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Abstract

Building models that can be rapidly adapted to novel tasks using only a handful of
annotated examples is an open challenge for multimodal machine learning research.
We introduce Flamingo, a family of Visual Language Models (VLM) with this
ability. We propose key architectural innovations to: (i) bridge powerful pretrained
vision-only and language-only models, (ii) handle sequences of arbitrarily inter-
leaved visual and textual data, and (iii) seamlessly ingest images or videos as
inputs. Thanks to their flexibility, Flamingo models can be trained on large-scale
multimodal web corpora containing arbitrarily interleaved text and images, which
is key to endow them with in-context few-shot learning capabilities. We perform a
thorough evaluation of our models, exploring and measuring their ability to rapidly
adapt to a variety of image and video tasks. These include open-ended tasks such
as visual question-answering, where the model is prompted with a question which
it has to answer; captioning tasks, which evaluate the ability to describe a scene or
an event; and close-ended tasks such as multiple-choice visual question-answering.
For tasks lying anywhere on this spectrum, a single Flamingo model can achieve a
new state of the art with few-shot learning, simply by prompting the model with
task-specific examples. On numerous benchmarks, Flamingo outperforms models
fine-tuned on thousands of times more task-specific data.
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36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Input Prompt Completion

This is a
chinchilla. They
are mainly found

in Chile.

This is a shiba.
They are very

popular in Japan.
This is −→

a flamingo. They
are found in the
Caribbean and
South America.

What is the title
of this painting?

Answer: The
Hallucinogenic

Toreador.

Where is this
painting

displayed?
Answer: Louvres
Museum, Paris.

What is the name
of the city where
this was painted?

Answer:

−→ Arles.

Output:
"Underground"

Output:
"Congress" Output: −→ "Soulomes"

2+1=3 5+6=11 −→ 3x6=18

Output: A
propaganda

poster depicting a
cat dressed as

French emperor
Napoleon holding
a piece of cheese.

Output: A pink
room with a

flamingo pool
float.

Output: −→
A portrait of
Salvador Dali
with a robot

head.

Les sanglots
longs des violons

de l’automne
blessent mon
coeur d’une

langueur
monotone.

Pour qui sont ces
serpents qui

sifflent sur vos
têtes?

−→ Je suis un cœur
qui bat pour

vous.

pandas: 3 dogs: 2 −→ giraffes: 4

I like reading
, my favourite

play is Hamlet. I
also like

, my favorite
book is

−→ Dreams from my
Father.

What happens to
the man after

hitting the ball?
Answer:

−→ he falls down.

This is a picture of two teddy
bears on the moon.

What are they doing?

They are having a
conversation.

What object are they using?

It looks like a computer.

Is this surprising?

Yes, it is surprising.

Why is this picture surprising
to you?

I think it is surprising because
teddy bears are not usually
found on the moon.

What is the common thing
about these three images?

They are all flamingos.

What is the difference be-
tween these three images?

The first one is a cartoon, the
second one is a real flamingo,
and the third one is a 3D
model of a flamingo.

This is an apple with a sticker
on it.

What does the sticker say?

The sticker says "iPod".

Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.

What color is the sticker?

It’s white.

This is a cityscape. It looks
like Chicago.

What makes you think this is
Chicago?

I think it’s Chicago because
of the Shedd Aquarium in the
background.

What about this one? Which
city is this and what famous
landmark helped you recog-
nise the city?

This is Tokyo. I think it’s
Tokyo because of the Tokyo
Tower.

Figure 1: Selected examples of inputs and outputs obtained from Flamingo-80B. Flamingo
can rapidly adapt to various image/video understanding tasks with few-shot prompting (top). Out
of the box, Flamingo is also capable of multi-image visual dialogue (bottom). More examples in
Appendix C.
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Figure 2: Flamingo results overview. Left: Our largest model, dubbed Flamingo, outperforms
state-of-the-art fine-tuned models on 6 of the 16 tasks we consider with no fine-tuning. For the 9
tasks with published few-shot results, Flamingo sets the new few-shot state of the art. Note: We omit
RareAct, our 16th benchmark, as it is a zero-shot benchmark with no available fine-tuned results to
compare to. Right: Flamingo performance improves with model size and number of shots.

1 Introduction

One key aspect of intelligence is the ability to quickly learn to perform a new task given a short
instruction [33, 70]. While initial progress has been made towards a similar capability in computer
vision, the most widely used paradigm still consists of first pretraining on a large amount of supervised
data, before fine-tuning the model on the task of interest [66, 118, 143]. However, successful fine-
tuning often requires many thousands of annotated data points. In addition, it often requires careful
per-task hyperparameter tuning and is also resource intensive. Recently, multimodal vision-language
models trained with a contrastive objective [50, 85] have enabled zero-shot adaptation to novel tasks,
without the need for fine-tuning. However, because these models simply provide a similarity score
between a text and an image, they can only address limited use cases such as classification, where a
finite set of outcomes is provided beforehand. They crucially lack the ability to generate language,
which makes them less suitable to more open-ended tasks such as captioning or visual question-
answering. Others have explored visually-conditioned language generation [17, 114, 119, 124, 132]
but have not yet shown good performance in low-data regimes.

We introduce Flamingo, a Visual Language Model (VLM) that sets a new state of the art in few-shot
learning on a wide range of open-ended vision and language tasks, simply by being prompted with a
few input/output examples, as illustrated in Figure 1. Of the 16 tasks we consider, Flamingo also
surpasses the fine-tuned state of the art on 6 tasks, despite using orders of magnitude less task-specific
training data (see Figure 2). To achieve this, Flamingo takes inspiration from recent work on large
language models (LMs) which are good few-shot learners [11, 18, 42, 86]. A single large LM can
achieve strong performance on many tasks using only its text interface: a few examples of a task are
provided to the model as a prompt, along with a query input, and the model generates a continuation
to produce a predicted output for that query. We show that the same can be done for image and
video understanding tasks such as classification, captioning, or question-answering: these can be
cast as text prediction problems with visual input conditioning. The difference from a LM is that
the model must be able to ingest a multimodal prompt containing images and/or videos interleaved
with text. Flamingo models have this capability—they are visually-conditioned autoregressive text
generation models able to ingest a sequence of text tokens interleaved with images and/or videos,
and produce text as output. Flamingo models leverage two complementary pre-trained and frozen
models: a vision model which can “perceive” visual scenes and a large LM which performs a basic
form of reasoning. Novel architecture components are added in between these models to connect
them in a way that preserves the knowledge they have accumulated during computationally intensive
pre-training. Flamingo models are also able to ingest high-resolution images or videos thanks to
a Perceiver-based [48] architecture that can produce a small fixed number of visual tokens per
image/video, given a large and variable number of visual input features.

A crucial aspect for the performance of large LMs is that they are trained on a large amount of
text data. This training provides general-purpose generation capabilities that allows these LMs to
perform well when prompted with task examples. Similarly, we demonstrate that the way we train
the Flamingo models is crucial for their final performance. They are trained on a carefully chosen
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Vision 
Encoder

❄

Perceiver
Resampler

1st LM block

a very serious cat.Pretrained and frozen❄

Vision 
Encoder

❄

Perceiver
Resampler

1st GATED XATTN-DENSE

Interleaved visual/text data

          This is a very cute dog.       This is

Trained from scratch 

n-th GATED XATTN-DENSE 

n-th LM block ❄

…

Output: text

❄

 <image> This is a very cute dog.<image> This is
Processed text

Figure 3: Flamingo architecture overview. Flamingo is a family of visual language models (VLMs)
that take as input visual data interleaved with text and produce free-form text as output.

mixture of complementary large-scale multimodal data coming only from the web, without using any
data annotated for machine learning purposes. After this training, a Flamingo model can be directly
adapted to vision tasks via simple few-shot learning without any task-specific tuning.

Contributions. In summary, our contributions are the following: (i) We introduce the Flamingo
family of VLMs which can perform various multimodal tasks (such as captioning, visual dialogue,
or visual question-answering) from only a few input/output examples. Thanks to architectural
innovations, the Flamingo models can efficiently accept arbitrarily interleaved visual data and text
as input and generate text in an open-ended manner. (ii) We quantitatively evaluate how Flamingo
models can be adapted to various tasks via few-shot learning. We notably reserve a large set of held-
out benchmarks which have not been used for validation of any design decisions or hyperparameters
of the approach. We use these to estimate unbiased few-shot performance. (iii) Flamingo sets a new
state of the art in few-shot learning on a wide array of 16 multimodal language and image/video
understanding tasks. On 6 of these 16 tasks, Flamingo also outperforms the fine-tuned state of the
art despite using only 32 task-specific examples, around 1000 times less task-specific training data
than the current state of the art. With a larger annotation budget, Flamingo can also be effectively
fine-tuned to set a new state of the art on five additional challenging benchmarks: VQAv2, VATEX,
VizWiz, MSRVTTQA, and HatefulMemes.

2 Approach

This section describes Flamingo: a visual language model that accepts text interleaved with im-
ages/videos as input and outputs free-form text. The key architectural components shown in Figure 3
are chosen to leverage pretrained vision and language models and bridge them effectively. First,
the Perceiver Resampler (Section 2.1) receives spatio-temporal features from the Vision Encoder
(obtained from either an image or a video) and outputs a fixed number of visual tokens. Second,
these visual tokens are used to condition the frozen LM using freshly initialised cross-attention
layers (Section 2.2) that are interleaved between the pretrained LM layers. These new layers offer
an expressive way for the LM to incorporate visual information for the next-token prediction task.
Flamingo models the likelihood of text 𝑦 conditioned on interleaved images and videos 𝑥 as follows:

𝑝(𝑦|𝑥) =
𝐿∏︁

ℓ=1

𝑝(𝑦ℓ|𝑦<ℓ, 𝑥≤ℓ), (1)

where 𝑦ℓ is the ℓ-th language token of the input text, 𝑦<ℓ is the set of preceding tokens, 𝑥≤ℓ is the set
of images/videos preceding token 𝑦ℓ in the interleaved sequence and 𝑝 is parametrized by a Flamingo
model. The ability to handle interleaved text and visual sequences (Section 2.3) makes it natural
to use Flamingo models for in-context few-shot learning, analogously to GPT-3 with few-shot text
prompting. The model is trained on a diverse mixture of datasets as described in Section 2.4.
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def gated_xattn_dense(

    y,  # input language features

    x,  # input visual features 

    alpha_xattn, # xattn gating parameter – init at 0.

    alpha_dense, # ffw gating parameter – init at 0.

):

  """Applies a GATED XATTN-DENSE layer."""

  # 1. Gated Cross Attention

  y = y + tanh(alpha_xattn) * attention(q=y, kv=x)

  # 2. Gated Feed Forward (dense) Layer

  y = y + tanh(alpha_dense) * ffw(y)

  # Regular self-attention + FFW on language

  y = y + frozen_attention(q=y, kv=y)

  y = y + frozen_ffw(y)

  return y  # output visually informed language features

Vision 
input

Y

X

…
…

Figure 4: GATED XATTN-DENSE layers. To condition the LM on visual inputs, we insert new
cross-attention layers between existing pretrained and frozen LM layers. The keys and values in these
layers are obtained from the vision features while the queries are derived from the language inputs.
They are followed by dense feed-forward layers. These layers are gated so that the LM is kept intact
at initialization for improved stability and performance.

2.1 Visual processing and the Perceiver Resampler

Vision Encoder: from pixels to features. Our vision encoder is a pretrained and frozen Normalizer-
Free ResNet (NFNet) [10] – we use the F6 model. We pretrain the vision encoder using a contrastive
objective on our datasets of image and text pairs, using the two-term contrastive loss from Radford
et al. [85]. We use the output of the final stage, a 2D spatial grid of features that is flattened to a 1D
sequence. For video inputs, frames are sampled at 1 FPS and encoded independently to obtain a 3D
spatio-temporal grid of features to which learned temporal embeddings are added. Features are then
flattened to 1D before being fed to the Perceiver Resampler. More details on the contrastive model
training and performance are given in Appendix B.1.3 and Appendix B.3.2, respectively.

Perceiver Resampler: from varying-size large feature maps to few visual tokens. This module
connects the vision encoder to the frozen language model as shown in Figure 3. It takes as input a
variable number of image or video features from the vision encoder and produces a fixed number of
visual outputs (64), reducing the computational complexity of the vision-text cross-attention. Similar
to Perceiver [48] and DETR [13], we learn a predefined number of latent input queries which are fed
to a Transformer and cross-attend to the visual features. We show in our ablation studies (Section 3.3)
that using such a vision-language resampler module outperforms a plain Transformer and an MLP.
We provide an illustration, more architectural details, and pseudo-code in Appendix A.1.1.

2.2 Conditioning frozen language models on visual representations

Text generation is performed by a Transformer decoder, conditioned on the visual representations
produced by the Perceiver Resampler. We interleave pretrained and frozen text-only LM blocks with
blocks trained from scratch that cross-attend to the visual output from the Perceiver Resampler.

Interleaving new GATED XATTN-DENSE layers within a frozen pretrained LM. We freeze the
pretrained LM blocks, and insert gated cross-attention dense blocks (Figure 4) between the original
layers, trained from scratch. To ensure that at initialization, the conditioned model yields the same
results as the original language model, we use a tanh-gating mechanism [41]. This multiplies the
output of a newly added layer by tanh(𝛼) before adding it to the input representation from the residual
connection, where 𝛼 is a layer-specific learnable scalar initialized to 0 [4]. Thus, at initialization, the
model output matches that of the pretrained LM, improving training stability and final performance.
In our ablation studies (Section 3.3), we compare the proposed GATED XATTN-DENSE layers against
recent alternatives [22, 68] and explore the effect of how frequently these additional layers are inserted
to trade off between efficiency and expressivity. See Appendix A.1.2 for more details.

Varying model sizes. We perform experiments across three models sizes, building on the 1.4B, 7B,
and 70B parameter Chinchilla models [42]; calling them respectively Flamingo-3B, Flamingo-9B and
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Flamingo-80B. For brevity, we refer to the last as Flamingo throughout the paper. While increasing
the parameter count of the frozen LM and the trainable vision-text GATED XATTN-DENSE modules,
we maintain a fixed-size frozen vision encoder and trainable Perceiver Resampler across the different
models (small relative to the full model size). See Appendix B.1.1 for further details.

2.3 Multi-visual input support: per-image/video attention masking

The image-causal modelling introduced in Equation (1) is obtained by masking the full text-to-image
cross-attention matrix, limiting which visual tokens the model sees at each text token. At a given text
token, the model attends to the visual tokens of the image that appeared just before it in the interleaved
sequence, rather than to all previous images (formalized and illustrated in Appendix A.1.3). Though
the model only directly attends to a single image at a time, the dependency on all previous images
remains via self-attention in the LM. This single-image cross-attention scheme importantly allows
the model to seamlessly generalise to any number of visual inputs, regardless of how many are
used during training. In particular, we use only up to 5 images per sequence when training on our
interleaved datasets, yet our model is able to benefit from sequences of up to 32 pairs (or “shots”) of
images/videos and corresponding texts during evaluation. We show in Section 3.3 that this scheme is
more effective than allowing the model to cross-attend to all previous images directly.

2.4 Training on a mixture of vision and language datasets

We train the Flamingo models on a mixture of three kinds of datasets, all scraped from the web: an
interleaved image and text dataset derived from webpages, image-text pairs, and video-text pairs.

M3W: Interleaved image and text dataset. The few-shot capabilities of Flamingo models rely on
training on interleaved text and image data. For this purpose, we collect the MultiModal MassiveWeb
(M3W) dataset. We extract both text and images from the HTML of approximately 43 million
webpages, determining the positions of images relative to the text based on the relative positions of
the text and image elements in the Document Object Model (DOM). An example is then constructed
by inserting <image> tags in plain text at the locations of the images on the page, and inserting a
special <EOC> (end of chunk) token (added to the vocabulary and learnt) prior to any image and at the
end of the document. From each document, we sample a random subsequence of 𝐿 = 256 tokens and
take up to the first 𝑁 = 5 images included in the sampled sequence. Further images are discarded in
order to save compute. More details are provided in Appendix A.3.

