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Abstract
Can a large language model (LLM) learn to under-
stand longer context using self-generated instruc-
tion tuning data? Such capability would be impor-
tant not only for long context modeling, but also
to avoid issues related to licensing or copyright
that may arise when relying on a separate teacher
model to generate long context training data. In
this paper, we address this challenge by proposing
a novel set of diverse synthetic tasks that enable an
LLM to create long context instruction tuning data
in a scalable manner. This data is then used by the
same LLM to compress its activations (and hence
extend its context length) by learning a battery of
low-rank adapters (LoRA), where each adapter
is trained to focus on a specific compression rate.
During inference, the LoRA compression experts
are dynamically selected according to the length
of the input. We showcase the effectiveness of our
approach in the LongBench evaluation, covering
tasks such as question-answering, summarization,
few-shot learning, and code completion. We also
plan to make our long context instruction data
available to the community, which will be a use-
ful resource for practitioners.

1. Introduction
Numerous real-world applications require large language
models to process long input sequences, including question-
answering on long documents, chatbots that make use of
historical user data, in-context learning with a large set of
demonstrations, and repo-level code understanding. Trans-
former models, however, struggle to handle long context
windows, as memory and computation complexity scale
quadratically with the input length, due to the self-attention
mechanism (Tay et al., 2022). While many promising so-
lutions have achieved great strides in tackling this problem
(Gu & Dao, 2023; Munkhdalai et al., 2024; Liu et al., 2023;
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Zhang et al., 2024; Peng et al., 2023; He et al., 2024), effec-
tively extending the context length of LLMs while keeping
their original capabilities for short context inputs remains
an open problem (Liu et al., 2024).

In this work, we address the long context problem through
the lens of context compression (Zhang et al., 2024; Mu
et al., 2024; Chevalier et al., 2023) and study, for the first
time, the question whether LLMs can learn to compress long
input sequences (and therefore extend their own context
window) using self-generated synthetic data.

Our motivation to study this problem stems from two rea-
sons. First, synthetic data offers a scalable way to produce
long context instruction-following data. In fact, such data,
while commonly available for short context windows, is
scarce for long input sequences, given that it is very costly
to manually curate high-quality text data with long-range
dependencies for instruction tuning. Second, using syn-
thetic data from the same LLM avoids problems related
to licensing, copyright, data protection, and ethical issues
that may be present when distilling data from a separate,
stronger teacher model. Additionally, using data from a
teacher model with longer context abilities also introduces
dependency on the teacher model and if an issue with it is
discovered in the future (e.g., personal identifiable infor-
mation crawled in its training) and the teacher needs to be
deprecated, the student model needs to go down as well.

Traditional approaches for short context synthetic data gen-
eration based on a teacher model (Sudalairaj et al., 2024;
Mitra et al., 2023) cannot be directly applied in our setting,
since the base LLM does not have the extended context
length we are seeking for. Our proposed approach consists
of a novel set of synthetic tasks tailored for long-context
instruction following, which aggregate multiple short con-
text outputs synthetically generated by the base LLM into
long sequences with respective instructions (section 2.1).
The instructions cover diverse tasks related to knowledge,
reasoning, and code, and are designed to make the model
access information in a long context and reason about long-
range dependencies. We plan to publicly release the data
generated by our synthetic tasks (with up to 10 million
context length).

Our pipeline for long context data generation enables us
to generate synthetic data at arbitrary lengths. This allows
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Figure 1. Our approach relies on LLM self-generated synthetic
data to produce long context training examples, which are in turn
compressed by the same LLM using a sliding window along with
a battery of LoRA compression experts, which are dynamically
selected according to the length of the input. The compressed long
context (memory tokens) can fit in the original context window of
the LLM while capturing long-range information and is used for
next token prediction.

us to train specialized Low-Rank Adapter models (LoRA)
(Hu et al., 2021) focusing on specific context length ranges,
which we call context experts (section 2.2). We build upon
the work of (Zhang et al., 2024) for context compression,
and show that using multiple context experts spanning dif-
ferent compression rates yields more accurate results than
using a single compression model. Additionally, since our
architecture uses LoRA as opposed to a copy of the multi-
head attention module, our network has much fewer param-
eters than the model of (Zhang et al., 2024). Figure 1 shows
a high-level overview of our approach.

