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Abstract
This paper explores the challenges of implementing Federated Learning (FL) in
practical scenarios featuring isolated nodes with data heterogeneity, which can only
be connected to the server through wireless links in an infrastructure-less environ-
ment. To overcome these challenges, we propose a novel mobilizing personalized
FL approach, which aims to facilitate mobility and resilience. Specifically, we
develop a novel optimization algorithm called Random Walk Stochastic Alternating
Direction Method of Multipliers (RWSADMM). RWSADMM capitalizes on the
server’s random movement toward clients and formulates local proximity among
their adjacent clients based on hard inequality constraints rather than requiring
consensus updates or introducing bias via regularization methods. To mitigate
the computational burden on the clients, an efficient stochastic solver of the ap-
proximated optimization problem is designed in RWSADMM, which provably
converges to the stationary point almost surely in expectation. Our theoretical
and empirical results demonstrate the provable fast convergence and substantial
accuracy improvements achieved by RWSADMM compared to baseline methods,
along with its benefits of reduced communication costs and enhanced scalability.

1 Introduction

Federated Learning (FL) [1, 2, 3, 4] is a distributed machine learning paradigm that enables clients
to learn a shared model without sharing their private data. Unlike traditional machine learning
approaches that rely on central servers for model training, FL allows clients to collaborate and train
the model in a distributed manner, overcoming privacy issues related to passing data to a central
server. Despite its advancements, real-world applications in environments with insufficient network
support continue to face challenges. a) Maintaining consistent and reliable connections between
the central server and clients becomes exceedingly challenging in environments lacking network
infrastructures, e.g., natural disasters or military warzones. While intermittent connectivity may be
available through satellite networks, the instability and limited capacity of such networks prevent
the transmission of large data volumes, making it difficult to collect model updates from soldiers or
first responders. b) The non-IID (non-independent and identically distributed) nature of clients’ data,
characterized by heterogeneity across the network, can hinder the generalization of the global model
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for each client. Addressing these challenges is crucial for practical FL in such environments. In
this paper, we propose RWSADMM, a novel FL scheme that uses Random Walk (RW) algorithm to
enable server mobility among client clients. These dynamic approach benefits scenarios with limited
internet connectivity, where clients form clusters using local short-range transmission devices.

For example, in various contexts such as robotics, emergency response, or military operations,
consider a scenario where individuals or entities are equipped with integrated visual augmentation
systems (IVAS) [5]. To facilitate the collection of model updates from these entities, a mobile unit
equipped with a powerful computer navigates the environment [6], communicating with locations
through a network, which might be satellite-based or another suitable alternative. Upon reaching an
entity, the mobile unit employs short-range communication technologies such as WiFi direct, Zigbee
[7], or Bluetooth to establish connections with nearby IVAS devices. Through these connections, the
unit collects model updates and distributes new models as necessary. A graph-based representation
is utilized to determine the order of interactions, where entities are depicted as nodes, and the edge
between an entity and its neighbor indicates that the neighbor is within the communication range of
the unit that reaches the entity. This graph assists the mobile unit in making informed decisions about
the order in which it engages with the entities.

Various applicable examples of such constrained network situations span across different domains,
including ad hoc wireless learning [8, 9, 10], wildlife tracking [11, 12, 13], Internet of Underwater
Things (IoUT) [14, 15], natural disaster management [16, 17], military operations [18], or fostering a
digital democracy [19, 20] which assists in overcoming restrictions imposed by regimes that prohibit
internet access to civilians.

Specifically, to address challenge a), we propose an algorithmic framework called RWSADMM (Fig.
1), short for Random Walk Alternating Directional method of Multipliers, which considers a dynamic
reachability graph among distributed clients using a movable vehicle as the central server. Clients
are represented as nodes in the graph, with edges denoting neighborhood connections. Personal
devices, referred to as local clients, establish dynamic connectivity with the server when the server is
nearby. The server connects with a selected client and its neighbors while moving between locations
using a non-homogeneous RW algorithm for probabilistic navigation. In each computation round, the
vehicle broadcasts and gathers local model updates from residing clients, who rely on short-range
communication to interact with the moving server, when it’s within the communication range. The
received updates are aggregated and used to update the global model iteratively.

