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1 Overview
In this supplementary material, we present additional experimental
results and visual analysis not included in our main manuscript
due to space limitations. Moreover, the structure of the RFF block
within the WDM is depicted in Fig. 2. The RFF block is employed to
refine the information from the previous stage, which can extract
essential features and eliminate redundant information. It facilitates
inter-stage information exchange and enhances the reconstruction
capabilities of the current stage in effect.

2 More Experimental Details and Analysis
This section presents additional comparative results that highlight
the performance of our proposed method, D3U-Net, against other
superior methods. Table 1 provides the average PSNR/SSIM com-
parisons across different sampling rates for our D3U-Net and other
advanced methods on various benchmark datasets. For example,
our D3U-Net outperforms AMP-Net [8], COAST-Net [6], ISTA-
Net++ [5], MADUN [1], DPUNet [4], DPC-DUN [2], SODAS-Net [3]
by 1.86 dB, 2.52 dB, 4.89 dB, 3.77 dB, 2.01 dB, 1.61 dB, 1.97 dB, and
2.56 dB in terms of PSNR on General100 dataset when the CS sam-
pling ratio is 10%, respectively. In addition, the average SSIM gain
of our method over these comparison methods is 0.0233, 0.0469,
0.1031, 0.0728, 0.0382, 0.0162, 0.0342, and 0.0456, respectively. As
shown in Fig. 1 and Fig. 4, visual comparisons are conducted on
three natural benchmark images named “foreman” from Set14, and
“bird”, “head” from Set5 at a 10% CS sampling ratio, which can be
seen that our method can recover much clearer edges and textures
than other methods. Compared to COAST-Net [6], ISTA-Net++ [5],
MADUN [1], and AMP-Net [8], our method achieved improvements
of 2.41 dB,1.49 dB, 2.12 dB, and 2.65 dB in terms of PSNR on the
benchmark image named “foreman” from Set14 when the CS sam-
pling ratio is 10%, respectively.

3 The Visual Analysis of Dual-main
Information

In this section, we further analyze the impact of dual-domain infor-
mation, where the visual analysis of the feature maps provides a
deeper insight. The visual maps in Fig. 3 illustrate that our Image
Domain Mapping (IDM) and Wavelet Domain Mapping (WDM)
blocks focus on different aspects of information and are mutually
complementary. As shown in Fig. 3, the color change from blue to
red shows a shift in attention levels, in which cooler blues indicate
less attention. Conversely, the transition to a warm red represents
a significant increase in attention, denoting improved levels of
cognitive engagement. The sub-figure 3a highlights the regions
of interest for the difference block, while sub-figure 3b identifies
the areas of concern for the consistency block. And sub-figure 3c
illustrates the areas of concern by only utilizing wavelet domain

(a) PSNR(dB)/SSIM
Ground truth

(b) 32.78/0.9207
COAST [6]

(c) 33.70/0.9256
ISTA-Net++ [5]

(d) 33.07/0.9304
MADUN [1]

(e) 32.54/0.9296
AMP-Net [8]

(f) 35.19/0.9472
Ours

Figure 1: Visual quality comparisons between our MTADUN
and recently state-of-the-art CS methods on Set14 at 10% CS
sampling ratio. The best and second-best results are high-
lighted in red and blue, respectively.

information, which focuses on preserving more details and edges.
In contrast, sub-figure 3d depicts the areas of concern only using
image domain information, which pays more attention to smooth
regions. They indicate that information from different domains can
be complementary to each other. The final sub-figure 3e shows that
our D3U-Net is capable of focusing on a broader range of informa-
tion, demonstrating enhanced sensitivity to details with increased
fidelity. This indicates that introducing information from different
domains contributes to recovering superior images.
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Figure 2: The structure of the RFF block.

(a) w/o difference (b) w/o consistency (c) w/o wavelet-domain (d) w/o image-domain (e) D3U-Net

Figure 3: Visual analysis of feature maps at the ninth stage of our D3U-Net. It shows that introducing dual-domain information
enables the network to pay more high-fidelity attention to details. The color change from blue to red shows a shift in attention
levels, in which cooler blues indicate less attention. Conversely, the transition to a warm red represents a significant increase
in attention, denoting improved levels of cognitive engagement.

Table 1: Average PSNR(dB)/SSIM comparisons with different methods. The best and second-best results are highlighted in bold
and underlined, respectively.

Dataset Method Sampling Rate
10% 20% 30% 40% 50%

Set14

AMP-Net [8] 28.69/0.8171 31.95/0.8933 34.27/0.9293 36.26/0.9505 38.10/0.9647
COAST [6] 27.41/0.7799 30.71/0.8672 33.10/0.9106 35.12/0.9369 36.93/0.9549
ISTA-Net [7] 25.85/0.7214 28.91/0.8289 31.37/0.8868 33.48/0.9221 35.60/0.9450
ISTA-Net++ [5] 26.75/0.7549 30.09/0.8518 32.40/0.8999 34.26/0.9287 35.90/0.9477
MADUN [1] 27.97/0.7914 31.50/0.8790 34.05/0.9194 36.05/0.9439 37.96/0.9592
DPUNet [4] 28.49/0.8226 31.61/0.8963 33.95/0.9308 35.93/0.9505 37.66/0.9628
DPC-DUN [2] 28.02/0.7947 31.37/0.8781 33.92/0.9188 35.91/0.9429 37.83/0.9592
SODAS-Net [3] 27.54/0.7812 30.32/0.8624 33.62/0.9163 35.72/0.9415 37.61/0.9581
Ours 29.75/0.8419 33.07/0.9096 35.52/0.9403 37.49/0.9580 39.50/0.9699

General100

AMP-Net [8] 31.28/0.8825 35.29/0.9401 38.02/0.9645 40.11/0.9771 41.96/0.9848
COAST [6] 30.62/0.8589 34.39/0.9238 36.91/0.9520 39.04/0.9681 40.95/0.9783
ISTA-Net [7] 28.25/0.8027 31.94/0.8920 34.90/0.9350 37.25/0.9572 39.36/0.9716
ISTA-Net++ [5] 29.37/0.8330 33.14/0.9110 35.69/0.9443 37.74/0.9626 39.44/0.9736
MADUN [1] 31.13/0.8676 35.15/0.9329 37.86/0.9594 40.08/0.9735 42.18/0.9821
DPUNet [4] 31.53/0.8896 35.41/0.9430 38.04/0.9650 40.16/0.9767 41.94/0.9836
DPC-DUN [2] 31.17/0.8716 34.98/0.9321 37.76/0.9590 39.95/0.9731 42.01/0.9820
SODAS-Net [3] 30.58/0.8602 34.10/0.9224 37.49/0.9576 39.74/0.9722 41.74/0.9813
Ours 33.14/0.9058 36.99/0.9522 39.71/0.9716 41.91/0.9818 44.22/0.9885
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GT COAST[6] ISTA-Net++[5] MADUN[1] DPUNet[4] AMP-Net[8] Ours

PSNR(dB)/SSIM 34.07/0.9399 32.31/0.9098 35.06/0.9509 34.92/0.9566 35.11/0.9535 37.53/0.9716

PSNR(dB)/SSIM 30.93/0.7660 30.44/0.7443 30.99/0.7731 32.17/0.8089 32.09/0.7898 32.76/0.8258

Figure 4: Visual quality comparisons between our proposed method and recently state-of-the-art CS methods on Set5 at 10% CS
sampling ratio. The best and second-best results are highlighted in red and blue, respectively.
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