We show the effectiveness of our proposed approach on Lon-
Bench (Bai et al., 2023), including tasks for single and multi-
ple document question-answering, summarization, few-shot
learning, and code completion. In summary, the main contri-
butions of our work are listed as follows: (1) We investigate
the problem of self-compression, where the context length
of an LLM is compressed using a model trained on its own
self-generated synthetic data. (2) A set of diverse synthetic
tasks is proposed to generate instruction-following data for
long context modeling. We will release our generated data
(with up to 10 million context length) to the community. (3)
We perform compression of long inputs through a battery of
LoRA context experts trained on synthetic data at multiple
compression rates, which are dynamically selected during
inference according to the length of the input.

2. Approach
2.1. Synthetic Tasks for Long Context Modeling

We investigate the ability for an LLM to learn to compress
long contexts by training on its own self-generated synthetic

data. When designing the synthetic training dataset, we
target two objectives: task diversity and length flexibility.
Specifically, our dataset encompasses a set of six diverse
tasks which train the model to not only remember fine details
but also reason across a long context, and our approach can
easily be adapted to synthesize data of arbitrary desired
length.

To construct the synthetic samples, we begin with a list
containing 119,034 nouns in the English language mined
from WordNet (Fellbaum, 2010). Next, we prompt the
base LLM to generate a passage about each noun. The
noun serves as a random seed to produce a wide variety
of passages, and we also vary the prompt to cover diverse
genres from academic papers to sci-fi stories. Let this corpus
of synthetic passages be P = {pi} for each noun i. The
remaining steps to synthesizing the long-context training
samples are task-specific:

1. Single-Doc QA: We sample a passage pi ∈ P and
prompt the base LLM to generate a highly specific
question-answer pair (qi, ai) about the passage. We
then construct the long context ci by sampling a set of
some n additional distracting passages {pdistract} ⊂
P and placing the relevant passage pi somewhere at
random: ci = Shuffle(pi, {pdistract}). The training
sample is then constructed as follows:

Prompt: “Answer the question based on the passages.”

Input: Concat(ci,Prompt, qi)

Output: ai

2. Summarization: Instead of working with a single pas-
sage as in QA, we ask the LLM to summarize multiple
passages. Specifically, we sample a set of passages
{psum} ⊂ P and prompt the base LLM to generate a
summary for each passage, {ssum}. Distracting pas-
sages are added at random to form the long context as
before, csum = Shuffle({psum}, {pdistract}).
Prompt: “Write a summary for Passage {index1},
the passage about {noun1}; a summary for Passage
{index2}...”

Input: Concat(csum,Prompt)

Output: Concat({ssum})

3. Multi-Doc Sim-Diff: For this task, we prompt the
LLM to generate two very similar passages r1i , r

2
i

about a noun i which differ in a few key details, and
then prompt it again to identify similarities and dif-
ferences di. The long context is formed by ci =
Shuffle(r1i , r

2
i , {pdistract}).

Prompt: “Identify the similarities and differences in
the two passages about {noun}.”

Input: Concat(ci,Prompt)

Output: di
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4. Multi-Doc QA: We prompt the LLM to generate
two different passages s1i , s

2
i about a noun i which

are linked by a few key details, and then prompt
it again to generate a question-answer pair (qi, ai)
which requires knowledge of both passages to an-
swer correctly. The long context is formed by ci =
Shuffle(s1i , s

2
i , {pdistract}).

Prompt: “Answer the question based on the passages.”

Input: Concat(ci,Prompt, qi)

Output: ai

5. Multi-Doc Logic: We prompt the LLM to generate two
facts f1

i , f
2
i about a noun i which follow the logical

structure A implies B and B implies C, respectively,
and then generate a question-answer pair (qi, ai) about
the relationship between A and C. The training sample
is constructed identically to the Multi-Doc QA task
with f1

i , f
2
i replacing s1i , s

2
i .

