
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LUMINA-T2X: SCALABLE FLOW-BASED LARGE DIF-
FUSION TRANSFORMER FOR FLEXIBLE RESOLUTION
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sora unveils the potential of scaling Diffusion Transformer (DiT) for generating
photorealistic images and videos at arbitrary resolutions, aspect ratios, and dura-
tions, yet it still lacks sufficient implementation details. In this paper, we introduce
the Lumina-T2X family – a series of Flow-based Large Diffusion Transformers
(Flag-DiT) equipped with zero-initialized attention, as a simple and scalable gen-
erative framework that can be adapted to various modalities, e.g., transforming
noise into images, videos, multi-view 3D objects, or audio clips conditioned on
text instructions. By tokenizing the latent spatial-temporal space and incorpo-
rating learnable placeholders such as [nextline] and [nextframe] tokens,
Lumina-T2X seamlessly unifies the representations of different modalities across
various spatial-temporal resolutions. Advanced techniques like RoPE, KQ-Norm,
and flow matching enhance the stability, flexibility, and scalability of Flag-DiT,
enabling models of Lumina-T2X to scale up to 7 billion parameters and extend
the context window to 128K tokens. This is particularly beneficial for creating
ultra-high-definition images with our Lumina-T2I model and long 720p videos
with our Lumina-T2V model. Remarkably, Lumina-T2I, powered by a 5-billion-
parameter Flag-DiT, requires only 35% of the training computational costs of a
600-million-parameter naive DiT (PixArt-α), indicating that increasing the number
of parameters significantly accelerates convergence of generative models without
compromising visual quality. Our further comprehensive analysis underscores
Lumina-T2X’s preliminary capability in resolution extrapolation, high-resolution
editing, generating consistent 3D views, and synthesizing videos with seamless
transitions. All code and checkpoints of Lumina-T2X are released to further foster
creativity, transparency, and diversity in the generative AI community.

1 INTRODUCTION

Recent advancements in foundational diffusion models, such as Sora (OpenAI, 2024), Stable Dif-
fusion 3 (Esser et al., 2024), PixArt-α (Chen et al., 2023b), and PixArt-Σ (Chen et al., 2024b),
have yielded remarkable success in generating photorealistic images and videos. These models
demonstrate a paradigm shift from the classic U-Net architecture (Ho et al., 2020) to a transformer-
based architecture (Peebles & Xie, 2023a) for diffusion backbones. Notably, with this improved
architecture, Sora and Stable Diffusion 3 can generate samples at arbitrary resolutions and exhibit
strong adherence to scaling laws, achieving significantly better results with increased parameter
sizes. However, they only provide limited guidance on the design choices of their models and lack
detailed implementation instructions and publicly available pre-trained checkpoints, limiting their
utility for community usage and replication. Moreover, these methods are tailored to specific tasks
such as image or video generation tasks, and are formulated from varying perspectives, which hinders
potential cross-modality adaptation.

To bridge these gaps, we present Lumina-T2X, a family of Flow-based Large Diffusion Transformers
(Flag-DiT) capable of efficient and scalable training The largest model within the Lumina-T2X
family comprises a Flag-DiT with 7 billion parameters and a multi-modal large language model,
SPHINX (Gao et al., 2024; Lin et al., 2023), as the text encoder, with 13 billion parameters, capable
of handling 128K tokens. Specifically, the foundational text-to-image model, Lumina-T2I, utilizes the
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flow matching framework (Liu et al., 2022b; Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022)
and is trained on a meticulously curated dataset of high-resolution photorealistic image-text pairs,
achieving remarkably realistic results with merely a small proportion of computational resources.
As shown in Figure 7, Lumina-T2I can generate high-quality images at arbitrary resolutions and
aspect ratios, and further enables advanced functionalities including resolution extrapolation (Du
et al., 2024; He et al., 2023), high-resolution editing (Hertz et al., 2022; Brooks et al., 2023; Kawar
et al., 2023; Sheynin et al., 2023), compositional generation (Bar-Tal et al., 2023; Yang et al., 2024),
and style-consistent generation (Hertz et al., 2023; Tewel et al., 2024), all of which are seamlessly
integrated into the framework in a training-free manner. In addition, to empower the generation
capabilities across various modalities, Lumina-T2X is independently trained from scratch on video-
text, multi-view-text, and speech-text pairs to synthesize videos, multi-view images of 3D objects,
and speech from text instructions. The core contributions of Lumina-T2X are summarized as follows:

Flow-based Large Diffusion Transformers (Flag-DiT) Lumina-T2X utilizes the Flag-DiT ar-
chitecture inspired by the core design principles from Large Language Models (LLMs) (Touvron
et al., 2023a;b; Brown et al., 2020; Radford et al., 2019; Reid et al., 2024; Team et al., 2023), such as
scalable architecture (Brown et al., 2020; Vaswani et al., 2017; Henry et al., 2020; Zhang & Sennrich,
2019; Su et al., 2024; Dehghani et al., 2023) and context window extension (Peng et al., 2023;
Su et al., 2024; Chen et al., 2023d; loc, 2024) for increasing parameter size and sequence length.
The modifications, including RoPE (Su et al., 2024), RMSNorm (Zhang & Sennrich, 2019), and
KQ-Norm (Henry et al., 2020), over the original DiT, significantly enhance the training stability and
model scalability, supporting up to 7 billion parameters and sequences of 128K tokens. Moreover,
Flag-DiT improves upon the original DiT by adopting the flow matching formulation (Ma et al.,
2024; Lipman et al., 2022), which builds continuous-time diffusion paths via linear interpolation
between noise and data. We have thoroughly ablated these architecture improvements over the label-
conditioned generation on ImageNet (Deng et al., 2009), demonstrating faster training convergence,
stable training dynamics, and a simplified training and inference pipeline.

Versatile Applications within One Framework By incorporating learnable placeholders such
as [nextline] and [nextframe] tokens with RoPE, Lumina-T2X can seamlessly encode any
input - regardless of resolution, aspect ratio, or even temporal duration - into a unified 1D token
sequence. This design choice unlocks various potential applications by explicitly manipulating the
positions of identifiers and position indexes of RoPE during both training and inference. For instance,
this flexibility allows for training-free resolution extrapolation, enabling the generation of resolutions
surpassing those encountered during training. Lumina-T2I trained at a resolution of 1024 × 1024
pixels can generate images ranging from 768× 768 to 1792× 1792 pixels. During training, our 1D
sequence modeling framework can adapt to different modalities with minimal modification, avoiding
the need for modality-specific architecture design, akin to unified multimodal autoregressive modeling
approaches (Lu et al., 2022c; 2024; Team, 2024). We demonstrate how Lumina-T2X supports various
training-free text-to-image applications and preliminary exploration of video, multiview, and audio
generation in the Appendix.

Low Training Resources Our empirical observations indicate that employing larger models, high-
resolution images, and longer-duration video clips can significantly accelerate the convergence
speed of diffusion transformers. Although increasing the token length prolongs the time of each
iteration due to the quadratic complexity of transformers, it substantially reduces the overall training
time before convergence by lowering the required number of iterations. Moreover, by utilizing
meticulously curated text-image and text-video pairs featuring high aesthetic quality frames and
detailed captions (Betker et al., 2023; Chen et al., 2023b; 2024b), our Lumina-T2X model is able
to generate high-resolution images and coherent videos with minimal computational demands. It is
worth noting that the default Lumina-T2I configuration, equipped with a 5 billion Flag-DiT and a 7
billion LLaMA (Touvron et al., 2023a;b) as its text encoder, requires only 35% of the computational
resources compared to PixArt-α, which builds upon a 600 million DiT backbone and 3 billion
T5 (Raffel et al., 2020) as its text encoder. A detailed comparison of computational resources between
the default Lumina-T2I and PixArt-α is provided in Table 4.

In this paper, we first introduce the architecture of Flag-DiT and the overall pipeline. We then
showcase the results from models in the Lumina-T2X family, accompanied by in-depth analyses.
We highly recommend reading the Appendix, where we discuss the Lumina-T2X system in detail,
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Figure 1: A comparison of Flag-DiT with label and text conditioning. (a) Flag-DiT with label
conditioning. (b) Text conditioning with a zero-initialized attention mechanism.

including preliminaries, inference-time applications, and explorations on various modalities. To
support future research in the generative AI community, all training, inference codes, and pre-trained
models of Lumina-T2X will be released.

2 METHOD

2.1 FLOW-BASED LARGE DIFFUSION TRANSFORMERS (FLAG-DIT)

DiT (Peebles & Xie, 2023b) is rising to be a popular generative modeling approach with great scaling
potential. It operates over latent patches extracted from a pretrained VAE (Kingma & Welling, 2013;
Blattmann et al., 2023a), then utilizes a transformer as denoising backbone to predict the mean
and variance according to DDPM formulation (Ho et al., 2020; Nichol & Dhariwal, 2021) from
different levels of noised latent patches conditioned on time steps and class labels. However, the
largest parameter size of DiT is only limited at 600M which is far less than LLMs (e.g., PaLM-
540B (Chowdhery et al., 2023; Anil et al., 2023) and LLaMA3-400B (Touvron et al., 2023b)).
Besides, DiT requires full precision training which doubles the GPU memory costs and training speed
compared with mixed precision training (Micikevicius et al., 2017). Last, the design choice of DiT
lacks the flexibility to generate an arbitrary number of images (i.e., videos or multiview images).

To remedy the mentioned problems of DiT, Flag-DiT keeps the overall framework of DiT unchanged
while introducing the following modifications to improve scalability, stability, and flexibility.
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➀ Stability It is difficult to directly scale up parameter size and token length of DiT due to the
instabilities arising in the intermediate stage of training. Flag-DiT builds on top of DiT and incor-
porates modifications from ViT-22B (Dehghani et al., 2023) and LLaMA (Touvron et al., 2023a;b)
to improve the training stability. Specifically, Flag-DiT substitutes all LayerNorm (Ba et al., 2016)
with RMSNorm (Zhang & Sennrich, 2019) to improve training stability. Moreover, it incorporates
key-query normalization (KQ-Norm) (Dehghani et al., 2023; Henry et al., 2020; Lu et al., 2023)
before key-query dot product attention computation. The introduction of KQ-Norm aims to prevent
loss divergence by eliminating extremely large values within attention logits (Dehghani et al., 2023).
Such simple modifications can prevent divergent loss under mixed-precision training and facilitate
optimization with a substantially higher learning rate. The detailed computational flow of Flag-DiT
is shown in Figure 1.