To tackle the second challenge (b) arising from the heterogeneity of data distribution among clients,
RWSADMM incorporates model personalization through local proximity among adjacent clients
using hard inequality constraints, as opposed to unconstrained optimization with regularization tech-
niques that may induce model bias. By formulating the problem with these constraints, RWSADMM
reduces the computational complexity for clients, effectively mitigating the limitations of local
computational power. This is achieved by designing the solver to the stochastic approximation of the
minimization subproblem within the typical ADMM algorithm.

(a) step k (b) step k + 1
(c) Mobilized FL between clients
and the server

Figure 1: This illustration showcases the training process using the RWSADMM algorithm. A
vehicle, serving as the mobile server, navigates between different clients using a random walk strategy.
(a) In step k, the server moves to client 13, covering the clients in N (13) for FL model training and
completing the aggregation step. (b) In step k+1, client 5 is selected, and the vehicle moves to client
5. The training and aggregation steps occur within the zone encompassing N (5).



Our research makes three main contributions. Firstly, our proposed RWSADMM algorithm is the
first attempt to enable mobilizing FL with efficient communication and computation in an
infrastructure-less setting. The RWSADMM framework involves a server dynamically moving
between different regions of clients and receiving updates from one or a few clients residing in the
selected zone, which reduces communication costs and enhances system flexibility. Secondly, to
address the issue of data heterogeneity among clients, RWSADMM formulates local proximity
among adjacent clients based on hard inequality constraints, avoiding the introduction of model
bias via consensus updates. This approach provides an alternative realization of personalization,
which is crucial when dealing with highly heterogeneous data distributions. Thirdly, to mitigate the
computational burden on the clients, an efficient stochastic solver of the subproblem is designed in
RWSADMM, which provably converges to the stationary point almost surely in expectation
under mild conditions independent of the data distributions. Our theoretical and empirical results
demonstrate the superiority of our proposed algorithm over state-of-the-art personalized Federated
Learning (FL) algorithms, providing empirical evidence for the effectiveness of our approach.

2 Related Work

This paper is relevant to two distinct research areas, which are reviewed in two separate sections: FL
frameworks that tackle data heterogeneity and ADMM-based FL frameworks.

FL with data heterogeneity FL was initially introduced as FedAvg, a client-server-based framework
that didn’t allow clients to personalize the global model to their local data [1]. This led to poor
convergence due to local data heterogeneity, negatively impacting the global FL model’s performance
on individual clients. Recent works proposed a two-stage approach to personalize the global model.
In the first stage, the FL global model is trained similarly to FedAvg. However, the second stage is
included to personalize the global model for each local client through additional training on their
local data. [21] demonstrated that FedAvg is equivalent to Reptile, a new meta-learning algorithm,
when each client collects the same amount of local data. To learn a global model that performs well
for most participating clients, [22] proposed an improved version, Per-FedAvg. This new variant
aims to learn a good initial global model that can adapt quickly to local heterogeneous data. An
extension of Per-FedAvg, called pFedMe [23], introduced an ℓ2-norm regularization term to balance
the agreement between local and global models and the empirical loss. [24] proposed Ditto, a
multi-task learning-based FL framework that provides personalization while promoting fairness and
robustness to byzantine attacks. Ditto uses a regularization term to encourage personalized local
models to be close to the optimal global model. [25] proposed to interpolate local and global models
to train local models while also contributing to the global model. However, scaling these approaches
can be challenging due to high communication costs, reliance on strong assumptions about network
connectivity, or the requirement to compute second-order gradients. Additionally, there is a potential
for enhancing the algorithms’ overall performance.