Pairs of image/video and text. For our image and text pairs we first leverage the ALIGN [50]
dataset, composed of 1.8 billion images paired with alt-text. To complement this dataset, we collect
our own dataset of image and text pairs targeting better quality and longer descriptions: LTIP (Long
Text & Image Pairs) which consists of 312 million image and text pairs. We also collect a similar
dataset but with videos instead of still images: VTP (Video & Text Pairs) consists of 27 million short
videos (approximately 22 seconds on average) paired with sentence descriptions. We align the syntax
of paired datasets with the syntax of M3W by prepending <image> and appending <EOC> to each
training caption (see Appendix A.3.3 for details).

Multi-objective training and optimisation strategy. We train our models by minimizing a weighted
sum of per-dataset expected negative log-likelihoods of text, given the visual inputs:

𝑀∑︁
𝑚=1

𝜆𝑚 · E(𝑥,𝑦)∼𝒟𝑚

[︃
−

𝐿∑︁
ℓ=1

log 𝑝(𝑦ℓ|𝑦<ℓ, 𝑥≤ℓ)

]︃
, (2)

where 𝒟𝑚 and 𝜆𝑚 are the 𝑚-th dataset and its weighting, respectively. Tuning the per-dataset weights
𝜆𝑚 is key to performance. We accumulate gradients over all datasets, which we found outperforms a
“round-robin” approach [17]. We provide further training details and ablations in Appendix B.1.2.

2.5 Task adaptation with few-shot in-context learning

Once Flamingo is trained, we use it to tackle a visual task by conditioning it on a multimodal
interleaved prompt. We evaluate the ability of our models to rapidly adapt to new tasks using in-
context learning, analogously to GPT-3 [11], by interleaving support example pairs in the form
of (𝑖𝑚𝑎𝑔𝑒, 𝑡𝑒𝑥𝑡) or (𝑣𝑖𝑑𝑒𝑜, 𝑡𝑒𝑥𝑡), followed by the query visual input, to build a prompt (details in
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Zero/Few
shot SOTA ✗

(X)

[34]
43.3
(16)

[114]
38.2
(4)

[124]
32.2
(0)

[58]
35.2
(0)

- - -
[58]
19.2
(0)

[135]
12.2
(0)

-
[143]
39.4
(0)

[79]
11.6
(0)

- -
[85]
66.1
(0)

[85]
40.7
(0)

Flamingo-3B
✗ 0 41.2 49.2 73.0 27.5 40.1 28.9 60.6 11.0 32.7 55.8 39.6 46.1 30.1 21.3 53.7 58.4
✗ 4 43.3 53.2 85.0 33.0 50.0 34.0 72.0 14.9 35.7 64.6 41.3 47.3 32.7 22.4 53.6 -
✗ 32 45.9 57.1 99.0 42.6 59.2 45.5 71.2 25.6 37.7 76.7 41.6 47.3 30.6 26.1 56.3 -

Flamingo-9B
✗ 0 44.7 51.8 79.4 30.2 39.5 28.8 61.5 13.7 35.2 55.0 41.8 48.0 31.8 23.0 57.0 57.9
✗ 4 49.3 56.3 93.1 36.2 51.7 34.9 72.6 18.2 37.7 70.8 42.8 50.4 33.6 24.7 62.7 -
✗ 32 51.0 60.4 106.3 47.2 57.4 44.0 72.8 29.4 40.7 77.3 41.2 50.4 32.6 28.4 63.5 -

Flamingo

✗ 0 50.6 56.3 84.3 35.6 46.7 31.6 67.2 17.4 40.7 60.1 39.7 52.0 35.0 26.7 46.4 60.8
✗ 4 57.4 63.1 103.2 41.7 56.0 39.6 75.1 23.9 44.1 74.5 42.4 55.6 36.5 30.8 68.6 -
✗ 32 57.8 67.6 113.8 52.3 65.1 49.8 75.4 31.0 45.3 86.8 42.2 55.6 37.9 33.5 70.0 -

Pretrained
FT SOTA ✔

(X)

54.4
[34]

(10K)

80.2
[140]

(444K)

143.3
[124]

(500K)

47.9
[28]

(27K)

76.3
[153]

(500K)

57.2
[65]

(20K)

67.4
[150]
(30K)

46.8
[51]

(130K)

35.4
[135]
(6K)

138.7
[132]
(10K)

36.7
[128]
(46K)

75.2
[79]

(123K)

54.7
[137]
(20K)

25.2
[129]
(38K)

79.1
[62]
(9K)

-

Table 1: Comparison to the state of the art. A single Flamingo model reaches the state of the art
on a wide array of image (I) and video (V) understanding tasks with few-shot learning, significantly
outperforming previous best zero- and few-shot methods with as few as four examples. More
importantly, using only 32 examples and without adapting any model weights, Flamingo outperforms
the current best methods – fine-tuned on thousands of annotated examples – on seven tasks. Best
few-shot numbers are in bold, best numbers overall are underlined.

Appendix A.2). We perform open-ended evaluations using beam search for decoding, and close-
ended evaluations using our model’s log-likelihood to score each possible answer. We explore
zero-shot generalization by prompting the model with two text-only examples from the task,
with no corresponding images. Evaluation hyperparameters and additional details are given in
Appendix B.1.5.

3 Experiments

Our goal is to develop models that can rapidly adapt to diverse and challenging tasks. For this, we
consider a wide array of 16 popular multimodal image/video and language benchmarks. In order to
validate model design decisions during the course of the project, 5 of these benchmarks were used as
part of our development (DEV) set: COCO, OKVQA, VQAv2, MSVDQA and VATEX. Performance
estimates on the DEV benchmarks may be biased, as a result of model selection. We note that this is
also the case for prior work which makes use of similar benchmarks to validate and ablate design
decisions. To account for this, we report performance on an additional set of 11 benchmarks, spanning
captioning, video question-answering, as well as some less commonly explored capabilities such as
visual dialogue and multi-choice question-answering tasks. The evaluation benchmarks are described
in Appendix B.1.4. We keep all evaluation hyperparameters fixed across all benchmarks. Depending
on the task, we use four few-shot prompt templates we describe in more detail in Appendix B.1.5.
We emphasize that we do not validate any design decisions on these 11 benchmarks and use them
solely to estimate unbiased few-shot learning performance of our models.

Concretely, estimating few-shot learning performance of a model involves prompting it with a set of
support samples and evaluating it on a set of query samples. For the DEV benchmarks that are used
both to validate design decisions and hyperparameters, as well as to report final performance, we
therefore use four subsets: validation support, validation query, test support and test query. For other
benchmarks, we need only the latter two. We report in Appendix B.1.4 how we form these subsets.

We report the results of the Flamingo models on few-shot learning in Section 3.1. Section 3.2
gives Flamingo fine-tuned results. An ablation study is given in Section 3.3. Appendix B.2 provides
more results including Flamingo’s performance on the ImageNet and Kinetics700 classification tasks,
and on our contrastive model’s performance. Appendix C includes additional qualitative results.

3.1 Few-shot learning on vision-language tasks

Few-shot results. Results are given in Table 1. Flamingo outperforms by a large margin all previous
zero-shot or few-shot methods on the 16 benchmarks considered. This is achieved with as few as four
examples per task, demonstrating practical and efficient adaptation of vision models to new tasks.
More importantly, Flamingo is often competitive with state-of-the-art methods additionally fine-tuned
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Method VQAV2 COCO VATEX VizWiz MSRVTTQA VisDial YouCook2 TextVQA HatefulMemes
test-dev test-std test test test-dev test-std test valid test-std valid valid test-std test seen

🦩32 shots 67.6 - 113.8 65.1 49.8 - 31.0 56.8 - 86.8 36.0 - 70.0
🦩Fine-tuned 82.0 82.1 138.1 84.2 65.7 65.4 47.4 61.8 59.7 118.6 57.1 54.1 86.6

81.3† 81.3† 149.6† 81.4† 57.2† 60.6† 46.8 75.2 75.4† 138.7 54.7 73.7 84.6†
SotA

[133] [133] [119] [153] [65] [65] [51] [79] [123] [132] [137] [84] [152]

Table 2: Comparison to SotA when fine-tuning Flamingo. We fine-tune Flamingo on all nine
tasks where Flamingo does not achieve SotA with few-shot learning. Flamingo sets a new SotA on
five of them, outperfoming methods (marked with †) that use tricks such as model ensembling or
domain-specific metric optimisation (e.g., CIDEr optimisation).

Ablated Flamingo-3B Changed Param. Step COCO OKVQA VQAv2 MSVDQA VATEX Overall
setting original value value count ↓ time ↓ CIDEr↑ top1↑ top1↑ top1↑ CIDEr↑ score↑

Flamingo-3B model 3.2B 1.74s 86.5 42.1 55.8 36.3 53.4 70.7

(i) Training data All data

w/o Video-Text pairs 3.2B 1.42s 84.2 43.0 53.9 34.5 46.0 67.3
w/o Image-Text pairs 3.2B 0.95s 66.3 39.2 51.6 32.0 41.6 60.9
Image-Text pairs→ LAION 3.2B 1.74s 79.5 41.4 53.5 33.9 47.6 66.4
w/o M3W 3.2B 1.02s 54.1 36.5 52.7 31.4 23.5 53.4

(ii) Optimisation Accumulation Round Robin 3.2B 1.68s 76.1 39.8 52.1 33.2 40.8 62.9

(iii) Tanh gating ✓ ✗ 3.2B 1.74s 78.4 40.5 52.9 35.9 47.5 66.5

(iv) Cross-attention GATED
XATTN-DENSE

VANILLA XATTN 2.4B 1.16s 80.6 41.5 53.4 32.9 50.7 66.9
architecture GRAFTING 3.3B 1.74s 79.2 36.1 50.8 32.2 47.8 63.1

(v) Cross-attention
frequency Every

Single in middle 2.0B 0.87s 71.5 38.1 50.2 29.1 42.3 59.8
Every 4th 2.3B 1.02s 82.3 42.7 55.1 34.6 50.8 68.8
Every 2nd 2.6B 1.24s 83.7 41.0 55.8 34.5 49.7 68.2

(vi) Resampler Perceiver MLP 3.2B 1.85s 78.6 42.2 54.7 35.2 44.7 66.6
Transformer 3.2B 1.81s 83.2 41.7 55.6 31.5 48.3 66.7

(vii) Vision encoder NFNet-F6 CLIP ViT-L/14 3.1B 1.58s 76.5 41.6 53.4 33.2 44.5 64.9
NFNet-F0 2.9B 1.45s 73.8 40.5 52.8 31.1 42.9 62.7

(viii) Freezing LM ✓
✗ (random init) 3.2B 2.42s 74.8 31.5 45.6 26.9 50.1 57.8
✗ (pretrained) 3.2B 2.42s 81.2 33.7 47.4 31.0 53.9 62.7

Table 3: Ablation studies. Each row should be compared to the baseline Flamingo run (top row).
Step time measures the time spent to perform gradient updates on all training datasets.

on up to hundreds of thousands of annotated examples. On six tasks, Flamingo even outperforms
the fine-tuned SotA despite using a single set of model weights and only 32 task-specific examples.
Finally, despite having only used the DEV benchmarks for design decisions, our results generalize
well to the other benchmarks, confirming the generality of our approach.

Scaling with respect to parameters and shots. As shown in Figure 2, the larger the model, the better
the few-shot performance, similar to GPT-3 [11]. The performance also improves with the number of
shots. We further find that the largest model better exploits larger numbers of shots. Interestingly,
even though our Flamingo models were trained with sequences limited to only 5 images on M3W,
they are still able to benefit from up to 32 images or videos during inference. This demonstrates the
flexibility of the Flamingo architecture for processing a variable number of videos or images.

3.2 Fine-tuning Flamingo as a pretrained vision-language model

While not the main focus of our work, we verify that when given more data, Flamingo models can be
adapted to a task by fine-tuning their weights. In Table 2, we explore fine-tuning our largest model,
Flamingo, for a given task with no limit on the annotation budget. In short, we do so by fine-tuning the
model on a short schedule with a small learning rate by additionally unfreezing the vision backbone
to accommodate a higher input resolution (details in Appendix B.2.2). We find that we can improve
results over our previously presented in-context few-shot learning results, setting a new state of the
art on five additional tasks: VQAv2, VATEX, VizWiz, MSRVTTQA, and HatefulMemes.

3.3 Ablation studies

In Table 3, we report our ablation results using Flamingo-3B on the validation subsets of the five
DEV benchmarks with 4 shots. Note that we use smaller batch sizes and a shorter training schedule
compared to the final models. The Overall score is obtained by dividing each benchmark score by its
state-of-the-art (SotA) performance from Table 1 and averaging the results. More details and results
are given in Appendix B.3 and Table 10.

Importance of the training data mixture. As shown in row (i), getting the right training data plays
a crucial role. In fact, removing the interleaved image-text dataset M3W leads to a decrease of more
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than 17% in performance while removing the conventional paired image-text pairs also decreases
performance (by 9.8%), demonstrating the need for different types of datasets. Moreover, removing
our paired video-text dataset negatively affects performance on all video tasks. We ablate replacing
our image-text pairs (ITP) by the publicly available LAION-400M dataset [96], which leads to a
slight degradation in performance. We show in row (ii) the importance of our gradient accumulation
strategy compared to using round-robin updates [17].

Visual conditioning of the frozen LM. We ablate the use of the 0-initialized tanh gating when
merging the cross-attention output to the frozen LM output in row (iii). Without it, we see a drop of
4.2% in our overall score. Moreover, we have noticed that disabling the 0-initialized tanh gating leads
to training instabilities. Next, we ablate different conditioning architectures in row (iv). VANILLA
XATTN, refers to the vanilla cross-attention from the original Transformer decoder [115]. In the
GRAFTING approach from [68], the frozen LM is used as is with no additional layers inserted, and a
stack of interleaved self-attention and cross-attention layers that take the frozen LM output are learnt
from scratch. Overall, we show that our GATED XATTN-DENSE conditioning approach works best.

Compute/Memory vs. performance trade-offs. In row (v), we ablate the frequency at which we
add new GATED XATTN-DENSE blocks. Although adding them at every layer is better, it significantly
increases the number of trainable parameters and time complexity of the model. Notably, inserting
them every fourth block accelerates training by 66% while only decreasing the overall score by 1.9%.
In light of this trade-off, we maximize the number of added layers under hardware constraints and add
a GATED XATTN-DENSE every fourth layer for Flamingo-9B and every seventh for Flamingo-80B.
We further compare in row (vi) the Perceiver Resampler to a MLP and a vanilla Transformer given a
parameter budget. Both underperform the Perceiver Resampler while also being slower.

Vision encoder. In row (vii), we compare our NFNet-F6 vision encoder pretrained with contrastive
learning (details in Appendix B.1.3) to the publicly available CLIP ViT-L/14 [85] model trained at
224 resolution. Our NFNet-F6 has a +5.8% advantage over the CLIP ViT-L/14 and +8.0% over a
smaller NFNet-F0 encoder, which highlights the importance of using a strong vision backbone.

Freezing LM components prevents catastrophic forgetting. We verify the importance of freezing
the LM layers at training in row (viii). If trained from scratch, we observe a large performance de-
crease of −12.9%. Interestingly, fine-tuning our pretrained LM also leads to a drop in performance of
−8.0%. This indicates an instance of “catastrophic forgetting” [71], in which the model progressively
forgets its pretraining while training on a new objective. In our setting, freezing the language model
is a better alternative to training with the pre-training dataset (MassiveText) in the mixture.

4 Related work

Language modelling and few-shot adaptation. Language modelling has recently made substantial
progress following the introduction of Transformers [115]. The paradigm of first pretraining on a
vast amount of data followed by an adaptation on a downstream task has become standard [11, 23,
32, 44, 52, 75, 87, 108]. In this work, we build on the 70B Chinchilla language model [42] as the
base LM for Flamingo. Numerous works have explored techniques to adapt language models to
novel tasks using a few examples. These include adding small adapter modules [43], fine-tuning
a small part of the LM [141], showing in-context examples in the prompt [11], or optimizing the
prompt [56, 60] through gradient descent. In this paper, we take inspiration from the in-context [11]
few-shot learning technique instead of more involved few-shot learning approaches based on metric
learning [24, 103, 112, 117] or meta-learning [6, 7, 27, 31, 91, 155].