➁ Flexibility DiT only supports fixed resolution generation of a single image with simple label
conditions and fixed DDPM formulation. To tackle these issues, we first examine why DiT lacks
the flexibility to generate samples at arbitrary resolutions and scales. We find this limitation stems
from DiT’s use of absolute positional embedding (APE) (Dosovitskiy et al., 2020; Touvron et al.,
2021), which is added to latent tokens in the first layer, following vision transformers. However, APE,
designed for vision recognition tasks, struggles to generalize to unseen resolutions and scales beyond
training. Motivated by recent LLMs exhibiting strong context extrapolation capabilities (Peng et al.,
2023; Su et al., 2024; Chen et al., 2023d; loc, 2024), we replace APE with RoPE (Su et al., 2024)
which injects relative position information in a layerwise manner.

However, the 1D RoPE is insufficient to accurately describe the position of image and video to-
kens. Therefore, we further introduce learnable special tokens including the [nextline] and
[nextframe] tokens to transform training samples with different scales and durations into a
unified one-dimensional sequence. Besides, we add [pad] tokens to transform 1D sequences into
the same length for better parallelism. This is the key modifications that can significantly improve
training and inference flexibility with the support of training or generating samples with arbitrary
modality, resolution, aspect ratios, and durations, leading to the final design of Lumina-T2X.

Next, we switch from the DDPM setting in DiT to the flow matching formulation (Ma et al., 2024;
Liu et al., 2022b; Lipman et al., 2022), offering another flexibility to Flag-DiT. It is well known the
schedule defining how to corrupt data to noise has great impacts on both the training and sampling
of standard diffusion models. Thus plenty of diffusion schedules are carefully designed and used,
including VE (Song et al., 2020b), VP (Ho et al., 2020), and EDM (Karras et al., 2022). More
specifically, given the data x ∼ p(x) and Gaussian noise ϵ ∼ N (0, I), we define an interpolation-
based forward process

xt = αtx+ βtϵ, (1)
where α0 = 0, βt = 1, α1 = 1, and β1 = 0 to satisfy this interpolation on t ∈ [0, 1] is defined
between x0 = ϵ and x1 = x. Similar to the diffusion schedule, this interpolation schedule also offers
a flexible choice of αt and βt. For example, we can incorporate the original diffusion schedules,
such as αt = sin(π2 t), βt = cos(π2 t) for VP cosine schedule. In our framework, we adopt the linear
interpolation schedule between noise and data for its simplicity, i.e.,

xt = tx+ (1− t)ϵ. (2)

This formulation indicates a uniform transformation with constant velocity between data and noise.
The corresponding time-dependent velocity field is given by

vt(xt) = α̇tx+ β̇tϵ (3)
= x− ϵ, (4)

where α̇ and β̇ denote time derivative of α and β. This time-dependent velocity field v : [0, 1]×Rd →
Rd defines an ordinary differential equation named Flow ODE

dx = vt(xt)dt. (5)

We use ϕt(x) to represent the solution of the Flow ODE with the init condition ϕ0(x) = x. By
solving this Flow ODE from t = 0 to t = 1, we can transform noise into data sample using the
approximated velocity fields vθ(xt, t). During training, the flow matching objective directly regresses
the target velocity

Lv =

∫ 1

0

E[∥ vθ(xt, t)− α̇tx− β̇tϵ ∥2]dt, (6)
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which is named Conditional Flow Matching loss (Lipman et al., 2022), sharing similarity with the
noise prediction or score prediction losses in diffusion models.

Finally, beyond simple label conditioning for class-conditioned generation, we extend Flag-DiT to
flexibly support arbitrary text instruction with zero-initialized attention (Zhang et al., 2023b; Gao et al.,
2023; Zhang et al., 2023a; Bachlechner et al., 2021). As shown in Figure 1(b), Flag-DiT leverages
the queries of latent image tokens to aggregate information from keys and values of text embeddings.
We propose a zero-initialized gating mechanism to gradually inject conditional information into the
token sequences. Given image queries Iq , keys Ik, and values Iv with text keys Tk and values Tv , the
final attention output is formulated as

A = softmax

(
Ĩq Ĩ

T
k√
d

)
Iv + tanh(α) softmax

(
ĨqT

T
k√
d

)
Tv, (7)

where Ĩq and Ĩk stand for applying RoPE defined in Equation 8 to image queries and values, d is
the dimension of queries and keys, and α indicates the zero-initialized learnable parameter in gated
cross-attention. In our experiments, we discovered that zero-initialized attention induces sparsity
gating which can turn off 90% text embedding conditions across layers and heads. This indicates the
potential for designing more efficient T2I models in the future.

Equipped with the above improvements, our Flag-DiT supports arbitrary resolution generation of
multiple images with arbitrary conditioning using a unified flow matching paradigm.

➂ Scalability After alleviating the training stability of DiT and increasing flexibility for supporting
arbitrary resolutions conditioned on text instructions, we empirically scale up Flag-DiT with larger
parameters and more training samples. Specifically, we explore scaling up the parameter size from
600M to 7B on the label-conditioned ImageNet generation benchmark. The detailed configurations
of Flag-DiT with different parameter sizes are discussed in Appendix D. Flag-DiT can be stably
trained under mixed-precision configuration and achieve fast convergence compared with vanilla
DiT as shown in the experiment section. After verifying the scalability of our Flag-DiT model, we
scale up the token length to 4K and expand the dataset from label-conditioned 1M ImageNet to more
challenging 14M high-resolution image-text pairs. We further successfully verified that Flag-DiT can
support the generation of long videos up to 128 frames, equivalent to 128K tokens. As Flag-DiT is a
pure transformer-based architecture, it can borrow the well-validated parallel strategies designed for
LLMs, including FSDP (Zhao et al., 2023) and sequence parallel (Liu et al., 2023a; Liu & Abbeel,
2024; Liu et al., 2024; Jacobs et al., 2023) to support large parameter scales and longer sequences.
Therefore, we can conclude that Flag-DiT is a scalable generative model with respect to model
parameters, sequence length, and dataset size.

2.2 THE OVERALL PIPELINE OF LUMINA-T2X

As illustrated in Figure 2, the pipeline of Lumina-T2X consists of four main components during
training, which will be described below.

Frame-wise Encoding of Different Modalities The key ingredient for unifying different modalities
within our framework is treating images, videos, multi-view images, and speech spectrograms as frame
sequences of length T . We can then utilize modality-specific encoders, to transform these inputs into
latent frames of shape [H,W, T,C]. Specifically, for images (T = 1), videos (T = numframes),
and multiview images (T = numviews), we use SD 1.5 VAE to independently encode each image
frame into latent space and concatenate all latent frames together, while we leave speech spectrograms
unchanged using identity mapping. Our approach establishes a universal data representation that
supports diverse modalities, enabling our Flag-DiT to effectively model.

Text Encoding with Diverse Text Encoders For text-conditional generation, we encode the text
prompts using pre-trained language models. Specifically, we incorporate a variety of diverse text
encoders with varying sizes, including CLIP, LLaMA, SPHINX, and Phone encoders, tailored for
various needs and modalities, to optimize text conditioning. We provided a series of Lumina-T2X
trained with different text encoders mentioned above in our model zoo as shown in Figure 6.
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Figure 2: Our Lumina-T2X framework consists of four components: frame-wise encoding, input &
target construction, text encoding, and prediction based on Flag-DiT.

Input & Target Construction As described in Section 2.1, latent frames are first flattened using
2 × 2 patches into a 1D sequence, then added with [nextline] and [nextframe] tokens as
identifiers. Lumina-T2X adopts the linear interpolation schedule in flow-matching to construct
the input and target following Equations 2 and 4 for its simplicity and flexibility. Inspired by the
observation that intermediate timesteps are critical for both diffusion models (Karras et al., 2022) and
flow-based models (Esser et al., 2024), we adopt the time resampling strategy to sample timestep
from a log-norm distribution during training. Specifically, we first sample a timestep from a normal
distribution N (0, 1) and map it to [0, 1] using the logistic function in order to emphasize the learning
of intermediate timesteps.

Network Architecture & Loss We use Flag-DiT as our denoising backbone with detailed archi-
tecture of each Flag-DiT block depicted in Figure 1. Given the noisy input, the Flag-DiT Blocks
inject diffusion timestep added with global text embedding through a modulation mechanism and
further integrate text conditioning via zero-initialized attention defined by Equation 7. We apply
RMSNorm at the beginning of each attention and MLP block and use KQ-Norm for key and query
vectors to prevent uncontrolled growth in absolute values, which can lead to numerical instability.
Finally, we compute the regression loss between predicted velocity and ground-truth velocity using
the Conditional Flow Matching loss defined in Equation 6.

3 EXPERIMENTS

3.1 VALIDATING FLAG-DIT ON IMAGENET

Training Setups We perform experiments on label-conditioned 256×256 and 512×512 Ima-
geNet (Deng et al., 2009) generation to validate the advantages of Flag-DiT over DiT (Peebles &
Xie, 2023b). We train a specialized version of Flag-DiT, i.e., Flag-DiT-D, which adopts the original
DDPM formulation (Ho et al., 2020; Nichol & Dhariwal, 2021) in DiT to enable a fair comparison
with the original DiT. We exactly follow the setups of DiT but with the following modifications,
including, mixed precision training, large learning rate, and architecture modifications suite (e.g.
KQ-Norm, RoPE, and RMSNorm). By default, we report FID-50K (Parmar et al., 2022; Dhariwal &
Nichol, 2021) using 250 DDPM sampling steps for Flag-DiT-D and the adaptive Dopri-5 solver for
Flag-DiT. We additionally report sFID (Salimans et al., 2016), Inception Score (Nash et al., 2021),
and Precision/Recall (Kynkäänniemi et al., 2019) for an extensive evaluation.
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Table 1: Full comparison between Flag-DiT-D and Flag-DiT with other models on ImageNet
256 × 256 and 512 × 512 label-conditional generation. Notably, -D indicates Flag-DiT using the
original diffusion schedule. P, R, and -G denote Precision, Recall, and results with classifier-free
guidance, respectively. We also include the total number of images during the training stage to offer
further insights into the convergence speed of different generative models.