ADMM-based FL The Alternating Direction Method of Multipliers (ADMM) is a widely recognized
algorithm that effectively tackles optimization problems across multiple domains. In recent studies,
ADMM has been successfully employed in distributed learning, as demonstrated by several works
[26, 27, 28, 29, 30, 31, 32, 33]. In Federated Learning (FL) context, researchers have proposed
various methods to address specific challenges. For handling falsified data in Byzantine settings, [34]
introduced a robust ADMM-based approach. To mitigate local computational burdens in FL, [35]
developed an inexact ADMM-based algorithm suitable for edge learning configurations. FL itself
enables local training without the need to share personal data between clients and the server. Despite
the advantages of FL, there is still a concern regarding clients’ privacy. Analyzing the parameter
differences in the trained models uploaded by each client can compromise their privacy. To tackle
this issue, [36] proposed an inexact ADMM-based federated learning algorithm that incorporates
differential privacy (DP) techniques [37]. By leveraging DP, the algorithm enhances privacy protection
during the FL process. These ADMM-based frameworks also have high communication costs,
ranging from O(n) to O(n2) per iteration, depending on the network’s density with n clients. [38]
introduced a Proximal Primal-Dual Algorithm (Prox-PDA) to enable network nodes to compute
the set of first-order stationary solutions collectively. Moreover, these algorithms do not account
for data heterogeneity in their framework designs, leading to performance deterioration in such
scenarios. The most similar algorithm to RWSADMM is called Walkman [39]. Walkman is an
ADMM-based framework utilizing the random walk technique for distributed optimization. In



Walkman, the communication and computation costs are reduced by activating only one agent at each
step. Compared to other ADMM-based approaches, including Walkman, RWSADMM has several
distinctive features. RWSADMM leverages stochastic approximation to reduce computation costs
per iteration and enforces hard inequality constraints instead of consensus to manage heterogeneous
data, resulting in increased robustness. Additionally, RWSADMM considers the dynamic graph,
allowing it to adapt to changing network conditions and potentially improve communication efficiency.
RWSADMM also incorporates a hard constraint parameter ϵ to promote local proximity among
clients instead of using a regularization term as Walkman does to promote client consensus. This
approach better balances personalization and global optimization. Finally, while Walkman is fully
distributed without server involvement, RWSADMM is a server-based approach in which the server
aggregates information from a small group of clients in each computation round.

3 Random Walk Stochastic ADMM (RWSADMM)
Before delving into the specifics of the proposed algorithm, we present the key notation used
throughout this research. x ∈ Rd represents a vector with length d and e is defined as a vector with
entries equal to 1 and X ∈ Rl×d depicts a matrix with l rows and d columns. [x]i represents the ith
element of vector x and [X]ij is the (i, j)th element of matrix X. [X]i, [X]j represent the ith row
and jth column of matrix X, respectively. (∇f(x))j is used to denote the jth entry of the gradient
of f(x). The inner product of A and B is shown as ⟨A,B⟩. Et[.] indicates the expectation given
the past ξ1, . . . , ξt−1. ⊙ represents the Hadamard product/element-wise product and ⊗ represents
the Kronecker product between two matrices. Finally, Norm p of vector x is denoted as ||x||pp =∑d

i=1 |xi|p, x ∈ Rd and Frobenius norm of matrix X is written as ∥X∥F =
√∑n

i=1

∑m
j=1 |xij |2.

Let us first define our Mobilizing FL problem. Mobilizing FL, which involves a mobile server, can be
formulated as an optimization problem on a connected graph G = (V, E). The graph comprises a set
of n clients, represented as V = v1, v2, . . . , vn, and a set of m edges, denoted as E . The objective is
to minimize the average loss function across all clients while adhering to inequality constraints that
ensure local proximity among the clients’ respective local models. The optimization problem can be
formulated mathematically as follows:

min
x1:n∈Rp

1

n

n∑
i=1

fi(xi) s.t. |xi − xj | ≤ ϵi,∀i ∈ {1, . . . , n},∀j ∈ N (i)/vi. (1)

where fi(xi) represents the local loss function with the model parameter as xi for the client i, the
vertex set N (i) contains client i and its neighboring clients, and ϵi is the non-consensus relaxation
between local neighboring clients to replace model consensus requirement in typical FL. In our
proposed FL method, we model the server’s movement as a dynamic Markov Chain, introducing
a dynamic element to the traditional ADMM-based approach. This work is the first to consider
a dynamic mobile server within the ADMM-based FL framework. In RWSADMM, client-server
communication occurs only when the server is close to a client. The sequence of client indices that
are updated, denoted as ik, evolves based on a non-homogeneous Markov Chain with a state space
of 1, . . . , n [40]. To describe the transition dynamics of the Markov Chain, we employ the non-
homogeneous Markovian transition matrix P(k), which represents the probabilities of transitioning
between clients at time k. Specifically, the conditional probability of selecting client j as the next
client, given that client i is the current client, is defined as:

[P(k)]i,j = Pr {ik+1 = j|ik = i} ∈ [0, 1] (2)

Additionally, it is assumed that the server determines the probability of all possible locations for
its next destination based on the transition matrix P(k) at time k. This provides a probabilistic
approach to server navigation, allowing it to move around the network more effectively. To guarantee
convergence, RWSADMM depends on the frequency of revisiting each agent. This quality is
described by the mixing time of the algorithm. An assumption for the mixing time is as follows:

Assumption 3.1. The random walk (ik)k≥0, vik ∈ V forms an irreducible and aperiodic (ergodic)
Markov Chain with transition probability matrix of P(k) ∈ Rn×n defined in Eq. (2) and stationary
distribution π satisfying limk→∞ πTP(k) = πT . The mixing time (for a given δ > 0) is defined as
the smallest integer τ(δ) such that ∀i ∈ V ,∥∥∥[P(k)τ(δ)]i − πT

∥∥∥ ≤ δπ∗ (3)



where π∗ := mini∈V πi. This inequality states the fact that regardless of the current state i and time
k, the probability of visiting each state j after τ(δ) steps is (δπ∗)-close to πj , that is, ∀i, j ∈ V ,∥∥∥[P(k)τ(δ)]ij − πj

∥∥∥ ≤ δπ∗ (4)

Eq. (4) is used to prove the sufficient descent of a Lyapunov function Lβ in Section 3.1. Let’s also
define

Pmax = lim
k=+∞

{P|[P]ij = max
k

[P(k)]ij}, (5)

from which one can further obtain ∥P(k)∥ ≤ ∥Pmax∥ for all k. Namely, the matrix Pmax is
computed as the element-wise maximum matrix among all the matrices P (k), for k = 0, . . . ,∞.
Therefore, the mixing time requirement in Eq. (3) is guaranteed to hold for

τ(δ) =
⌈ 1

1− σ(P)
ln

√
2

δπ∗

⌉ (a)

≤
⌈ 1

1− σ(Pmax)
ln

√
2

δπ∗

⌉
(6)

where σ(P) := sup{
∥∥fTP

∥∥/∥f∥ : fT1 = 0, f ∈ Rn}. Using Eq. (5), we have ∀P, σ(P) ≤
σ(P)max and the inequality (a) can be inferred.

3.1 Algorithm
In this section, we derive RWSADMM by integrating random walk and stochastic inexact approx-
imation techniques into ADMM. Considering X := row(x1,x2, . . . ,xn) ∈ Rp×n, F (X) :=∑n

i=1 fi(xi), where the operation row(.) refers to row-wise stacking of vectors xi’s. The mobilizing
FL problem (1) can be expressed as:

min
y1:n,X

1

n
F (X) s.t.

∣∣1⊗ yi −XN (i)

∣∣ ≤ 1⊗ ϵi/2,∀i = 1, . . . , n (7)

where 1 = [1 1 . . . 1] ∈ Rni , ni denotes the volume of the vertex set N (i). The constraint implies
that |xi − xj | ≤ ϵi, ∀i = 1 . . . n and ∀j ∈ N (i) through the triangle inequality. yi stored on
the server is necessarily introduced as a local proximity of N (i). We can obtain the augmented
Lagrangian for problem (7)

Lβ(y1:n,X,Z1:n) =
1

n

[
F (X) +

n∑
i=1

〈
Zi,
∣∣1⊗ yi −XN (i)

∣∣− εi
〉
+
β

2

n∑
i=1

∥
∣∣1⊗ yi −XN (i)

∣∣− εi∥2F
]

(8)

where εi = ϵi/2 and Zi ∈ Rnip are the dual variable and β > 0 is the barrier parameter. The
RWSADMM algorithm minimizes the augmented Lagrangian Lβ(y1:n,X,Z1:n) in an iterative
manner. At each iteration k, only a subset of clients covered by the mobilized server, the clients in
N (ik), participate in the federated update. The following updates are performed:

xik = argmin
xik

Lβ(y
′
ik
,xik , z

′
ik
), yik

= argmin
yik

Lβ(yik
,XN (ik),Z

′
N (ik)

),

where y′
ik

, xik , and z′ik denote the groups of variables of the local parameters stored by client ik at
the (k − 1)th update. After solving these subproblems, we update the multiplier zik as follows:

zik =z′ik + β(
∣∣yik

− xik

∣∣− εi),

Next, we derive the solver of each subproblem. The three steps are noted as Updating xik , Updating
yik

, and Updating zik .