When language meets vision. These LM breakthroughs have been influential for vision-language
modelling. In particular, BERT [23] inspired a large body of vision-language work [16, 28, 29,
38, 59, 61, 66, 101, 106, 107, 109, 118, 121, 142, 143, 151]. We differ from these approaches as
Flamingo models do not require fine-tuning on new tasks. Another family of vision-language models
is based on contrastive learning [2, 5, 49, 50, 57, 74, 82, 85, 138, 140, 146]. Flamingo differs from
contrastive models as it can generate text, although we build and rely upon them for our vision encoder.
Similar to our work are VLMs able to generate text in an autoregressive manner [19, 25, 45, 67, 116].
Concurrent works [17, 58, 119, 124, 154] also propose to formulate numerous vision tasks as text
generation problems. Building on top of powerful pretrained language models has been explored
in several recent works. One recent line of work [26, 68, 78, 114, 136, 144] proposes to freeze the
pretrained LM weights to prevent catastrophic forgetting [71]. We follow this idea by freezing the
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Chinchilla LM layers [42] and adding learnable layers within the frozen LM. We differ from prior
work by introducing the first LM that can ingest arbitrarily interleaved images, videos, and text.

Web-scale vision and language training datasets. Manually annotated vision and language datasets
are costly to obtain and thus relatively small (10k-100k) in scale [3, 15, 69, 122, 129, 139]. To
alleviate this lack of data, numerous works [14, 50, 98, 110] automatically scrape readily available
paired vision-text data. In addition to such paired data, we show the importance of also training on
entire multimodal webpages containing interleaved images and text as a single sequence. Concurrent
work CM3 [1] proposes to generate HTML markup from pages, while we simplify the text prediction
task by only generating plain text. We emphasize few-shot learning and vision tasks while CM3 [1]
primarily evaluates on language-only benchmarks in a zero-shot or fine-tuned setup.

5 Discussion

Limitations. First, our models build on pretrained LMs, and as a side effect, directly inherit their
weaknesses. For example, LM priors are generally helpful, but may play a role in occasional
hallucinations and ungrounded guesses. Furthermore, LMs generalise poorly to sequences longer
than the training ones. They also suffer from poor sample efficiency during training. Addressing
these issues can accelerate progress in the field and enhance the abilities of VLMs like Flamingo.

Second, the classification performance of Flamingo lags behind that of state-of-the-art contrastive
models [82, 85]. These models directly optimize for text-image retrieval, of which classification is
a special case. In contrast, our models handle a wider range of tasks, such as open-ended ones. A
unified approach to achieve the best of both worlds is an important research direction.

Third, in-context learning has significant advantages over gradient-based few-shot learning methods,
but also suffers from drawbacks depending on the characteristics of the application at hand. We
demonstrate the effectiveness of in-context learning when access is limited to only a few dozen
examples. In-context learning also enables simple deployment, requiring only inference, generally
with no hyperparameter tuning needed. However, in-context learning is known to be highly sensitive
to various aspects of the demonstrations [80, 148], and its inference compute cost and absolute
performance scale poorly with the number of shots beyond this low-data regime. There may be
opportunities to combine few-shot learning methods to leverage their complementary benefits. We
discuss the limitations of our work in more depth in Appendix D.1.

Societal impacts. In terms of societal impacts, Flamingo offers a number of benefits while carrying
some risks. Its ability to rapidly adapt to a broad range of tasks have the potential to enable non-expert
users to obtain good performance in data-starved regimes, lowering the barriers to both beneficial
and malicious applications. Flamingo is exposed to the same risks as large language models, such
as outputting offensive language, propagating social biases and stereotypes, as well as leaking
private information [42, 126]. Its ability to additionally handle visual inputs poses specific risks
such as gender and racial biases relating to the contents of the input images, similar to a number
of visual recognition systems [12, 21, 37, 97, 147]. We refer the reader to Appendix D.2 for a
more extensive discussion of the societal impacts of our work, both positive and negative; as well
as mitigation strategies and early investigations of risks relating to racial or gender bias and toxic
outputs. Finally we note that, following prior work focusing on language models [72, 81, 111], the
few-shot capabilities of Flamingo could be useful for mitigating such risks.

Conclusion. We proposed Flamingo, a general-purpose family of models that can be applied to image
and video tasks with minimal task-specific training data. We also qualitatively explored interactive
abilities of Flamingo such as “chatting” with the model, demonstrating flexibility beyond traditional
vision benchmarks. Our results suggest that connecting pre-trained large language models with
powerful visual models is an important step towards general-purpose visual understanding.
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runs to justify the computation cost incurred by multiple training runs. For the largest
models, it is not feasible within our compute budget.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Details can be found in
Appendix B.1.2. In short, our largest run was trained on 1536 TPU chips for 15 days.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We properly cited the

prior methods on which our work is based, as well as prior datasets when appropriate
(e.g., ALIGN).

(b) Did you mention the license of the assets? [N/A] The assets we used are previous work
for which we cited papers. We do mention the license of all visual assets we use for the
figures of the paper in Appendix G.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Our data was automatically scraped from million of webpages.
See Datasheets [30] in Appendix F.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Datasheets [30] in Appendix F.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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Appendix

We provide an overview of the Appendix below.

Method (Appendix A). We first provide additional details about our model in Appendix A.1:

• An illustration and pseudo-code for the Perceiver Resampler (described in Section 2.1) is
provided in Appendix A.1.1 and Figure 5.

• A similar illustration is provided for the GATED XATTN-DENSE layer of Section 2.2 in
Appendix A.1.2 and Figure 4.

• Details on our implementation of the multi-image/video attention mechanism (Section 2.3)
are given in Appendix A.1.3.

• Hyperparameters for all model architectures are given in Appendix A.1.4.

We then explain how we evaluate our models using in-context few-shot learning in Appendix A.2.
This includes details on how we build the few-shot prompt, how we get predictions for open- and close-
ended tasks, how we obtain the zero-shot numbers, and how we leverage retrieval and ensembling to
take advantage of more annotated examples.

Finally, in Appendix A.3, we provide more details on our training datasets:

• Collection of M3W in Appendix A.3.1,

• How we process M3W samples during training in Appendix A.3.2,

• Collection of LTIP and VTP in Appendix A.3.3,

• Deduplication strategy we employ to ensure that there is no leakage between our training
and evaluation datasets in Appendix A.3.4.

Experiments (Appendix B). We first provide additional training and evaluation details in Ap-
pendix B.1, including:

• Details on Flamingo-3B, Flamingo-9B and Flamingo in Appendix B.1.1,

• The training hyperparameters in Appendix B.1.2,

• More details on the Contrastive model pretraining in Appendix B.1.3,

• Details on our evaluation benchmarks and splits in Appendix B.1.4,

• A discussion on the few-shot learning hyperparameters in Appendix B.1.5,

• The dialogue prompt used in the qualitative dialogue examples shown in Figure 1 and
Figure 11 in Appendix B.1.6.

Next, we give additional results obtained by our models in Appendix B.2 including the performance
of the Flamingo models on classification tasks in Appendix B.2.1, detailed fine-tuning results in
Appendix B.2.2, and zero-shot results from our contrastive models (Appendix B.2.3).

Finally, we provide more ablation studies in Appendix B.3 for both the Flamingo models (Ap-
pendix B.3.1) and our contrastive pretrained Visual Encoders (Appendix B.3.2).

Qualitative results (Appendix C). More qualitative results are given in Appendix C: Figure 10
(single image sample), Figure 11 (dialogue examples), and Figure 12 (video examples).

Discussion (Appendix D). We provide a more complete discussion on our work, including limitations,
failure cases, broader impacts and societal impacts of our work in Appendix D.

Model card (Appendix E). The Flamingo model card is provided in Appendix E.

Datasheets (Appendix F). Datasheets for M3W, LTIP and VTP are respectively given in Ap-
pendix F.1, Appendix F.2.1 and Appendix F.2.2.

Credit for visual content (Appendix G). We provide attribution for all visual illustrations used in
the paper in Appendix G.
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def perceiver_resampler(

    x_f,  # The [T, S, d] visual features (T=time, S=space)

    time_embeddings,  # The [T, 1, d] time pos embeddings.

    x,  # R learned latents of shape [R, d]

    num_layers,  # Number of layers

):

  """The Perceiver Resampler model."""

  # Add the time position embeddings and flatten.

  x_f = x_f + time_embeddings

  x_f = flatten(x_f)  # [T, S, d] -> [T * S, d]

  # Apply the Perceiver Resampler layers.

  for i in range(num_layers):

    # Attention.

    x = x + attention_i(q=x, kv=concat([x_f, x]))

    # Feed forward.

    x = x + ffw_i(x)

  return x

Time

+

+

X

Figure 5: The Perceiver Resampler module maps a variable size grid of spatio-temporal visual
features output by the Vision Encoder to a fixed number of output tokens (five in the figure), inde-
pendently from the input image resolution or the number of input video frames. This transformer
has a set of learned latent vectors as queries, and the keys and values are a concatenation of the
spatio-temporal visual features with the learned latent vectors.

A Method

A.1 Model details

A.1.1 Perceiver Resampler

Expanding on our brief description in Section 2.1, Figure 5 provides an illustration of our Perceiver
Resampler processing an example video, together with pseudo-code. Our Perceiver Resampler is
similar in spirit to the Perceiver models proposed by Jaegle et al. [48]. We learn a predefined number
of latent input queries, and cross-attend to the flattened visual features 𝑋𝑓 . These visual features
𝑋𝑓 are obtained by first adding a learnt temporal position encoding to each feature within a given
video frame (an image being considered as a single-frame video). Note that we only use temporal
encodings and no explicit spatial grid position encodings; we did not observe improvements from the
latter. This rationale behind is likely that CNNs, such as our NFNet encoder, are known to implicitly
include spatial information channel-wise [47]. The visual features are then flattened and concatenated
as illustrated in Figure 5. The number of output tokens of the Perceiver Resampler is equal to the
number of learnt latent queries. Unlike in DETR and Perceiver, the keys and values computed from
the learnt latents are concatenated to the keys and values obtained from 𝑋𝑓 , which we found to
perform slightly better.

A.1.2 GATED XATTN-DENSE details

We provide in Figure 4 an illustration of a GATED XATTN-DENSE block and how it connects to a
frozen LM block, together with pseudo-code.

We also plot in Figure 6 the evolution of the absolute value of the tanh gating values as a function of
training progress (from 0% to 100%) at different layers of the LM stack for the Flamingo-3B model
composed of 24 LM layers. All layers of the frozen LM stack seem to utilize the visual information
as the tanh gating absolute values quickly grow in absolute value from their 0 initializations. We
also note that the absolute values seem to grow with the depth. However, it is difficult to draw strong
conclusions from this observation: the scale of the activations before gating may also vary with depth.
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(b) FFW tanh gating.

Figure 6: Evolution of the absolute value of the tanh gating at different layers of Flamingo-3B.
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Figure 7: Interleaved visual data and text support. Given text interleaved with images/videos,
e.g. coming from a webpage, we first process the text by inserting <image> tags at the locations of
the visual data in the text as well as special tokens (<BOS> for “beginning of sequence” or <EOC> for
“end of chunk”). Images are processed independently by the Vision Encoder and Perceiver Resampler
to extract visual tokens. At a given text token, the model only cross-attends to the visual tokens
corresponding to the last preceding image/video. 𝜑 indicates which image/video a text token can
attend or 0 when no image/video is preceding. In practice, this selective cross-attention is achieved
through masking – illustrated here with the dark blue entries (unmasked/visible) and light blue entries
(masked).

Future work is required to better understand the effect of these added layers on the optimization
dynamics and on the model itself.

A.1.3 Multi-visual input support

We illustrate in Figure 7 the masking approach we use to limit the number of visual tokens that a
certain text token sees. We also formalize our notation for the interleaved sequences of images/videos
and text.

Interleaved sequences of visual data and text. We consider interleaved image/video and text
examples: each example holds a sequence of text 𝑦, a sequence of images/videos 𝑥, and the sequence
of positions of the images in the text. Based on the visual data positions, we define a function
𝜑 : [1, 𝐿] ↦→ [0, 𝑁 ] that assigns to each text position the index of the last image/video appearing
before this position (or 0 if no visual data appears before the position). The function 𝜑 defines which
visual inputs we consider usable to predict token ℓ in Equation (1): the set of preceding tokens
𝑦<ℓ ≜ (𝑦1, . . . , 𝑦ℓ−1), and the set of preceding images/videos 𝑥≤ℓ ≜ {𝑥𝑖|𝑖 ≤ 𝜑(ℓ)}.

A.1.4 Transformer architecture

We list in Table 4 the number of layers (𝐿), the hidden dimension (𝐷), the number of heads (𝐻),
and the FFW activation (Act.) used for each transformer component of our Flamingo models. The
dimension of keys and values in each configuration is given by 𝐷/𝐻 (96 for the Perceiver Resampler;
128 for GATED XATTN-DENSE and the frozen LM), and the hidden dimension of each feed-forward
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Perceiver Resampler GATED XATTN-DENSE Frozen LM
L D H Act. L D H Act. L D H Act.

Flamingo-3B 6 1536 16 Sq. ReLU 24 2048 16 Sq. ReLU 24 2048 16 GeLU
Flamingo-9B 6 1536 16 Sq. ReLU 10 4096 32 Sq. ReLU 40 4096 32 GeLU
Flamingo 6 1536 16 Sq. ReLU 12 8192 64 Sq. ReLU 80 8192 64 GeLU

Table 4: Hyper-parameters for the Flamingo models’ transformers. The hidden size of each feed-
forward MLP is 4𝐷. L: number of layers, D: transformer hidden size, H: number of heads, Act.:
FFW activation, Sq. ReLU: Squared ReLU [104].
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<BOS><image>Question: What’s the cat wearing? Answer: sunglasses<EOC><image>Question: How many animals? Answer: 3<EOC><image>
Question: What is on the water? Answer:

Visual Question Answering Task (input=vision+text, output=text)
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Support examples Query

Processed prompt
<BOS><image>Output: A cat wearing sunglasses.<EOC><image>Output: Elephants walking in the savanna.<EOC><image>Output:

Vision to Text tasks (input=vision, output=text)

Figure 8: Few-shot interleaved prompt generation. Given some task-specific few-shot examples
(a.k.a. support examples) and a query for which Flamingo should make a prediction, we build the
prompt by interleaving images with their corresponding texts. We introduce some formatting to do
this, prepending “Output:” to the expected response for all vision-to-text tasks or prompting in the
format “Question: {question} Answer: {answer}” for visual question-answering tasks.

MLP is 4𝐷. Note that the frozen LM was trained with the GeLU activation [39], while the remaining
trainable transformer layers use the Squared ReLU activation [104], which we found to outperform
GeLU.

A.2 In-context few-shot evaluation details

In-context learning with Flamingo models. We evaluate the ability of our models to rapidly
adapt to new tasks using in-context learning, following an analogous approach to the one used
in GPT-3 [11]. In detail, we are given a set of support examples in the form of (𝑖𝑚𝑎𝑔𝑒, 𝑡𝑒𝑥𝑡) or
(𝑣𝑖𝑑𝑒𝑜, 𝑡𝑒𝑥𝑡) (where the 𝑖𝑚𝑎𝑔𝑒 or 𝑣𝑖𝑑𝑒𝑜 is the input visual and the 𝑡𝑒𝑥𝑡 is the expected response
and any additional task-specific information, e.g., a question) and a single visual query for which we
want our model to make a prediction. Given this, we build a multimodal prompt by concatenating the
support examples followed by the visual query as illustrated by Figure 8. Unless specified otherwise,
we choose the concatenation order at random.

Open-ended and close-ended evaluations. In an open-ended setting, the model’s sampled text
following the query image is then taken as its prediction for the image, stopping at the first <EOC>
(“end of chunk”) token prediction. Unless specified otherwise, we always use beam search with a
beam size of 3. In a close-ended setting, all possible outputs are independently appended to the query
image, and we score each of the resulting sequences using the log-likelihood estimated by our model.
These scores are then used to rank the candidate outputs in decreasing order, from most confident to
least confident.
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Figure 9: Training datasets. Mixture of training datasets of different formats. 𝑁 corresponds to the number of
visual inputs for a single example. For paired image (or video) and text datasets, 𝑁 = 1. 𝑇 is the number of
video frames (𝑇 = 1 for images). 𝐻 , 𝑊 , and 𝐶 are height, width and color channels.