ImageNet 256×256 Benchmark

Models #Images (M) FID ↓ sFID ↓ IS ↑ P ↑ R ↑
BigGAN-deep (Brock et al., 2018) - 6.95 7.36 171.40 0.87 0.28
MaskGIT (Chang et al., 2022) 355 6.18 - 182.1 0.80 0.51
StyleGAN-XL (Sauer et al., 2022) - 2.30 4.02 265.12 0.78 0.53

ADM (Dhariwal & Nichol, 2021) 507 10.94 6.02 100.98 0.69 0.63
ADM-U (Dhariwal & Nichol, 2021) 507 7.49 5.13 127.49 0.72 0.63
LDM-8 (Rombach et al., 2022) 307 15.51 - 79.03 0.65 0.63
LDM-4 (Rombach et al., 2022) 213 10.56 - 103.49 0.71 0.62
DiffuSSM-XL (Yan et al., 2023) 660 9.07 5.52 118.32 0.69 0.64
DiT-XL/2 (Peebles & Xie, 2023b) 1792 9.62 6.85 121.50 0.67 0.67
SiT-XL/2 (Ma et al., 2024) 1792 8.60 - - - -
Flag-DiT-D-7B 256 6.09 5.59 153.32 0.70 0.68

Classifier-Free Guidance

ADM-G (Dhariwal & Nichol, 2021) 507 4.59 5.25 186.70 0.82 0.52
ADM-G, ADM-U (Dhariwal & Nichol, 2021) 507 3.60 - 247.67 0.87 0.48
LDM-8-G (Rombach et al., 2022) 307 7.76 - 209.52 0.84 0.35
LDM-4-G (Rombach et al., 2022) 213 3.95 - 178.22 0.81 0.55
U-ViT-H/2-G (Bao et al., 2023) 512 2.29 - 247.67 0.87 0.48
DiT-XL/2-G (Peebles & Xie, 2023b) 1792 2.27 4.60 278.24 0.83 0.57
DiffuSSM-XL-G (Yan et al., 2023) 660 2.28 4.49 259.13 0.86 0.56
SiT-XL/2-G (Ma et al., 2024) 1792 2.06 4.50 270.27 0.82 0.59
Flag-DiT-D-3B-G 435 2.10 4.52 304.36 0.82 0.60
Flag-DiT-3B-G 256 1.96 4.43 284.80 0.82 0.61
ImageNet 512×512 Benchmark

ADM (Dhariwal & Nichol, 2021) 1385 23.24 10.19 58.06 0.73 0.60
ADM-U (Dhariwal & Nichol, 2021) 1385 9.96 5.62 121.78 0.75 0.64
ADM-G (Dhariwal & Nichol, 2021) 1385 7.72 6.57 172.71 0.87 0.42
ADM-G, ADM-U (Dhariwal & Nichol, 2021) 1385 3.85 5.86 221.72 0.84 0.53
U-ViT/2-G (Bao et al., 2023) 512 4.05 8.44 261.13 0.84 0.48
DiT-XL/2-G (Peebles & Xie, 2023b) 768 3.04 5.02 240.82 0.84 0.54
DiffuSSM-XL-G (Yan et al., 2023) 302 3.41 5.84 255.06 0.85 0.49
Flag-DiT-D-3B-G 472 2.52 5.01 303.70 0.82 0.57

Comparison with SOTA Approaches As shown in Table 1, Flag-DiT-D-7B significantly surpasses
all approaches on FID and IS score without using classifier-free guidance (CFG) (Ho & Salimans,
2022), reducing the FID score from 8.60 to 6.09. This indicates increasing the parameters of diffusion
models can significantly improve the sample quality without relying on extra tricks such as CFG.
When CFG is employed, both Flag-DiT-D-3B and Flag-DiT-3B achieve slightly better FID scores but
much improved IS scores than DiT-600M and SiT-600M while only requiring 24% and 14% training
iterations. For 512×512 label-conditioned ImageNet generation, Flag-DiT-D with 3B parameters
significantly surpass other SOTA approaches by reducing FID from 3.04 to 2.52 and increasing IS
from 240 to 303. This validates that increased parameter scale can better capture complex high-
resolution details. By comparison with SOTA approaches on label-conditioned ImageNet generation,
we can conclude that Flag-DiT-D and Flag-DiT are good at generative modeling with fast convergence,
stable scalability, and strong high-resolution modeling ability. This directly motivates Lumian-T2X
to employ Flag-DiT with large parameters to model more complex generative tasks for any modality,
resolution, and duration generation.

Comparison between Flag-DiT, Flag-DiT-D, and SiT We compared the performance of Flag-DiT,
Flag-DiT-D, and SiT on ImageNet-256 benchmark, fixing the parameter size at 600M for a fair
comparison. As demonstrated in Figure 3(a), Flag-DiT consistently outperforms Flag-DiT-D across
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Figure 3: Training dynamics of different configurations, to explore the effects of (a) flow matching
formulation and architecture modifications, (b) using LogNorm sampling, (c) scaling up model size,
and (d) using ImageNet initialization.

all epochs in FID evaluation. This indicates that the flow matching formulation can improve image
generation compared to the standard diffusion setting. Moreover, Flag-DiT’s lower FID scores
compared to SiT suggest that meta-architecture modifications, including RMSNorm, RoPE, and K-Q
norm, not only stabilize training but also boost performance.

Faster Training Speed with Mixed Precision Training Flag-DiT not only improves performance
but also enhances training efficiency as well as stability. Unlike DiT, which diverges under mixed
precision training, Flag-DiT can be trained stably with mixed precision. Thus Flag-DiT leads to faster
training speeds compared with DiT at the same parameter size. We measure the throughputs of 600M
and 3B Flag-DiT and DiT on one A100 node with 256 batch size. As shown in Table 3. Flag-DiT
can process 40% more images per second.

Faster Convergence with LogNorm Sampling During training, Flag-DiT-600M uniformly sam-
ples time steps from 0 to 1. Previous works (Karras et al., 2022; Esser et al., 2024) have pointed
out that the learning of score function in diffusion models or velocity field in flow matching is more
challenging in the middle of the schedule. To address this, we have replaced uniform sampling with
log-normal sampling, which places greater emphasis on the central time steps, thereby accelerating
convergence. We refer to the Flag-DiT-600M model using log-normal sampling as Flag-DiT-600M-
LogNorm. As demonstrated in Figure 3(b), Flag-DiT-600M-LogNorm not only achieves faster loss
convergence but also improves the FID score significantly.

Scaling Effects of Flag-DiT DiT demonstrates that the quality of generated images improves with
an increase in parameters. However, the largest DiT model tested is limited to 600M parameters,
significantly fewer than those used in large language models. Previous experimental sessions
have validated the stability, effectiveness, and rapid convergence of Flag-DiT. Building on this
foundation, we have scaled the parameters of Flag-DiT from 600M to 7B while maintaining the same
hyperparameters. As depicted in Figure 3(c), this substantial increase in parameters significantly
enhances the convergence speed of Flag-DiT, indicating that larger models are more compute-efficient
for training.

Influence of ImageNet Initialization PixArt-α (Chen et al., 2023b; 2024b) utilizes ImageNet-
pretrained DiT, which learns pixel dependency, as an initialization for the subsequent T2I model.
To validate the influence of ImageNet initialization, we compare the velocity prediction loss of
Lumina-T2I with a 600M parameter model using ImageNet initialization versus training from scratch.
As illustrated in Figure 3(d), training from scratch consistently results in lower loss levels and
faster convergence speeds. Moreover, starting from scratch allows for a more flexible choice of
configurations and architectures, without the constraints of a pretrained network. This observation
also leads to the design of simple and fast training recipes shown in Table 4.

3.2 RESULTS OF LUMINA-T2I

Basic Setups Lumina-T2I is a key component of the Lumina-T2X family. By default, all images
in this paper are generated using a 5B Flag-DiT coupled with a 7B LLaMA text encoder (Touvron
et al., 2023a;b). The Lumina-T2I model zoo also supports various text encoder sizes, DiT parameters,
input and target construction, and latent spaces, as shown in Appendix D. Lumina-T2I models are
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Figure 4: Resolution extrapolation samples of Lumina-T2I. Without any additional training, Lumina-
T2I is capable of directly generating images with various resolutions from 5122 to 17922.

progressively trained on images with resolutions of 256, 512, and 1024. Detailed information on
batch size, learning rate, and computational costs for each stage is provided in Table 4.

Fundamental Text-to-Image Generation Ability We showcase the fundamental text-to-image
generation capability in Figure 8 and Figure 7. The large capacity of the diffusion backbone
and text encoder allows for the generation of photorealistic, high-resolution images with accurate
text comprehension, utilizing just 288 A100 GPU days. By explicitly indicating the placement
of [nextline] tokens during inference, Lumina-T2I can flexibly generate images from text
instructions of various sizes.

Tuning-Free Resolution-Extrapolation Due to exponential growth in computational demand and
data scarcity, existing T2I models are generally limited to 1K resolution. Thus, there is a significant
demand for low-cost and high-resolution extrapolation approaches (He et al., 2023; Du et al., 2024;
Cheng et al., 2024). The translational invariance of RoPE enhances Lumina-T2I’s potential for
resolution extrapolation, allowing it to generate images at out-of-domain resolutions. Inspired by the
practices in previous arts, we adopt three techniques that can help unleash Lumina-T2I’s potential of
test-time resolution extrapolation: (1) NTK-aware scaled RoPE (loc, 2024) that rescales the rotary
base of RoPE to achieve a gradual position interpolation of the low-frequency components, (2) Time
Shifting (Esser et al., 2024) that reschedules the timesteps to ensure consistent SNR across denoising
processes of different resolutions, and (3) Proportional Attention (Jin et al., 2024) that rescales the
attention score to ensure stable attention entropy across various sequence lengths. The details about
the aforementioned techniques in our implementation can be found in Appendix F.1.

Resolution extrapolation brings not only larger-scale images but also higher image quality along with
enhanced details. As shown in Figure 4, we observe the quality of generated images and text-to-image
alignments can be significantly enhanced as we perform resolution extrapolation from 1K to 1.5K.
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Figure 5: Lumina-T2I supports text-to-image generation, resolution extrapolation, style-consistent
generation, compositional generation, and high-resolution editing in a unified and training-free
framework.

Besides, Lumina-T2I is also capable of performing extrapolation to generate images with lower
resolutions, such as 512 resolution, offering additional flexibility. Conversely, PixArt-α (Chen et al.,
2023b), which uses standard positional embeddings instead of RoPE (Su et al., 2024), does not show
comparable generalization capabilities at test resolutions. Further enhancing the resolution from 1.5K
to 2K can gradually lead to the failure of image generation due to the large domain gap between
training and inference. The improvement of image quality and text-to-image alignment is a free lunch
of Lumina-T2I as it can improve image generation without incurring any training costs. However,
as expected, the free lunch is not without its shortcomings. The discrepancy between the training
and inference domains can introduce minor artifacts. We believe the artifacts can be alleviated by
collecting high-quality images larger than 1K resolution and performing few-shot parameter-efficient
fine-tuning.