6. Code: We prompt the LLM to generate Python code
via alternating between ‘invent & initialize a set of
variables’, ‘invent a function’, and ‘call a function’ ac-
tion steps. Instructions are generated by prompting
the same LLM following the same sequence of ran-
dom policy steps for each synthetic code and providing
grounded code snippets with the prompts (recorded
during code synthesis). Example prompts for different
steps include: ‘Explain how the variable {v} is initial-
ized?’, ‘Ask 5 diverse questions about this function
{f}’, answer the generated 5 questions in the function
context, ‘Summarize/Explain the function {f}’. Addi-
tionally, we follow the recorded tree of function calls
to produce mechanistically QA of the form: ‘Which
function produced the variable {v}?’ and ‘List all the
variables that participated in computing {v}’ requiring
long-context trace of a variable to its source.

Observe that by simply adjusting the number of distracting
passages n, our method can be adapted to easily synthesize
data of arbitrary length. For our experiments, we generate
6K synthetic training samples - 1K per task - where each
sample has a context length between 1K and 8K tokens. The
length distribution is uniform to prevent any training bias.
We will also release additional datasets to the community
covering the following context lengths: 0-8K, 8K-16K, 16K-
32K, 32K-64K, 64K-128K, 128K-256K, 256K-512K, 512K-
1M, 1M-2M, 2M-4M, 4M-10M.

2.2. Compression using LoRA Context Experts

We use the synthetic data described in the previous section
to learn a context compression model that condenses the
LLM’s raw activations into a compact set of memory tokens,
which allow the LLM to perceive a longer context within

a limited context window. Compared to fine-tuning the
model with long context data, this idea has the advantage
of mantaining the parameters of the LLM unchanged and
therefore retaining its original capabilities.

In this vein, our work builds upon the activation beacon
method (Zhang et al., 2024), which first splits the long
context into multiple intervals, and then employs a sliding
window to sequentially process each interval at a time (see
Figure 1). For each interval, a set of memory tokens (or
beacon tokens) are added, which are prompted to compress
the raw LLM activations of that particular interval. When
moving to the next interval, the raw activations of the previ-
ous interval are discarded and replaced by the corresponding
memory tokens with compressed activations. As a result of
this compression, the memory tokens and the prompt can
fit in the context window of the base LLM while capturing
information from a much longer input.

Different from (Zhang et al., 2024), which clones and
unfreezes the parameters of the multi-head self-attention
(MHA) for compressing the activations, we instead posit
that having multiple activation compression experts oper-
ating at different context length ranges is a more sensible
design choice. In other words, we propose to learn a battery
of compression models, each one tailored for a particular
compression rate (2x, 4x, 8x, . . . , 1024x). During infer-
ence, one of these models is selected according to the length
of the input, so that the compressed activations fit in the
LLM context window. As verified by our experiments, bet-
ter compressor models can be obtained if their weights are
specialized to particular compression rates, as opposed to
having a single model for all compression rates as in (Zhang
et al., 2024). On the other hand, cloning multiple MHA
parameters would not be feasible in terms of memory foot-
print. We address this issue by training multiple LoRA
adapters, with each adapter focused on a particular compres-
sion rate. The LoRA compression experts are trained by
auto-regression, where the next token is predicted based on
the compressed activations from the memory tokens and the
raw activations from the input ordinary tokens.

3. Experimental Results
3.1. Experimental Setup

In addition to the 6K synthetic data we generate, our training
dataset is also comprised of 150K pretraining samples from
RedPajama and 10K human-annotated instruction-tuning
samples from LongAlpaca to mitigate forgetting. We train
for one epoch of the whole dataset on a 8xA100 GPU node
with training parameters following (Zhang et al., 2024).