Zero-shot generalization. In the absence of few-shot examples, approaches commonly rely on
prompt engineering [85] to condition the model at inference using a suitable natural language descrip-
tion of the task. Validation of such prompts can significantly impact performance but requires access
to a number of annotated examples and cannot therefore be considered truly zero-shot. Furthermore,
Perez et al. [80] have shown that such validation procedures are generally not robust with access
to only a handful of samples during validation. To report zero-shot performance in our work, we
instead build a prompt with two examples from the downstream tasks where we remove their cor-
responding images or videos. For example, for the task illustrated at the top of Figure 8, the
prompt would be “<BOS>Output: This is a cat wearing sunglasses.<EOC>Output: Three
elephants walking in the savanna.<EOC><image> Output:” and no support images would be
fed to the model. We observed that only showing one, instead of two, text examples in the prompt is
highly detrimental as the model is biased towards producing text output similar to the single provided
text example. Providing more than two text examples helps but only marginally. We hence use
two text examples in all zero-shot results for practicality. In practice, we believe this is not more
cumbersome than finding a good natural text description for a given task. This relates to recent
findings on the aspects of demonstrations that are key drivers of performance [76]. For close-ended
tasks, where we use the model to score different possible answers, we observe it is not necessary to
provide a single text example in the zero-shot prompt.

Retrieval-based In-Context Example Selection [136]. When the size of the support set exceeds
a certain limit, it can become difficult to leverage all the examples with in-context learning: first
because it becomes excessively expensive to fit all the examples in the prompt, and second because
there is a risk of poor generalization when the prompt size exceeds the size of the sequence used
during training [83]. In such situations, it is appealing to use a form of prompt selection to both
limit the sequence length as well as potentially improve the prompt quality which can in turn lead to
better performance [63]. In particular, we follow the Retrieval-based In-Context Example Selection
(RICES) approach introduced by [136]. In detail, given a query image, we retrieve similar images in
the support set by comparing the visual features extracted from our frozen pretrained visual encoder.
We then build the prompt by concatenating the top-𝑁 most similar examples. Since LMs are sensitive
to the ordering in the prompt due to recency bias [148], we order the examples by increasing order of
similarity, such that the most similar support example appears right before the query. We notably
show the effectiveness of this approach in classification settings with multiple hundreds of classes
(see Appendix B.2.1) where we are given one or more images/videos per class, yielding a number of
examples that would not otherwise fit in the prompt.

Prompt ensembling. We also explore ensembling the outputs of the model across multiple prompts
in the close-ended setting. This can notably be combined with RICES where ensembling can be
done over multiple permutations of the ranked nearest neighbors. Specifically, for a given answer,
we average the log likelihoods estimated by the model over 6 random permutations of the selected
few-shot examples.

A.3 Training dataset details

We train the Flamingo models on a carefully chosen mixture of datasets illustrated in Figure 9 and
described next.
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A.3.1 M3W collection

The selection and scraping of web pages for M3W follows a similar process to the one used for
collecting the MassiveWeb dataset [86]. We start by filtering out non-English documents. We also
remove those that do not pass internal filters, which identify explicit content across images, videos,
and text. We use a custom scraper to extract salient content from the remaining documents, in the
form of plain text interleaved with images, as described in Section 2.4. The text in M3W is collected
in a similar fashion to that of MassiveWeb, but we also collect any images present at the same level in
the HTML tree. We discard documents for which the scraping process does not yield any images.

We then apply similar text filtering heuristics, to remove low quality documents and reduce repetition,
as well as some image filters to remove images that are too small (either width or height less than
64 pixels), too wide or narrow (aspect ratio greater than 3 in either direction), or unambiguously
low quality (e.g. single-colour images). We discard documents that no longer contain any images
following this filtering step.

A.3.2 M3W image-placement augmentation

During evaluation of Flamingo models, we prompt the model with an image and ask it to generate
text for that image. This lends itself to a natural sequencing at inference time in which the image
comes before the corresponding text output.

However, the correspondence between images and text in our interleaved M3W dataset (Section 2.4)
is in general unknown (and potentially not well-defined in certain cases). As a motivating example, a
simple webpage might be structured in either of the following ways:

(a) This is my dog! <dog image> This is my cat! <cat image>

(b) <dog image> That was my dog! <cat image> That was my cat!

The text-aligned image indices (indices) might “ideally” be chosen such that at each point in the
text, the index points to the most semantically relevant image for that text – i.e., the next image in
example (a), and the previous image in example (b). In the absence of a general way to determine
semantic correspondence between text and images on webpages “in the wild”, we make a simplifying
assumption that the most relevant image at any given point in the text is either the last image appearing
before the text token, or the image immediately following it (as in the simple examples above), and
choose indices accordingly.

During training, for each webpage sampled, we sample with probability 𝑝𝑛𝑒𝑥𝑡 =
1
2 whether indices

are chosen to map text to the previous or next image. This inevitably means we make the semantically
“unnatural” choice – e.g., associating the text “This is my cat!” with the dog image in (a) above –
around half of the time. We ablate this choice in Section 3.3, finding a small advantage to setting
𝑝𝑛𝑒𝑥𝑡 =

1
2 over either 0 (always the previous image index) or 1 (always the next image index). This

suggests that there may be a beneficial “data augmentation” effect to this randomisation.

A.3.3 LTIP and VTP: Visual data paired with text

Along with our interleaved image and text dataset, we use several paired vision and text web datasets
for training. One dataset is ALIGN [50], composed of 1.8 billion images paired with alt-text. ALIGN
is large, but noisy and limited to images. The images are often poorly described by the corresponding
alt-text annotation. For this reason, we augment it with two datasets: LTIP (Long Text & Image Pairs)
consists of 312 million images, and VTP (Video & Text Pairs) consists of 27 million short videos
(approximately 22 seconds on average). Both datasets are paired with more descriptive captions. For
instance, the average number of tokens of an ALIGN text description is 12.4 per image, while it is
20.5 for the LTIP dataset. The LTIP and VTP datasets were collected by crawling fewer than ten
websites targeting high-quality and rich image descriptions. These single-image and single-video
datasets are preprocessed analogously to the M3W data preprocessing described previously, adding
the <image> tag at the beginning of the sequence (immediately after <BOS>), and the <EOC> token
after the text (before <EOS>). We deduplicated these datasets against all our benchmarks (against both
the training and the evaluation sets) using image similarity, as detailed in Appendix A.3.4. Datasheets
for LTIP and VTP are respectively given in Appendix F.2.1 and Appendix F.2.2.
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Requires Frozen Trainable Total
model sharding Language Vision GATED XATTN-DENSE Resampler count

Flamingo-3B ✗ 1.4B 435M 1.2B (every) 194M 3.2B
Flamingo-9B ✗ 7.1B 435M 1.6B (every 4th) 194M 9.3B
Flamingo ✓ 70B 435M 10B (every 7th) 194M 80B

Table 5: Parameter counts for Flamingo models. We focus on increasing the parameter count of
the frozen LM and the trainable vision-text GATED XATTN-DENSE modules while maintaining the
frozen vision encoder and trainable Resampler to a fixed and small size across the different models.
The frequency of the GATED XATTN-DENSE with respect to the original language model blocks is
given in parentheses.

A.3.4 Dataset deduplication against evaluation tasks

We used an internal deduplication tool to deduplicate our training datasets from our evaluation
datasets. This deduplication pipeline relies on a trained visual encoder which maps embedding closer
together when they are potential duplicates. Once the image embeddings have been computed, a
fast approximate nearest neighbor search is performed on the training images to retrieve duplicate
candidates from the validation datasets. For the paired image-text dataset, we have deduplicated our
LTIP and ALIGN training images against: ImageNet (train, val), COCO (train, valid, test), OK-VQA
(train, valid, test), VQAv2 (train, valid, test), Flickr30k (train, valid, test), VisDial (train, valid, test).

We did not deduplicate our image datasets against VizWiz, HatefulMemes and TextVQA as we
performed these evaluations only after having trained our Flamingo models. However, we believe
this had no impact on our results as the images from these datasets are unlikely to be scraped from
the web; VizWiz images were obtained using a specific mobile app and only available for download,
HatefulMemes memes were created by researchers instead of being scraped on the web and finally
TextVQA images are from OpenImages.

Note that we did not run the deduplication on the M3W dataset as one training example is a full
webpage of interleaved paragraph with several images, unlikely to contain images from our benchmark
suite. To verify this hypothesis, we have obtained near-duplicate statistics on the 185M individual
images from M3W and the results are the following: in total, 1314 potential duplicates were found
from the validation and test splits of ImageNet, COCO, OK-VQA, VQAv2, Flickr30k and VisDial.
Out of the 1314 candidates, only 125 are exact duplicates.

For the video datasets, we did not perform any deduplication of VTP (27M videos) as none of the
collected VTP videos were obtained from YouTube or Flickr, which are the sources of all of our
video evaluation datasets collected on the Internet.

B Experiments

B.1 Training and evaluation details

B.1.1 Models

We perform experiments across three model sizes, where we scale the frozen language model from
1.4B to 7B and 70B; and adapt the parameter count of other components accordingly. We keep
the pretrained vision encoder frozen across all experiments and use a NFNet-F6 model trained
contrastively (see Appendix B.1.3), unless explicitly stated otherwise in the ablation study. We use a
Perceiver Resampler with approximately 200M parameters across all three model sizes.

The decision on how many GATED XATTN-DENSE layers to interleave is mainly driven by a trade-off
between memory constraints and downstream performance. We identified the optimal trade-off at
small model scales, before transferring our findings to the large model architecture.

We obtain three models, Flamingo-3B, Flamingo-9B and Flamingo-80B, detailed below:
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• The Flamingo-3B model builds on top of a 1.4B frozen language model from [42]. Before
each transformer block, we add a GATED XATTN-DENSE layer attending to the visual inputs;
this accounts for 1.4B additional learned parameters.

• The Flamingo-9B model builds on top of a 7B frozen language model from [42]. Starting
from the very first layer and before every fourth transformer blocks, we add a GATED
XATTN-DENSE layer attending to the visual inputs; this accounts for 1.8B additional learned
parameters.

• The Flamingo-80B model builds on top of the frozen Chinchilla 70B language model [42].
Starting from the very first layer and before every seventh transformer blocks, we add a
GATED XATTN-DENSE layer attending to the visual inputs; this accounts for 10B additional
learned parameters. For simplicity, we refer to this model as simply Flamingo throughout
the paper.

In Table 5 we report the parameter count of each component of our models, as well as model sharding
requirements. We provide more Transformer architecture details in Appendix A.1.4. The Flamingo
model card [77] is also given in Appendix E.

B.1.2 Training details for the Flamingo models

Data augmentation and preprocessing. Empirically we find that it is effective to stochastically
prepend the paired dataset text samples with a single space character, with probability 0.5. We
attribute this to the fact that our subword tokenizer maps the beginning of various words to a different
token depending on whether it is preceded by a space. This allows us to enforce invariance to this
tokenizer artifact, without degrading significantly correctness of the punctuation which is already
lacking in many of these samples. We observe that this leads to substantial improvement across tasks.

The visual inputs are resized to 320× 320 while preserving their aspect ratios, padding the image
with the mean value if required. Note that this is higher than the 288× 288 resolution used for the
contrastive pretraining of our Vision Encoder (see Appendix B.1.3). The increase in resolution during
the final stage training was motivated by [113] showing one can obtain improved performance at a
higher test-time resolution when using CNNs. This increase in resolution also comes with only a
moderate computational and memory cost as no backpropagation is performed through the frozen
Vision Encoder. We also employ random left/right flips and color augmentation.

For interleaved datasets (Section 2.4) we also employ augmentation by lightly randomizing the
selected image indices 𝜑 with a hyperparameter 𝑝𝑛𝑒𝑥𝑡 when sampling examples from the M3W
dataset. This augmentation is detailed in Appendix A.3.2 and our choice of 𝑝𝑛𝑒𝑥𝑡 = 1

2 is ablated in
Appendix B.3.1. For video training, we temporally sample a clip of 8 frames sampled at one frame
per second (fps) from each training video. Although our model was trained with a fixed number of 8
frames, at inference time, we input 30 frames at 3 FPS. This is achieved by linearly interpolating the
learnt temporal position embedding of the Perceiver Resampler at inference time.

Loss and optimisation. All our models are trained using the AdamW optimizer with global norm
clipping of 1, no weight decay for the Perceiver Resampler and weight decay of 0.1 for the other
trainable parameters. The learning rate is increased linearly from 0 to 10−4 up over the first 5000 steps
then held constant for the duration of training (no improvements were observed from decaying the
learning rate). Unless specified otherwise we train our models for 500𝑘 steps. Four datasets are used
for training: M3W, ALIGN, LTIP and VTP with weights 𝜆𝑚 of 1.0, 0.2, 0.2 and 0.03 respectively.
These weights were obtained empirically at a small model scale and kept fixed afterwards. Batch
sizes depend on the setting and are given in the next sections.

Infrastructure and implementation. Our model and associated infrastructure were implemented
using JAX [8] and Haiku [40]. All training and evaluation was performed on TPUv4 instances. The
largest model containing 80 billion parameters is trained on 1536 chips for 15 days and sharded
across 16 devices. Megatron type sharding [99] is used to enable 16-way model parallelism for
all Embedding / Self-Attention / Cross-Attention / FFW layers, while the NFNet vision layers
were unsharded. ZeRO stage 1 [88] is used to shard the optimizer state. All trained parameters and
optimizer accumulators are stored and updated in float32; all activations and gradients are computed
in bfloat16 after downcasting of parameters from float32 to bfloat16. Frozen parameters are
stored and applied in bfloat16.
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B.1.3 Contrastive model details

The vision encoder is trained from scratch, together with a language encoder. Using these encoders,
images and text pairs are separately encoded and projected to a shared embedding space and L2
normalized. From these embeddings, we maximize the similarity of paired embeddings and minimize
the similarity of unpaired embeddings, using a multi-class cross-entropy loss, where the paired
image-texts are treated as positive examples and the rest of the batch as negative examples. We use
the same loss as in CLIP [85], which consists of two contrastive losses, one from text to image and
the other from image to text. We use a learnable temperature parameter in the final log-softmax
layer [9]. The text-to-image loss is as follows:

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒:𝑡𝑥𝑡2𝑖𝑚 = − 1
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And the image-to-text loss is defined analogously:
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The sum of the two losses is minimized. Here, 𝑉𝑖 and 𝐿𝑖 are, respectively, the normalized embedding
of the vision and language component of the 𝑖-th element of a batch. 𝛽 is a trainable inverse
temperature parameter and 𝑁 is the number of elements in the batch. We use the BERT [23]
architecture for the language encoder. The outputs of the language and vision encoders are mean-
pooled (across tokens and spatial locations, respectively) before being projected to the shared
embedding space. We only use the weights from the contrastive vision encoder in the main Flamingo
models.

The vision encoder is pretrained on the ALIGN and LTIP datasets. The training image resolution is
288× 288, the joint embedding space is size 1376 and the batch size is 16,384. It is trained for 1.2
million parameter update steps, each of which consist of two gradient calculation steps (more details
below) on 512 TPUv4 chips. The learning rate is decayed linearly from 10−3 to zero over the course
of training. Images have random color augmentation and horizontal flips applied during training. We
use the tokenizer employed by Jia et al. [50]. The Adam optimizer is used to optimize the network,
and we apply label smoothing of 0.1. We apply 10−2 adaptive gradient clipping (AGC) [10] to the
NFNet encoder and global norm gradient clipping of 10 for the BERT encoder.

To evaluate the pretrained model, we track zero-shot image classification and retrieval. For zero-shot
image classification, we use image-text retrieval between the images and the class names. Following
Radford et al. [85] we use “prompt-ensembling” in which we embed multiple texts using templates
such as “A photo of a {class_name}” and average the resulting embedding.

B.1.4 Evaluation benchmarks

Our goal is to develop models that can rapidly adapt to diverse and challenging tasks in the few-shot
setting. For this, we consider a wide array of popular image and video benchmarks summarized in
Table 6. In total we chose 16 multimodal image/video and language benchmarks, spanning tasks that
require some language understanding (visual question answering, captioning, visual dialogue) as well
as two standard image and video classification benchmarks (ImageNet and Kinetics). Note that for
the video datasets collected from YouTube (i.e., all video datasets except NextQA and STAR), we
evaluated our model on all the publicly available video as of April 2022.