3.3 MORE ADVANCED APPLICATIONS OF LUMINA-T2X

Beyond its basic text-to-image generation capabilities and resolution extrapolation, Lumina-T2X
supports more complex content creations in various modalities as a foundational model. As shown in
Figure 5, our pre-trained Lumina-T2X can perform advanced visual tasks including style-consistent
generation, high-resolution image editing, and compositional generation – all in a tuning-free manner.
Unlike previous methods that address these tasks with varied approaches, Lumina-T2X uniformly
tackles these problems through token operations, as depicted in Appendix F. Additionally, we provide
the implementation details and performances of Lumina-T2V, Lumina-T2MV, and Lumina-T2Speech
in Appendix H.

4 CONCLUSION

In this paper, we present Lumina-T2X, a unified framework designed for scalable and efficient gener-
ation. At the core of Lumina-T2X is a series of Flow-based Large Diffusion Transformers (Flag-DiT)
carefully designed for scalable conditional generation. Equipped with key modifications including
RoPE, RNSNorm, KQ-Norm, and zero-initialized attention for model architecture, [nextline]
and [nextframe] tokens for data representation, and switching from diffusion to flow matching
formulation, our Flag-DiT showcases great improvements in stability, flexibility, and scalability
compared to the origin diffusion transformer. We demonstrate the fondational generation capability
of Lumina-T2X on the ImageNet benchmark as well as text-to-image, video, multiview, and speech
generation. Overall, we hope that our attempts, findings, and open-sources of Lumina-T2X can
help clarify the roadmap of generative AI and serve as a new starting point for further research into
developing effective large-scale multi-modal generative models.
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A LIMITATIONS AND FUTURE WORK

Unified Framework but Independent Training Unlike autoregressive models (Lu et al., 2024),
which utilize a unified discrete token representation, the latent feature distributions differ significantly
across modalities. For example, while joint training with images and videos can enhance visual
quality, it may negatively affect the dynamic aspects of video generation. Furthermore, multiview and
audio representations vary even more significantly. The disparity in data quantity—where high-quality
image data is more abundant than video data, which in turn exceeds multiview data—poses additional
challenges for joint training. Therefore, the current version of Lumina-T2X is separately trained to
tackle the generation of images, videos, multi-views of 3D objects and speech. Without leveraging
the pre-trained weights on 2D images, Lumina-T2V and Lumina-T2MV achieve preliminary results
on temporal- or view-consistent generation but show inferior sample qualities compared with their
counterparts. Currently, we propose Lumina-T2X as a unified framework for scaling up models across
any modality. In the future, we will further explore the joint training of images, videos, multi-views
and audio for better generation quality and fast convergence.

Fast Convergence but Inadequate Data Coverage Although the large model size enables Lumina-
T2X to achieve generative capabilities comparable to its counterparts with fast convergence, there
remains a limitation in the inadequate coverage of the diverse data spectrum by the collected data.
This leads to incomplete learning of the complex patterns and nuances of the real physical world,
which can result in less robust model performance in real-world scenarios. Therefore, Lumina-T2X
also faces common issues of current generative models, such as struggling with generating detailed
human structures like hands or encountering artificial noises and background blurring in complex
scenes, leading to less realistic images. We believe that higher-quality real-world data, combined with
Lumina-T2X’s powerful convergence capabilities, will be an effective solution to address this issue.

B RELATED WORK

AI-Generated Contents (AIGCs) Generating high-dimensional perceptual data content (e.g.,
images, videos, audio, etc) has long been a challenge in the field of artificial intelligence. In the era of
deep learning, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Zhu et al., 2017;
Isola et al., 2017; Wang et al., 2018; Brock et al., 2018; Karras et al., 2019) stand as a pioneering
method in this field due to their efficient sampling capabilities, yet they face issues of training
instability and mode collapse. Meanwhile, Variational Autoencoders (VAEs) (Kingma & Welling,
2013; Kusner et al., 2017; An & Cho, 2015; Vahdat & Kautz, 2020; Shao et al., 2020) and flow-
based models (Dinh et al., 2014; 2016) demonstrate better training stability and interpretability but
lag behind GANs in terms of image quality. Following this, autoregressive models (ARMs) (Van
Den Oord et al., 2016; Van den Oord et al., 2016; Child et al., 2019; Chen et al., 2020a) have shown
exceptional performance but come with higher computational demands, and the sequential sampling
mechanism is more suited to 1D data.

Nowadays, Diffusion Models (DMs) (Sohl-Dickstein et al., 2015), learning to invert diffusion paths
from real data towards random noise, have gradually become the de-facto approach of generative
AI across multiple domains, with numerous practical applications (OpenAI, a; Anthropic; Google;
OpenAI, b; mid; Podell et al., 2023; Esser et al., 2024; run). The success of diffusion models over the
past four years can be attributed to the progress in several areas, including reformulating diffusion
models to predict noise instead of pixels (Ho et al., 2020), improvements in sampling methods for
better efficiency (Song et al., 2020a; Lu et al., 2022a;b; Karras et al., 2022), the introduction of
classifier-free guidance that enables direct conversion of text to images (Ho & Salimans, 2021), and
cascaded/latent space models that reduce the computational cost of high-resolution generation (Ho
et al., 2022b; Rombach et al., 2022; Teng et al., 2023). Apart from generating high-quality images
following text instruction, various applications, including high-resolution generation(He et al., 2023;
Du et al., 2024; Hwang et al., 2024; Zheng et al., 2024a; Cheng et al., 2024; Chen et al., 2024b),
compositional generation (Jiménez, 2023; Bar-Tal et al., 2023; Yang et al., 2024), style-consistent
generation (Hertz et al., 2023; Tewel et al., 2024), image editing (Hertz et al., 2022; Brooks et al.,
2023; Kawar et al., 2023; Mokady et al., 2023), and controllable generation (Zhang et al., 2023a; Mou
et al., 2024; Zhao et al., 2024; Mo et al., 2023), have been proposed to further extend the applicability
of pretrained T2I models. Additionally, pre-trained T2I models are also applied with a decoupled
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temporal attention to generate videos (Guo et al., 2023; Wang et al., 2023c; Jiang et al., 2023; Chen
et al., 2023a; 2024a; Blattmann et al., 2023c; Zhou et al., 2023; Ho et al., 2022a; Blattmann et al.,
2023b; Hu et al., 2023; Chen et al., 2023c; Wang et al., 2023b; Zhang et al., 2023c; Xing et al., 2023;
Gupta et al., 2023; Wu et al., 2023) and multi-views of 3D object (Shi et al., 2023b; Li et al., 2023;
Wang & Shi, 2023; Zuo et al., 2024; Chen et al., 2024d; Voleti et al., 2024; Han et al., 2024; Long
et al., 2023; Tang et al., 2024; Liu et al., 2023c; Shi et al., 2023a). The similar framework, with
suitable adjustments, has also been applied to audio generation (Huang et al., 2023a; Liu et al., 2023b;
Ghosal et al., 2023; Yang et al., 2023). Although this paradigm has achieved notable success at the
current model scale (Podell et al., 2023; Pernias et al., 2023; Zheng et al., 2024b), subsequent works
have proven the better potential of diffusion models based on vision transformers (so-called Diffusion
Transformer, DiT) (Peebles & Xie, 2023b). Afterwards, SiT (Ma et al., 2024) and SD3 (Esser et al.,
2024) further demonstrate that an interpolation or flow-matching framework (Liu et al., 2022b;
Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023) can better enhance the
stability and scalability of DiT — pointing the way for diffusion models to scale up to the next level.

Very recently, Sora (OpenAI, 2024) has demonstrated the potential for scaling DiT with its powerful
joint image and video generation capabilities. However, the detailed implementations have yet to
be released. Therefore, inspired by Sora, we introduce Lumina-T2X to push the boundaries of
open-source generative models by scaling the flow-based Diffusion Transformer to generate contents
across any modalities, resolutions, and durations.

C PRELIMINARIES OF LUMINA-T2X

In this section, we revisit several milestone studies on leveraging diffusion transformers for text-to-
image and text-to-video generation, as well as seminal research on large language models (LLMs),
all of which greatly inspired the design of Lumina-T2X.

Rotary Position Embedding (RoPE) RoPE (Su et al., 2024) is a type of position embedding that
can encode relative positions within self-attention operations. It can be regarded as a multiplicative
bias based on position – given a sequence of the query/key vectors, the n-th query and the m-th key
after RoPE can be expressed as:

q̃m = f(qm,m) = qmeimΘ, k̃n = f(kn, n) = kne
inΘ, (8)

where Θ is the frequency matrix. Equipping with RoPE, the calculation of attention scores can be
considered as taking the real part of the standard Hermitian inner product:

Re[f(qm,m)f∗(kn, n)] = Re[qmk∗ne
iΘ(m−n)]. (9)

In this way, the relative position m− n between the m-th and n-th tokens can be explicitly encoded.
Compared to absolute positional encoding, RoPE offers translational invariance, which can enhance
the context window extrapolation potential of LLMs. Many subsequent techniques further explore and
unlock this potential, e.g., position interpolation (Chen et al., 2023d), NTK-aware scaled RoPE (loc,
2024), Yarn (Peng et al., 2023), etc. In this work, Flag-DiT applies RoPE to the keys and queries of
diffusion transformers. Notably, this simple technique endows Lumina-T2X with superior resolution
extrapolation potential (i.e., generating images at out-of-domain resolutions unseen during training),
as demonstrated in Section 3.2, compared to its competitors.

DiT, Scalable Interpolant Transformer (SiT) and Flow Matching U-Net has been the de-facto
diffusion backbone in previous Denoising Diffusion Probabilistic Models (Ho et al., 2020) (DDPM).
DiT (Peebles & Xie, 2023a) explores using transformers trained on latent patches as an alternative
to U-Net, achieving state-of-the-art FID scores on class-conditional ImageNet benchmarks and
demonstrating superior scaling potentials in terms of training and inference FLOPs. Furthermore,
SiT (Ma et al., 2024) utilizes the stochastic interpolant framework (Albergo et al., 2023) (or flow
matching (Lipman et al., 2022)) to connect different distributions in a more flexible manner than
DDPM. Extensive ablation studies by SiT reveal that linearly connecting two distributions, predicting
velocity fields, and employing a stochastic solver can enhance sample quality with the same DiT
architecture. However, both DiT and SiT are limited in model sizes, up to 600 million parameters,
and suffer from training instability when scaling up. Therefore, we borrow design choices from
LLMs and validate that simple modifications can train a 7-billion-parameter diffusion transformer in
mixed precision training.
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Figure 6: Configurations of Lumina-T2X, including choices of text encoders, parameter sizes for Flag-
DiT, prediction targets, VAEs of various sizes, RoPE, image augmentation policies, and generation
orders.

