antisymmetric, eiej = −ejei. Thus, for a d-dimensional basis space, there are

(
d
k

)
inde-

pendent basis elements at grade k.

Projective geometric algebra. To represent three-dimensional objects including absolute posi-
tions, we use a geometric algebra based on a base space with d = 4, adding a homogeneous coordi-
nate to the 3D space.5 We use a basis (e0, e1, e2, e3) with a metric such that e20 = 0 and e2i = 1 for

5A three-dimensional base space is not sufficient to represent absolute positions and translations acting
on them in a convenient form. See Dorst (2020); Ruhe et al. (2023); Brehmer et al. (2023) for an in-depth
discussion.
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Object / operator Scalar Vector Bivector Trivector PS
1 e0 ei e0i eij e0ij e123 e0123

Scalar λ ∈ R λ 0 0 0 0 0 0 0
Plane w/ normal n ∈ R3, origin shift d ∈ R 0 d n 0 0 0 0 0
Line w/ direction n ∈ R3, orthogonal shift s ∈ R3 0 0 0 s n 0 0 0
Point p ∈ R3 0 0 0 0 0 p 1 0
Pseudoscalar µ ∈ R 0 0 0 0 0 0 0 µ

Reflection through plane w/ normal n ∈ R3, origin shift d ∈ R 0 d n 0 0 0 0 0
Translation t ∈ R3 1 0 0 1

2
t 0 0 0 0

Rotation expressed as quaternion q ∈ R4 q0 0 0 0 qi 0 0 0
Point reflection through p ∈ R3 0 0 0 0 0 p 1 0

Table 3: Embeddings of common geometric objects and transformations into the projective geomet-
ric algebra G3,0,1. The columns show different components of the multivectors with the correspond-
ing basis elements, with i, j ∈ {1, 2, 3}, j ̸= i, i.e. ij ∈ {12, 13, 23}. For simplicity, we fix gauge
ambiguities (the weight of the multivectors) and leave out signs (which depend on the ordering of
indices in the basis elements). This is a copy of Tab. 1 from Brehmer et al. (2023), but we high-
lighted the entries we used for our PCA embeddings in Sec. 3.

i = 1, 2, 3. The multivector space is thus 24 = 16-dimensional. This algebra is known as the pro-
jective geometric algebra G3,0,1.

Canonical embedding of geometric primitives. In G3,0,1, we can represent geometric primitives
as follows:

• Scalars (data that do not transform under translation, rotations, and reflections) are represented
as the scalars of the multivectors (grade k = 0).

• Oriented planes are represented as vectors (k = 1), encoding the plane normal as well as the
distance from the origin.

• Lines or directions are represented as bivectors (k = 2), encoding the direction as well as the
shift from the origin.

• Points or positions are represented as trivectors (k = 3).

For more details, we refer the reader to Tab. 3 (Tab. 1 in Brehmer et al. (2023)) or to Dorst (2020).

C COMPUTATIONAL COMPLEXITY

Assume N input tokens and a fixed set of V Virtual Nodes, independent of the input. The initial
cross-attention has cost O(NV ). The majority of transformer layers operate on virtual tokens in
the latent with O(V 2) complexity. Finally, the model decodes information from virtual tokens to
the output tokens of interest (usually, the input tokens) with another cross-attention. The overall
O(V 2 + NV ) complexity highlights that cost scales linearly with input tokens N , while we note
that the computational capacity depends on number of virtual tokens V , which is now disentangled
from the input data discretization.

D LIMITATIONS

In our experiments we found ViNE-GATr training convergence to be somewhat sensitive to virtual
node initialisation, which we are currently investigating. Furthermore, ViNE-GATr achieved peak
performance on Mindboggle-101 by breaking the permutation symmetry among PCA eigenvectors.
To address these issues, we aim to look into soft (training-time) regularisation of virtual node posi-
tion to better follow the topology of the input data.
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E ADDITIONAL EXPERIMENTAL DETAILS

The cortical surface meshes are heterogeneous and have around 300K vertices, while the airflow
domain and cars are represented by volume and surface meshes of ca. 33k vertices. We train all our
models under L1 loss with a batch size of four using Adam with an initial learning rate of 3e−4 and
exponential decay until we observe convergence on a held-out validation split. All trainings were
run on NVIDIA Tesla V100 (32 GB) GPUs and we used gradient accumulation in the case of the
large-scale cortical surface data. ViNE-GATr had 360k - 400k trainable parameters, dependent on
the specific hyperparameters.

In the large-scale cortical surface data experiment, all models encoded the surface normal as oriented
planes and mesh vertices as points in G(3, 0, 1). LaB-GATr followed the same layout as ViNE-GATr
but uses learned interpolation instead of cross-attention in the decoding step. In these experiment,
note that we achieved the presented accuracy of ViNE-GATr by breaking sign-flip symmetry and
concatenating all PCA eigenvectors along the channels dimension.
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