DEV benchmarks. In order to validate design decisions of our model over the course of the project,
we selected five benchmarks from the 16 multimodal image/video and language benchmarks as well
as ImageNet and Kinetics for classification as our development set (referred as DEV). To maximise
its relevance, we choose the most challenging and widely studied benchmarks for captioning, visual
question-answering and classification tasks on both images and videos.

Dataset splits for the DEV benchmarks. Concretely, estimating few-shot learning performance of
a model consists of adapting it on a set of support samples and evaluating it on a set of query samples.
As a result, any evaluation set should be composed of two disjoint subsets containing respectively
the support and the query samples. For the DEV benchmarks that are used both to validate design
decisions and hyperparameters, as well as to report final performance, we therefore use four subsets:
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Dataset DEV Gen. Custom
prompt Task description Eval set Metric

Im
ag

e
ImageNet-1k [94] ✓ Object classification Val Top-1 acc.
MS-COCO [15] ✓ ✓ Scene description Test CIDEr
VQAv2 [3] ✓ ✓ Scene understanding QA Test-dev VQA acc. [3]
OKVQA [69] ✓ ✓ External knowledge QA Val VQA acc. [3]
Flickr30k [139] ✓ Scene description Test (Karpathy) CIDEr
VizWiz [35] ✓ Scene understanding QA Test-dev VQA acc. [3]
TextVQA [100] ✓ Text reading QA Val VQA acc. [3]
VisDial [20] Visual Dialogue Val NDCG
HatefulMemes [54] ✓ Meme classification Seen Test ROC AUC

Kinetics700 2020 [102] ✓ Action classification Val Top-1/5 avg

V
id

eo

VATEX [122] ✓ ✓ Event description Test CIDEr
MSVDQA [130] ✓ ✓ Event understanding QA Test Top-1 acc.
YouCook2 [149] ✓ Event description Val CIDEr
MSRVTTQA [130] ✓ Event understanding QA Test Top-1 acc.
iVQA [135] ✓ Event understanding QA Test iVQA acc. [135]
RareAct [73] ✓ Composite action retrieval Test mWAP
NextQA [129] ✓ Temporal/Causal QA Test WUPS
STAR [128] Multiple-choice QA Test Top-1 acc.

Table 6: Summary of the evaluation benchmarks. DEV benchmarks were used to validate general
design decision of the Flamingo models. Gen. stands for generative task where we sample text from
the VLM. If a task is non-generative it means that we use the VLM to score answers among a given
finite set. For most of our tasks we use a common default prompt, hence minimizing task-specific
tuning (see Appendix B.1.5).

• validation support: contains support samples for validation;

• validation query: contains query samples for validation;

• test support: contains support samples for final performance estimation;

• test query: contains query samples for final performance estimation.

In practice, for the test query subset, we use the subset that prior works report results on, for apples-
to-apples comparison. While the validation set would be a natural choice for the validation query
subset, we note that this is not possible for all benchmarks, since some benchmarks do not have an
official validation set (e.g. OKVQA) and for others, the validation is commonly used to report final
performance in place of the test set (e.g. ImageNet or COCO). For simplicity, we use a subset of the
original training set as the validation query subset. Finally, we also use additional disjoint subsets of
the training set as respectively the validation support subset and the test support subset.

We now describe in more detail how we form the latter three subsets. For captioning tasks, open-ended
evaluation is efficient so we evaluate on a large number of samples. Specifically, for COCO, we use
the same number of samples as used in the Karpathy splits for evaluation sets (5000). For VATEX,
because the training set is of limited size, we only evaluate over 1024 samples, reserving the rest for
support sets. For question-answering tasks, we evaluate over 1024 samples; chosen to make both
open- and close-ended evaluation reasonably fast. For image classification tasks, we evaluate over
10 images per class: 10,000 samples for ImageNet, and 7000 samples for Kinetics700. As for the
support sets, for both validation and final performance estimation, we use 2048 samples across all
tasks, except for classification tasks where we scale this to 32 samples per class, to better estimate
expected performance for each class.

Unbiased few-shot performance estimation. Few-shot learning performance estimates on the
DEV benchmarks may be biased, in the sense that over the course of this project, design decisions
were made based on the performance obtained on these benchmarks. We note that this is the case for
prior work which also make use of these benchmarks to validate and ablate their own design decisions.
To account for this bias and provide unbiased few-shot learning performance estimates, we report
performance on a remaining set of 11 benchmarks. Among those, some span the same open-ended
image and video tasks as our DEV benchmarks (captioning and visual question-answering). But we
also look at more specific benchmarks in order to explore less explored capabilities. These notably
include: TextVQA [100] which specifically assesses OCR capabilities through question-answering;
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VisDial [20], a visual dialogue benchmark; HatefulMemes [54] a vision and text classification
benchmark; NextQA [129] which specially focuses on causality and temporal relation; STAR [128], a
multiple-choice question answering task; and RareAct [73], a benchmark measuring compositionality
in action recognition. We emphasize that we do not validate any design decisions on these benchmarks
and use them solely to estimate unbiased few-shot learning performance after Flamingo training is
done.

B.1.5 Few-shot learning evaluation hyperparameters

In few-shot learning, hyperparameter selection implicitly increases the number of shots as it requires
additional validation examples. If those are not taken into account, as is often the case in practice,
few-shot performance can be overestimated [80]. Similarly, cross-validation of benchmark-specific
hyperparameters such as the prompt should be considered as a particularly basic few-shot learning
method, where one selects the task-specific prompt over the set of shots. But other learning approaches
might be more effective in making use of these labelled examples. Given the negative results reported
by [80] in terms of the robustness of cross-validation and unless mentioned otherwise, all benchmarks
are run using a single set of evaluation hyperparameters, including the prompts. We optimize
hyperparameters jointly across the validation subsets of the DEV benchmarks and do not perform any
benchmark-specific cross-validation of hyperparameters, aside from a few exceptions, as we detail
next.

Except for HatefulMemes and RareAct, we always use the prompt ““Output: {output}” for
all non-question-answering tasks, and “Question: {question} Answer: {answer}” for all
question-answering / visual dialogue tasks. In particular, for VisDial [20], we use the previously
described prompt to encode each questions/answers in the dialogue and the provided image caption
is prepended to the dialogue history without any prompt. For HatefulMemes [54], we use a specific
prompt to incorporate the OCR information provided as input which is: “is an image with
written: "{meme_text}" on it. Is it hateful? Answer: {answer}”, where the an-
swer is either yes or no. Note that this is the only dataset where we explicitly provide OCR text
“meme_text” as input to Flamingo models. For TextVQA, we do not make use of the provided OCR
transcripts and instead directly rely on the off-the-shelf OCR capabilities of the Flamingo models.
For RareAct, a zero-shot benchmark, we change the verb names to the third person, add an article
before each noun and use the prompt “Caption: a person {verb + object}”.

B.1.6 Dialogue prompt

For the dialogue examples in Figures 1 and 11, the following prompt is used:

This is a conversation between a human, User, and an intelligent
visual AI, Flamingo. User sends images, and Flamingo describes
them.

User: <a cat image>

Flamingo: That is a cat. It’s a tiny kitten with really cute big
ears.

User: <a dinner image>

Flamingo: This is a picture of a group of people having dinner.
They are having a great time!

User: Can you guess what are they celebrating?

Flamingo: They might be celebrating the end of a successful
project or maybe a birthday?

User: <a graph image>

Flamingo: This is a graph, it looks like a cumulative density
function graph.
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Model Method Prompt size shots/class ImageNet
top 1

Kinetics700
avg top1/5

SotA Fine-tuned - full 90.9 [127] 89.0 [134]

SotA Contrastive - 0 85.7 [82] 69.6 [85]

NFNetF6 Our contrastive - 0 77.9 62.9

8 1 70.9 55.9
Flamingo-3B RICES 16 1 71.0 56.9

16 5 72.7 58.3

8 1 71.2 58.0
Flamingo-9B RICES 16 1 71.7 59.4

16 5 75.2 60.9

Random 16 ≤ 0.02 66.4 51.2

8 1 71.9 60.4
Flamingo-80B RICES 16 1 71.7 62.7

16 5 76.0 63.5

RICES+ensembling 16 5 77.3 64.2

Table 7: Few-shot results on classification tasks. The Flamingo models can also be used for
standard classification tasks. In particular, we explore having access to support sets bigger than what
our current prompt can accommodate (using up to 5000 support examples). In that regime, large
gains are obtained by using the RICES method [136] as well as prompt ensembling. We also observe
the same trend as with the vision-language benchmarks: bigger models do better and more shots help.

B.2 Additional performance results

B.2.1 Few-shot learning on classification tasks

We consider applying the Flamingo models to well-studied classification benchmarks like ImageNet
or Kinetics700. Results are given in Table 7. We observe a similar pattern as in other experiments:
larger model tend to perform better. Second, given that few-shot classification tasks often come
with more training examples (e.g., 1000 for ImageNet with 1 example per class), using methods
to scale to larger support sets is beneficial. RICES (Retrieval In-Context Example Selection [136]
described in Appendix A.2) performs substantially better than simply selecting examples randomly for
inclusion in the prompt. Indeed, Flamingo achieves a 9.2% improvement in ImageNet classification
when selecting 16 support examples out of 5000 using RICES, compared to choosing the same
number of examples randomly. Ensembling multiple prompts further boosts results. However, note
that Flamingo models underperform the current dominant contrastive paradigm for classification
tasks; in particular, they underperform the very contrastive model used as their vision encoder (see
Appendix D.1 on Flamingo’s limitations for more details). Finally, state-of-the-art zero-shot models
on ImageNet such as BASIC [82] and LiT [146] are particularly optimized on classification tasks as
they are trained on JFT-3B [145], a dataset with images and labels. Improving the performance of
VLMs such as Flamingo on classification tasks is an interesting direction for future work.

B.2.2 Fine-tuning Flamingo as a pretrained vision-language model

To fine-tune Flamingo models on a downstream task, we train them on data batches from the task of
interest in the same format as the single-image/video datasets described in Section 2.4.

Freezing and hyperparameters. When fine-tuning Flamingo, we keep the underlying LM layers
frozen and train the same Flamingo layers as during pretraining. We also increase the resolution of
the input images from 320× 320 to 480× 480. Unlike in the pretraining phase, we also fine-tune the
base visual encoder, finding that this typically improves results, likely due in part to the higher input
resolution.

We choose certain hyperparameters on a per-task basis by grid search on a validation subset of the
training set (or on the official or standard validation set where available). These hyperparameters
include the learning rate (ranging from 3× 10−8 to 1× 10−5) and decay schedule (exponential decay
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by factors of 10×), number of training steps, batch size (either 8 or 16), and whether visual data
augmentation (color augmentation, random horizontal flips) is used.

Results. In Table 8, we present additional results for per-task Flamingo fine-tuning. When provided
access to a large-scale task-specific dataset with many thousands of examples, we find that we can
improve results over our previously presented in-context few-shot learning results, setting a new state
of the art on five tasks: VQAv2, VATEX, VizWiz, MSRVTTQA, and HatefulMemes. For example,
on VQAv2, we observe improved results at 82.0%, outperforming our results achieved with 32-shot
in-context learning (67.3%) as well as the previous state of the art (81.3%, Yan et al. [133]).

Although these fine-tuning results come at high computational cost relative to the previously presented
in-context few-shot learning results – among other challenges like hyperparameter tuning – they
further demonstrate the power of VLM pretraining for visual understanding even in the presence of
large amounts of task-specific training data.

In some cases our results likely trail the state of the art due in part to the fact that we simply optimise
log-likelihood and do not make use of common task-specific metric optimisation tricks, such as CIDEr
optimisation [64, 90] for COCO captioning, and fine-tuning on dense annotations for VisDial [79].
For example, Murahari et al. [79] report a 10% relative improvement in NDCG on VisDial from such
dense annotation fine-tuning.

B.2.3 Zero-shot performance of the pretrained contrastive model

A crucial part of our approach is the Vision Encoder, pretrained separately using contrastive learning
and kept frozen when training Flamingo models. We report zero-shot image classification results on
ImageNet, Kinetics700 and retrieval results on Flick30K and COCO. The classification results are
presented in Table 7 while the retrieval results are given in Table 9. For the retrieval tasks, our model
outperforms the current state-of-the-art contrastive dual encoder approaches CLIP [85], ALIGN [50]
and Florence [140]. However, we underperform the zero-shot state-of-the-art on Kinetics700 (CLIP)
and the zero-shot state-of-the-art on ImageNet (BASIC). However, as noted earlier, BASIC [82] is
particularly optimized for classification: it is trained on the JFT-3B [145] dataset which has images
with labels rather than captions. We have noticed training on image and short text descriptions similar
to labels significantly helps for ImageNet but is detrimental for retrieval benchmarks which require
capturing rich scene descriptions instead. Since our goal is to use the Vision Encoder as a feature
extractor for the Flamingo models in order to capture the whole scene and not just the main object,
we favor retrieval metrics over classification ones. We provide more details about the contrastive
pretraining in Appendix B.1.3.

Table 8: Comparison to SotA when fine-tuning Flamingo. We fine-tune Flamingo on all nine
tasks where Flamingo was not SotA with few-shot learning. Flamingo sets a new SotA on five of
these tasks sometimes even beating methods that resorts to known performance optimization tricks
such as model ensembling (on VQAv2, VATEX, VizWiz and HatefulMemes). Best numbers among
the restricted SotA are in bold. Best numbers overall are underlined. Restricted SotA† only includes
methods that use a single model (not ensembles) and do not directly optimise the test metric (no
CIDEr optimisation).
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test-dev test-std test test test-dev test-std test valid test-std valid valid test-std test seen
🦩Flamingo - 32 shots 67.6 - 113.8 65.1 49.8 - 31.0 56.8 - 86.8 36.0 - 70.0

SimVLM [124] 80.0 80.3 143.3 - - - - - - - - - -
OFA [119] 79.9 80.0 149.6 - - - - - - - - - -

Florence [140] 80.2 80.4 - - - - - - - - - - -
🦩Flamingo Fine-tuned 82.0 82.1 138.1 84.2 65.7 65.4 47.4 61.8 59.7 118.6 57.1 54.1 86.6

80.2 80.4 143.3 76.3 - - 46.8 75.2 74.5 138.7 54.7 73.7 79.1Restricted SotA†
[140] [140] [124] [153] - - [51] [79] [79] [132] [137] [84] [62]
81.3 81.3 149.6 81.4 57.2 60.6 - - 75.4 - - - 84.6Unrestricted SotA
[133] [133] [119] [153] [65] [65] - - [123] - - - [152]
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Flickr30K COCO
image-to-text text-to-image image-to-text text-to-image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Florence [140] 90.9 99.1 - 76.7 93.6 - 64.7 85.9 - 47.2 71.4 -
ALIGN [50] 88.6 98.7 99.7 75.7 93.8 96.8 58.6 83.0 89.7 45.6 69.8 78.6
CLIP [85] 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.7 62.4 72.2

Ours 89.3 98.8 99.7 79.5 95.3 97.9 65.9 87.3 92.9 48.0 73.3 82.1

Table 9: Zero-shot contrastive pretraining evaluation. Zero-shot image-text retrieval evaluation of
our pretrained contrastive model compared to the state-of-the-art dual encoder contrastive models.

Ablated Flamingo 3B Changed Param. Step COCO OKVQA VQAv2 MSVDQA VATEX Overall
setting value value count ↓ time ↓ CIDEr↑ top1↑ top1↑ top1↑ CIDEr↑ score↑

Flamingo 3B model (short training) 3.2B 1.74s 86.5 42.1 55.8 36.3 53.4 70.7

(i) Resampler Medium Small 3.1B 1.58s 81.1 40.4 54.1 36.0 50.2 67.9
size Large 3.4B 1.87s 84.4 42.2 54.4 35.1 51.4 69.0

(ii) Multi-Img att. Only last All previous 3.2B 1.74s 70.0 40.9 52.0 32.1 46.8 63.5

(iii) 𝑝𝑛𝑒𝑥𝑡 0.5 0.0 3.2B 1.74s 85.0 41.6 55.2 36.7 50.6 69.6
1.0 3.2B 1.74s 81.3 43.3 55.6 36.8 52.7 70.4

(iv) LM pretraining MassiveText C4 3.2B 1.74s 81.3 34.4 47.1 60.6 53.9 62.8

(v) Freezing Vision ✓
✗ (random init) 3.2B 4.70s* 74.5 41.6 52.7 31.4 35.8 61.4
✗ (pretrained) 3.2B 4.70s* 83.5 40.6 55.1 34.6 50.7 68.1

(vi) Co-train LM
✗

✓ (random init) 3.2B 5.34s* 69.3 29.9 46.1 28.1 45.5 55.9
on MassiveText ✓ (pretrained) 3.2B 5.34s* 83.0 42.5 53.3 35.1 51.1 68.6

(vii) Dataset M3W+ITP+VTP LAION400M and CLIP 3.1B 0.86s 61.4 37.9 50.9 27.9 29.7 54.7
and Vision encoder and NFNetF6 M3W+LAION400M+VTP and CLIP 3.1B 1.58s 76.3 41.5 53.4 32.5 46.1 64.9

Table 10: Additional ablation studies. Each row in this ablation study table should be compared to
the baseline Flamingo run reported at the top of the table. The step time measures the time spent to
perform gradient updates on all training datasets. (*): Due to higher memory usage, these models
were trained using four times more TPU chips. The obtained accumulation step time was therefore
multiplied by four.