Table 2: Detailed configurations of our Flag-
DiT backbone.

Model Hidden Size Heads Layers

Flag-DiT-S 4 8 768
Flag-DiT-B 8 12 768
Flag-DiT-L 12 24 1024
Flag-DiT-XL 20 28 1152
Flag-DiT-5B 32 32 3072
Flag-DiT-7B 32 32 4096

Table 3: Training throughput as measured with
ImageNet on a single 8 × A100 machine.

Model Resolution Throughput (imgs/s)

DiT-XL 256 435
DiT-XL 512 80
DiT-XL 1024 10

Flag-DiT-XL 256 600
Flag-DiT-5B 256 195
Flag-DiT-5B 512 32
Flag-DiT-5B 1024 9
Flag-DiT-7B 256 120

PixArt-α and -Σ DiT explores the potential of transformers for label-conditioned generation. Built
on DiT, PixArt-α (Chen et al., 2023b) unleashes this potential for generating images based on arbitrary
textual instructions. PixArt-α significantly reduces training costs compared with SDXL (Podell
et al., 2023) and Raphael (Xue et al., 2024), while maintaining high sample quality. This is achieved
through multi-stage progressive training, efficient text-to-image conditioning with DiT, and the use of
carefully curated high-aesthetic datasets. PixArt-Σ extends this approach by increasing the image
generation resolution to 4K, facilitated by the collection of 4K training image-text pairs.

Lumina-T2I is highly motivated by PixArt-α and -Σ yet it incorporates several key differences. Firstly,
Lumina-T2I utilizes Flag-DiT with 5B parameters as the backbone, which is 8.3 times larger than
the 0.6B-parameter backbone used by PixArt-α and -Σ. According to studies on class-conditional
ImageNet generation in Section 3.1, larger diffusion models tend to converge much faster than their
smaller counterparts and excel at capturing details on high-resolution images. Secondly, unlike
PixArt-α and -Σ that were pretrained on ImageNet (Deng et al., 2009) and SAM-HD (Kirillov et al.,
2023) images, Lumina-T2I is trained directly on high-aesthetic synthetic datasets without being
interfered by the domain gap between images from different domains. Thirdly, while PixArt-α and
-Σ excel at generating images with the same resolution as training stages, our Lumina-T2I, through
the introduction of RoPE and [nextline] token, possesses a resolution extrapolation capability,
enabling generating images at a lower or higher resolution unseen during training, which offers a
significant advantage in generating and transferring images across various scales.

Sora Sora (OpenAI, 2024) demonstrates remarkable improvements in text-to-video generation
that can create 1-minute videos with realistic or imaginative scenes spanning different durations,
resolutions, and aspect ratios. In comparison, Lumina-T2V can also generate 720p videos at arbitrary
aspect ratios. Although there still exists a noticeable gap in terms of video length and quality between
Lumian-T2V and Sora, video samples from Lumina-T2V exhibit considerable improvements over
open-source models on scene transitions and alignment with complex text instructions. We have
released all codes of Lumina-T2V and believe training with more computational resources, carefully
designed spatial-temporal video encoder, and meticulously curated video-text pairs will further
elevate the video quality.
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D DIVERSE CONFIGURATIONS

The Lumina-T2X family supports a diverse range of configurations, as depicted in Figure 6. Each
configuration is independently trained, following the setups outlined in the main text. For the
denoising backbone, we provide multiple Flag-DiT configurations that span a wide range of model
sizes from 600M to 7B to provide a trade-off between inference speed and quality, detailed in Table 2.
Table 3 demonstrates that our Flag-DiT achieves around 50% faster throughput than the original DiT
with the same model size. Notably, Flag-DiT-5B attains throughput speeds comparable to the DiT-XL
at the resolution of 1024, showcasing its efficiency in dealing with high-resolution image generation.
Regarding the text encoder, we include options such as CLIP-L/G, LLaMA-7B, and SPHINX-13B,
which balance GPU consumption with advanced text understanding capabilities.

The Lumina-T2X primarily supports flow matching but also supports denoising probabilistic models
(DDPM), as most algorithms are designed to be compatible with DDPM. Furthermore, it supports
SD-1.5 and SDXL VAE. The latent space of SD-1.5 VAE can simultaneously encode image and
video features, whereas SDXL offers superior visual quality but does not support video generation.
Other configurations, such as RoPE, image augmentation policy, and generation, are fixed to be 1D,
resize-then-crop, and parallel generation, respectively. The next version of Lumina-T2X will further
explore these factors in depth.

E LUMINA-T2X SYSTEM

In this section, we introduce the family of Lumina-T2X, including Lumina-T2I, Lumina-T2V,
Lumina-T2MV, and Lumina-T2Speech. For each modality, Lumina-T2X is independently trained
with diverse configurations optimized for varying scenarios, such as different text encoders, VAE
latent spaces, and parameter sizes. The detailed configurations are provided in Appendix D. Lumina-
T2I is the key component of our Lumina-T2X system, where we utilize the T2I task as a testbed
for validating the effectiveness of each component discussed in Section 3.2. Notably, our most
advanced Lumina-T2I model with a 5B Flag-DiT, 7B LLaMA text encoder, and SDXL latent space
demonstrates superior visual quality and accurate text-to-image alignment. Then, we can extend
the explored architecture, hyper-parameters, and other training details to videos, multi-views, and
speech generation. Since videos and multi-views of 3D objects usually contain up to 1 million tokens,
Lumina-T2V and Lumina-T2MV adopt a 2B Flag-DiT, CLIP-L/G text encoder, and SD-1.5 latent
space. Although this configuration slightly reduces visual quality, it provides an effective balance
for processing long sequences and a joint latent space for images and videos. Motivated by previous
approaches (Ho et al., 2022a; Chen et al., 2023b), Lumina-T2I, Lumina-T2V, and Lumina-T2MV
employ a multi-stage training approach, starting from low-resolution, short-duration data while
ending with high-resolution, long-duration data. Such a progressive training strategy significantly
improves the convergence speed of Lumina-T2X. For Lumina-T2Speech, since the feature space
of the spectrogram shows a completely different distribution than images, we directly tokenize the
spectrogram without using a VAE encoder and train a randomly initialized Flag-DiT conditioned on
a phoneme encoder for T2Speech generation.

F ADVANCED APPLICATIONS OF LUMINA-T2X

During inference, Lumina-T2X supports various advanced applications including resolution extrap-
olation, style-consistent generation, compositional generation, and high-resolution editing. All of
these applications can be achieved in a training-free manner integrated into a unified framework as
illustrated in Figure 5. In this section, we provide implementing details of each application.

F.1 UNLEASHING THE FULL POTENTIAL OF LUMINA-T2X WITH RESOLUTION
EXTRAPOLATION

Direct Resolution Extrapolation The simplest way to achieve resolution extrapolation is by
increasing the sequence length and repositioning the [nextline] token. This allows Lumina-T2X
to infer at higher resolutions than those used during training. Ideally, this should work well – because
RoPE encodes relative positions rather than absolute positions, and its characteristic of long-term
decay (Su et al., 2024) can mitigate the negative effects of unseen context lengths.
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However, in practice, we find that the effects of direct resolution extrapolation are very limited, and
the model quickly collapses after a certain degree of extrapolation. This echoes the findings on LLMs
with RoPE — the long-range decay of RoPE is insufficient to suppress the anomalies brought about
by unseen context lengths (Chen et al., 2023d). Although Position Interpolation (PI) is proposed
in Chen et al. (2023d) to improve context length generalizability, fine-tuning is still necessary.

NTK-Aware Scaled RoPE Using the transformer architecture and 1D RoPE (Su et al., 2024),
Lumina-T2X can seamlessly integrate the context window extension methods designed for LLMs to
achieve inference-time extrapolation.

RoPE encodes position information with a frequency matrix Θ = Diag(θ0, · · · , θd, · · · , θ|D|/2−1)

with θd = b−2d/|D|, where b is the rotary base. Following NTK-aware scaled RoPE (loc, 2024),
when performing resolution extrapolation, we scale the rotary base b such that the lowest frequency
term is equivalent to PI, allowing a gradual transition from position extrapolation of high-frequency
terms to position interpolation of low-frequency ones, achieving tuning-free generalization from the
training context length L to the testing context length L′. For any scale factor s = L′/L (L′ > L),

the scaled base can be expressed as b′ = b · s
|D|

|D|−2 . Such a simple operation allows Lumina-T2X to
extrapolate to ∼3× context length (1.8K images).

Time Shifting We look into the discretization of time schedule to solve the Flow ODE during
sampling, which is of vital importance in controlling the denoising rate. A common approach is
to use Euler’s method with a constant step size. However, similar to the observation in diffusion
schedules (Teng et al., 2023; Hoogeboom et al., 2023; Hwang et al., 2024), we found that the high-
resolution images are less corrupted and retain the global structure for a wider range of time under
the linear interpolation schedule in flow matching.

This observation motivates us to adjust the time discretization schedule for high-resolution image
generation to match the corresponding schedule of origin resolution. More specifically, the low-
resolution image at time t is defined as xlow

t = txlow + (1− t)ϵ, while the high-resolution image is
xhigh
t = txhigh + (1− t)ϵ. To compare their noise strength at the same resolution, we downsample

xhigh m times with average pooling to match the lower resolution. The downsampled image is
xhigh
t = txlow + (1−t)

m ϵ, with the variance of Gaussian noise reduced to 1/m using average pooling
due to the central limit theorem. The signal-to-noise ratio (SNR) become m2 times larger, since

SNRhigh =
m2t2

(1− t)2
= m2SNRlow. (10)

Therefore, we can match their SNR by shifting the timestep of the high-resolution image, following

m2t2high

(1− thigh)2
=

t2low

(1− tlow)2
, (11)

and we can write the exact shifted timestep by simplifying the above equation

thigh =
tlow

m−mtlow + tlow
. (12)

This coincides with the Time Shifting schedule in (Esser et al., 2024) and other counterparts in
diffusion literature (Hoogeboom et al., 2023; Hwang et al., 2024). However, in practice, we find
that setting m to a larger value than the resolution scaling constant can further boost the quality of
generated images. We visualize generated images using different shifting values under different
resolutions in Figure 9 and adopt m = 6.0 in all the experiments.