We apply our methodology to two different LLM backbones,
Llama-2-7B-chat and Llama-2-13B-chat, which have native
context lengths of 4K. Our approach is evaluated on the
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Llama-2-7B-chat Llama-2-13B-chat
Dataset MHA Experts Experts+Synth. MHA Experts Experts+Synth.
NarrativeQA 22.85 21.03 17.67 21.31 23.63 22.83
Qasper 17.86 23.77 28.77 23.52 27.86 29.83
MultiFieldQA 30.97 33.49 33.82 36.16 40.64 41.36
Single-Doc QA Avg 23.89 26.1 26.75 27.0 30.71 31.34
HotpotQA 35.9 36.22 37.85 43.13 43.7 48.57
2WikiMultihopQA 30.97 30.02 33.56 37.25 36.89 41.28
MuSiQue 15.89 18.69 19.38 27.01 27.82 31.57
Multi-Doc QA Avg 27.59 28.31 30.26 35.8 36.14 40.47
GovReport 24.89 26.84 27.73 27.46 30.56 29.66
QMSum 21.68 23.21 23.02 23.06 23.68 23.13
MultiNews 25.27 25.3 25.27 25.63 25.91 26.03
Summarization Avg 23.95 25.12 25.34 25.38 26.72 26.27
TREC 52.5 55.5 59.0 66.5 66.5 67.5
TriviaQA 82.04 76.96 82.05 83.51 82.94 81.88
SAMSum 42.11 43.52 43.49 42.64 42.04 40.12
Few-shot Avg 58.88 58.66 61.51 64.22 63.83 63.17
LCC 60.12 60.25 60.78 58.79 60.99 61.04
RepoBench-P 51.26 52.44 51.72 57.55 56.66 56.78
Code Completion Avg 55.69 56.34 56.25 58.17 58.83 58.91

All Dataset Avg 36.74 37.66 38.87 40.97 42.13 42.97

Table 1. Accuracy on LongBench for LoRA compression experts and training with synthetic data. The two modifications lead to additive
performance improvements over the MHA baseline for both Llama-2-7B-chat and Llama-2-13B-chat.

five real-world long-context tasks in the LongBench dataset:
single-document QA, multi-document QA, summarization,
few-shot learning, and code completion, totaling 3,350 test
samples. Following previous work, we truncate all samples
to 16K tokens for evaluation.

3.2. Main Results

Multiple LoRA compression experts yields stronger per-
formance with fewer parameters. In Table 1, we present
the performance comparison between cloning and finetun-
ing a single set of MHA parameters for all compression
ratios vs. training a battery of LoRA compression experts
which each specialize in a single compression ratio. The
results show that using the compression experts significantly
improves performance across all LongBench tasks except
for few-shot and across both LLM backbones.

Furthermore, using specialized LoRA experts comes with
the additional benefit of a substantially reduced memory
footprint. The previous MHA cloning method increased
the number of parameters of the base LLM by about 1/3
(∼2B additional parameters for Llama-2-7B), whereas our
battery of LoRA experts only requires a few hundred million
additional parameters. The smaller memory requirement
leads to practical deployment benefits.

Training with synthetic long-context data provides an

orthogonal accuracy improvement. We present the results
of training on 6K additional synthetic data in Table 1, where
we observe further performance gains on LongBench for
both backbones. The accuracy increase is reflected across
nearly all tasks but is particularly large for multi-doc QA,
which suggests that the synthetic tasks we designed helped
the model learn to reason across multiple passages. These
results indicate that careful design of synthetic long-context
data can lead to performance benefits on related real-world
tasks and reveal the potential for further gains by introduc-
ing additional, more diverse synthetic tasks. Overall, our
findings demonstrate that an LLM can indeed leverage its
own synthetically generated training data to learn to extend
its context.

4. Conclusion
We proposed a novel set of synthetic tasks for creating long
context instruction tuning data, along with a context exten-
sion method that relies on a set of compression experts, i.e.,
multiple LoRA adapters trained at particular compression
rates. Our long context instruction tuning data will be re-
leased to the community. As future work, we plan to explore
the use of our data for model fine-tuning and extension to
multiple modalities.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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