B.3 Extended ablation studies

B.3.1 Flamingo

Ablation study experimental setup. As in Table 10, we report per-task results and the Overall score
(see Section 3.3) for Flamingo-3B on the validation subsets of the 5 DEV multimodal benchmarks
with 4 shots in Table 10. We perform the ablation using batch size of 256 for M3W, 512 for ALIGN,
512 for LTIP and 64 for VTP. Models are trained for 1 million gradient steps (meaning 250,000
gradient updates, for the base model as we accumulate gradients over four datasets).

Resampler size. We further investigate the architectural design of the Resampler in row (i) of
Table 10. We ablate the size of our Resampler with three options: Small, Medium (default value for
all Flamingo models), and Large. We see that the best performance is achieved with a medium size
Resampler. Moreover, when scaled together with the frozen LM, we observed that increasing the size
of the Perceiver Resampler lead to unstable training. We thus made a conservative choice to keep the
same medium Resampler size for all our Flamingo models.

Effect of how many images are cross-attended to. In the interleaved image-text scenario, we
ablate whether the model can only attend to the single most recent previous image, or to all the
previous images (row (ii) of Table 10). We can see that the single image case leads to significantly
better results (7.2% better in the overall score). One potential explanation is that when attending
to all previous images, there is no explicit way of disambiguating between different images in
the cross-attention inputs. Nonetheless, recent work has shown that such disambiguation is still
possible implicitly through the causal attention mechanism [36]. We also explored more explicit
ways to enable this while attending to all previous images by modifying the image tags to include
an index (<image 1>, <image 2>, etc.) and/or learning absolute index embeddings added to the
cross-attention features for each image. These strategies were not as robust as our method when the
number of images per sequence changes between training and test time. Such a property is desirable
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to reduce the number of images per sequence during training for better efficiency (we use 𝑁 = 5 at
training time) while still generalizing to many images for few-shot evaluation (we go up to 𝑁 = 32
at test time). For these reasons, we keep the single image cross-attention strategy for the Flamingo
models. Note that while the model cannot explicitly attend to all previous images due to this masking
strategy, it can still implicitly attend to them from the language-only self-attention that propagates all
previous images’ features via the previous text tokens.

M3W image placement data augmentation. Given a webpage, we don’t know in advance if the
text of the page will mention the previous or the next image in the two-dimensional layout of the
page DOM. For this reason, we explore a data augmentation on M3W controlled by 𝑝𝑛𝑒𝑥𝑡 which
indicates whether a given text token attends to the previous or the next image (see more details in
Appendix A.3.2). The default value 𝑝𝑛𝑒𝑥𝑡 =

1
2 means that for each webpage sampled, we decide

uniformly at random whether the model attends to the previous or next image. 𝑝𝑛𝑒𝑥𝑡 = 0 means the
model always attends to the previous image while 𝑝𝑛𝑒𝑥𝑡 = 1 means the model always attends to the
following image. The results (row (iii) of Table 10) show that using this randomization is beneficial.

Language model pretraining. To measure the importance of text pretraining, we compare the
performance of using a frozen decoder-only Transformer either pretrained on MassiveText (our main
model) or pretrained on the C4 dataset [87] (row (iv) of Table 10). Using the C4 dataset (which is
smaller and less filtered than MassiveText) for training leads to a significant loss in performance
(−7.9% overall). We note that the performance notably decreases for tasks that involve more language
understanding such as visual question-answering tasks (OKVQA, VQAv2 and MSVDQA) while it
remains on par for tasks that do not require as much language understanding (COCO, VATEX). This
highlights the importance of pretraining the LM on a high-quality text-only dataset.

Freezing the vision encoder. During Flamingo training, we freeze the pretrained components
(Vision Encoder and LM layers) while training newly added components from scratch. We ablate
in (v) of Table 10 this freezing decision by training the Vision Encoder weights either from scratch
or initialized with the contrastive vision-language task. If trained from scratch, we observe that the
performance decreases by a large margin of −9.3%. Starting from pretrained weights still leads to a
drop in performance of −2.6% while also increasing the compute cost of the training.

Alternative to freezing the LM by co-training on MassiveText. Another approach for preventing
catastrophic forgetting is to co-train on MassiveText [86], the dataset that was used to pretrain the
language model. Specifically, we add MassiveText to the training mixture, with a weight 𝜆𝑚 of 1.0
(best performing after a small grid search), using a sequence length of 2048 and the exact same setting
as the pretraining of Chinchilla [42] for computing the text-only training loss. In order to co-train on
MassiveText, we need to unfreeze the language model but we keep the vision encoder frozen. We
perform two ablations in row (vi) of Table 10: starting from a pretrained language model (with a
learning rate multiplier of 0.1 of the LM weights) versus initializing from scratch (with the same
learning rate everywhere). In both cases, the overall scores are worse than our baseline which starts
from the language model, pretrained on MassiveText, and is kept frozen throughout training. This
indicates that the strategy of freezing the language model to avoid catastrophic forgetting is beneficial.
Even more importantly, freezing the LM is computationally cheaper as no gradient updates of the
LM weights are required and we do not need to train on an additional dataset. This computational
argument is even more relevant for our largest model, Flamingo-80B, where we freeze almost 90%
of the overall weights.

Additional experiments using the LAION400M dataset. In order to provide reference numbers
that are more easily reproducible using publicly available datasets and network weights we also
provide two additional ablations using the CLIP ViT L-14 weights [85] and the LAION400M
dataset [96] in rows (vii) of Table 10.

B.3.2 Dataset mixing strategies for the contrastive pretraining

One key to achieving strong results was the inclusion of our new dataset LTIP alongside ALIGN for
training. Despite being a smaller dataset ALIGN by a factor of 6, a contrastive model trained on
only LTIP outperforms one trained only on ALIGN on our evaluation metrics, suggesting that dataset
quality may be more important than scale in the regimes in which we operate. We also find that a

36



Dataset Combination ImageNet COCO
strategy accuracy image-to-text text-to-image

top-1 R@1 R@5 R@10 R@1 R@5 R@10

LTIP None 40.8 38.6 66.4 76.4 31.1 57.4 68.4
ALIGN None 35.2 32.2 58.9 70.6 23.7 47.7 59.4
LTIP + ALIGN Accumulation 45.6 42.3 68.3 78.4 31.5 58.3 69.0
LTIP + ALIGN Data merged 38.6 36.9 65.8 76.5 15.2 40.8 55.7
LTIP + ALIGN Round-robin 41.2 40.1 66.7 77.6 29.2 55.1 66.6

Table 11: Effect of contrastive pretraining datasets and combination strategies. The first two
rows show the effect of training a small model on LTIP and ALIGN only; the final three show the
results of a small model trained on combinations of these datasets, comparing different combination
strategies.

model trained on both ALIGN and LTIP outperforms those trained on the two datasets individually
and that how the datasets are combined is important.

To demonstrate this, we train a small model with an NFNet-F0 vision encoder, BERT-mini language
encoder and batch size 2048 for 1 million gradient-calculation steps on ALIGN, LTIP and a mixture
of the two. The results are presented in Table 11. It shows the results of training models on the
combined datasets using three different merging regimes:

• Data merged: Batches are constructed by merging examples from each dataset into one
batch.

• Round-robin: We alternate batches of each dataset, updating the parameters on each batch.
• Accumulation: We compute a gradient on a batch from each dataset. These gradients are

then weighted and summed and use to update the parameters.

Across all evaluation metrics, we find that the Accumulation method outperforms other methods
of combining the datasets. Although the LTIP dataset is 5 × smaller than the ALIGN dataset, this
ablation study suggests that the quality of the training data can be more important than its abundance.

C Qualitative results

In addition to the samples in Figure 1, in this section we provide selected samples covering different
interaction modalities in Figures 10, 11, and 12. Unlike the quantitative benchmark results which use
beam search with a beam width of 3 for decoding, all qualitative results presented in this section use
greedy decoding for faster sampling.

Figure 10 shows the simplest form of interaction where a single image is provided followed by a text
prompt either in the form of a question or the start of a caption. Even though the model is not trained
specifically for the question and answer format, the capabilities of the pretrained language model
allows this adaptation. In many of these examples, Flamingo can do at least one step of implicit
inference. Some of the objects are not named in the prompt but their properties are queried directly.
Based on its visual input, the model manages to recall the knowledge relevant to the referred object
and thus produces the correct answer. Vision networks trained contrastively have been shown to learn
character recognition capabilities [85]. We observe that Flamingo preserves this capability in the full
model, in some cases for text that is rather small with respect to the size of the image.

Since our model can accept inputs in the form of arbitrary sequences of visuals and language, we
test its abilities to hold an extended dialogue with interleaved images and text. Figure 11 shows
some samples which are generated by prompting the model with a brief dialogue (Appendix B.1.6)
followed by user interaction including image insertions. Even after several rounds of interaction
Flamingo can still successfully attend to the image and reply to questions that can not be guessed by
language alone. We observe that multiple images can be separately attended: simple comparisons
and inferences are handled properly.

Lastly, we investigated similar capabilities with video inputs as they present some extra challenges
compared to images. Figure 12 shows some selected samples. As seen in the figure, in some cases
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Flamingo can successfully integrate information from multiple frames (e.g., videos scanning through
a scene or text) and answer questions involving temporal understanding (e.g., in the last example,
with the word “after”).

D Discussion

D.1 Limitations, failure cases and opportunities

Here, we describe some limitations and failure cases of our models, as well as opportunities for
further improving our models and extending their abilities.

Classification performance. Although our visual language models have important advantages over
contrastive models (e.g., few-shot learning and open-ended generation capabilities), their performance
lags behind that of contrastive models on classification tasks. We believe this is because the contrastive
training objective directly optimizes for text-image retrieval, and in practice, the evaluation procedure
for classification can be thought of as a special case of image-to-text retrieval [85]. This is not
the case for the language modeling objective we use to train our visual language models and this
may contribute to the observed performance gap on classification tasks. In particular, Zhao et al.
[148] have shown that language models suffer from various biases arising from the training data
distribution, the set of samples used in the prompt, and their order. They also show that such issues
can be mitigated with calibration techniques, provided one can assume a certain prior distribution
(e.g., uniform) over the label space. This assumption doesn’t hold in general, and further research is
needed to develop techniques to address these issues in the few-shot setting. More generally, seeking
objectives, architectures, or evaluation procedures that could bridge the gap between these two classes
of models is a promising research direction.

Legacies of language models. Our models build on powerful pretrained causal language mod-
els, and as a side effect, directly inherit their weaknesses. For instance, causal modeling of the
conditioning inputs is strictly less expressive than bidirectional modeling. In this direction, recent
work has shown that non-causal masked language modeling adaptation [120] followed by multitask
fine-tuning [95, 125, 131] can efficiently improve the zero-shot performance of causal decoder-only
language models. Furthermore, transformer-based language models tend to generalize poorly to test
sequences significantly longer than the training ones [83]. In settings where the expected text output
is too long, the ability of the models to leverage enough shots for few-shot learning can be affected.
For instance, for the VisDial dataset [20], a single shot consists of an image followed by a long
dialogue composed of 21 different sentences. A sequence of 32 VisDial shots is thus composed of at
least 32× 21 = 672 sentences, which in practice means that the prompt length ranges from 4096 to
8192 tokens. This is significantly longer than the maximum sequence length (2048) our LMs have
been trained on [42]. To this end, we have capped our reported results on VisDial at 16 shots. On
another note, while our ablations demonstrate the importance of the language model priors inherited
from frozen language models, we suspect that they may play a role in occasional hallucinations and
ungrounded guesses observed in open-ended dialogue settings. We provide and analyze examples of
such behaviours in Figure 13. Finally, language modeling suffers from poor sample efficiency during
pretraining [11]. Mitigating this issue has the potential to greatly accelerate progress in the field,
by improving turnaround of large-scale training runs and in turn increasing the feasibility of more
systematic exploration of design decisions at larger scales. Further discussion on typical weaknesses
observed for large LMs can be found in [11, 86].

Trade-offs of few-shot learning methods. In the paper, we use in-context learning as our “go-to”
few-shot learning method (see Section 2.5). This method has notable advantages over gradient-based
approaches such as fine-tuning. Indeed, in-context learning requires almost no hyperparameter
tuning, works reasonably well in the very low data regime (dozens of examples), and only requires
inference, simplifying deployment. In contrast, gradient-based approaches require carefully tuned
design choices to avoid overfitting (either by proper learning rate schedule or architecture design [43])
and often need more data (thousands) to work well. This motivated our focus on in-context learning;
however, this approach also has drawbacks we discuss next.

Inference compute cost. The compute cost of in-context learning with transformer models scales
linearly with the number of shots if one can reuse the few-shot prompt for multiple query samples
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Question: What do you think
the capacities of these are?

Answer:

Question: What is odd about
this image? Explain why it is

unusual. Answer:

Question: What country is
this? Why do you think so?

Answer:

C
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The floppy disk is 1.44MB
and the CD is 700MB.

The image is odd because
the elephant is in the back
of the truck. It is unusual
because elephants are not
usually transported in the

back of a truck.

It is Canada. I think so
because the flag is the

Canadian flag.
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Question: What nutrients is
the fruit in the image rich in?

Answer:

Question: What is the
purpose of this? Answer:

Question: What season is
this? Explain why. Answer:

C
om

pl
et

io
n

Vitamin C, potassium, and
fiber.

To keep the mosquitoes out
of the bed.

This is winter season. The
Christmas tree and the
presents are the main

reasons why it is winter.
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Question: What is the title of
the book? Answer:

The ingredients of this dish
are The soundtrack includes

C
om

pl
et

io
n

The House Book. : beef, potatoes, carrots,
broccoli, and lemon.

the songs "Let It Go" and
"For the First Time in

Forever" by Tony Award®
winner Idina Menzel, who

plays Elsa [...]

Figure 10: Selected single image samples. Gray boxes are user input and the pink boxes are
Flamingo output.
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This is a dog. It’s a
white fluffy dog.

What season is this?

It looks like a summer
day.

Why do you think so?

The grass is green and
the dog is not wearing
a sweater.

What breed is the dog?

It’s a Samoyed.

Is the dog running?

No, it’s sitting.

Can you describe the
pose of its back legs?

The back legs are bent
and the dog is sitting
on its haunches.

Which city is this?

This is a street sign in
New York City.

Which street corner is it?

It is the intersection of
Madison Avenue and
East 42nd Street.

Which subway station
is nearby?

The closest subway
station is Grand Cen-
tral Station.

How about the nearest
park?

The nearest park is
Bryant Park.

There is another sign.
What does it say?

It says "One way".

I would like you to
read the color and then
say the color it is writ-
ten in. For example:

Color is "Purple" and
it is written in red.

Color is "Green" and it
is written in blue.

Color is "Yellow" and
it is written in green.

Color is "Black" and it
is written in yellow.

Well done! Do you
know the name of the
test these images come
from?

I think it is called the
Stroop test.

Can you explain how
humans perform in
this test?

Humans are slower
when the color of the
word and the color of
the word are different.

How about you?

I am not affected by
this difference.

What is the difference
between these two im-
ages?

The first one is a trian-
gle and the second one
is a hexagon.

Which one has larger
internal angles?

The hexagon has
larger internal angles.

What color are they?

They are both red.

What is in this picture?

It’s a bowl of soup
with a monster face on
it.