Updating xik : min
xik

[
fik(xik) +

〈
z′ik ,

∣∣y′
ik
− xik

∣∣− εik
〉
+

β

2
∥
∣∣y′

ik
− xik

∣∣− εik∥22
]

(9)

The Problem (9) can be solved iteratively, consuming significant computational resources for the local
clients. Furthermore, the computational complexity increases as the local dataset grows, as is often
true in real-world applications. By utilizing the stochasticity and first-order subgradient expansion,
we arrive at a more computationally efficient approximation of the original problem in Eq. (10).

min
xik

[
gik(x

′
ik
, ξik)(xik − x′

ik
) +

〈
z′ik ,

∣∣y′
ik
− xik

∣∣− εik
〉
+

β

2
∥
∣∣y′

ik
− xik

∣∣− εik∥22
]

(10)

In Eq. (10), ξik denotes one or a few samples randomly selected by client ik from its feature set
and their ground truth labels in pairs at the k-th iteration. The function gik(x

′
ik
, ξik) is defined as



the stochastic gradient of fik(x
′
ik
) at x′

ik
. The stochastic approximation can tremendously reduce

memory consumption and save computational costs in each iteration. By setting the subgradient of
the objective function in Eq. (10) to zero, we can derive the closed-form solution in Eq. (11).

xik =y′
ik
+

1

β
z′ik ⊙ sgn(t′)− 1

β
sgn(t′)⊙

(
εi + gik(x

′
ik
, ξik)

)
= y′

ik
+

1

β
sgn(t′)⊙ (z′ik − εi − gik(x

′
ik
, ξik)) (11)

where the signum function sgn(·) extracts the signs of a vector and t′ik = y′
ik
− x′

ik
.

Updating yik
: We solve the following problem

min
yik

〈
ZN (ik),

∣∣1⊗ yik
−XN (ik)

∣∣− 1⊗ εik
〉
+

β

2
∥
∣∣1⊗ yik

−XN (ik)

∣∣− 1⊗ εik∥2F (12)

one can readily derive a closed-form solution for the problem (12) as:

yik
=

1

nik

∑
j∈Nik

[
xik − (

zik
β

+ εik)⊙ sgn(tik)
]

(13)

where tik = y′
ik

− xik is similar to that of Eq. (11) except the updated x. Specifically, via
mathematical induction, we can attain the new updated form of yik

below, which can also reduce the
communication cost from O(n) to O(1):

yik
=y′

ik
+

1

nik

[
xik − (

zik
β

+ εik)⊙ sgn(tik)
]
−
[
x′
ik
− (

z′ik
β

+ εik)⊙ sgn(t′ik)
]

(14)

Updating zik : The Lagrangian multiplier zik can be updated strictly following the standard ADMM
scheme below:

zik = z′ik + κβ
[
xik − y′

ik
− εik

]
(15)

The κ coefficient used in Eq. (15) is decayed in each process step to achieve better convergence.

Please refer to Appendix A for the entire RWSADMM algorithm framework.

4 Theoretical Analysis
In this section, we present the theoretical convergence guarantee of RWSADMM. To ensure its
convergence, certain common assumptions are made regarding the properties of the loss functions.
The assumptions are as follows:
Assumption 4.1. The objective function f(x) is bounded from below and coercive over Rp, that is,
for any sequence {xk}k≥0 ⊂ Rp,

if
∥∥xk

∥∥ k→∞−−−−→ ∞ ⇒ 1

n

n∑
i=1

fi(x) → ∞ (16)

Assumption 4.2. The objective function fi(x)’s are L-smooth, that is, fi are differentiable, and its
gradients are L-Lipschitz, that is, ∀u,v ∈ Rp [39],

∥∇fi(u)−∇fi(v)∥ ≤ L∥u− v∥, ∀i = 1, . . . , n (17)