Proportional Attention During resolution-extrapolation, the sequence length is significantly greater
than that during training. With longer input sequences, the attention module tends to aggregate
information across a wider range of context tokens. This gap between training and inference leads the
model to generate high-resolution images containing repeated, incomplete, and disordered patterns.
To make up for this, we can scale each term in the attention softmax by a constant c, named
proportional attention. This operation restricts the model to concentrate on fewer context tokens,
which is similar to the training resolution. To determine the best value of c, we adopt the setting
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in (Jin et al., 2024) where they start from the entropy perspective and find that the attention entropy
also varies in proportion to resolutions. They set this hyper-parameter as c =

√
logLtrain

Linfer to
mitigate entropy fluctuation, where Ltrain and Linfer are the numbers of tokens during training and
inference, respectively. The final formulation of our proportional attention is:

A = softmax(
QKT

√
d

√
logLtrain

Linfer). (13)

Relationship with Other Resolution Extension Methods Due to the enormous computational
cost of high-resolution models and the scarcity of high-resolution image data, directly training
high-resolution generative models is costly. Therefore, high-resolution fine-tuning/adaptation (Zheng
et al., 2024a; Cheng et al., 2024; Guo et al., 2024; Chen et al., 2024b) and tuning-free high-resolution
generation (He et al., 2023; Du et al., 2024; Haji-Ali et al., 2023; Hwang et al., 2024; Huang et al.,
2024) are the mainstream choices today. Among the tuning-free approaches, DemoFusion (Du et al.,
2024), ElasticDiffusion (Haji-Ali et al., 2023), and Upsample Guidance (Hwang et al., 2024) operate
in a model-agnostic manner, while ScaleCrafter (He et al., 2023) and FouriScale (Huang et al., 2024)
apply the dilated convolution mechanism specifically tailored to the CNN-based diffusion models. In
this paper, we explore the tuning-free resolution extrapolation potential of Lumina-T2X from the
perspectives of Flow-based Diffusion Transformers with RoPE, an area not extensively studied within
the field. Different from previous approaches, which either require computationally demanding
fine-tuning with expensive high-resolution images or complex architecture/pipeline modifications
over pre-trained models, Lumina-T2X can generate high-resolution images simply by repositioning
the [nextline] tokens to the specific slot.

F.2 STYLE-CONSISTENT GENERATION

The transformer-based diffusion model architecture makes Lumina-T2I naturally suitable for self-
attention manipulation applications like style-consistent generation. A representative approach is
shared attention (Hertz et al., 2023), which enables generating style-aligned batches without specific
tuning of the model. Specifically, it uses the first image in a batch as the anchor/reference image,
allowing the queries from other images in the batch to access the keys and values of the first image
during the self-attention operation. This kind of information leakage effectively promotes a consistent
style across the images in a batch. Typically, this can be achieved by concatenating the keys and values
of the first image with those of other images before self-attention. However, in diffusion transformers,
it is important to note that keys from two images contain duplicated positional embeddings, which
can disrupt the model’s awareness of spatial structures. Therefore, we need to ensure that key/value
sharing occurs before RoPE, which can be regarded as appending a reference image sequence to the
target image sequence.

F.3 COMPOSITIONAL GENERATION

Compositional, or multi-concepts text-to-image generation (Jiménez, 2023; Bar-Tal et al., 2023;
Yang et al., 2024), which requires the model to generate multiple subjects at different regions of
a single image, is seamlessly supported by our transformer-based framework. Users can define N
different prompts and N bounding boxes as masks for corresponding prompts. Our key insight
is to restrict the cross-attention operation of each prompt within the corresponding region during
sampling. More specifically, at each timestep, we crop the noisy data xt using each mask and reshape
the resulting sub-regions into a sub-region batch {x1

t , x
2
t , . . . , x

N
t }, corresponding to the prompt

batch {y1, y2, . . . , yN}. Then, we compute cross-attention using this sub-region batch and prompt
batch and manipulate the output back to the complete data sample. We only apply this operation to
cross-attention layers to ensure the text information is injected into different regions while keeping the
self-attention layers unchanged to ensure the final image is coherent and harmonic. We additionally
set the global text condition as the embedding of the complete prompt, i.e., concatenation of all
prompts, to enhance global coherence.

F.4 HIGH-RESOLUTION EDITING

Beyond high-resolution generation, our Lumina-T2I can also perform image editing (Hertz et al.,
2022; Brooks et al., 2023), especially for high-resolution images. Considering the distinct features of
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Table 4: We compare the training setups of Lumina-T2I with PixArt-α. Lumina-T2I is trained
purely on 14 million filtered high-quality (HQ) image-text pairs, whereas PixArt-α benefits from an
additional 11 million high-quality natural image-text pairs. Remarkably, despite having 8.3 times
more parameters, Lumina-T2I only incurs 35% of the computational costs compared to PixArt-α-
0.6B.

PixArt-α-0.6B with T5-3B Lumina-T2I-5B with LLaMA-7B

Res. #images Batch Size Learning Rate GPU days Res. #images Batch Size Learning Rate GPU days
(A100) (A100)

256 1M ImageNet 1024 2×10−5 44 - - - - -
256 10M SAM 11392 2×10−5 336 - - - - -

256 14M HQ 11392 2×10−5 208 256 14M HQ 512 1×10−4 96
512 14M HQ 2560 2×10−5 160 512 14M HQ 256 1×10−4 96
1024 14M HQ 384 2×10−5 80 1024 14M HQ 128 1×10−4 96

different editing types, we first classify image editing into two major categories, namely style editing
and subject editing. For style editing, we aim to change or enhance the overall visual style, such
as color, environment, and texture, without modifying the main object of the image, while subject
editing aims to modify the content of the main object, such as addition, replacement, and removal,
without affecting the overall visual style. Then, we leverage a simple yet effective method to achieve
this image editing within the Lumina-T2I framework. Specifically, given an input image, we first
encode it into latent space using the VAE encoder and interpolate the image latent with noise to get
the intermediate noisy latent at time λ. Then, we can solve the Flow ODE from λ to 1.0 with desired
prompts for editing as text conditions. Due to the powerful generation capability of our model, it can
faithfully perform the ideal editing while preserving the original details in high resolution. However,
in style editing, we find that the mean and variance are highly correlated with image styles. Therefore,
the above method still suffers from style leakage since the interpolated noisy data still retains the
style of the original image in its mean and variance. To eliminate the influence of the original image
styles, we perform channel-wise normalization on input images, transforming them to zero mean and
unit variance.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 RESULTS OF TEXT-TO-IMAGE GENERATION

Figure 7 and Figure 8 showcase more text-to-image generation samples of our Lumina-T2I. Besides,
we provide the comparison of training setups between Lumina-T2I and PixArt-α in Table 4.

G.2 INFLUENCE OF TIME SHIFTING

As mentioned before, time shifting is critical to generate images with higher resolution than training.
We explore the impact of different values of the shifting factor m. As depicted in Figure 9, it is
surprising that a larger value of m significantly improves the overall visual quality for nearly all
resolutions, ranging from 256 to 2048. When scaling this shifting factor from 1.0 to 10.0, the main
subject in the image becomes closer and brighter, exhibiting fewer artifacts. We speculate this is
because a larger m indicates spending more steps at the early stage of sampling, which is important
for the diffusion model to compose the global structure layout. In contrast, we can skip some steps at
the end of sampling since the model is performing an easier task similar to pure denoising.

Style-Consistent Generation Batch generation of style-consistent content holds immense value
for practical application scenarios (Hertz et al., 2023; Tewel et al., 2024). Here, we demonstrate that
through simple key/value information leakage, Lumina-T2I can generate impressive style-aligned
batches. As shown in Figure 10, leveraging a naive attention-sharing operation, we can observe
strong consistency within the generated batches. Thanks to the full-attention model architecture,
we can obtain results comparable to those in (Hertz et al., 2023) without using any tricks such as
Adaptive Instance Normalization (AdaIN) (Huang & Belongie, 2017). Furthermore, we believe
that, as previous arts (Hertz et al., 2023; Tewel et al., 2024) illustrate, through appropriate inversion
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Left: An ancient Japanese cherry blossom forest with Mt. Fuji visible in the distance during the golden hour, captured in stunning 8K 
resolution with cinematic lighting and atmospheric details.  Right: A majestic phoenix rising from the ashes in a blaze of fiery colors.

1024×2048

A detailed photorealistic image of a steampunk locomotive on a 
platform with sharp lines, surrounded by light purple fog.z

2048×1024

A photorealistic render of an origami white and tan mini Bernadoodle 
dog standing in a surrealistic field under the moonlit setting.

1664×1664

A Star Wars droid on a solid white background.

1664×1664

1664×1664

The Hulk is in a colorful gothic background, with highly detailed 
dramatic lighting and photo-realistic style, rendered in 8K resolution.

1024×2048

A photorealistic image of a Pagani Huayra driving through a city at night with glowing city lights in the background.

1408×1408

A Porsche 911 GT3 is driving through a pile of fallen autumn leaves, 
with more leaves flying around due to the car's speed.

Style Edit: … through a snowy forest, with snowflakes falling and 
flying around ...

1408×1408

Subject Edit: A lamborghini huracan …

1408×1408

Figure 7: Lumina-T2I is capable of generating higher-resolution images than its training resolution
(1024×1024), producing photorealistic images at arbitrary resolutions and aspect ratios. Additionally,
it can compose images based on multiple captions (third row), perform seamless high-resolution
editing to image styles or subjects (last row), and support a diverse range of topics and styles for
image generation.
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A detailed paper cut craft and 
illustration of a cute anime bunny
girl sitting in the woods.

A realistic landscape shot of the 
Northern Lights dancing over a 
snowy mountain range in Iceland, 
with long exposure to capture the 
motion and vibrant colors. 

A beautiful Victorian-era botanical 
garden featuring a charming pond 
and lovely daisies.

A serene mountain landscape in the 
style of a Chinese ink painting, with 
a waterfall cascading down into a 
crystal-clear lake surrounded by 
ancient pines. 

An impressionist painting of a 
bustling café terrace at night, with 
vivid colors and lively brush strokes.

Batman, cute modern Disney style, 
ultra-detailed, gorgeous, trending on 
dribble

Detailed pen and ink drawing of a 
happy pig butcher selling meat in its 
shop.

A young girl‘s face disintegrates 
while beautiful colors fill her 
features, depicted in fluid dynamic 
brushwork with colorful dream-like 
illustrations.

A serene twilight beach scene with silhouetted palm trees and bioluminescent waves, digital oil painting.

a watercolor portrait of a Terrier 
dog, smiling and making a cute facial 
expression while looking at the 
camera, in Pixar style.