What is the monster
made out of?

It’s made out of veg-
etables.

No, it’s made out of
a kind of fabric. Can
you see what kind?

It’s made out of a
woolen fabric.

This is a picture of a
dog. It looks like it is
a little bit naughty.

What happened here?

It looks like the dog is
destroying the sofa.

How does the person
thinking about it?

The person is angry.

What is the person
holding?

It looks like a cup of
coffee.

How is the weather
outside?

It looks like a sunny
day.

What is the name of
the company on this
card?

It’s Homebase.

What is its web url?

It’s homebase.co.uk.

What are they doing?

They are a home im-
provement retailer.

What do you think the
robot is doing here?

The robot is picking
up a ball.

What color is the ball?

It’s red.

I want the ball to be
hidden. Is there some-
thing the robot can use
for that?

The robot can use a
cloth to hide the ball.

What color is the
cloth?

The cloth is blue.

Figure 11: Selected dialogue samples. Gray boxes are user input and the pink boxes are Flamingo
output. For dialogue, Flamingo is provided with a custom prompt (hidden from the visualization but
shown in Appendix B.1.6) containing a dialogue with 3 corresponding images, but it is not fine-tuned
for dialogue in any other way.
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Input Prompt Completion

Question: What is happening here? Answer:

−→ The dachschund puppy
is being weighed on a

scale.

Question: What object is the avatar picking up? Answer:

−→ A sword.

Question: What is the object being lifted? Answer:

−→ The object is a small
plastic bowl.

Question: What are the three objects in this video? Answer:

−→ A scissors, a pen, and a
rubber band.

Question: What is written here? Answer:

−→ Flamingo.

What happens to the man after hitting the ball? Answer:

−→ he falls down.

Figure 12: Selected video samples. These are all of the frames the model sees. (Best viewed with zoom.)

(by caching the keys and values) and quadratically otherwise. In contrast, gradient-based few-shot
learning approaches [43] have constant complexity with respect to the number of shots during
inference.

Prompt sensitivity. In-context learning has also been shown to be disconcertingly sensitive to various
aspects of the demonstrations, such as the order of the samples [148] or their format.

Leveraging more shots. When using in-context learning, performance plateaus rapidly as the number
of few-shot samples increases beyond 32. This proves a striking contrast with typical gradient-based
methods, for which the amount of correctly paired training data is a critical factor for performance.
We note that RICES (Retrieval In-Context Example Selection [136] described in Appendix A.2)
effectively mitigates this issue for classification tasks (Appendix B.2.1), but still faces similar issues
beyond a small number of example per class.

Task location. Recent work on understanding what makes in-context learning effective sheds some
light on a possible explanation for why more shots do not always help [76, 92]. In more detail, Brown
et al. [11] raise the question of whether in-context learning actually “learns” new tasks at inference
time based on the provided input-output mappings, or simply recognizes and identifies tasks learned
during training. On this question, the findings of Reynolds and McDonell [92] suggest that the latter
is the key driver of performance across diverse settings, and refer it as task location. Similarly, Min
et al. [76] show that the mapping from input to output generally has limited impact on few-shot
performance, as opposed to specifying the overall format of the examples. In line with these findings,
we also observe non-trivial zero-shot performance using prompt without any images, hence also
highlighting that the format of the task matters significantly. Intuitively, a handful of samples may
often be enough to perform task location well, but the model may generally not be able to leverage
further samples at inference time to refine its behaviour.
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Flamingo: a Visual Language Model for Few-Shot Learning

In
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pt

Question: What is on the phone
screen? Answer:

Question: What can you see out
the window? Answer:

Question: Whom is the person
texting? Answer:

Ou
tp

ut

A text message from a friend. A parking lot. The driver.

Figure 13 | Hallucinations and ungrounded guesses in open-ended visual question answering. Left: The
model occasionally hallucinates by producing answers that seem likely given the text only, but are wrong given
the image as additional input. Middle: Similar hallucinations can be provoked by adversarially prompting the
model with an irrelevant question. Right: A more common pitfall arises when the model makes ungrounded
guesses when the answer cannot be determined based on the inputs. Few-shot examples and more sophisticated
prompt design may be used to mitigate these issues. More broadly, addressing these issues is an important
research direction towards improving our models’ applications in open-ended visual dialogue settings.

fine-tuning (Sanh et al., 2022; Wei et al., 2021; Xu et al., 2022) can e�ciently improve the zero-shot
performance of causal decoder-only language models. Furthermore, transformer-based language
models tend to generalize poorly to test sequences significantly longer than the training ones (Press
et al., 2022). In settings where the expected text output is too long, the ability of the models to
leverage enough shots for few-shot learning can be a�ected. For instance, for the VisDial dataset (Das
et al., 2017), a single shot consists of an image followed by a long dialogue composed of 21 di�erent
sentences. A sequence of 32 VisDial shots is thus composed of at least 32⇥ 21 = 672 sentences, which
in practice means that the prompt length ranges from 4096 to 8192 tokens. This is significantly
longer than the maximum sequence length (2048) our LMs have been trained on (Ho�mann et al.,
2022). Empirically, we observe a large drop of roughly 30% in relative performance on VisDial
when going from 16-shots to 32-shot, likely due to this limitation. On another note, while our
ablations demonstrate the importance of the language model priors inherited from frozen language
models, we suspect that they may play a role in occasional hallucinations and ungrounded guesses
observed in open-ended dialogue settings. We provide and analyze examples of such behaviours in
Figure 13. Finally, language modeling su�ers from poor sample e�ciency during pretraining (Brown
et al., 2020). Mitigating this issue has the potential to greatly accelerate progress in the field, by
improving turnaround of large-scale training runs and in turn increasing feasibility of more systematic
exploration of design decisions at larger scales. Further discussion on typical weaknesses observed for
large LMs can be found in (Brown et al., 2020; Rae et al., 2021).

Trade-o�s of few-shot learning methods. In the paper, we use in-context learning as our “go-to”
few-shot learning method (see Section 4.2). This method has notable advantages over gradient-based
approaches such as fine-tuning (see Section 4.3). Indeed, in-context learning requires almost no
hyperparameter tuning, works reasonably well in the very low data regime (dozens of examples), and
only requires inference, simplifying deployment. In contrast, gradient-based approaches require care-
fully tuned design choices to avoid overfitting (either by proper learning rate schedule or architecture
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Figure 13: Hallucinations and ungrounded guesses in open-ended visual question answering.
Left: The model occasionally hallucinates by producing answers that seem likely given the text only,
but are wrong given the image as additional input. Middle: Similar hallucinations can be provoked
by adversarially prompting the model with an irrelevant question. Right: A more common pitfall
arises when the model makes ungrounded guesses when the answer cannot be determined based on
the inputs. Few-shot examples and more sophisticated prompt design may be used to mitigate these
issues. More broadly, addressing these issues is an important research direction towards improving
our models’ applications in open-ended visual dialogue settings.

In summary, there is no “golden” few-shot method that would work well in all scenarios. In particular,
the best choice of few-shot learning approach strongly depends on characteristics of the application,
an important one being the number of annotated samples. On this point, in our work, we demonstrate
that in-context learning is highly effective in the data-starved regime (32 samples or fewer). There
may be opportunities to combine different methods to leverage their complementary benefits, in
particular when targeting less data-constrained data regimes (e.g., hundreds of samples).

Extending the visual and text interface. Natural language is a powerful and versatile input/output
interface to provide descriptions of visual tasks to the model and generate outputs or estimate
conditional likelihoods over possible outputs. However, it may be a cumbersome interface for
tasks that involve conditioning on or predicting more structured outputs such as bounding boxes (or
their temporal and spatio-temporal counterparts); as well as making spatially (or temporally and
spatio-temporally) dense predictions. Furthermore, some vision tasks, such as predicting optical flow,
involve predicting in continuous space, which is not something our model is designed to handle out of
the box. Finally, one may consider additional modalities besides vision that may be complementary,
such as audio. All of these directions have the potential to extend the range of tasks that our models
can handle; and even improve performance on the ones we focus on, thanks to synergies between the
corresponding abilities.

Scaling laws for vision-language models. In this work, we scale Flamingo models up to 80B
parameters and provide some initial insights on their scaling behaviour across evaluation benchmarks,
summarized in Figure 2. In the language space, an important line of work has focused on establishing
scaling laws for language models [42, 53]. In the vision domain, Zhai et al. [145] take a step in
this direction. Similar efforts have yet to be made for vision-language models, including contrastive
models, as well as visual language models such as the ones we propose. While language modeling
scaling law research has focused on perplexity as the golden metric, we speculate that it may be more
directly useful for our purposes to establish such trends in terms of aggregate downstream evaluation
task performance.
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D.2 Benefits, risks and mitigation strategies

D.2.1 Benefits

Accessibility. A system like Flamingo offers a number of potential societal benefits, some of which
we will discuss in this section. Broadly, the fact that Flamingo is capable of task generalisation
makes it suitable for use cases that have not been the focus of vision research historically. Typical
vision systems are trained to solve a particular problem by training on large databases of manually
annotated task-specific examples, making them poorly suited for applications outside of the narrow
use cases for which they were deliberately trained. On the other hand, Flamingo is trained in a
minimally constrained setting, endowing it with strong few-shot task induction capabilities. As we’ve
shown in our qualitative examples (Appendix C), Flamingo can also be used through a “chat”-like
interface for open-ended dialogue. Such capabilities could enable non-expert end users to apply
models like Flamingo even to low-resource problems for which little to no task-specific training
data has been collected, and where queries might be posed in a variety of formats and writing
styles. In this direction, we have shown that Flamingo achieves strong performance on the VizWiz
challenge1, which promotes visual recognition technologies to assist visually impaired people. A
dialogue interface could also promote better understanding and interpretability of visual language
models. It could help highlight issues with bias, fairness, and toxicity the model may pick up on from
the training data. Overall, we believe that Flamingo represents an important step towards making
state-of-the-art visual recognition technology more broadly accessible and useful for many diverse
applications.

Model recycling. From a modeling perspective, although Flamingo is computationally expensive
to train, it importantly leverages pretrained frozen language models and visual encoders. We
demonstrated that new modalities can be introduced into frozen models, thereby avoiding expensive
retraining. As such models continue to grow in size and computational demands, “recycling” them
will become increasingly important from an environmental perspective (as well as a practical one), as
described in Larochelle [55] and explored in Strubell et al. [105] for language models. We hope such
results may inspire further research into how existing models can be repurposed efficiently rather
than trained from scratch.

D.2.2 Risks and mitigation strategies

This section provides some early investigations of the potential risks of models like Flamingo. This
study is preliminary and we foresee that further research efforts should be undertaken to better
assess those risks. We also discuss potential mitigation strategies towards safely deploying these
models. Note that as explained in our Model Card [77] in Appendix E, this model was developed for
research purposes only and should not be used in specific applications before proper risk analyses are
conducted and mitigation strategies are explored.

By construction, Flamingo inherits the risks of Large LMs. Recall that a large part of our model
is obtained by freezing the weights of an existing language model [42]. In particular, if provided with
no images Flamingo falls back to language model behavior. As such Flamingo is exposed to the same
risks of large language models: it can output potentially offensive language, propagate social biases
and stereotypes, as well as leaking private information [126]. In particular, we refer to the analysis
presented in the Chinchilla paper (Hoffmann et al. [42], Section 4.2.7) in terms of gender bias on
the Winogender dataset [93] which demonstrate that even though this model is less biased towards
gender than previous models [86], gender biases are still present. In terms of unprompted toxicity,
we also refer to the analysis from Chinchilla [42] which highlights that overall the propensity of the
model to produce toxic outputs when not prompted to do so is rather low, as measured by computing
the PerspectiveAPI toxicity score on 25,000 samples. Weidinger et al. [126] detail possible long-term
mitigation strategies for these risks. They include social or public policy interventions, such as the
creation of regulatory frameworks and guidelines; careful product design, for instance relating to user
interface decisions; and research at the intersection between AI Ethics and NLP, such as building
better benchmarks and improving mitigation strategies. In the short term, effective approaches include
relying on prompting to mitigate any biases and harmful outputs [86]. Next, we explore the additional
risks incurred by Flamingo’s additional visual input capabilities.

1https://vizwiz.org/
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CIDEr difference CIDER
female - male = ∆ darker - lighter = ∆ overall

AoANet [46] - +0.0019 1.198
Oscar [61] - +0.0030 1.278
Flamingo, 0 shot 0.899− 0.870 = +0.029 (𝑝 = 0.52) 0.955− 0.864 = +0.091 (𝑝 = 0.25) 0.843
Flamingo, 32 shots 1.172− 1.142 = +0.030 (𝑝 = 0.54) 1.128− 1.152 = −0.025 (𝑝 = 0.76) 1.138

Table 12: Bias evaluation of Flamingo for COCO captioning. We report results on the COCO
dataset splits over gender and skin tone provided by Zhao et al. [147].

Gender and racial biases when prompted with images. Previous work has studied biases that
exist in captioning systems [37, 147]. Such modeling biases can result in real-world harms if
deployed without care. For AI systems to be useful to society as a whole, their performance should
not depend on the perceived skin tone or gender of the subjects – they should work equally well for
all populations. However, current automatic vision system performance has been reported to vary
with race, gender or when applied across different demographics and geographic regions [12, 21, 97].
As a preliminary study assessing how Flamingo’s performance varies between populations, we follow
the study proposed in Zhao et al. [147] and report how the captioning performance of our model
varies on COCO as a function of gender and race. Note that we use a different evaluation protocol
from the one proposed by Zhao et al. [147]; in that work, they measure results across 5 pretrained
models and compute confidence intervals across aggregated per-model scores. Here, we have just
one copy of our model (due to its high training cost), and we instead perform statistical tests on the
per-sample CIDEr scores across the splits from Zhao et al. [147]. We report the results in Table 12.

Overall, when comparing the CIDEr scores aggregated among images labeled as female versus male,
as well as when comparing darker skin versus lighter skin, we find there are no statistically significant
differences in the per-sample CIDEr scores. To compare the two sets of samples, we use a two-tailed
𝑡-test with unequal variance, and among the four comparisons considered, the lowest 𝑝-value we find
is 𝑝 = 0.25, well above typical statistical significance thresholds (e.g. a common rejection threshold
might be 𝑝 < 𝛼 = 0.05). This implies that the differences in scores are indistinguishable from
random variation under the null hypothesis that the mean scores are equal. We note that a failure to
reject the null hypothesis and demonstrate a significant difference does not imply that there are no
significant differences; it is possible that a difference exists that could be demonstrated with larger
sample sizes, for example. However, these preliminary results are nonetheless encouraging.

Toxicity when prompted with images. We also evaluate the toxicity of Flamingo using the Per-
spective API2 to evaluate the toxicity of the model’s generated captions when prompted with images
from the COCO test set. We observe that some captions are labelled as potentially toxic by the
classifier; however, when examining them manually, we do not observe any clear toxicity – output
captions are appropriate for the images provided. Overall, based on our own experiences interacting
with the system throughout the course of the project, we have not observed toxic outputs when given
“safe-for-work” imagery. However this does not mean the model is incapable of producing toxic
outputs, especially if probed with “not-safe-for-work” images and/or toxic text. A more thorough
exploration and study would be needed if such a model were put in production.

Applying Flamingo for mitigation strategies. Thanks to its ability to rapidly adapt in low-resource
settings, Flamingo could itself be applied in addressing some of the issues described above. For
instance, following Thoppilan et al. [111], adequately conditioned or fine-tuned Flamingo models
could be used for filtering purposes of toxic or harmful samples in the training data. In their work,
they observe significant improvements relating to safety and quality when fine-tuning on the resulting
data. Furthermore, during evaluation, such adapted models could be used to down-rank or exclude
outputs that might be classified as offensive, promoting social biases and stereotypes or leaking
private information, thus accelerating progress in this direction even for low-resource tasks. Our
results on the HatefulMemes benchmark represent a promising step in this direction. Recent work
in the language modeling space has also shown success in training an LM to play the role of a “red
team” and generate test cases, so as to automatically find cases where another target LM behaves in a
harmful way [81]. A similar approach could be derived for our setting. Enabling the model to support

2https://perspectiveapi.com/
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outputs with reference to particular locations within the visual inputs, or to external verified quotes
is also an interesting direction [72, 111]. Finally, in Figure 11, we provide qualitative examples
demonstrating that Flamingo can explain its own outputs, suggesting avenues to explainability and
interpretability using the model’s text interface.