Remark: In consequence it also holds that ∀u,v ∈ Rp

fi(u)− fi(v)≤ ∇fi(v)
T (u− v) +

L

2
∥u− v∥2, ∀i = 1, . . . , n. (18)

Assumption 4.3. The objective function f is M-Lipschitz, that is, ∀u,v ∈ Rp [41],

|f(u)− f(v)| ≤ M∥u− v∥ (19)

Assumption 4.4. The first-order stochastic gradient is sampled, which returns a noisy but unbiased
estimate of the gradient of f at any point x ∈ Rp, that is, ∀x ∈ Rp,

Eξ[g(x, ξ)] = ∇f(x) (20)

Remark: Substituting Eq. (20) into Eq. (17), one can obtain that for i = 1, . . . , n, we have
∥Eξ[g(u, ξ)]− Eξ[g(v, ξ)]∥ ≤ L∥u− v∥ (21)

Substituting Eq. (20) into Eq. (18), for i = 1, . . . , n, we can obtain

fi(u)− fi(v) ≤ Eξ[g(v, ξ)]
T (u− v) +

L

2
∥u− v∥2, (22)



Assumption 4.5. The noise variance of the stochastic gradient is bounded as:

Eξ(∥∇f(x)− g(x, ξ)∥2) ≤ exp(1), for all x. (23)

This condition bounds the expectation of ∥∇f(xt)− g(xt, ξt)∥2. Using Jensen’s inequality, this
condition implies a bounded variance [41].

We revisit the related crucial properties of the Markov Chain. The first time that the Markov Chain
(ik)k≥0 hits agent i is denoted as Ti := min{k : ik = i}, and maximum value of T over all clients is
defined as T := max{T1, . . . , Tn}. For k > T , let τ(k, i) denote the iteration of the last visit to agent i
before k, mathematically we have

τ(k, i) = max{k′ : ik′ = i, k′ < k}. (24)

To prove the convergence of our proposed algorithm, two Lyapunov functions defined for
RWSADMM are required to be investigated:

Lk
β := Lβ(y

k,Xk;Zk), Mk
β := Lk

β +
L2

n

n∑
i=1

∥∥∥yτ(k,i)+1
i − y

τ(k,i)
i

∥∥∥2 (25)

where Lβ(y
k,Xk;Zk) is defined in Eq. (8). The Mk

β is utilized in the convergence analysis. To
guarantee the convergence of our algorithm, first, we refer to the asymptotic analysis of the nonhomo-
geneous Markov chain presented in [42]. Define Φ(k, l) with k ≥ l as the product of the transition
probability matrices for the Markov chain from time l to k, i.e., Φ(k, l) = P(k) . . .P(l) with k ≥ l.
Then we have the following convergence result:
Lemma 4.6. Consider

1. ∀s, limk→∞ Φ(k, l) = 1
nee

T .
2. The convergence of Φ is geometric and the rate of convergence considering ∀k, l,with k ≥

l ≥ 0, is given by ∣∣[Φ(k, l)]i,j −
1

n

∣∣ ≤ (1− η

4n2

)⌈ k−l+1
Q ⌉−2 (26)

Using Lemma 4.6, the convergence analysis of the algorithm is as follows.
Lemma 4.7. Under Assumptions 4.1 and 4.2, if β > 2L2 + L+ 2, (Mk

β )k≥0 is lower bounded and
convergent, the iterates (yk,Xk,Zk)k≥0 generated by RWSADMM is bounded.

The proof sketch and the detailed convergence proof are presented in Appendix B. Using Lemma 4.7
and B.6, we can present the convergence of RWSADMM in Theorem 4.8.
Theorem 4.8. Let Assumption 4.5 hold. For β > 2L2+L+2, it holds that any limit point (y∗,X∗,Z∗)

of the sequence (yk,Xk,Zk) generated by RWSADMM satisfies y∗ = xi
∗, i = 1, . . . , n where y∗

is a stationary point of Eq. (7), with probability 1, that is,

Pr
(
0 ∈ 1

n

n∑
i=1

∇fi(y
∗)
)
= 1 (27)

If the objective function of Eq. (7) is convex, then y∗ is a minimizer.