An old shaman woman adorned with 
feathers and leather, portrayed in a 
photorealistic illustration with soft 
lighting and sharp focus.

An 80s anime still illustrated, 
featuring a man and a woman in a city 
park, wearing retro clothing with 
muted pastel colors.

An anthropomorphic Hulk, wearing 
glasses and smiling, is depicted in a 
cute and funny character design

Two cute penguins in a romantic Valentine's yarn 
setting under the moonlight with pastel colors.

A photograph showcases the beauty of desert 
flowers and mirrors illuminated by the soft morning 
light. The image, extremely photorealistic and 
meticulously detailed, depicts a lonely desert 
atmosphere with stars shining overhead. 

A red-haired male elf hunter with a shy expression 
is standing in a mystical forest, surrounded by fairy 
tale-like elements and vibrant spectral colors.

Figure 8: Lumina-T2I is capable of generating images with arbitrary aspect ratios, delivering superior
visual quality and fidelity while adhering closely to given text instructions.
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A humanoid eagle soldier of the First World War.

512px

1024px

1280px

1536px

1792px

2048px

time shift 
scale:

1.0 2.0 4.0 6.0 8.0 10.0

Figure 9: Qualitative effects of time shifting on various resolutions. A larger Time Shifting scale
effectively improves the visual quality of generated images.

techniques, we can achieve style/concept personalization at zero cost, which is a promising direction
for future exploration.

Compositional Generation As illustrated in Figure 11, we present demos of compositional gen-
eration (Yang et al., 2024; Bar-Tal et al., 2023) using the method described in Appendix F.3. We
can define an arbitrary number of prompts and assign each prompt an arbitrary region. Lumina-T2I
successfully generates high-quality images in various resolutions that align with complex input
prompts while retaining overall visual coherence. This demonstrates that the design choice of our
Lumina-T2I offers a flexible and effective method that excels in generating complex high-resolution
multi-concept images.

High-Resolution Editing Following the methods outlined in Appendix F.4, we perform style and
subject editing on high-resolution images (Hertz et al., 2022; Brooks et al., 2023; Kawar et al., 2023;
Sheynin et al., 2023). As depicted in Figure 12, Lumina-T2I can seamlessly modify global styles or
add subjects without the need for additional training. Furthermore, we analyze various factors such as
starting time and latent feature normalization in image editing, as shown in Figure 13. By varying the
starting time from 0 to 1, we find that a starting time near 0 leads to complete spatial misalignment,
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…colorful, macro photo.

Toy train… Toy airplane… Toy bicycle… Toy car…

Candles and roses… A bottle… A pizza… A chef…

…in Japanese ukiyo-e style.

A winter forest… A sleigh… A snowman… A snowy cabin…

…in Scandinavian folk art style.

Figure 10: Style-consistent image generation samples produced by Lumina-T2I. Given a shared style
description, Lumina-T2I can generate a batch of images with diverse style-consistent contents.

while a starting time near 1 results in unchanged content. Setting the starting time to 0.2 provides a
good balance between adhering to the editing instructions and preserving the structure of the original
image. Compared with the generated image without normalization, it is clear that channel-wise
normalization can effectively remove the original style of the input image while preserving its main
content. By normalizing the latent features of the original image, our approach to image editing can
better handle the editing instructions.

Comparison with PixArt-α Compared to PixArt-α (Chen et al., 2023b), Lumina-T2I can generate
images at resolutions ranging from 5122 pixels to 17922 pixels. As demonstrated in Figure 14,
PixArt-α struggles to produce high-quality images at both lower and higher resolutions than the size
of images used during training. Lumina-T2I utilizes RoPE, the [nextline] token, as well as layer-
wise relative position injection, enabling it to effectively handle a broader spectrum of resolutions.
In contrast, PixArt-α relies on absolute position embedding and limits positional information to the
initial layer, leading to a degradation in performance when generating images at out-of-distribution
scales.
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Upper Left: A serene countryside landscape dotted 
with quaint cottages and rolling hills, bathed in the 
warm glow of the setting sun.
Upper Right: A post-apocalyptic world where nature 
has reclaimed the land and mutated creatures roam.
Down Left: An old man, portrayed as a retro superhero.
Down Right: A mysterious portal leading to another 
dimension, with swirling vortexes of light and energy.

Demo of Compositional Generation

Left: A majestic castle perched atop a rocky cliff, overlooking a vast kingdom below.
Right: A high-detail image of a wolf mutant deer in a winter landscape with rainbow-colored snow.

Upper Left: An underwater city inhabited by aquatic 
creatures, with colorful coral reefs and schools of fish.
Upper Right: A sprawling space station, bustling with 
activity and interstellar travelers.
Down Left: A dystopian wasteland with ruins and debris.
Down Right: A lone astronaut exploring the desolate 
surface of a distant planet, with the vast expanse of 
space stretching out behind them.

Left: A samurai warrior holds a nice sword in a fantasy world, portrayed in an epic and adventurous painting mod. 
Right: A futuristic cityscape with towering skyscrapers and flying cars zooming through neon-lit streets.

Up: A snowy mountain. 
Mid: A beautiful oil painting of a 
steamboat in a river.
Down: A tranquil garden filled 
with blooming flowers

1792×1792

1792×1792

2048x10241024x2048

1024x2048

Figure 11: Compositional generation samples of Lumina-T2I. Our Lumina-T2I framework can
generate high-quality images with intricate compositions based on a combination of prompts and
designated regions.

Style Edit: … in the storm.

1408×1408

Style Edit: … in autumn.

1408×1408

Style Edit: … in the desert.

1408×1408

Base: A photorealistic image of a tree in spring.

1408×1408

Subject Edit: … a rabbit….

1408×1408

Base: A realistic image of a groundhog peeking out of its 
burrow in the snow-covered winter landscape.

1408×1408

Subject Edit: … wearing boots.

1408×1408

Base: A photorealistic and ultra cute 3D rendered 
flamingo stands in a room with a Christmas tree.

1408×1408

Figure 12: Demonstrations of style editing and subject editing over high-resolution images in a
training-free manner.

Apart from resolution extrapolation, Lumina-T2I also adopts a simplified training pipeline, as shown
in Table 4. Ablation studies conducted on ImageNet indicate that training with natural image
domains such as ImageNet results in higher training losses in subsequent stages. This suggests that
synthetic images from JourneyDB and natural images collected online (e.g., LAION (Schuhmann
et al., 2021; 2022), COYO (Byeon et al., 2022), SAM (Kirillov et al., 2023), and ImageNet (Deng et al.,
2009)) belong to distinct distributions. Motivated by this observation, Lumina-T2I trains directly on
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w/ norm

w/o norm

t=0 t=1t=0.2 t=0.4 t=0.6 t=0.8
Dissimilar Great No Difference

Style Mismatch Input Image

Figure 13: Qualitative effects of the starting time and latent feature normalization in style editing. A
starting time near 0.2 yields a good balance between preserving the original content and incorporating
the desired target style, while removing normalization greatly hinders the model’s ability to effectively
transform image styles.

John Wick, dressed in Mandalorian attire, is a skilled bounty hunter in a high-speed chase

pi
xa

rt
-α

lu
m

in
a-

t2
x

512px 1024px 1280px 1536px 1792px 2048px

Figure 14: Qualitative comparison between Lumina-T2I and PixArt-α in generating images at
multiple resolutions. The samples from Lumina-T2I demonstrate better alignment with the given text
and superior visual quality across all resolutions compared to those from PixArt-α.

high-resolution synthetic domains to reduce computational costs and avoid suboptimal initialization.
Additionally, inspired by the fast convergence of the FID score observed when training on ImageNet,
Lumina-T2I adopts a 5 billion Flag-DiT, which has 8.3 times more parameters than PixArt-α, yet
incurs only 35% training costs (288 A100 GPU days compared to 828 A100 GPU days).

Analysis of Gate Distribution in Zero-Initialized Attention Cross-attention (Tang et al., 2022;
Blattmann et al., 2023a) is the de-facto standard for text conditioning. Unlike previous methods,
Lumina-T2I employs zero-initialized attention mechanism (Gao et al., 2023; Zhang et al., 2023b),
which incorporates a zero-initialized gating mechanism to adaptively control the influence of text-
conditioning across various heads and layers. Surprisingly, we observe that zero-initialized attention
can induce extremely high levels of sparsity in text conditioning. As shown in Figure15(a), we
visualize the gating values across heads and layers, revealing that most gating values are close to
zero, with only a small fraction exhibiting significant importance. Interestingly, the most crucial
text-conditioning heads are predominantly found in the middle layers, suggesting that these layers
play a key role in text conditioning. To consolidate this observation, we truncated gates below a
certain threshold and found that 80% of the gates can be deactivated without affecting the quality
of image generation, as demonstrated in Figure 15(b). This observation suggests the possibility of
truncating most cross-attention operations during sampling, which can greatly reduce inference time.
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Heatmap of Absolute Tanh Values of Gates Across Layers and Heads
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0.8

(a)

A high-detail image of a wolf mutant deer in a winter landscape with rainbow-colored snow.

A strong man with real facial wrinkles and pores casts an imposing figure near the bridge while a young woman stands in 
admiration in a dramatic and photorealistic scene with perfect background characters and silky smooth bokeh.

An old man, portrayed as a retro superhero, stands in the streets of New York City at night

Gate threshold: 
Active gates: 

0.0
100%

0.2
3.61%

0.4
2.05%

0.6
0.97%

0.8
0.78%

1.0
0.0%

(b)

Figure 15: Gated cross-attention in Lumina-T2I. (a) Absolute tanh values of all gates across all layers
and heads. (b) Qualitative results of generated images under different gate thresholds.

H APPLYING LUMINA-T2X TO MORE MODALITIES

H.1 RESULTS OF LUMINA-T2V

Basic Setups Lumina-T2V shares the same architecture with Lumina-T2I except for the introduc-
tion of a [nextframe] token, which provides explicit information about temporal duration. By
default, Lumina-T2V uses CLIP-L/G (Radford et al., 2021) as the text encoder and employs a Flag-
DiT with 2 billion parameter as the diffusion backbone. Departing from previous approaches (Guo
et al., 2023; Wang et al., 2023c; Jiang et al., 2023; Chen et al., 2023a; 2024a; Blattmann et al., 2023c;
Zhou et al., 2023; Ho et al., 2022a; Blattmann et al., 2023b; Hu et al., 2023; Chen et al., 2023c;
Wang et al., 2023b; Zhang et al., 2023c; Xing et al., 2023; Gupta et al., 2023; Wu et al., 2023)
that rely on T2I checkpoints for T2V initialization and adopt decoupled spatial-temporal attention,
Lumina-T2V takes a different route by initializing the Flag-DiT weights randomly and leveraging
a full-attention mechanism that allows for interaction among all spatial-temporal tokens. Although
this choice significantly slows down the training and overall inference speed, we believe that such an
approach holds greater potential, particularly when ample computational resources are available.