E Flamingo Model Card

We present a model card for Flamingo in Table 13, following the framework presented by Mitchell
et al. [77].

Model Details

Model Date March 2022

Model Type Transformer-based autoregressive language model, condi-
tioned on visual features from a convnet-based encoder. Ad-
ditional transformer-based cross-attention layers incorporate
vision features into the language model’s text predictions.
(See Section 2 for details.)

Intended Uses

Primary Intended Uses The primary use is research on visual language models
(VLM), including: research on VLM applications like clas-
sification, captioning or visual question answering, under-
standing how strong VLMs can contribute to AGI, advancing
fairness and safety research in the area of multimodal re-
search, and understanding limitations of current large VLMs.

Out-of-Scope Uses Uses of the model for visually conditioned language gen-
eration in harmful or deceitful settings. Broadly speaking,
the model should not be used for downstream applications
without further safety and fairness mitigations specific to
each application.

Factors

Card Prompts – Relevant Factor Relevant factors include which language is used. Our model
is trained on English data. Our model is designed for research.
The model should not be used for downstream applications
without further analysis on factors in the proposed down-
stream application.

Card Prompts – Evaluation Factors Flamingo is based on Chinchilla (a large proportion of the
weights of Chinchilla are used as this) and we refer to the
analysis provided in [42, 86] for the language only com-
ponent of this work. We refer to our study presented in
Appendix D.2.2 for a toxicity analysis when the model is
conditioned on an image.

Metrics
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Model Performance Measures We principally focus on the model’s ability to predict relevant
language when given an image. For that we used a total of 18
different benchmarks described in Appendix B.1.4 spanning
various vision and language tasks such as classification (Ima-
geNet, Kinetics700, HatefulMemes), image and video cap-
tioning (COCO, VATEX, Flickr30K, YouCook2, RareAct),
visual question answering (OKVQA, VizWiz, TextVQA,
VQAv2, MSRVTTQA, MSVDQA, iVQA, STAR, NextQA)
and visual dialog (VisDiag). This was tested either in an
open ended setting where Flamingo generate language and
we compare the outputs with the ground truth or in a close
ended setting where we directly score various outcomes us-
ing the likelihood of the model.

Decision thresholds N/A

Approaches to Uncertainty and
Variability

Due to the costs of training Flamingo, we cannot train it
multiple times. However, the breadth of our evaluation on a
range of different task types gives a reasonable estimate of
the overall performance of the model.

Evaluation Data

Datasets See Table 6 for a detailed list.

Motivation We chose our evaluation datasets to span an important range
of vision and language tasks to correctly assess the ability
of Flamingo to produce relevant text given an image.

Preprocessing Input text is tokenized using a SentencePiece tokenizer with
a vocabulary size of 32,000. Images are processed so that
their mean and variance are 0 and 1 respectively.

Training Data

See [50], the Datasheet in Appendix F.1, Appendix F.2.1, Appendix F.2.2

Quantitative Analyses

Unitary Results Flamingo sets a new state of the art in few-shot learning
on a wide range of open-ended vision and language tasks.
On the 16 tasks we consider, Flamingo also surpasses the
fine-tuned state-of-art in 6 of the cases despite using orders
of magnitude less task-specific training data. We refer to
Section 3 for the full details of our quantitative study.

Intersectional Results We did not investigate intersectional biases.

Ethical Considerations

Data The data is sourced from a variety of sources, some of it from
web content. Sexually explicit content is filtered out, but
the dataset does include racist, sexist or otherwise harmful
content.

Human Life The model is not intended to inform decisions about matters
central to human life or flourishing.
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Mitigations Apart from removing sexual explicit content we did not filter
out toxic content, following the rationale of Rae et al. [86].
More work is needed on mitigation approaches to toxic con-
tent and other types of risks associated with language models,
such as those discussed in Weidinger et al. [126].

Risks and Harms The data is collected from the internet, and thus undoubtedly
toxic and biased content is included in our training dataset.
Furthermore, it is likely that personal information is also in
the dataset that has been used to train our models. We defer
to the more detailed discussion in Weidinger et al. [126].

Use Cases Especially fraught use cases include the generation of fac-
tually incorrect information with the intent of distributing
it or using the model to generate racist, sexist or otherwise
toxic text with harmful intent. Many more use cases that
could cause harm exist. Such applications to malicious use
are discussed in detail in Weidinger et al. [126].

Table 13: Flamingo Model Card. We follow the framework presented in Mitchell et al. [77].

F Datasheets

F.1 M3W dataset

We follow the framework defined by Gebru et al. [30] and provide the datasheet for M3W in Table 14.

Motivation

For what purpose was the dataset
created? Who created the dataset?
Who funded the creation of the
dataset?

The dataset was created for pre-training vision-language
models and was created by researchers and engineers.

Any other comments? None.

Composition

What do the instances that comprise
the dataset represent (e.g., docu-
ments, photos, people, countries)?

All instances of the dataset are documents from the web
containing interleaved text and images.

How many instances are there in
total (of each type, if appropriate)?

There are 43.3M instances (documents) in total, with a total
of 185M images and 182 GB of text.

Does the dataset contain all possi-
ble instances or is it a sample (not
necessarily random) of instances
from a larger set?

The dataset is a sample from a larger set.

What data does each instance con-
sist of?

Each instance is made up of a sequence of UTF-8 bytes en-
coding the document’s text, as well as a sequence of integers
indicating the positions of images in the text, and the images
themselves in compressed format (see Section 2.4).

Is there a label or target associated
with each instance?

No, there are no labels associated with each instance.
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Is any information missing from in-
dividual instances?

No.

Are relationships between individ-
ual instances made explicit?

There are no relationships between the different instances in
the dataset.

Are there recommended data splits? We use random splits for the training and development sets.

Are there any errors, sources
of noise, or redundancies in the
dataset?

There is significant redundancy at the sub-document level.

Is the dataset self-contained, or
does it link to or otherwise rely on
external resources?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.

Does the dataset contain data that,
if viewed directly, might be of-
fensive, insulting, threatening, or
might otherwise cause anxiety?

The dataset likely contains some data that might be con-
sidered offensive, insulting or threatening, as such data is
prevalent on the web. We do not try to filter out such content,
with the exception of explicit content, which we identify
using dedicated filter.

Collection Process

How was the data associated with
each instance acquired?

The data is available publicly on the web.

What mechanisms or procedures
were used to collect the data?

The data was collected using a variety of software programs
to extract and clean the raw text and images.

If the dataset is a sample from a
larger set, what was the sampling
strategy?

We randomly subsample documents.

Over what timeframe was the data
collected?

The dataset was collected over a period of several months in
2021. We do not filter the sources based on creation date.

Were any ethical review processes
conducted?

No.

Preprocessing/cleaning/labeling

Was any preprocessing/Clean-
ing/Labeling of the data done (e.g.,
discretization or bucketing, tok-
enization, part-of-speech tagging,
SIFT feature extraction, removal of
instances, processing of missing
values)?

Yes — the pre-processing details are discussed in Ap-
pendix A.3.1.

Is the software used to preprocess/-
clean/label the instances available?

No.

Uses

Has the dataset been used for any
tasks already?

Yes, we use the dataset for pre-training multimodal language
and vision models.

Is there a repository that links to
any or all papers or systems that
use the dataset?

No, the dataset has only been used to train the models in this
paper.
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What (other) tasks could the dataset
be used for?

We do not foresee other usages of the dataset at this stage.

Is there anything about the com-
position of the dataset or the way
it was collected and preprocessed/-
cleaned/labeled that might impact
future uses?

The dataset is static and thus will become progressively more
“stale”. For example, it will not reflect new language and
norms that evolve over time. However, due to the nature
of the dataset it is relatively cheap to collect an up-to-date
version.

Are there tasks for which the
dataset should not be used?

The dataset described in this paper contains English language
text almost exclusively and therefore should not be used for
training models intended to have multilingual capabilities.

Distribution

Will the dataset be distributed to
third parties outside of the entity
(e.g., company, institution, orga-
nization) on behalf of which the
dataset was created?

No.

Table 14: M3W Datasheet. We follow the framework as presented by Gebru et al. [30].

F.2 Image and video text pair datasets
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F.2.1 Datasheet for LTIP

Motivation

For what purpose was the dataset
created? Who created the dataset?
Who funded the creation of the
dataset?

The dataset was created for pre-training vision-language
models and was created by researchers and engineers.

Any other comments? None.

Composition

What do the instances that comprise
the dataset represent (e.g., docu-
ments, photos, people, countries)?

All instances of the dataset are image-text pairs.

How many instances are there in
total (of each type, if appropriate)?

The dataset contains 312M image-text pairs.

Does the dataset contain all possi-
ble instances or is it a sample (not
necessarily random) of instances
from a larger set?

The dataset is a sample from a larger set.

What data does each instance con-
sist of?

Each instance is made up of a sequence of UTF-8 bytes
encoding the document’s text, and an image in compressed
format (see Appendix A.3.3).

Is there a label or target associated
with each instance?

No, there are no labels associated with each instance.

Is any information missing from in-
dividual instances?

No.

Are relationships between individ-
ual instances made explicit?

There are no relationships between the different instances in
the dataset.

Are there recommended data splits? We use random splits for the training and development sets.

Are there any errors, sources
of noise, or redundancies in the
dataset?

The data is relatively high quality but there is a chance that
some instances are repeated multiple times.

Is the dataset self-contained, or
does it link to or otherwise rely on
external resources?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.

Does the dataset contain data that,
if viewed directly, might be of-
fensive, insulting, threatening, or
might otherwise cause anxiety?

The websites that were used for this dataset were carefully
selected to avoid such content. However given the scale of
the data it is possible that some data could be considered
offensive or insulting.

Collection Process

How was the data associated with
each instance acquired?

The data is available publicly on the web.

What mechanisms or procedures
were used to collect the data?

The data was collected using a variety of software programs
to extract and clean the raw text and images.
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If the dataset is a sample from a
larger set, what was the sampling
strategy?

N.A.

Over what timeframe was the data
collected?

The dataset was collected over a period of several months in
2021. We do not filter the sources based on creation date.

Were any ethical review processes
conducted?

No.

Preprocessing/cleaning/labeling

Was any preprocessing/Clean-
ing/Labeling of the data done (e.g.,
discretization or bucketing, tok-
enization, part-of-speech tagging,
SIFT feature extraction, removal of
instances, processing of missing
values)?

Some automatic text formatting was applied to remove from
the captions dates and locations that were not relevant to the
training objective.

Is the software used to preprocess/-
clean/label the instances available?

No.

Uses

Has the dataset been used for any
tasks already?

Yes, we use the dataset for pre-training multimodal language
and vision models.

Is there a repository that links to
any or all papers or systems that
use the dataset?

No, the dataset has only been used to train the models in this
paper.

What (other) tasks could the dataset
be used for?

We do not foresee other usages of the dataset at this stage.

Is there anything about the com-
position of the dataset or the way
it was collected and preprocessed/-
cleaned/labeled that might impact
future uses?

The dataset is static and thus will become progressively more
“stale”. For example, it will not reflect new language and
norms that evolve over time. However, due to the nature
of the dataset it is relatively cheap to collect an up-to-date
version.

Are there tasks for which the
dataset should not be used?

The dataset described in this paper contains English language
text almost exclusively and therefore should not be used for
training models intended to have multilingual capabilities.

Distribution

Will the dataset be distributed to
third parties outside of the entity
(e.g., company, institution, orga-
nization) on behalf of which the
dataset was created?

No.

Table 15: LTIP Datasheet. We follow the framework as presented by Gebru et al. [30].
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F.2.2 Datasheet for VTP

Motivation

For what purpose was the dataset
created? Who created the dataset?
Who funded the creation of the
dataset?

The dataset was created for pre-training vision-language
models and was created by researchers and engineers.

Any other comments? None.

Composition

What do the instances that comprise
the dataset represent (e.g., docu-
ments, photos, people, countries)?

All instances of the dataset are video-text pairs.

How many instances are there in
total (of each type, if appropriate)?

The dataset contains 27M video-text pairs.

Does the dataset contain all possi-
ble instances or is it a sample (not
necessarily random) of instances
from a larger set?

The dataset is a sample from a larger set.

What data does each instance con-
sist of?

Each instance is made up of a sequence of UTF-8 bytes
encoding the document’s text, and a video in compressed
format (see Appendix A.3.3).

Is there a label or target associated
with each instance?

No, there are no labels associated with each instance.

Is any information missing from in-
dividual instances?

No.

Are relationships between individ-
ual instances made explicit?

There are no relationships between the different instances in
the dataset.

Are there recommended data splits? We use random splits for the training and development sets.

Are there any errors, sources
of noise, or redundancies in the
dataset?

The data is relatively high quality but there is a chance that
some instances are repeated multiple times.

Is the dataset self-contained, or
does it link to or otherwise rely on
external resources?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.

Does the dataset contain data that,
if viewed directly, might be of-
fensive, insulting, threatening, or
might otherwise cause anxiety?

The websites that were used for this dataset were carefully
selected to avoid such content. However given the scale of
the data it is possible that some data could be considered
offensive or insulting.

Collection Process

How was the data associated with
each instance acquired?

The data is available publicly on the web.

What mechanisms or procedures
were used to collect the data?

The data was collected using a variety of software programs
to extract and clean the raw text and videos.
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If the dataset is a sample from a
larger set, what was the sampling
strategy?

N.A.

Over what timeframe was the data
collected?

The dataset was collected over a period of several months in
2021. We do not filter the sources based on creation date.

Were any ethical review processes
conducted?

No.

Preprocessing/cleaning/labeling

Was any preprocessing/Clean-
ing/Labeling of the data done (e.g.,
discretization or bucketing, tok-
enization, part-of-speech tagging,
SIFT feature extraction, removal of
instances, processing of missing
values)?

Some automatic text formatting was applied to remove from
the captions dates and locations that were not relevant to the
training objective.

Is the software used to preprocess/-
clean/label the instances available?

No.

Uses

Has the dataset been used for any
tasks already?

Yes, we use the dataset for pre-training multimodal language
and vision models.

Is there a repository that links to
any or all papers or systems that
use the dataset?

No, the dataset has only been used to train the models in this
paper.

What (other) tasks could the dataset
be used for?

We do not foresee other usages of the dataset at this stage.

Is there anything about the com-
position of the dataset or the way
it was collected and preprocessed/-
cleaned/labeled that might impact
future uses?

The dataset is static and thus will become progressively more
“stale”. For example, it will not reflect new language and
norms that evolve over time. However, due to the nature
of the dataset it is relatively cheap to collect an up-to-date
version.

Are there tasks for which the
dataset should not be used?

The dataset described in this paper contains English language
text almost exclusively and therefore should not be used for
training models intended to have multilingual capabilities.

Distribution

Will the dataset be distributed to
third parties outside of the entity
(e.g., company, institution, orga-
nization) on behalf of which the
dataset was created?

No.

Table 16: VTP Datasheet. We follow the framework as presented by Gebru et al. [30].

G Credit for visual content

• Figure 1:
– Row 1: All images are provided under license by Unsplash.
– Row 2: All images are under the public domain.
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– Row 3: First two images are provided under license by Unsplash.
– Row 5: Available from DALL·E 2 [89].
– Row 6: First two are provided under license by Unsplash, the third one is provided by

Wikimedia Commons, licensed under CC BY-ND 2.0.
– Row 7: The images are provided by Wikimedia Commons, licensed under CC BY-ND

2.0.
– Row 8: The images are provided by Wikimedia Commons, licensed under CC BY-ND

2.0.
– Row 9: This video is from YFCC100M, licensed under CC BY-ND 2.0.
– Dialogue 1: Available from DALL·E 2 [89].
– Dialogue 2: The first icon is provided under license by Flaticon, the second image

is provided under license by Unsplash, the third one is provided under license by
Sketchfab.

– Dialogue 3: Available from CLIP [85].
– Dialogue 4: Chicago and Tokyo pictures obtained from Unsplash.

• Model Figures 3, 7, 9 and 8: All images are provided under license by Unsplash.
• Qualitative Figures 10, 11, 12, and 13: All visuals are sourced from various sources including

the COCO dataset, Wikimedia Commons, licensed under CC BY-ND 2.0 or available from
DALL·E 2 [89].
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