Next, Theorem 4.9 further presents that the algorithm converges sublinearly. This is comparable to
the convergence rate of other FL methods [43, 44, 24, 25], but the existing methods didn’t consider
the dynamic graph and infrastructure-less environment. The detailed proof is offered in Appendix C.
Theorem 4.9. Under Assumptions (3.1), (4.1), and (4.2), with given β in Lemma 4.7, and local
variables initiated as ∇fi(x

0
i ) = βx0

i = z0i ,∀i ∈ {1, . . . , n}, there exists a sequence {gk}k≥0 with
{gk} ∈ ∂Lk+1

β satisfying

min
k≤K

E
∥∥gk∥∥2 ≤ C

K
(L0

β − f
−
), ∀K > τ(δ) + 2 (28)

where C is a constant depending on β, L, and γ, n, and τ(δ).

Communication Complexity Using Theorem 4.9, the communication complexity of RWSADMM
for nonconvex nonsmooth problems is as follows. To achieve ergodic gradient deviation
Et := min

k≤K
E
∥∥gk∥∥2 ≤ ω for any K > τ(δ) + 2, it is sufficient to have



C

K
(L0

β − f
−
) ≤ ω

(a)−→ K ∼ O
( 1
ω
.
τ(δ)2 + 1

(1− δ)nπ∗

)
(29)

(a) is achieved by taking L0
β and f

−
as constants and independent of n and the network structure.

Using the τ(δ) definition from (6), by setting δ = 1/2 and assuming the reversible Markov chain
with P (k)T = P (k), the communication complexity is

O
( 1
ω
.

ln2n

(1− λ2(P(k)))2
)

(30)

Communication Comparison Among the baseline frameworks, Per-FedAvg [22] and APFL [25]
have addressed the communication complexity of their respective frameworks. By assuming that
Assumption 3.1 holds and utilizing Eq. (30), we can determine the communication complexity of
RWSADMM as O(ω−1) for K iterations. In comparison, Per-FedAvg exhibits a higher commu-
nication complexity of O(ω−3/2). In the case of APFL, all clients are assumed to be used in each
computation round to ensure convergence in nonconvex settings. The communication complexity of
APFL is determined as O(n3/4ω−3/4), where n represents the total number of clients. Consequently,
when n is large, APFL exhibits a significantly higher communication rate than RWSADMM. Overall,
the communication complexity analysis suggests that RWSADMM offers superior scalability and
communication efficiency compared to existing methods.

5 Experimental Results

Setup We evaluate the performance of RWSADMM using heterogeneous data distributions. All the
experiments are conducted on a workstation with Threadripper Pro 5955WX, 64GB DDR4 RAM,
and NVidia 4090 GPU. All frameworks are performed on standard FL benchmark datasets (MNIST
[45], Synthetic [23], and CIFAR10 [46]) with 10-class labels and convex and non-convex models.
Multinomial logistic regression (MLR), multilayer perceptron network (MLP), and convolutional
neural network (CNN) models are utilized for strongly convex and two non-convex settings, respec-
tively. We create a moderately dynamic connected graph of randomly placed nodes where each node
has at least 5 neighboring nodes at k-th update. We set the probability transition matrix P(k) as
[P(k)]ij = 1/deg(ik) and set up the experiments for N = 20 clients with a regeneration frequency
of 10 steps for the dynamic graph. The data is split among clients using a pathological non-IID setting.
The data on each client contains a portion of labels (two out of ten labels), and the allocated data size
for each client is variable. For the Synthetic data, we use the same data generative procedures of
[23] with 60 features and 100 clients. All local datasets are split randomly with 75% and 25% for
training and testing, respectively. The models’ details, the rationale behind graph construction, and
hyperparameter tuning for β, κ, and selected ε value are further described in Appendix D.

Performance Comparison The performance of RWSADMM is compared with FedAvg [1] as a
benchmark and several state-of-the-art personalized FL algorithms such as Per-FedAvg [22], pFedMe
[23], APFL [25], and Ditto [24]. The test accuracy and training loss for the MNIST dataset is depicted
in Fig. 2. (Synthetic and CIFAR10 figures are presented in Appendix D). Test accuracy and time cost
for all the datasets are reported in Table 1.