Lumina-T2V is independently trained on a subset of the Panda-70M dataset (Chen et al., 2024c)
and the collected Pexel dataset, comprising of 15 million and 40,000 videos, respectively. Similar
to Lumina-T2I, Lumina-T2V employs a multi-stage training strategy that starts with shorter, low-
resolution videos and subsequently advances to longer, higher-resolution videos. Specifically, in the
initial stage, Lumina-T2V is trained on videos of a fixed size – such as 512 pixels in both height
and width, and 32 frames in length for the Pexel dataset, which collectively comprise approximately
32,000 tokens. During the second stage, it learns to handle videos of varying resolutions and durations,
while imposing a limit of 128,000 tokens to maintain computational feasibility.

Observations of Lumina-T2V We observe that Lumina-T2V with large batch size can converge,
while a small batch size struggles to converge. As shown in Figure 16(a), increasing the batch size
from 32 to 1024 leads to loss convergence. On the other hand, similar to the observation in ImageNet
experiments, increasing model parameters leads to faster convergence in video generation. As shown
in Figure 16(b), as the parameter size increases from 600M to 5B, we consistently observe lower loss
for the same number of training iterations.

Samples of Video Generation As shown in Figure 17, the first stage of Lumina-T2V is able to
generate short videos with scene dynamics such as scene transitions, although the generated videos
are limited in terms of resolution and duration, with a maximum of 32K total tokens. After the second
stage training on longer-duration and higher-resolution videos, Lumina-T2V can generate long videos
with up to 128K tokens in various resolutions and durations. The generated videos, as illustrated in
Figure 18, exhibit temporal consistency and richer scene dynamics, indicating a promising scaling
trend when using more computational resources and data.
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Figure 16: Training loss curve comparison between (a) 2B Flag-DiT trained on 8 GPUs and 128
GPUs, (b) different sizes of Flag-DiTs.

Frame 1-9

Frame 10-16

Scene Transition

Figure 17: Short video generation samples of Lumina-T2V. Although the length and resolution of the
generated videos are limited, these samples exhibit scene transition, indicating a promising way for
long video generation.

H.2 RESULTS OF LUMINA-T2MV

Basic Setups The multi-view images of a 3D object can be regarded as a distinct type of video
format, emphasizing changes in the camera’s position and orientation relative to a static object. We
utilize multi-view images rendered from the Objaverse (Deitke et al., 2023) dataset to train a 5B
Flag-DiT model with CLIP-L/G as the text encoder.

Dataset We employ the LVIS subset of the Objaverse dataset, which includes approximately 40K
3D objects. For textual prompts, we use the precise descriptions generated by Cap3D (Luo et al.,
2024). For each object, we render 12 views around the object against a white background. The
elevation is set at 30°, and the azimuth is uniformly distributed from 0° to 360°. We render the images
at resolutions of 256× 256 and 512× 512, respectively, to train the 5B Flag-DiT model from scratch
with different resolutions. Following Zero123++ (Shi et al., 2023a), we put the 12 rendered images
into a single large image in the form of a 3× 4 grid. The images are placed in row-wise order, with
four images per row, across three rows. We do not fix the starting azimuth of the first image, only
ensure that the azimuth of subsequent images increases sequentially by 30°. For twelve 256× 256
multi-view images, this operation will result in a 1024× 768 image, and so on for 512× 512 images
that will result in a 2048× 1536 image.

Training We adopt a two-stage training strategy, starting with training on the 1024× 768 images
which are composed of twelve 256 × 256 images, and then training on the 2048 × 1536 images.
During training, we provide only the merged 12-view images and corresponding text descriptions,
without any information about camera parameters. The training is conducted on 16 NVIDIA A100
GPUs, each with 80GB of memory. For the low-resolution stage, we trained the Lumina-T2MV
model with a batch size of 64 for 100K iterations, while for the high-resolutio n stage, we trained the
Lumina-T2MV model with a batch size of 16 for 180K iterations. Other configurations are kept the
same as the Lumina-T2I model.
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Frame 1-8

Frame 9-16

Frame 17-24

Frame 25-32

Frame 33-40

Frame 41-48

Frame 49-56

Frame 57-64

Fireworks over a Disney castle

Figure 18: Long video generation samples of Lumina-T2V. Lumina-T2V enables the generation of
long videos with temporal consistency and rich scene dynamics.

An orange and blue 3D model of a motorcycle.

3D model of a Lego man wearing a red shirt and blue pants.

3D model of a red fire hydrant.

Grey duffel bag with a handle.

Figure 19: Qualitative results of low-resolution multiview images generated by Lumina-T2MV

Low-Resolution Multi-view Examples The trained Flag-DiT model can generate twelve 256×256
images from different viewpoints based on the provided text prompt, demonstrating strong spatial
consistency as shown in Figure 19. Although we did not provide the camera parameters, our model
automatically understands the distribution of camera poses corresponding to different regions of the
image and can generate reasonable multi-view images with viewpoint changes.

High-Resolution Multi-view Examples We observed that the model’s capability to capture fine
details of objects is limited by the 256× 256 resolution of the first-stage training images. So we then
use the 2048× 1536 images for training, which are composed of twelve 512×512 images. Thanks
to the powerful long-sequence modeling capability of our 5B Flag-DiT, the model maintains high
performance as shown in Figure 20. Besides ensuring an accurate viewpoint of each generated
multi-view image, we find a significant improvement in the quality of the generated details compared
to the lower resolutions. We plan to scale up the training with more complex and denser camera
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3D model of a red fire hydrant.

3D model of a deer with antlers.

3D model of a Lego man wearing a red shirt and blue pants.

Figure 20: Qualitative results of high-resolution multiview images generated by Lumina-T2MV

views, as well as higher image resolutions, to further explore the potential of our Lumina-T2MV
model.

H.3 RESULTS OF LUMINA-T2SPEECH

Basic Setups Lumina-T2Speech is also built on the Flag-DiT backbone consisting of a phoneme
encoder and a pitch encoder. The size of the phoneme vocabulary is set as 73. In the pitch encoder,
the size of the lookup table and encoded pitch embedding are set to 300 and 256, and the hidden
channel is set to 256. We provide Lumina-T2Speech with different sizes of Flag-DiT following the
configuration in the main text.

Dataset For a fair and reproducible comparison against other competing methods, we use the
benchmark LJSpeech dataset (Ito, 2017). LJSpeech consists of 13,100 audio clips of 22050 Hz
from a female speaker for about 24 hours in total. We convert the text sequence into the phoneme
sequence with an open-source grapheme-to-phoneme conversion tool (Sun et al., 2019) 1. Following
the common practice (Chen et al., 2021; Min et al., 2021), we conduct preprocessing on the speech
and text data: (1) extract the spectrogram with the FFT size of 1024, hop size of 256, and window
size of 1024 samples; (2) convert it to a mel-spectrogram with 80 frequency bins; and (3) extract F0
(fundamental frequency) from the raw waveform using Parselmouth.

Training The Lumina-T2Speech has been trained for 200,000 steps using 1 NVIDIA 4090 GPU
with a batch size of 64 sentences. The adam optimizer is used with β1 = 0.9, β2 = 0.98, ϵ = 10−9.
We utilize HiFi-GAN (Kong et al., 2020) (V1) as the vocoder to synthesize waveform from the
generated mel-spectrogram in all our experiments.

Evaluation We report word error rate (WER) to evaluate the intelligibility of speech by transcribing
it using a whisper (Radford et al., 2023) ASR system following (Wang et al., 2023a). Style similarity
(SIM) assesses the coherence of the generated speech in relation to the speaker’s characteristics, and
we employ the speaker verification model WavLM-TDNN (Chen et al., 2022) to evaluate the speaker
similarity. We also conducted a crowd-sourced human evaluation via Amazon Mechanical Turk for
Mean Opinion Score (MOS) test following (Protasio Ribeiro et al.), which is reported with 95%
confidence intervals.

1https://github.com/Kyubyong/g2p
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Medium LargeSmall

Figure 21: Visualizations of the reference and generated mel-spectrograms. The corresponding texts
of generated speech samples is “Most of Caxton’s own types are of an earlier character, though they
also much resemble Flemish or Cologne letter."

Table 5: Comparisons with existing text-to-speech methods and different configurations of Flag-DiT.
Method MOS WER SIM

GT 4.34±0.07 / /
GT (voc.) 4.18±0.05 5.3 99.2

FastSpeech 2 (Ren et al., 2020) 3.83±0.08 / /
DiffSpeech (Liu et al., 2022a) 3.92±0.06 / /
WaveGrad (Chen et al., 2020b) 4.00±0.00 / /
FastDiff 2 (Huang et al., 2023b) 4.12±0.08 / /

Flag-DiT-S 3.92±0.07 6.8 97.5
Flag-DiT-B 3.98±0.06 6.4 98.0
Flag-DiT-L 4.02±0.08 6.2 98.3
Flag-DiT-XL 4.01±0.07 6.3 98.4

Results We first evaluate the performance of FlagDiT with different configurations. The results
have been shown in Table 5. Increasing the depth and number of layers in the transformer can
significantly enhance the performance of the diffusion model, resulting in an improvement in both
objective metrics and subjective metrics, which demonstrates that expanding the model size enables
finer-grained room acoustic modeling.

For the intelligibility of the generated speech and style similarity, our Flag-DiT synthesizes accessible
speech with good quality. For subjective evaluation, we compare our Flag-DiT with several text-
to-speech approaches, including FastSpeech 2 (Ren et al., 2020), DiffSpeech (Liu et al., 2022a),
WaveGrad (Chen et al., 2020b), and FastDiff 2 (Huang et al., 2023b). The superior results when
compared to other diffusion-based approaches, such as DiffSpeech and WavGrad, indicate FlagDiT’s
potential in effectively modeling audio signals without any modality-specific design. We visualize
the generated mel-spectrograms in Figure H.3. Our flow-based framework formulates the generation
process as a progressive transformation between noise and target data where each transformation
step is relatively simple to model. Thus, we expect our model to exhibit better sample quality and
diversity than traditional GAN and other diffusion-based methods.
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