The test accuracy progress curves of RWSADMM for all the models (2a-2c) have a significantly
faster convergence. For the non-convex models (2b), RWSADMM reaches convergence after 200
iterations, while the rest of the algorithms, except Ditto, work toward convergence until 600 iterations.
The performance curves are shown for 100 iterations for consistency. When tested on MNIST with
MLP, RWSADMM demonstrated comparable performance against pFedMe. In the test on Synthetic
data with MLR models, RWSADMM exhibited a significant advantage over the other methods, with
an improved margin of 14.95%. Regarding computational efficiency, RWSADMM is slower than
FedAvg and Per-FedAvg, but faster than pFedMe. Furthermore, RWSADMM converges in fewer
iterations (200 iterations) than pFedMe (600 iterations). RWASDMM is also run for more extensive
networks with 50 and 100 nodes as a separate set of experiments. The performance comparison
results and diagrams are also in Appendix D.

6 Conclusion and Future Work

This study proposes a novel approach called RWSADMM, designed for systems with isolated nodes
connected via wireless links to the mobile server without relying on pre-existing communication
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Figure 2: Performance comparison (test accuracy and training loss) of RWSADMM, pFedMe, Per-
Avg, FedAvg, APFL, and Ditto for MNIST dataset for the MLR (2a, 2d), MLP (2b, 2e), and CNN
(2c, 2f) models. The first 100 iterations are plotted to show the convergence progress better.

Frameworks
MNIST Synthetic

MLR MLP CNN MLR MLP
acc(%) t(s) acc(%) t(s) acc(%) t(s) acc(%) t(s) acc(%) t(s)

FedAvg 93.96± 0.02 128 98.79± 0.03 155 97.83± 0.15 2655 77.62± 0.11 592 83.64± 0.22 680
PerAvg 94.37± 0.04 154 98.90± 0.02 203 98.97± 0.08 2432 81.49± 0.09 267 85.01± 0.10 269
pFedMe 95.62± 0.04 448 99.46± 0.01 699 99.05± 0.06 5541 83.20± 0.06 254 86.36± 0.15 1413
Ditto 97.37± 0.02 276 97.79± 0.03 423 99.20± 0.11 3273 86.24± 0.03 72 85.26± 0.10 79
APFL 92.64± 0.03 304 97.74± 0.02 533 98.58± 0.03 5933 83.40± 0.04 95 82.52± 0.15 111
RWSADMM (our method) 98.63 ± 0.01 167 99.29 ± 0.02 295 99.52 ± 0.04 3857 96.44 ± 0.12 473 97.17 ± 0.18 692

Frameworks
CIFAR10

MLR MLP CNN
acc(%) t(s) acc(%) t(s) acc(%) t(s)

FedAvg 40.84± 0.01 160 41.02± 0.05 69 38.65± 0.05 78
PerAvg 47.43± 0.09 192 60.25± 0.07 253 83.52± 0.01 800
pFedMe 67.53± 0.34 515 78.12± 0.38 340 83.56± 0.05 3480
Ditto 75.2± 0.01 225 81.37± 0.13 259 83.86± 0.02 2189
APFL 75.17± 0.32 50 78.00± 0.18 55 66.23± 0.03 702
RWSADMM (our method) 80.72 ± 0.11 131 84.99 ± 0.20 253 87.08 ± 0.03 3759

Table 1: Performance comparisons of FedAvg, Per-FedAvg, pFedMe, Ditto, APFL, and RWSADMM
frameworks on MNIST, Synthetic, and CIFAR10 datasets. Three models are utilized for each dataset,
and each model’s converged accuracy (%) and time consumption (seconds) are reported. Each
configuration is executed for ten iterations, and variance is calculated to compute the degree of
confidence for test accuracy rates.

infrastructure. The algorithm enables the server to move randomly toward a local client, establishing
local proximity among adjacent clients based on hard inequality constraints, addressing the chal-
lenge of data heterogeneity. Theoretical and experimental results demonstrate that RWSADMM
is fast-converging and communication-efficient, surpassing current state-of-the-art FL frameworks.
This study primarily focuses on the methodological framework for RWSADMM. Future research
directions should explore essential techniques such as incorporating differential privacy techniques
and examining scalability in more extensive network and dataset scenarios. Further investigation is
needed to assess the implementation in physical networks and evaluate the effect of communication
delays in the real world.
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